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Abstract

A cyclic base ordering of a connected graph G is a cyclic ordering

of E(G) such that every |V (G)−1| cyclically consecutive edges form a

spanning tree ofG. LetG be a graph with E(G) ̸= ∅ and ω(G) denote

the number of components in G. The invariants d(G) and γ(G) are

respectively defined as d(G) = |E(G)|
|V (G)|−ω(G)

and γ(G) = max{d(H)},
where H runs over all subgraphs of G with E(H) ̸= ∅. A graph G

is uniformly dense if d(G) = γ(G). Kajitani et al. [8] conjectured in

1988 that a connected graph G has a cyclic base ordering if and only

if G is uniformly dense. In this paper, we show that this conjecture

holds for some classes of uniformly dense graphs.

Key words: cyclic base ordering, cyclic ordering, uniformly dense graphs, uni-

formly dense matroids

1 Introduction

We consider finite loopless graphs with possible multiple edges, and follow

[2] for undefined notations and terminology. In particular, ω(G) denotes

the number of components of a graph G.
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Let G be a nontrivial graph (that is E(G) ̸= ∅). Following the termi-

nology in [5] or [4], d(G) and γ(G) are respectively defined as

d(G) =
|E(G)|

|V (G)| − ω(G)
and γ(G) = max{d(H)},

where H runs over all nontrivial subgraphs of G.

As in [5], a graph G satisfying d(G) = γ(G) is said to be uniformly

dense.

A cyclic base ordering of a connected graph G is a cyclic ordering

of E(G) such that every |V (G)| − 1 cyclically consecutive edges form a

spanning tree of G.

Kajitani et al. [8] posed the following cyclic base ordering conjecture.

Conjecture 1.1. (Kajitani et al. [8]) A connected graph G has a cyclic

base ordering if and only if G is uniformly dense.

Actually, they proved the necessity of the conjecture.

Theorem 1.1. (Kajitani et al. [8]) For a connected graph G, if G has a

cyclic base ordering, then G is uniformly dense.

For the sufficiency, they were able to prove the following special cases.

Theorem 1.2. (Kajitani et al. [8]) The following graphs have cyclic base

orderings.

(i) Any uniformly dense simple connected graph with at most 5 vertices.

(ii) Any graph consisting of two disjoint spanning trees.

(iii) Any complete graph.

(iv) Any 2-tree (See the definition in Section 5).

In this paper, we shall show that Conjecture 1.1 holds for several classes

of graphs, including complete bipartite graphs, k-maximal graphs (See the

definition in Section 4) and 3-trees (See the definition in Section 5). These

provide with further evidence, in addition to Theorem 1.2, to support con-

jecture 1.1.

In next section, some properties of uniformly dense graphs will be intro-

duced. In the subsequent sections, we will investigate cyclic base orderings
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in some classes of uniformly dense graphs. In the last section, we will intro-

duce the matroid version of the cyclic base ordering conjecture and some

former results for matroids.

2 Uniformly dense graphs

Let G be a nontrivial graph. Recall that d(G) = |E(G)|
|V (G)|−ω(G) and γ(G) =

max{d(H)} where H runs over all nontrivial subgraphs of G. If d(G) =

γ(G), then G is uniformly dense. Following the terminology in [5], we

further define η(G) = min |X|
ω(G−X)−ω(G) . Let τ(G) be the maximum number

of edge-disjoint spanning trees in a graph G. If E(G) = ∅, we define

η(G) = ∞. A fundamental theorem of Nash-Williams [11] and Tutte [14]

implies the following. (See also Catlin et al. [5])

Theorem 2.1. (Nash-Williams [11] and Tutte [14]) For a connected graph

G, τ(G) = ⌊η(G)⌋.

From the definition of d(G), η(G) and γ(G), we immediately have, for

any nontrivial graph G,

η(G) ≤ d(G) ≤ γ(G).

Theorem 2.2. (Catlin et al. [5]) The following are equivalent for a non-

trivial graph G.

(i) d(G) = γ(G).

(ii) η(G) = d(G).

(iii) η(G) = γ(G).

3 Cyclic base ordering in complete bipartite

graphs

Theorem 3.1 is the main result in this section. Let G be a complete bipartite

graph Km,n with bipartition (X,Y ) such that |X| = m and |Y | = n. We

will give E(G) an ordering and prove that it is a cyclic base ordering.
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Figure 1: Examples of cyclic base ordering in complete bipartite graphs

Suppose that X = {a1, a2, · · · , am−1, a0} and Y = {b1, b2, · · · , bn−1, b0}.
Let k = gcd (m,n)− 1 and l = mn

gcd (m,n) .

Let O = (e1, e2, · · · , emn) be an ordering of edges in G such that ei =

asbt+j where s ≡ i (mod m) and t ≡ i (mod n) for 1 ≤ s ≤ m − 1 and

1 ≤ t ≤ n−1. when jl+1 ≤ i ≤ (j+1)l for j = 0, 1, 2, · · · , k. In particular,

(a) If m = n, then k = m − 1 and l = m. For example, when m =

n = 3, O = (a1b1, a2b2, a0b0, a1b2, a2b0, a0b1, a1b0, a2b1, a0b2), as shown in

Figure 1(a).

(b) If m and n are coprime, i.e., gcd(m,n) = 1, then k = 0 and l = mn.

Then O = (ei)
mn
1 such that ei = asbt. As shown in Figure 1(b), when

m = 4 and n = 3,

O = (a1b1, a2b2, a3b0, a0b1, a1b2, a2b0, a3b1, a0b2, a1b0, a2b1, a3b2, a0b0).

We will prove that O is a cyclic base ordering of G.

Theorem 3.1. Every complete bipartite graph has a cyclic base ordering.

Furthermore, O is a cyclic base ordering of G.

Proof: Let S be the set of any cyclically consecutive m + n − 1 elements

of O. We need to show that G[S] is a spanning tree of G. Since G[S] is a

spanning subgraph with m+ n− 1 edges and m+ n vertices, it suffices to

show that G[S] is connected.

We assume that S = {ei, ei+1, · · · , em+n+i−2} (mod mn) for some i.

We use (mod mn) for a set to mean that the subscript of each element in
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Figure 2: Any cyclically consecutive m+ n− 1 elements in O

the set is modulo mn. By the definition of O, we suppose that

S = {asbt, as+1bt+1, · · · , as+m−1bt+m−1, asbt+1, · · · , as+n−2bt+n−1}.

Without loss of generality, we may assume that m ≥ n. If m = n, then

G[S] is a path btasbt+1as+1 · · · as+m−1bt+m−1 as shown in Figure 2(a), and

thus is a spanning tree in G.

If m is a multiple of n, i.e., m = pn. Let S′ be the subset consist

of the first m elements of S. Then G[S′] has n components and each

component is a star centered at bi for i = t, t+ 1, · · · , t+ n− 1 (mod n),

as shown in Figure 2(b). Let Gt, Gt+1, · · · , Gt+n−1 denote the components.

The edge asbt+1 is between Gt and Gt+1, as+1bt+2 is between Gt+1 and

Gt+2. In general, as+ibt+1+i ∈ S\S′ is between Gt+i and Gt+1+i for i =

0, 1, · · · , n− 2. Thus G[S] is connected, whence is a spanning tree in G.

The last case is m = pn + q where 1 ≤ q < m. Let S′ be the subset

containing the first m elements of S. Then G[S′] has n components and

each component is a star centered at bi for i = t, t+1, · · · , t+n−1 (mod n),

which is similar to the case of m = pn. Let Gt, Gt+1, · · · , Gt+n−1 denote

the components. The edge asbt+q is between Gt and Gt+q, as+1bt+q+1 is
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between Gt+1 and Gt+q+1. In general, as+ibt+q+i ∈ S\S′ is between Gt+i

and Gt+q+i for i = 0, 1, · · · , n − 2. Thus G[S] is connected, whence it is a

spanning tree in G.

4 Cyclic base orderings in k-maximal graphs

Throughout this section, a graph G always means a multigraph and k

denotes a positive integer. Theorem 4.3 is the main result in this section.

Let G be connected and κ′(G) = max{κ′(H) : H is a subgraph of G}.
Mader in [10] first introduced k-maximal graphs. A graph G is k-maximal

if κ′(G) ≤ k but for any edge e ̸∈ E(G), κ′(G+ e) ≥ k + 1. We shall point

out that there is a big difference between k-maximal simple graphs and

k-maximal multigraphs. What we talk about here are k-maximal multi-

graphs, and Lemma 4.2 gives a structural characterization of a k-maximal

multigraph. For the structure of a k-maximal simple graph, please refer to

Mader [10] and Lai [9].

Let G1 and G2 be connected graphs such that V (G1)∩ V (G2) = ∅. Let
K be a set of k edges each of which has one vertex in V (G1) and the other

vertex in V (G2). The K-edge-join G1 ∗K G2 is defined to be the graph

with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪K. When the

set K is not emphasized, we use G1 ∗k G2 for G1 ∗K G2, and refer G1 ∗k G2

as a k-edge-join.

Let Gk be a family of graphs such that for any G1, G2 ∈ Gk∪{K1}, G1∗k
G2 ∈ Gk.

Lemma 4.1. (Gu et al. [6]) Let G be a k-maximal graph with |V (G)| = n.

Then |E(G)| = k(n− 1).

Lemma 4.2. (Gu et al. [6]) A connected graph G is k-maximal if and only

if G ∈ Gk.

Theorem 4.3. Any k-maximal graph G has a cyclic base ordering.

Proof: We will show it by induction on n = |V (G)|. By Lemma 4.1,

|E(G)| = k(n− 1). When n = 2, by Lemma 4.2, G = kK2, the graph with

2 vertices and k multiple edges. Then any ordering of edges is a cyclic base
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ordering. Now assume that the theorem holds for smaller values of n > 2.

By Lemma 4.2, G has an edge cut of size k denoted by K = {f1, f2, · · · , fk}
and G = G1 ∗K G2. Then Gi = K1 or Gi ∈ Gk for i = 1, 2. Since n > 2,

at least one of G1 and G2 is not K1. Without loss of generality, we may

assume that G1 ̸= K1.

(i) G2 = K1. By inductive hypothesis, G1 has a cyclic base ordering,

denoted by

O = (e1, e2, · · · , ek(n−2)).

We construct an ordering of E(G) from O by inserting fi between ei(n−2)

and ei(n−2)+1 for i = 1, 2, · · · , k, and get

O′ = (e1, e2, · · · , en−2, f1, en−1, · · · , e2(n−2), f2, e2(n−2)+1, · · · , ek(n−2), fk).

Then O′ is a cyclic base ordering of G.

(ii) G2 ̸= K1. Suppose that |V (G1)| = n1 and |V (G2)| = n2. For i = 1, 2,

since τ(Gi) = k, we have |E(Gi)| = k(ni − 1). By inductive hypothesis, G1

has a cyclic base ordering denoted by

O1 = (e1, e2, · · · , ek(n1−1))

and G2 has a cyclic base ordering denoted by

O2 = (e′1, e
′
2, · · · , e′k(n2−1)).

We will construct an ordering of |E(G)| from O1 and O2. Let

Si = (e(i−1)(n1−1)+1, · · · , ei(n1−1), fi, e
′
(i−1)(n2−1)+1, · · · , e

′
i(n2−1))

for i = 1, 2, · · · , k. And let

O′ = (S1, S2, · · · , Sk)

Then O′ is a cyclic base ordering of G. This completes the proof.

By Theorem 1.1 and Theorem 2.1, we have the following corollary.

Corollary 4.4. Every k-maximal graph is a disjoint union of k edge-

disjoint spanning trees.
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5 Cyclic base orderings in 3-trees

Theorem 5.2 is the main result in this section. Let k be a positive integer.

A graph G is a k-tree if G = Kk+1 or G has a vertex v such that G − v

is a k-tree and such that v is adjacent to all vertices in a clique of order k.

The clique is called an adjacent clique of v. By definition, every k-tree

can be constructed by starting with a complete graph Kk+1 and repeated

adding vertices in such a way that each added vertex has exactly k adjacent

vertices that form a clique. For example, 1-trees are trees. A k-tree is a

simple graph. k-trees are intrinsically related to treewidth, which is an

important parameter in the Robertson/Seymour theory of graph minors

and in algorithmic complexity, see [1, 13].

Theorem 1.2 shows that any 2-tree has a cyclic base ordering. In this

section, we will construct a cyclic base ordering inductively in a 3-tree.

Let O be a cyclic base ordering of a 3-tree G with n vertices. Then there

are 3n− 6 elements in O. We divide these 3n− 6 elements into 3 ordered

groups. The first n−2 elements form group 1, the last n−2 elements form

group 3 and all the other n− 2 elements form group 2. The three groups

are denoted by S1, S2 and S3, and O can be denoted as (S1, S2, S3). Each

group can be regarded as a sub-ordering of O. Sometimes we also regard a

group as a set, which can be easily seen from the context.

Lemma 5.1. Let G be a 3-tree and C be a cycle in G. Suppose that

e ∈ E(C). Then C − e contains two edges which are in a K3.

Proof: We show it by induction on l = |E(C)|. If l = 3, then C = K3,

done. Suppose that the statement holds for smaller value of l > 3. By

definition, a 3-tree can be constructed inductively by adding a new vertex

and three incident edges to a K3 from another K3. Thus there exists a

vertex u ∈ V (C) such that the adjacent vertices u1, u2 of u in C must

be adjacent in G. Let edge e1 = uu1, e2 = uu2 and e0 = u1u2. Then

C ′ = C − e1 − e2 + e0 is a cycle in G with |V (C ′)| < l and e1, e2, e0 form

another cycle C ′′ = K3. By inductive hypothesis, for any e ∈ E(C), C − e

contains two edges which are in a K3.
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Figure 3: Cyclic base orderings in 3-trees

Theorem 5.2. Any 3-tree has a cyclic base ordering.

Proof: We will prove a stronger statement by induction on n = |V (G)|.
A stronger statement: any 3-tree G has a cyclic base ordering O such

that edges in each K3 of G are in 3 different groups of O.

When n = 4, as shown in Figure 3(a), O = (e1, e2, e3, e4, e5, e6) is a

cyclic base ordering in G such that edges of each K3 are in 3 different

groups. Now suppose that the statement holds for smaller value of n > 4.

Let v be a vertex in G and x1, x2, x3 are edges of the adjacent clique. The

incident edges of v inG are denoted by f1, f2 and f3 as shown in Figure 3(b).

The edges f1 and x1 are called opposite edges. Similarly, f2 and x2, f3

and x3 are two pairs of opposite edges. Let On−1 = (S1, S2, S3) be a cyclic

base ordering of G − v by inductive hypothesis. By inductive hypothesis,

x1, x2 and x3 are in different groups. Without loss of generality, we may

assume that xi ∈ Si for i = 1, 2, 3. Let On = (S1, f1, S2, f2, S3, f3). Then

S′
i = (Si, fi) is the group i of On for i = 1, 2, 3, and edges in each K3 of G

are in 3 different groups On.

In order to show that On is a cyclic base ordering of G, without loss of

generality, it suffices to show that edges in (f1, S2, f2) forms no cycles in G.

We argue it by contradiction and suppose that some edges form a cycle C.

By inductive hypothesis, C contains f1 and f2. Then C − f1 − f2 + x3 is a

cycle in G− v. Since G− v is a 3-tree, by Lemma 5.1, there exist two edges

in C−f1−f2 ⊆ S2 which are in a K3. Then by inductive hypothesis, these

two edges are in different groups in On, contrary to the fact that they are

in S2, completing the proof.
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Corollary 5.3. Every 3-tree is uniformly dense.

6 Closing remark

The original version of Conjecture 1.1 was for matroids. We will introduce

the matroid version in this section. Matroids are considered to be finite

and loopless, and undefined terms can be found in Oxley [12].

Let M be a matroid with rank funcion r and ground set E(M). For

any X ⊆ E(M) with r(X) > 0, the density of X is defined by

dM (X) =
|X|
r(X)

.

When the matroid M is understood from the context, we often omit

the subscript M . We also use d(M) for d(E(M)). Follow the terminology

in [5], the fractional arboricity γ(M) is defined as

γ(M) = max{d(X) : r(X) > 0}.

As in [5], a matroid M satisfying d(M) = γ(M) is called uniformly

dense.

A cyclic base ordering of a matroid M is a cyclic ordering of E(M)

such that every r(M) cyclically consecutive elements form a base of M .

Kajitani et al. [8] posed the following cyclic base ordering conjecture.

Conjecture 6.1. (Kajitani et al. [8]) A loopless matroid M has a cyclic

base ordering if and only if M is uniformly dense.

Actually, they proved the necessity of the conjecture.

Theorem 6.1. (Kajitani et al. [8]) For a loopless matroid M , if M has a

cyclic base ordering, then M is uniformly dense.

Heuvel and Thomassé proved a special case when |E(M)| and r(M) are

relatively prime.

Theorem 6.2. (Heuvel and Thomassé [7]) Let M be a loopless matroid

with |E(M)| and r(M) are coprime. Then M has a cyclic base ordering if

and only if M is uniformly dense.
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A matroid is sparse paving if each nonspanning circuit is a hyper-

plane. Recently, Bonin showed that Conjecture 6.1 holds for sparse paving

matroids, stated as a theorem below.

Theorem 6.3. (Bonin [3]) Conjecture 6.1 holds for sparse paving matroids.

We shall point out that Conjecture 6.1 is still open, and even the special

case for graphs, i.e., Conjecture 1.1, remains unsolved.
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