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a b s t r a c t

An orientation of a graph G is a mod(2s + 1)-orientation if under this orientation, the
net out-degree at every vertex is congruent to zero mod(2s + 1). If for any function
b : V (G) → Z2s+1 satisfying


v∈V (G) b(v) ≡ 0 (mod 2s + 1), G always has an orienta-

tion D such that the net out-degree at every vertex v is congruent to b(v) mod (2s + 1),
then G is strongly Z2s+1-connected. In this paper, we prove that a connected graph has a
mod(2s+1)-orientation if and only if it is a contraction of a (2s+1)-regular bipartite graph.
We also proved that every (4s−1)-edge-connected series–parallel graph is strongly Z2s+1-
connected, and every simple 4p-connected chordal graph is strongly Z2s+1-connected.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs without loops, but multiple edges are allowed, and we follow [1] for undefined terms and
notations. In particular, for a graph G, κ(G) and κ ′(G) denote the connectivity and edge-connectivity of G, respectively. If H1
and H2 are subgraphs of a graph G, then H1 ∩H2 and H1 ∪H2 are the intersection and the union of H1 and H2, respectively, as
defined in [1]. For subsets S, S ′

⊆ V (G), [S, S ′
] denotes the set of edges of Gwith one end in S and the other in S ′. If X ⊆ E(G)

is an edge subset, then the contraction G/X is obtained by identifying the two ends of each edge in X and then deleting all
the resulting loops. As shown on p. 55 of [1], the contraction does not delete resulting multiple edges. If H is a subgraph
of G, we use G/H for G/E(H). Throughout this paper, Z denotes the set of all integers. For an m ∈ Z, Zm denotes the set of
integers modulom, as well as the additive cyclic group onm elements. For a graph G, and for any integer i ≥ 0, define

Vi(G) = {v ∈ V (G) : dG(v) = i}.

Let D denote an orientation of G. Following [1], for an edge e = uv ∈ E(G), if e is oriented from u to v under D, we use
(u, v) to denote this arc (directed edge). For each v ∈ V (G), d+

D (v) and d−

D (v) denote the out-degree and the in-degree of v
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under this orientation, respectively. When the orientation D is clear in the context, we use d+ and d− to denote d+

D and d−

D ,
respectively. If a graph G has an orientation D such that at every vertex v ∈ V (G), d+

D (v)−d−

D (v) ≡ 0 (mod 2s+1), then we
say that G admits a mod(2s+1)-orientation. The set of all graphs which havemod(2s+1)-orientations is denoted byM2s+1.

Let A be an (additive) abelian group and G be a graph with an orientation D = D(G). For any vertex v ∈ V (G), let E+

D (v)

denote the set of all edges directed out from v, and E−

D (v) the set of all edges directed into v. For a function f : E(G) → A,
define ∂ f : V (G) → A, called the boundary of f , as follows:

for any vertex v ∈ V (G), ∂ f (v) =


e∈E+

D (v)

f (e) −


e∈E−

D (v)

f (e).

A function b : V (G) → A is a zero-sum function on A if


v∈V (G) b(v) ≡ 0, where 0 denotes the additive identity. The set of
all zero-sum functions on A of G is denoted by Z(G, A). Let A′ be a subset of A. We define F(G, A′) = {f : E(G) → A′

}. For
any zero-sum function b on A of G, a function f ∈ F(G, A′) satisfying ∂ f = b is referred to as an (A′, b)-flow. When b = 0,
an (A − {0}, 0)-flow is known as a nowhere zero A-flow in the literature (see [4,5], among others). Following [5], if for any
zero-sum function b on A of G,G always has an (A − {0}, b)-flow, then G is A-connected.

Our research is motivated by the study of group connectivity initiated in [5]. Let G be a graph under a given orientation
D. A unitary Zm-flow is a function f ∈ F(G, {±1}) such that ∂ f = 0. Given any unitary Zm-flow f under an orientation D,
by keeping the orientation of each edge with f (e) = 1 and reversing the orientation of each edge with f (e) = −1, we then
obtain amodm-orientation Df , on which the constant function that assigns every edge with the value 1 is a unitary Zm-flow
of G. Thus a graph G has a unitary Zm-flow if and only if G has a mod m-orientation.

The concept of group connectivity can be extended also. A graph G is strongly Zm-connected if, under a given orientation
D, for any zero-sum function b on Zm of G, there exists a function f ∈ F(G, {±1}) such that ∂ f = b. Again, for a given b ∈

Z(G, Zm) and an f ∈ F(G, {±1})with ∂ f = b, one can keep the orientation of each edgewith f (e) = 1 and reverse the orien-
tation of each edge with f (e) = −1 to obtain a new orientation D′ of G such that for any vertex v ∈ V (G), d+

D′(v)− d−

D′(v) =

b(v) = ∂ f (v). This orientation D′ will be referred to as a (Zm, b)-orientation of G. Thus a graph G is strongly Zm-connected if
and only if for any b ∈ Z(G, Zm),G always has a (Zm, b)-orientation. We use Mo

m to denote the collection of graphs that are
strongly Zm-connected.

Tutte and Jaeger proposed the following conjectures concerning mod(2s + 1)-orientations. A conjecture on strongly
Z2s+1-connected graphs has also been proposed recently.

Conjecture 1.1. Let s ≥ 1 denote an integer.
(i) (Tutte [13]) Every 4-edge-connected graph has a mod 3-orientation.
(ii) (Jaeger [3,4]) Every 4s-edge-connected graph has amod(2s + 1)-orientation.
(iii) (Jaeger [3,4]) Every 5-edge-connected graph is strongly Z3-connected.
(iv) [9,10] Every (4s + 1)-edge-connected graph is strongly Z2s+1-connected.

Conjecture 1.1(i) is well-known as Tutte’s 3-flow conjecture. Conjecture 1.1(ii) is an extension of Tutte’s 3-flow conjec-
ture, which includes Conjecture 1.1(i) as the special case of p = 1. In [7], Kochol showed that to prove Conjecture 1.1(i),
it suffices to prove that every 5-edge-connected graph has a mod 3-orientation. Consequently, Conjecture 1.1(iii) implies
Conjecture 1.1(i). To the best of our knowledge, all these conjectures remain open. The best known results so far have been
recently obtained by Thomassen [12], and by Lovász, Thomassen, Wu and Zhang [11].

Theorem 1.2 (Thomassen, [12]). Every 8-edge-connected graph is strongly Z3-connected.

Theorem 1.3 (Lovász, Thomassen, Wu and Zhang [11], Wu [14]). Every 6s-edge-connected graph is strongly Z2s+1-connected.

The main results of this paper are the following.

Theorem 1.4. A connected graph admits a unitary Z2s+1-flow if and only if it is a contraction of a (2s + 1)-regular bipartite
graph.

Theorem 1.5. Every (4s − 1)-edge-connected series–parallel graph (graph with no K4-minor) is strongly Z2s+1-connected.

Theorem 1.6. Every simple 4s-connected chordal graph is strongly Z2s+1-connected.

The bounds in Theorems 1.5 and 1.6 are best possible in some sense. We shall show that there exist infinitely many
(4s − 2)-edge-connected K4-minor free graphs that are not strongly Z2s+1-connected; and there exist (4s − 1)-connected
chordal graphs that are not strongly Z2s+1-connected.

We shall present some of the useful facts and preliminary results in the next section. The proofs for Theorems 1.4–1.6
will be in the subsequent sections.

2. Some useful facts

In this section, we review some of the useful properties to be applied in our arguments, introduce the mod(2s + 1)-
closure of a graph, and investigate the distribution of the in-degrees and out-degrees of certain vertices in a graph with a
mod(2s + 1)-orientation.
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The statements (i) and (ii) of Proposition 2.1 below are proved in Proposition 2.2 of [9].

Proposition 2.1 ([9]). For any integer p ≥ 1, each of the following holds.

(i) If G is strongly Z2s+1-connected and e is an edge of G, then G/e is strongly Z2s+1-connected.
(ii) If H is a subgraph of G, and both H and G/H are strongly Z2s+1-connected, then so is G.

Given a graph G and an integerm > 0, the graph G(m) is obtained by replacing each edge e of G bym parallel edges joining
the same two end vertices of e. The next lemma presents some examples of graphs that are in Mo

2s+1, the set of all strongly
connected graphs, and examples of graphs that are not inMo

2s+1.

Lemma 2.2. Let G be a graph, and m, s ≥ 1 be integers. Each of the following holds.

(i) If G is strongly Z2s+1-connected, then G is 2s-edge-connected.
(ii) K (m)

2 is strongly Z2s+1-connected if and only if m ≥ 2s.

Proof. (i) By contradiction, assume that G is in Mo
2s+1 with κ ′(G) < 2s. Then G has an edge cut X with |X | < 2s. Let G1,G2

denote the two components of G− X . By Proposition 2.1(i), G′
= G/G1 ∈ Mo

2s+1. Let v denote the vertex of G′ onto which G1
is contracted. Then dG′(v) = |X | < 2s.

Suppose first that dG′(v) = 2k < 2s. Pick a zero-sum function b ∈ Z(G′, Z2s+1)with b(v) ≡ 1 (mod 2s+1). AsG′
∈ Mo

2s+1,

G′ has a (Z2s+1, b)-orientation D = D(G′). Under this orientation, d+(v)+d−(v) = 2k and d+(v)−d−(v) ≡ 1 (mod 2s+1).
It follows that 2d+(v) ≡ 2k + 1 (mod 2s + 1). Since 0 < k < s, and since 0 ≤ d+(v) ≤ s − 1, we have 2d+(v) = 2k + 1,
which is impossible.

Next we assume that dG′(v) = 2k+1 < 2s. Let b ∈ Z(G′, Z2s+1) be a functionwith b(v) ≡ 0 (mod 2s+1). As G′
∈ Mo

2s+1,

G′ has a (b, Z2s+1)-orientationD = D(G′). Under this orientation, d+(v)+d−(v) = 2k+1 and d+(v)−d−(v) ≡ 0 (mod 2s+
1). It follows again that 2d+

≡ 2k + 1 (mod 2s + 1). Since 0 < k < s, and since 0 ≤ d+
≤ s − 1, we have 2d+

= 2k + 1,
which is impossible.
(ii) First assume that m = 2s. By Part (i), it suffices to show that K (m)

2 ∈ Mo
2s+1. Let V (K (m)

2 ) = {v1, v2}, and b(v1) ≡

b′ (mod 2s+1)with 0 ≤ b′
≤ m. Then exactly onemember ofm−b′ and b′

−1 is an even number 2t with 0 ≤ t ≤ s. Orient
K (m)
2 such that exactly t edges are directed from v2 to v1 ifm−b′ is even; or such that exactly t edges are directed from v1 to v2

if b′
−1 is even. This yields a (Z2s+1, b)-orientation of K (m)

2 , and so K (m)
2 ∈ Mo

2s+1. Ifm ≥ 2s+1, then K (m)
2 /K (2s)

2 = K1 ∈ Mo
2s+1,

and so by Proposition 2.1(ii), K (m)
2 ∈ Mo

2s+1. This completes the proof of the lemma. �

Definition 2.3. LetH be a subgraph of G, and let s > 0 be an integer. Themod(2s+1)-closure ofH in G, denoted by cl2s+1
G (H)

or cl(H) when G and s are understood from the context, is the (unique) maximal subgraph of G that contains H such that
V (cl(H))−V (H) can be ordered as a sequence {v1, v2, . . . , vt} such that |[{v1}, V (H)]| ≥ 2s and for each iwith 1 ≤ i ≤ t−1,

|[{vi+1}, V (H) ∪ {v1, v2, . . . , vi}]| ≥ 2s. (1)

Any sequence {v1, v2, . . . , vt} satisfying (1) will be referred to as a closure sequence of H in G.

Proposition 2.4. Let H be a subgraph of G, and let s > 0 be an integer, and let cl(H) = cl2s+1
G (H). If H is strongly Z2s+1-

connected, then each of the following holds.

(i) cl(H) is strongly Z2s+1-connected.
(ii) The graph G is strongly Z2s+1-connected if and only if G/cl(H) is strongly Z2s+1-connected.
(iii) The graph G admits a unitary Z2s+1-flow if and only if G/cl(H) has a unitary Z2s+1-flow.

Proof. Let (v1, v2, . . . , vt) denote a closure sequence of H in G. Let Hi = G[V (H) ∪ {v1, v2, . . . , vi}] with H0 = H . We argue
by induction on 0 ≤ i ≤ t to show that Hi ∈ Mo

2s+1. As H ∈ Mo
2s+1, we assume that Hi−1 ∈ Mo

2s+1 with i ≥ 1. By (1), vi is
adjacent to m ≥ 2s vertices in Hi−1. Thus Hi/Hi−1 ∼= K (m)

2 with m ≥ 2s, and so by Lemma 2.2(ii), Hi/Hi−1 ∈ Mo
2s+1. Then by

Proposition 2.1(ii), Hi ∈ Mo
2s+1, and so cl(H) = Ht ∈ Mo

2s+1 follows by induction. This proves Part (i).
Parts (ii) and (iii) follow from Proposition 2.1(i) and (ii), and by Part (i) above. �

Lemma 2.5. Let s > 0 be an integer.

(i) (Corollary 3.4 in [10]) K4s+1 is strongly Z2s+1-connected.
(ii) For any n ≥ 4s + 1, Kn is strongly Z2s+1-connected.

Proof. To prove Part (ii), we view H = K4s+1 as a subgraph of G = Kn. By Lemma 2.5(i), H ∈ Mo
2s+1. Since cl(K4s+1) = Kn, it

follows from Proposition 2.4(i) that Kn ∈ Mo
2s+1. �

Let G be a connected graph with a mod(2s + 1)-orientation D. For every vertex v ∈ V4s−1(G), if d+

D (v) = 3s (or if
d+

D (v) = s − 1, respectively), then v is called a positive vertex of D (or a negative vertex of D, respectively). Part (i) of the
following lemma follows immediately from the definition.
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Lemma 2.6. Let G be a connected simple graph with amod(2s + 1)-orientation D, and let X ⊆ V4s−1(G) be a set of positive (or
negative) vertices of G such that G[X] is a complete subgraph of G. Each of the following holds.
(i) For every vertex v ∈ V4s−1(G), v is either a positive vertex or a negative vertex of D.
(ii) |V (G)| − |X | ≥ 2s + 1.
(iii) |X | ≤ 2s − 1.

Proof. (ii) We assume that there exists a set X of positive vertices with |V (G)|− |X | ≤ 2s such that H ′
= G[X] is a complete

graph. Then D′
= D(H ′) is a subdigraph of D = D(G). At each vertex x ∈ X , since x is a positive vertex, then by Lemma 2.6(i)

and by the assumption of |V (G)| − |X | ≤ 2s,D′ has at least s edges directed out from x, and at most s − 1 edges directed
into x. This leads to a contradiction: s|X | ≤ |E(H ′)| ≤ (s − 1)|X |.

(iii) By contradiction, we assume that |X | ≥ 2s. Let X ′
⊆ X with |X ′

| = 2s. Then H ′
= G[X ′

] is a complete graph and
D′

= D(H ′) is a subdigraph of D = D(G). At each vertex x ∈ X , since x is a positive vertex, it follows from Lemma 2.6(i) that
d−

D′(x) ≤ s − 1, and so s(2s − 1) = |E(H ′)| =


x∈X d−

D′(x) ≤ (s − 1)2s, a contradiction. �

Lemma 2.7. Let n, s ≥ 1 be integers. Each of the following holds.
(i) Kn is not strongly Z2s+1-connected for any n with 3 ≤ n ≤ 4s.
(ii) A complete graph Kn is strongly Z2s+1-connected if and only if n ≥ 4s + 1.

Proof. As Part (ii) of this lemma follows from Part (i) and Lemma 2.5, it suffices to show Part (i).
First, we show that for any positive integer s, K4s has no mod(2s + 1)-orientation, and so K4s ∉ Mo

2s+1. Let G = K4s and
suppose that G has a mod(2s+ 1)-orientation D = D(G). Let VP denote the set of all positive vertices of D(G). By the lemma
above, since V (G) − VP is the set of all negative vertices, |VP | ≥ 2s + 1. By the same reason, |V (G) − VP | ≥ 2s + 1, which
leads to a contradiction:

4s = |V (G) − VP | + |VP | ≥ 2(2s + 1) = 4s + 2.

Now let n be an integer with 3 ≤ n ≤ 4s − 1. By Lemma 2.2(i), we may assume that 2s + 1 ≤ n ≤ 4s − 1. View Kn
as a subgraph of K4s. Since n ≥ 2s + 1, cl2s+1

K4s
(Kn) = K4s. Thus if Kn ∈ Mo

2s+1, then by Proposition 2.4(ii), we would have
K4s ∈ Mo

2s+1, contrary to the fact that K4s ∉ Mo
2s+1. Hence Kn ∉ Mo

2s+1. �

Lemma 2.8. Let G be a connected graph. Each of the following holds.
(i) If D is a mod(2s + 1)-orientation of G, then for any vertex v ∈ V2s+1(G), either d+

D (v) = 2s + 1 or d−

D (v) = 2s + 1. In
particular, G[V2s+1(G)] must be a bipartite graph, with {v ∈ V2s+1(G) : d+

D (v) = 2s + 1} and {v ∈ V2s+1(G) : d−

D (v) =

2s + 1} being a bipartition of its vertices.
(ii) Suppose that G is a (2s + 1)-regular graph. Then G has amod(2s + 1)-orientation if and only if G is bipartite.
(iii) If G is a bipartite graph with a vertex bipartition (X, Y ) such that for every vertex x ∈ V (G), dG(x) ≡ 0 (mod 2s + 1), then

G has amod(2s + 1)-orientation.
(iv) If G has a mod(2s + 1)-orientation, then for any v ∈ V (G), either d+

D (v) = d−

D (v) or dG(v) ≥ 2s + 1.

Proof. The verifications for (i)–(iii) are straightforward, so they will be omitted. We will only show (iv).
(iv) Let v ∈ V (G), let d+

= d+

D (v) and d−
= d−

D (v). If d+
≠ d−, then since d+

−d−
≡ 0 (mod 2s+1), either d+

−d−
≥ 2s+1

or d−
− d+

≥ 2s + 1, and so dG(v) ≥ 2s + 1. �

3. A characterization of graphs with mod(2s + 1)-orientations

The main result in this section is Theorem 1.4, restated as follows.

Theorem 3.1. A connected graph admits amod(2s+1)-orientation if and only if it is a contraction of a (2s+1)-regular bipartite
graph.

Proof. Suppose first that G is the contraction of a (2s+1)-regular bipartite graph G′. By Lemma 2.8(ii), G′ has amod(2s+1)-
orientation, and so G has a mod(2s + 1)-orientation.

Conversely, we assume that G has a mod(2s + 1)-orientation. We shall fix this mod(2s + 1)-orientation D (say) in the
discussion below. If G is (2s + 1)-regular, then by Lemma 2.8(ii), G is bipartite and we are done. Therefore, assume that G is
not regular. Define

h1(G) = |{v ∈ V (G) : dG(v) ≡ 0(mod 2)}|, h2(G) =


v∈V (G) and dG(v)≥2s+2

dG(v).

By Lemma 2.8(iv), if v ∈ V (G) has degree at most 2s, then dG(v) ≡ 0(mod 2). Therefore G is (2s + 1)-regular if and only if
h1(G)+h2(G) = 0. We shall argue by induction on h1(G)+h2(G), and assume that h1(G)+h2(G) > 0 and that Theorem 3.1
holds for graphs G with smaller values of h1(G) + h2(G).

Since h1(G) + h2(G) > 0,G has a vertex uwith

dG(u) ≠ 2s + 1. (2)
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Fig. 1. Part of the graphs G and G1 when dG(v) = 4 and s = 2 (and so 2s + 1 = 5).

Claim 1. h1(G) = 0.
By the definition of h1(G), it suffices to show that G has no vertex v with d+

D (v) = d−

D (v) under the orientation D. By
contradiction, we assume that G has a vertex v with d+

D (v) = d−

D (v) = m > 0. We shall show that G is a contraction of a (2s+1)-
regular bipartite graph. Let v1, v2, . . . , v2m denote the vertices adjacent to v in G such that (v2l−1, v) and (v, v2l) are in D, for
1 ≤ l ≤ m. (Note thatwe allow vi = vj when i ≠ j. This could happenwhen G hasmultiple edges.) For each l, let xl1, x

l
2, . . . , x

l
2s+1,

yl1, y
l
2, . . . , y

l
2s+1 be 2(2s + 1) new vertices. Let K2s,2s(l) − xl2y

l
2s+1 denote the complete bipartite graph with bipartition

{xl2, x
l
3, . . . , x

l
2s+1} and {yl2, y

l
3, . . . , y

l
2s+1}

minus an edge xl2y
l
2s+1. Let H(xl1, y

l
1) denote the graph obtained from K2s,2s(l)−xl2y

l
2s+1 by adding the vertex x

l
1 that is adjacent to

all xl2, x
l
3, . . . , x

l
2s+1 and by adding the new vertex yl1 that is adjacent to all y

l
2, y

l
3, . . . , y

l
2s+1. Obtain a new graphG1 fromG−v and

H(xl1, y
l
1), (1 ≤ l ≤ m), by joining v2l−1 to xl1, and v2l to yl1, and xl+1

2 to yl2s+1, where the superscripts are taken modulo m. Orient
the edges in E(G1)−E(G) such that for each l = 1, 2, . . . ,m(mod m), (xl+1

2 , yl2s+1), (v2l−1, xl1), (x
l
j, x

l
1), (y

l
1, v2l), (yl1, y

l
j), (2 ≤

j ≤ 2s + 1) are arcs in this orientation of G1, and such that all the vertices xl2, . . . , x
l
2s+1 are directed to all the

vertices yl2, . . . , y
l
2s+1 in K2s,2s(l) − xl2y

l
2s+1. See Fig. 1 for an example.

Thus themod(2s+1)-orientation of E(G) togetherwith the orientation on the edges E(G1)−E(G) is amod(2s+1)-orientation
of G1. Since the newly introduced vertices are all of degree 2s + 1 in G1, and since v satisfies d+

D (v) = d−

D (v) = m > 0, we have
h1(G1) = h1(G) − 1 and h2(G1) = h2(G). It follows by induction that G1 is the contraction of a (2s+ 1)-regular bipartite graph.
Since G can be obtained from G1 by contracting

m
l=1 H(xl1, y

l
1),G is also a contraction of a (2s+ 1)-regular bipartite graph. This

completes the proof of the claim.

By Claim 1, δ(G) ≥ 2s + 1. By (2), dG(u) ≥ 2s + 2. Without loss of generality, we may assume that d+

D (u) > d−

D (u).
Since d+

D (u) − d−

D (u) ≡ 0(mod 2s + 1), we must have d+

D (u) > 2s + 1. Let h = d(u) and let w1, w2, . . . , wh be the vertices
adjacent to u in G, and assume that each directed edge (u, wi) is oriented from u to wi, for any i with 1 ≤ i ≤ 2s + 1. (Note
that for each i with h ≥ i ≥ 2s + 2, either (u, wi) or (wi, u) is an arc of D.) Obtain a new graph G2 from G by first splitting u
into two vertices u′, u′′ such that u′ is adjacent exactly to w1, w2, . . . , w2s, and u′′ is adjacent to w2s+1, w2s+2, . . . , wh, and
by adding a new edge e′

= (u′, u′′). Thus we can view E(G2) − {e′
} = E(G).

Assign an orientation of G2 such that the orientation of edges in E(G2) − {e′
} is identical with that in D, and such that

(u′, u′′) is an arc in this orientation of G2. See Fig. 2 for an example.
Then the mod(2s+1)-orientation D of G plus the orientation of e′ is a mod(2s+1)-orientation of G2. By the construction

of G2, h1(G2) = h1(G) = 0. As h2(G2) = h2(G) − 2s+ 1, it follows by induction that G2 is a contraction of a (2s+ 1)-regular
bipartite graph. Since G = G2/eu,G is also a contraction of a (2s + 1)-regular bipartite graph. This completes the proof of
the theorem. �

Recall that by the definition of contraction in [1], contractions of graphs do not delete resulting multiple edges. By
Theorem 3.1, Jaeger’s conjecture (Conjecture 1.1(ii)) can now be restated as follows.

Conjecture 3.2. Every 4s-edge-connected graph is a contraction of a (2s + 1)-regular bipartite graph.
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Fig. 2. Part of the graphs G and G2 when 2s + 1 = 5, d+

D (v) = 6 and d−

D (v) = 1.

4. Proof of Theorem 1.5

A graph G is K4-minor free if K4 cannot be obtained from G by contraction and by deleting edges or vertices. As shown on
p. 275 of [1], 2-connected graphs without a K4-minor are also called serial–parallel graphs. In this section, we shall show
a sharp lower bound of edge-connectivity for a K4-minor free graph to be in Mo

2s+1, the collection of all strongly Z2s+1-
connected graphs. We need a former theorem of Dirac.

Theorem 4.1 (Dirac [2]). If G is a simple K4-minor free graph, then G has a vertex of degree at most 2.

Corollary 4.2. Every (4s − 1)-edge-connected K4-minor free graph is strongly Z2s+1-connected.

Proof. LetG be a (4s−1)-edge-connected K4-minor free graph, and letG0 denote the underlying simple graph ofG (see p. 47
of [1]). By the definition of strongly Z2s+1-connectedness, K1 ∈ Mo

2s+1. Hence we assume that |V (G)| > 1 and the conclusion
of the corollary holds for graphs with smaller order.

SinceG has no K4-minor,G0 does not have a K4-minor either. By Dirac’s Theorem,G0 must have a vertexw of degree 1 or 2.
Ifw has degree 1 and is incident with the only edge e in G0, then since κ ′(G) ≥ 4s−1,Gmust have a subgraphH isomorphic
to K (4s−1)

2 . Ifw has degree 2 and is incident with the edges e1 and e2 in G0, then since κ ′(G) ≥ 4s−1, one of e1 and e2 must be
in a set of at least 2s parallel edges, and soGmust have a subgraphH isomorphic to K (2s)

2 . In either case, by Lemma 2.2(ii),H ∈

Mo
2s+1. Since G has no K4-minors, G/H also has no K4-minors. By the definition of contractions, we have κ ′(G/H) ≥ κ ′(G). It

follows by induction that G/H ∈ Mo
2s+1. SinceH ∈ Mo

2s+1 and by Proposition 2.1(ii), G ∈ Mo
2s+1, and so the corollary is proved

by induction. �

The next example indicates that the edge-connectivity condition cannot be relaxed.

Example 4.3. Let k, s be positive integers, m = 2s − 1 and let G = C (m)
2k+1. Choose the constant function b ∈ Z(G, Z2s+1)

such that for any vertex v ∈ V (G), b(v) ≡ 1(mod 2s+ 1). Assume that G has a (Z2s+1, b)-orientation D. Then for any vertex
v ∈ V (G), we have

d+(v) + d−(v) = 4s − 2
d+(v) − d−(v) ≡ 1(mod 2s + 1).

It follows that either d+(v) = 3s and d−(v) = s − 2 (referred to as a positive vertex) or d−(v) = 3s − 1 and d+(v) = s − 1
(referred to as a negative vertex). It follows that no two positive vertices are adjacent, and no two negative vertices are
adjacent. This implies that G must be bipartite, contrary to the fact that G has an odd cycle of length 2k + 1. Hence G does
not have a (Z2s+1, b)-orientation, and so G ∉ Mo

2s+1.

5. Proof of Theorem 1.6

Throughout this section, s denotes a positive integer, and a graph H ∈ Mo
2s+1 will be referred to as an Mo

2s+1-graph. A
simple graph G is chordal if every cycle of length greater than 3 possesses a chord. Equivalently speaking, a simple graph G
is chordal if every induced cycle of G has length at most 3. In Theorem 4.2 of [8], it has been proved that every 4-connected
chordal graph is inMo

3 . The purpose of this section is to extend this Theorem4.2 of [8] to themain result of this section below.

Theorem 5.1. Every simple 4s-connected chordal graph is strongly Z2s+1-connected.

To prove this theorem, we need some lemmas.

Lemma 5.2 (Lemma 2.1.2 of [6]). A graph G is chordal if and only if every minimal vertex cut induces a complete subgraph of G.

Lemma 5.3. Let T be a connected spanning subgraph of G. If for each edge e ∈ E(T ),G has a subgraph He ∈ Mo
2s+1 with e ∈

E(He), then G ∈ Mo
2s+1.
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Proof. We argue by induction on |V (G)|. Since K1 is strongly Z2s+1-connected, the lemma holds trivially if |V (G)| = 1.
Assume that |V (G)| > 1 and pick an edge e′

∈ E(T ). Then G has a subgraph H ′
∈ Mo

2s+1 such that e′
∈ E(H ′). Let G′

= G/H ′

and let T ′
= T/(E(H ′)∩E(T )). Since T is a connected spanning subgraph of G, T ′ is a connected spanning subgraph of G′. For

each e in E(T ′), e is also in E(T ), and so by assumption, G has a subgraph He ∈ Mo
2s+1 with e ∈ E(He). By Proposition 2.1(i),

H ′
e = He/(E(He) ∩ E(H ′)) ∈ Mo

2s+1 and e ∈ H ′
e. Therefore by induction G′

∈ Mo
2s+1. Then by Proposition 2.1(ii), and by the

assumption that H ′
∈ Mo

2s+1,G ∈ Mo
2s+1. �

Proof of Theorem 5.1. Let G be a 4s-connected chordal graph. If G itself is a clique, then as κ(G) ≥ 4s,G ∼= Km for some
integer m ≥ 4s + 1, and so by Lemma 2.5, G ∈ Mo

2s+1. Thus throughout the rest of the proof, we assume that G is not a
complete graph.

By Lemma 5.3, it suffices to show that every edge e ∈ E(G) lies in a subgraph He of G with He ∈ Mo
2s+1. Let e = xy be

an edge in G. For any vertex v ∈ V (G), let N(v) denote the vertices adjacent to v in G. We shall show that in each of the
following two cases concerning the possibilities of the end vertices of e, a subgraph He ∈ Mo

2s+1 can always be found such
that e ∈ E(He).
Case 1: N(x) ≠ V (G) − {x} or N(y) ≠ V (G) − {y}.

Without loss of generality, we assume that N(x) ≠ V (G) − {x}. Then G has a vertex z such that xz ∉ E(G). Since G is
2-connected and not a complete graph, N(x) contains a minimal vertex cut X of G which separates x and z. By Lemma 5.2,
G[X] is a complete graph. Since x is adjacent to every vertex in N(x),G[X ∪ {x}] ∼= Kmx is a complete subgraph of G with
order mx = |X | + 1 ≥ κ(G) + 1 = 4s + 1. It follows that mx ≥ 4s + 1 and so by Lemma 2.5, G[X ∪ {x}] ∈ Mo

2s+1. If y ∈ X ,
then we define He = G[X ∪ {x}] ∈ Mo

2s+1.
Hence we assume that y ∉ X for any minimal vertex cut X ⊆ N(x). If there exists t ∈ V (G) − (N(x) ∪ {x}) such that

yt ∈ E(G), then there is a minimal vertex cut of N(x) containing y which separates x and t , contrary to the assumption that
y ∉ X for any minimal vertex cut contained in N(x). Hence N(y) ⊆ N(x) ∪ {x}. Since z ∉ N(x) ∪ {x}, yz ∉ E(G), and so
N(y) contains a minimal vertex cut Y separating y and z. By Lemma 5.2 and by the assumption of κ(G) ≥ 4s,G[Y ∪ {y}] is a
complete graph of order at least 4s + 1, and so by Lemma 2.5, G[Y ∪ {y}] ∈ Mo

2s+1.
If x ∈ Y , then we define He = G[Y ∪ {y}] ∈ Mo

2s+1. Hence we assume further that x ∉ Y for any minimal vertex cut Y ⊆

N(y), and so x and ymust be in the same component of G−Y . For any such vertex cut Y of G contained inN(y), by Lemma 5.2
and by κ(G) ≥ 4s,G[Y ] is a complete subgraph of G with order at least 4s. Note that Y ⊆ N(y) ⊆ N(x) ∪ {x} and x ∉ Y . It
follows that G[Y ∪{x, y}] is a complete subgraph of Gwith order at least 4s+ 2, and so by Lemma 2.5, G[Y ∪{x, y}] ∈ Mo

2s+1.
Therefore in this final subcase of Case 1, we define He = G[Y ∪ {x, y}].
Case 2: Both N(x) = V (G) − {x} and N(y) = V (G) − {y}.

Since G is not a complete graph itself, G has vertices v, v′
∈ V (G)−{x, y} such that vv′

∉ E(G). Therefore,N(v) contains a
minimal vertex cut X ′ separating v and v′ in G. By Lemma 5.2 and by the assumption of κ(G) ≥ 4s,W = G[X ′

∪{v}] is a com-
plete graph of order at least 4s+ 1, and so by Lemma 2.5,W ∈ Mo

2s+1. Since both N(x) = V (G)−{x} and N(y) = V (G)−{y},
both x and ymust be in X ′, and so e = xy ∈ W . It is now natural to define He = W .

Since in either case, we can always find a subgraph He ∈ Mo
2s+1 such that e ∈ E(He), it follows by Lemma 5.3 that

G ∈ Mo
2s+1. �

Definition 5.4 (Definition 2.1.8 in [6]). Let k > 0 be an integer. A clique with order k + 1 is a k-tree; given a k-tree Tn on n
vertices, a k-tree with n+ 1 vertices is constructed by taking Tn and creating a new vertex xn+1 which is made adjacent to a
k-clique of Tn, and non-adjacent to any of the other n − k vertices of Tn.

Corollary 5.5. Every k-tree with k ≥ 4s is in Mo
4s+1.

Proof. Wemay assume that G is a k-tree but not a clique. By Lemma 5.2, every k-tree is also a chordal graph. By the defini-
tion of a k-tree, it is routine to verify that κ(G) ≥ k. It now follows by Theorem 5.1 that, if k ≥ 4s, every k-tree must be in
Mo

2s+1. �

By Lemma2.7, the complete graphK4s is a (4s−1)-treewhich is not inMo
2s+1. This shows that Corollary 5.5 is best possible.
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