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a b s t r a c t

A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. We give
a necessary condition for a digraph to be supereulerian first and then characterize the di-
graphDwhich are not supereulerian under the condition that δ+(D)+δ−(D) ≥ |V (D)|−4.
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1. Introduction

We consider finite digraphs that do not have loops or parallel arcs (bi-direction edges are allowed). For undefined terms
and notations, refer to [3] for graphs and [1] for digraphs. To avoid possible confusion, we use ditrails, dipaths and dicycles
to mean directed trails, paths, and cycles, while trails, paths and cycles refer to undirected graph terminology. Let D be a
digraph. We use both notations uv and (u, v) to denote an arc oriented from a vertex u to a vertex v. We use G = G(D) to
denote the underlying graph of D. If X and Y are disjoint subsets of V (D), then λD(X, Y ) denotes the maximum number of
arc-disjoint dipaths from X to Y in D. As in [1], A(D) denotes the set of arcs in D, c(D) denotes the number of components of
the underlying graph ofD, and δ+(D), δ−(D) denote theminimumout-degree and theminimum in-degree ofD, respectively.
For a pair of disjoint sets X, Y ⊂ V (D), define

(X, Y )D = {(x, y) ∈ A(D) : x ∈ X and y ∈ Y }.

When Y = V − X , we use

∂+

D (X) = (X, V − X)D, and ∂−

D (X) = (V − X, X)D.

When X = {v}, we also use ∂+

D (v) = ∂+

D ({v}) and ∂−

D (v) = ∂−

D ({v}). As in [1], we denote

N+

D (v) = {u ∈ V (D) : (v, u) ∈ A(D)} and N−

D (v) = {u ∈ V (D) : (u, v) ∈ A(D)}.

A graph G is eulerian if G is connected without vertices of odd degree, and G is supereulerian if G has a spanning eulerian
subgraph. In [2], Boesch et al. raised the problem to determine when a graph is supereulerian, and they remarked that such
a problem would be a difficult one. In [6], Pulleyblank confirmed the remark by showing that the problem to determine if a
graph is supereulerian, even within planar graphs, is NP-complete. For more literature on supereulerian graphs, see Catlin’s
excellent survey [4] and its supplement [5].
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The purpose of this paper is to investigate the digraph version of the supereulerian problem. A digraph D is strongly
connected if there is a (u, v)-dipath for any two vertices u, v. Furthermore, D is said to be eulerian if D is strongly connected
and for every vertex v ∈ V (D), d+

D (v) = d−

D (v). Thus D is eulerian if and only if D itself is a closed ditrail. A digraph D
is supereulerian if D has a spanning eulerian subdigraph H . The main result of this paper determines a best possible lower
bound of the minimum degree to assure a simple digraph to be supereulerian, and to characterize all the extremal digraphs.

In Section 2, we derive a necessary condition for a digraph to be supereulerian, and apply it to find candidates of the
extremal graphs for the main result. The proof of the main result is stated and proved in Section 3.

2. A necessary condition

Let D be a strong digraph and U ( V (D). Then D[U], the digraph induced by U , has ditrails P1, . . . , Pt such thatt
i=1 V (Pi) = U andA(Pi)∩A(Pj) = ∅ for any i ≠ j. Let τ(U) be theminimumvalue of such t . Then c(G(D[U])) ≤ τ(U) ≤ |U|.

For any A ⊆ V (D) − U , denote B := V (D) − U − A and let

h(U, A) := min{|∂+

D (A)|, |∂−

D (A)|} + min{|(U, B)D|, |(B,U)D|} − τ(U), and
h(U) := min{h(U, A) : A ∩ U = ∅}.

Then we have the following proposition.

Proposition 2.1. If D has a spanning eulerian subdigraph, then for any U ⊂ V (D), h(U) ≥ 0.
Proof. Suppose that D has a spanning eulerian subdigraph H but for some U , h(U) < 0. Without loss of generality, we may
assume that for some vertex set A disjoint with U , h(U, A) < 0. Let B := V (D) − U − A. Then

min{|∂+

D (A)|, |∂−

D (A)|} + min{|(U, B)D|, |(B,U)D|} < τ(U).

Since H is spanning and eulerian, H has a closed ditrail visiting every vertex in U , and so by the definition of τ(U),

|∂+

H (U)| = |∂−

H (U)| ≥ τ(U).

It follows that

|∂−

H (A)| =|∂+

H (A)| ≥ max{|(U, A)H |, |(A,U)H |}

= max{|∂+

H (U)| − |(U, B)H |, |∂−

H (U)| − |(B,U)H |}

= |∂−

H (U)| − min{|(U, B)H |, |(B,U)H |}

≥ τ(U) − min{|(U, B)D|, |(B,U)D|}

> min{|∂+

D (A)|, |∂−

D (A)|},

a contradiction. �
The proposition above can be used to show that there exists a family of strong digraphs each of which has a large

minimum degree but contains no spanning eulerian subdigraphs.

Example 2.2. Let k1, k2, l ≥ 2 be integers, and D1 and D2 be two disjoint complete digraphs of order k1 + 1 and k2 + 1,
respectively, and let U be an independent set disjoint from V (D1) ∪ V (D2) with |U| = l. Let F (k1, k2, l) denote the family
of digraphs such that D ∈ F (k1, k2, l) if and only if D is the digraph obtained from D1 ∪ D2 ∪ U by adding all arcs directed
from every vertex in U and D2 to every vertex in D1, and all arcs directed from every vertex in D2 to every vertex in U , and
then by adding an set of l − 1 arcs directed from some vertices in D1 to some vertices in D2.

Assume k1, k2 ≥ l−1. For any D ∈ F (k1, k2, l), D has n = k1 +k2 + l+2 vertices, and is a strong digraph withminimum
degree δ+(D) = k1 and δ−(D) = k2. Let A = V (D1). Then h(U, A) = |∂+

D (A)|+|(U, V (D)−U−A)D|−τ(U) = (l−1)− l < 0.
By Proposition 2.1, D does not have a spanning eulerian subdigraph. By direct computation, for each D ∈ F (k1, k2, 2),
δ+(D) + δ−(D) = |V (D)| − 4. Let F0(k1, k2, 2) be the set of spanning subdigraphs D′ of the digraphs in F (k1, k2, 2) which
satisfy δ+(D′) + δ−(D′) = |V (D′)| − 4.

Then no digraph in F0(k1, k2, 2) has a spanning eulerian subdigraph. In the next section, we will show F0(k1, k2, 2) is
the only counterexample under the condition δ+(D) + δ−(D) ≥ |V (D)| − 4 and δ+, δ−

≥ 4.
Also, if we do not assume that the digraph is strong, we can find non-supereulerian digraphs with a higher minimum

degree sum.

Example 2.3. Let k1, k2 > 1 and let D1 and D2 be two disjoint complete digraphs of order k1 and k2, respectively. Obtain
D(k1, k2) from D1 ∪ D2 by adding all arcs directed from every vertex in D2 to every vertex in D1. Then δ+(D) = k1 − 1,
δ−(D) = k2 −1, and so δ+(D)+δ−(D) = |V (D)|−2 > |V (D)|−4. However, D is not strong and so cannot be supereulerian.

3. A degree condition for the existence of a spanning Eulerian subdigraph

In this section, we shall show that for a strong digraph D, if min{δ+(D), δ−(D)} ≥ 4 and δ+(D) + δ−(D) > |V (D)| − 4,
then D is supereulerian. Throughout this section, D denotes a digraph on n vertices, δ+

= δ+(D) and δ−
= δ−(D).
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Definition 3.1. Let H be an eulerian subdigraph of a digraph D. Suppose for some disjoint vertex subsets X, Y ⊆ V (H), Q is
an (X, Y )-ditrail of H . Let H ′ be the connected component of the underlying graph of H − A(Q ) containing both ends of Q .
Define IQ = V (H) − V (H ′), called the increment of Q with respect to H . If the eulerian subdigraph H is clear from context,
we also say IQ is the increment of Q .

Suppose Q is from x ∈ X to y ∈ Y . SinceH is eulerian,H has aminimum (x, y)-ditrail that contains all arcs inH[IQ ] and Q .
This ditrail is denoted by Q̄ . Note that it is possible that Q̄ = Q . Also, the underlying graph of H[IQ ] might not be connected.

Using these definitions and notations, we have the following observations, stated as a lemma below.

Lemma 3.2. Let D be a digraph, H be an eulerian subdigraph of D, and X, Y ⊆ V (H) be two disjoint vertex subsets. Then each of
the following holds.

(i) If Q is an (X, Y )-ditrail of H then (V (H − IQ ), IQ )H ∪ (IQ , V (H − IQ ))H ⊆ A(Q ).
(ii) If Q is an (X, Y )-ditrail such that |A(Q̄ )| is minimized, then IQ ∩ (X ∪ Y ) = ∅.
(iii) If Q1 and Q2 are two arc-disjoint (X, Y )-ditrails of H, then either IQ1 ∩ IQ2 = ∅.

Proof. By the definition of IQ , all the arcs of H between V (H − IQ ) and IQ lie in Q . So (i) follows. For (ii), suppose Q̄ is from
x ∈ X to y ∈ Y . As H is eulerian, by the definition of Q̄ , Q̄ visits every vertex of IQ . If IQ ∩ (X ∪ Y ) ≠ ∅, then there exists a
vertex x′

∈ X ∩ IQ or a vertex y′
∈ Y ∩ IQ . Thus Q̄ [x′, y] or Q̄ [x, y′

] is an (X, Y )-ditrail with fewer arcs, a contradiction.
For (iii), suppose, to the contrary, that IQ1∩IQ2 ≠ ∅. LetX1 = IQ1−IQ2 ,X2 = IQ2−IQ1 ,X3 = IQ1∩IQ2 andX4 = V (D)−IQ1∪IQ2 .

Then by (i), ∂+

D (Xi∪X3) ⊆ A(Qi) for i = 1, 2. Also, asQ1 andQ2 are arc-disjoint, (X3, X4)D = ∅ and V (Qi)∩Xi ≠ ∅ for i = 1, 2.
By the definitions of IQ1 and IQ2 , (Xi, X3)D ∪ (X3, Xi)D ≠ ∅ for i = 1, 2. So, (X1, X3)D ⊆ A(Q2) (and thus (X1, X3)D ∩A(Q1) = ∅)
and (X3, X2)D ⊆ A(Q1), contradicts the fact Q1 is a dipath. �

Lemma 3.3. Let D be a strong digraph of order n and minimum out-degree δ+
≥ 2 and minimum in-degree δ−

≥ 2, H be an
eulerian subdigraph of D with maximum order. If n ≥ max{δ+, δ−

} + 3, then |V (H)| ≥ max{δ+, δ−
} + 3.

Proof. Without loss of generality, we may assume δ+
≥ δ−. Suppose, to the contrary, that |V (H)| ≤ δ+

+ 2 < n. Let P be
a ditrail of D such that |V (P)| is maximized and subject to this, |A(P)| is minimized. Assume P is an (x, y)-ditrail for some
vertices x, y. Then, by the choice of P , N+

D (y) ⊆ V (P) and

∂+

D (y) ∩ A(P) = ∅, (3.1)

since otherwise, there exists an out-arc of y in P . Then y lies in P[x, y′
], where y′ be the immediate predecessor of y in P .

Thus, P[x, y′
] is an (x, y′)-ditrail with |V (P)| vertices and |A(P)| − 1 arcs, a contradiction to the choice of P .

Let y0 ∈ V (P) such that there exists a (y, y0)-ditrail Q with V (Q ) ⊆ V (P[y0, y]) and A(Q ) ∩ A(P) = ∅, and furthermore,
we choose y0 so that |V (P[y0, y])| is maximized. Note that such y0 does exist, as any out-neighbor of y is such a candidate
by (3.1).

Denote K = V (P[y0, y]). By the choice of y0, yQy0Py is an eulerian subdigraph of D of order |K |. By assumption,
n > |H| ≥ |K |. Then, by the strongness of D, there exist y1 ∈ K and z1 ∉ K such that y1z1 ∈ A(D). In this proof, for
any vertex w ∈ V (P), denote by w+ the next vertex of w in P and by w− the previous vertex of w in P .

Proposition 1. yy1 ∉ A(D) and yw ∈ A(D) for any w ∈ K − {y, y1}.
Suppose, to the contrary, that yy1 ∈ A(D). If z1 ∉ V (P), then xPyy1z1 is a ditrail of D of order |V (P)| + 1, a contradiction

to the choice of P. So, z1 ∈ V (P). This, together with the fact z1 ∉ K, forces z1 ∈ V (P[x, y0]) − {y0}. However, as z1 ∉ K
and y1 ∉ V (P[x, y0]) − {y0} (by the choice of y0), y1z1 ∉ A(P). Thus, z1 ∈ V (P) is a vertex satisfying that yy1z1 is a ditrail
arc-disjoint with P and P[z1, y] is longer than P[y0, y], contrary to the choice of y0. Hence, yy1 ∉ A(D). Then, by the choice of P,
|K | ≥ |N+

D (y) ∪ {y, y1}| ≥ δ+
+ 2. This, together with the assumption that |K | ≤ |H| ≤ δ+

+ 2, forces the proposition.

From Proposition 1 and the assumption, |K | = |H| = δ+
+ 2.

Proposition 2. N−

D (y) ⊆ K.
Suppose, to the contrary, that there exists a vertex y′

∈ N−

D (y) − K. Then by the strongness of D, there is a dipath, denoted
by P ′, from K to y′. By the arbitrariness of y1 and by Proposition 1, P ′ is orientated from y1 and yy+

1 ∈ A(D) if y ≠ y+

1 . Thus
y0Py1P ′y′yy+

1 Pyy0 is an eulerian subdigraph of order at least |K |+1 = δ+
+3 vertices, contrary to the assumption. The proposition

is proved.

Since D is strong, there is a dipath P ′ from z1 to K for z1 ∉ V (H). Denote by y2 the endpoint of P ′. If there is no
such a dipath P ′ such that y2 ∈ V (P[y0, y1]) − {y1}, then y2 ∈ V (P[y1, y]) and y1P ′y2 is arc-disjoint with P , and so
xPy1P ′y2Pyy+

1 Py
−

2 is a ditrail with at least |V (P)| + 1 vertices, contrary to the choice of P . Hence, D has such a dipath P ′

such that y2 ∈ V (P[y0, y1] − {y1}). By the arbitrariness of y1 and by Proposition 1, N+

D (y2) ⊆ K .
If y2y ∈ A(D), then y2Py1z1P ′y2yy+

1 Pyy0Py2 is an eulerian subdigraph of order at least |K |+1, contrary to the assumption.
So, y2y ∉ A(D). Moreover, if y2y+

1 ∈ A(D), then y0Py1z1P ′y2y+

1 Pyy0 is an eulerian subdigraph of order at least |K |+1, contrary
to the assumption again. Hence, y2y+

1 ∉ A(D). Thus, N+

D (y2) ⊆ K − {y2, y+

1 , y}. This, together with the fact |K | = δ+
+ 2,

forces y+

1 = y.
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By δ−
≥ 2 and by Proposition 2, there exists y3 ∈ K − {y1, y} such that y3y ∈ A(D). Then y3 ∈ V (P[y0, y1] − {y1}).

Also, by Proposition 1, yy3 ∈ A(D). So, if z1 ∉ V (P) then xPy3yy3Py1z1 is a ditrail with |V (P)| + 1 vertices, contrary to the
choice of P , and if z1 ∈ V (P) then z1 ∈ V (P[x, y0]) − {y0} and thus z1Py3yy3Py1z1 is an eulerian subdigraph with at least
|K | + 1 = δ+

+ 3 vertices, contrary to the assumption. �

Theorem 3.4. Let D be a strong digraph of order n and minimum out-degree δ+
≥ 4 and minimum in-degree δ−

≥ 4. If
δ+

+ δ−
≥ n − 4, then the following are equivalent.

(i) G has a spanning eulerian subdigraph.
(ii) Either δ+

+ δ− > n − 4, or for some integer k1, k2, δ+
= k1, δ−

= k2 but D ∉ F0(k1, k2, 2).
Proof. By Example 2.2, it suffices to prove that (ii) implies (i). By the definition of F0(k1, k2, 2), for every digraph D ∈

F0(k1, k2, 2), δ+(D) + δ−(D) = n − 4. So, we may assume that

D is not supereulerian, (3.2)

to prove that D ∈ F0(k1, k2, 2) for some integer k1, k2. Choose an eulerian subdigraph H of D such that

|V (H)| is maximized, (3.3)

and subject to (3.3),

|A(H)| is maximized. (3.4)

Let P be a ditrail of D − V (H) with p = |V (P)| vertices such that |V (P)| is maximum. Assume P is from u to v. By (3.2),
p ≥ 1. By the choice of P , N−

D (u) ∪ N+

D (v) ⊆ V (H) ∪ V (P). Define

A = N+

D (v) ∩ V (H) and B = N−

D (u) ∩ V (H).

Claim 1. We may choose a ditrail P such that each of the following holds.
(i) A ∩ B = ∅.
(ii) (A, B)D ⊆ A(H) and (B, A)D ∩ A(H) = ∅.
(iii) |A| ≥ δ+

− p + 1, |B| ≥ δ−
− p + 1.

(iv) A ≠ ∅ and B ≠ ∅.
Claim 1(i)–(ii) follow from (3.3), and definition of A and B. For (iii), by definition of A, |A| ≥ d+

D (v) − |N+

D (v) ∩ V (P)| ≥

δ+
− (p − 1) = δ+

− p + 1. Similarly, |B| ≥ δ−
− p + 1. Thus, (iii) holds.

For (iv), let P0 be a ditrail of D − V (H) such that |V (P0)| is maximized and subject to this, |A(P0)| is minimized. Assume
P0 is from u0 to v0. Similar to (3.1) in the proof of Lemma 3.3,

∂−

D (u0) ∩ A(P0) = ∅ and ∂+

D (v0) ∩ A(P0) = ∅.

If there exist vertices v1 ∈

N+

D (v0) ∩ V (P0)

∪ {v0} and u1 ∈


N−

D (u0) ∩ V (P0)

∪ {u0} such that N+

D (v1) ∩ V (H) ≠ ∅ and
N−

D (u1) ∩ V (H) = ∅, then u1u0Pv0v1 is a candidate of ditrail P satisfying (iv). So, it suffices to show the existence of such
vertices u1 and v1.

By contradiction and without loss of generality, we may assume no such v1 exists. Then N+

D (v0) ∩ V (H) = ∅. So,
|

N+

D (v0) ∩ V (P0)


∪ {v0}| ≥ δ+
+ 1. Also, by Lemma 3.3, |V (H)| ≥ max{δ+, δ−

} + 3. So, |V (P0)| ≤ n − |V (H)| ≤

n − max{δ+, δ−
} − 3 ≤ min{δ+, δ−

} + 1. It follows that

N+

D (v0) ∩ V (P0)


∪ {v0} = V (P0). Thus, the existence of v1 is
ensured by the strongness of D. This finishes the proof of Claim 1.

Since H is an eulerian subdigraph of D, H contains a (B, A)-dipath Q . Choose such a (B, A)-dipath Q of H such that

|IQ | is minimized and subject to this, |A(Q̄ )| is minimized. (3.5)

Then, by Lemma 3.2(ii), IQ is disjoint with A ∪ B. Assume Q is from z1 ∈ B to z2 ∈ A. Then V (Q ) ∩ (A ∪ B) = {z1, z2}. Let z ′

1
be the first vertex of Q̄ in IQ and z ′

2 the last vertex of Q̄ in IQ . Note that it is possible that z ′

1 = z ′

2.
For simplicity, we denoteH⊖Q to be the subgraph ofH by removing all the arcs ofQ and then removing the increment IQ .
Let q = |IQ |. As z1uPvz2 is a (z1, z2)-ditrail of D arc-disjoint with H , if q < p, then H ⊖ Q + P ′ is an eulerian subdigraph

with order |V (H)| − q + p > |V (H)|, contrary to (3.3). Hence q ≥ p. Define

R = V (D) − V (H) − V (P), T = V (H) − A − B − IQ , r = |R| and t = |T |.

Then by Claim 1,

n = |V (D)| = |A| + |B| + p + q + r + t

≥ δ+
+ δ−

+ 2 − p + q + r + t ≥ n + q + r + t − p − 2. (3.6)

Thus we have obtained

p ≤ q, q + r + t ≤ p + 2 and r + t ≤ 2. (3.7)

Claim 2. Both (A, (IQ − {z ′

2}) ∪ {z ′

1})D = ∅ and ((IQ − {z ′

1}) ∪ {z ′

2}, B)D = ∅.
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By symmetry, it suffices to show that (A, (IQ − {z ′

2}) ∪ {z ′

1})D = ∅. By contradiction, assume that D has an arc
az3 ∈ (A, (IQ − {z2}) ∪ {z1})D. By Lemma 3.2, az3 ∉ A(H). We first establish each of the following.
(2A) N−

D (z ′

1) ∩ A = ∅ and N+

D (z ′

2) ∩ B = ∅.
By symmetry, it suffices to show N−

D (z ′

1) ∩ A = ∅. If N−

D (z ′

1) ∩ A ≠ ∅, then we may assume that z3 = z ′

1. Hence
P ′

= z1uPvaz ′

1Q̄ z2 is a (z1, z2)-dipath, edge-disjoint from H ⊖ Q . It follows that (H ⊖ Q ) + P ′ is an eulerian subdigraph of
order |V (H)| − q + (p + q) > |V (H)|, contrary to (3.3). Therefore (2A) must hold.
(2B) N+

D (z3) ∩ B = ∅ and N+

D (z3) ∩ V (P) = ∅.
If there exists a vertex b ∈ N+

D (z3) ∩ B, then by Lemma 3.2, z3b ∉ A(H), and so H + az3buPva is an eulerian subdigraph
of order at least |V (H)| + 1, violating (3.3). If there exists a vertex w ∈ N+

D (z3) ∩ V (P), then H + az3wPva is an eulerian
subdigraph with at least |V (H)| + 1 vertices, contrary to (3.3). Hence (2B) holds.
(2C) z3a ∉ A(D) and N+

D (z3) ∩ IQ = {z ′

2}.
Suppose z3a ∈ A(D). If z3a ∉ A(H), then H + az3a is an eulerian subdigraph with exactly |V (H)| vertices and |A(H)| + 2

arcs, contrary to (3.4). Hence z3a ∈ A(H). By Lemma 3.2, z3a ∈ A(Q ). It follows that a = z2 and z3 = z ′

2. This, together with
the fact z3 ∈ (IQ − {z ′

2}) ∪ {z ′

1}, forces z3 = z ′

1. Thus a ∈ N−

D (z ′

1), contrary to (2A). Hence, z3a ∉ A(D).
To show N+

D (z3)∩ IQ = {z ′

2}, we first show that z ′

2 ∈ N+

D (z3)∩ IQ . If z3z ′

2 ∉ A(D), then H ⊖Q + z1uPvaz3Q̄ z2 is an eulerian
subdigraph of order |V (H)| − q + p + |V (Q̄ [z3, z ′

2])| ≥ |V (H)| − q + p + 3 > |V (H)|, contrary to (3.3).
Then, we show that N+

D (z3) ∩ IQ ⊆ {z ′

2}. If there exists another vertex z4 ∈ (N+

D (z3) − {z ′

2}) ∩ IQ , then D[IQ ] − z3z4 has
a (z4, z ′

2)-dipath Q ′, and so H ⊖ Q + z1uPvaz3z4Q ′z ′

2Q̄ z2 is an eulerian subdigraph of order |V (H)| − q+ p+ |V (Q ′)| + 1 ≥

|V (H)| − q + p + 3 > |V (H)|, contrary to (3.3). Thus (2C) must hold.
(2D) z3z ′

2 ∈ A(D), q = 3, p = 1, t = 0, |A| = δ+ and |B| = δ−. Moreover, if there is an arc zb ∈ ((IQ − {z ′

1}) ∪ {z ′

2}, B)D, then
z ′

1z ∈ A(D).
By (2C), we have z3z ′

2 ∈ A(D) directly. Moreover, by (2A)–(2C), we have shown that N+

D (z3) ⊆ A ∪ R ∪ T ∪ {z ′

2}, and so
d+

D (z3) ≤ |A − {a}| + r + t + 1 = |A| + r + t . It follows that |A| ≥ d+

D (z3) − r − t ≥ δ+
− r − t , and so

n = |A| + |B| + p + q + r + t

≥ δ+
− r − t + δ−

− p + 1 + p + q + r + t

= δ+
+ δ−

+ q + 1
≥ n + q − 3.

It follows that q ≤ 3. Moreover, H ⊖ Q + z1uPvaz3z ′

2Q̄ z2 is an eulerian subdigraph of D of order |V (H)| − q + p + 2. By
(3.3), |V (H)| − q + p + 2 ≤ |V (H)| and so q ≥ p + 2. This, together with (3.7), forces q = p + 2 ≥ 3 and r = t = 0, and
so we must have q = 3, p = 1, z3z ′

2 ∈ A(D) and |A| = δ+, |B| = δ−. Arguing similarly, we conclude that if there is an arc
zb ∈ (IQ , B)D, then z ′

1z ∈ A(D), and so (2D) follows.
Since t = 0, H has exactly one (B, A)-dipath, and so by H being eulerian and by Menger’s Theorem (Page 170, Theorem

7.16 of [3]), |(A, B)H | ≤ λH(A, B) = λH(B, A) = 1. By Claim 1(ii), |(A, B)D| ≤ 1. Hence, there is a vertex b ∈ B such that
N−

D (b) ∩ A = ∅. Also, as p = 1, by Claim 1(i), N−

D (b) ∩ V (P) = ∅. So, N−

D (b) ⊆ B ∪ IQ . By |B| = δ−, there must be a
z4 ∈ N−

D (b) ∩ IQ . By Lemma 3.2, z4b ∉ A(H).
By (2A) and as b ∈ B, z4 ≠ z ′

2. Also, by (2B) z4 ≠ z3.Moreover, if z4 = z ′

1 thenH⊖Q+z1Qz ′

1buPvaz3z ′

2Qz2 is an eulerian sub-
digraph ofD violating (3.3). Hence z4 ∈ IQ −{z ′

1, z
′

2, z3}. This, togetherwith |IQ | = q = 3, forces z ′

1 = z ′

2, and so IQ has exactly
three vertices z ′

1, z3, z4. As z4 ≠ z ′

1, z4b ∈ ((IQ −{z ′

1})∪{z ′

2}, B)D. By (2D), z ′

1z4 ∈ A(D). So, H ⊖Q + z1Qz ′

1Qz2 +az3z ′

1z4buPva
is a spanning eulerian subdigraph of D, contrary to (3.2). This establishes Claim 2.

Define

A0 = {x ∈ A : N+

D (x) ∩ B = ∅} and B0 = {x ∈ B : N−

D (x) ∩ A = ∅}. (3.8)

By (3.5), every (B, A)-dipath has increment at least q, and by Lemma 3.2, any two arc-disjoint (B, A)-dipath have disjoint
increment, and so λH(B, A) ≤ t/q + 1. As H is eulerian, |∂+

H (U)| = |∂−

H (U)| for any U ⊆ V (D). It follows from Menger’s
Theorem (Page 170, Theorem 7.16 of [3]) that λH(A, B) = λH(B, A) ≤ t/q + 1. By the definition of A0 and B0 and by (3.7),

max{|A − A0|, |B − B0|} ≤ λH(A, B) ≤ t/q + 1 ≤ 3. (3.9)

By Claim 2,

N+

D (A) ∩ IQ ⊆ {z ′

2} and N−

D (B) ∩ IQ ⊆ {z ′

1}. (3.10)

Claim 3. There exist vertices a ∈ A0 and b ∈ B0 such that az ′

2, z
′

1b ∉ A(D).
By symmetry, it suffices to prove the existence of a. We shall show the following statements.

(3A) A0 ≠ ∅ and B0 ≠ ∅.
By contradiction, we assume that A0 = ∅. By (3.9) and Claim 1(iii), δ+

≤ |A|+p−1 ≤ p+ t/q ≤ p+ t/p. If λH(B, A) ≥ 2,
then there is a (B, A)-dipath Q ′ disjoint with IQ . Then p ≤ q ≤ |IQ ′ | ≤ |T | = t ≤ 2, and so δ+

≤ 3, contrary to the fact that
δ+

≥ 4.
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Hence λH(B, A) = 1 and so |A| = |A − A0| = 1. Then A = {z2}. Also by λH(A, B) = 1, |N+

D (z2) ∩ B| ≤ 1. By (3.3),
N+

D (z2)∩V (P) = ∅ and by Claim 2, |N+

D (z2)∩ IQ | ≤ 1. Hence |R∪ T | ≥ |N+

D (z2)∩ (R∪ T )| ≥ d+

D (z2)−|N+

D (z2)∩ (B∪ IQ )| ≥

δ+
− 2 ≥ 2. This, together with (3.7), forces |R∪ T | = 2 and |N+

D (z2) ∩ IQ | = 1. Then by Claim 2, z2z ′

2 ∈ A(D). It follows that
H⊖Q+z1uPvz2z ′

2Q̄ z2 is an eulerian subdigraph ofDwith order |V (H)|−q+p+1. By (3.3), q ≥ p+1. Also by (3.7), r+t ≤ p+
2−q ≤ 1, a contradiction to the deduced fact |R∪T | = 2. This provesA0 ≠ ∅. The proof for B0 ≠ ∅ is similar and so (3A) holds.
(3B) There exists a vertex a ∈ A0 such that az ′

2 ∉ A(D).
Assume that for every a′

∈ A0, a′z ′

2 ∈ A(D). By (3A), pick a vertex a′
∈ A0. Then H ⊖ Q + z1uPva′z ′

2Q̄ z2 is an eulerian
subdigraph of order at least |V (H)| − q + p + 1. By (3.3), |V (H)| − q + p + 1 ≤ |V (H)| and so q ≥ p + 1 ≥ 2. Hence by
(3.7), we have r + t ≤ 1.

For any a′′
∈ A0 −{z2}, by the assumption and by Lemma 3.2, a′′z ′

2 ∈ A(D)−A(H). So, by (3.4), z ′

2a
′′

∉ A(D). Furthermore,
by Claim 2, N+

D (z ′

2) ∩ B = ∅. Also, by (3.3), N+

D (z ′

2) ∩ V (P) = ∅. So, N+

D (z ′

2) ⊆ [(R∪ T ∪ IQ ) ∩N+

D (z ′

2)] ∪ (A− A0) ∪ {z2}. This,
together with δ+

≥ 4 and (3.9), implies that

|N+

D (z ′

2) ∩ IQ | ≥ d+

D (z ′

2) − |A − A0| − (r + t) − 1 ≥ 2 − (r + t) − t/q. (3.11)

As q ≥ 2 and r + t ≤ 1, from (3.11), |N+

D (z ′

2) ∩ IQ | ≥ 1. Let z3 ∈ N+

D (z ′

2) ∩ IQ and a′
∈ N−

D (z ′

2) ∩ A. Then
H ⊖ Q + z1uPva′z ′

2z3Q̄ z2 is an eulerian subdigraph of order at least |V (H)| − q + p + 2. This, together with (3.7), implies
q = p+2 and r = t = 0, and so |V (Q̄ [z3, z ′

2])| = 2. Thus V (H) = A∪B∪IQ . Again by (3.11), |N+

D (z ′

2)∩IQ | ≥ 2, and so there is
a vertex z ′

3 ∈ IQ −{z ′

2, z3} such that z ′

2z
′

3 ∈ A(D). Since |V (Q̄ [z ′

3, z
′

2])| ≠ |V (Q̄ [z3, z ′

2])| = 2, |V (Q̄ [z ′

3, z
′

2])| ≥ 3. ThusH⊖Q +

z1uPva′z ′

2z
′

3Q̄ z2 is an eulerian subdigraph of order at least |V (H)|−q+p+3 > |V (H)|, contrary to (3.3). This proves Claim 3.

Claim 4. Let a ∈ A0, b ∈ B0. Each of the following holds.
(i) N+

D (a) ∩ (B ∪ IQ ) = ∅ and N−

D (b) ∩ (A ∪ IQ ) = ∅.
(ii) N+

D (a) ∩ V (P) = ∅ and N−

D (b) ∩ V (P) = ∅.
(iii) N+

D (a) ⊆ R ∪ T ∪ (A − {a}) and N−

D (b) ⊆ R ∪ T ∪ (B − {b}).
(iv) ({a}, R)D ∪ (R, {b})D ⊆ A(D) − A(H).
(v) For any x ∈ R ∪ IQ , x ∉ N+

D (a) ∩ N−

D (b).

By (3.8), N+

D (a) ∩ B = ∅ and N−

D (b) ∩ A = ∅. By Claims 2 and 3, N+

D (a) ∩ IQ = ∅ and N−

D (b) ∩ IQ = ∅. This proves (i).
Claim 4(ii) follows (3.3), (iv) follows from the definition of H and R, and (iii) follows from Claim 3(i)–(ii).

For (v), if for some x ∈ R ∪ IQ , x ∈ N+

D (a) ∩ N−

D (b), by (i), x ∉ IQ , and so x ∈ R. By (iv), ax, xb ∉ A(H), and so H + axbuPva
is an eulerian subdigraph of D with |V (H)| + p + 1 > |V (H)| vertices, contrary to (3.3). This proves (v), and completes the
proof for Claim 4.

Claim 4 (v) suggests that each vertex in R∪ IQ contributes at most 1 to d+

D (a)+d−

D (b); and each vertex in T contributes at
most 2 to d+

D (a)+d−

D (b). It follows from Claim 4 that d+

D (a)+d−

D (b) ≤ |A|−1+|B|−1+r+2t = |A|+|B|+r+2t−2, and so

n = |A| + |B| + p + q + r + t
≥ δ+

+ δ−
+ 2 − r − 2t + p + q + r + t ≥ n − 2 + p + q − t.

This, together with (3.7), implies

p + q ≤ t + 2, 2q + r ≤ 4 and p ≤ q ≤ 2. (3.12)

Claim 5. λH(B, A) = 1.

Suppose, that λH(B, A) ≥ 2. Then, by the definition of IQ there exists a (B, A)-dipath Q ′ inH− IQ . So, IQ ∩ IQ ′ = ∅. Assume
Q ′ is from z3 ∈ B to z4 ∈ A and z ′

3, z
′

4 are the first vertex and the last vertex in IQ ′ of Q̄ ′, respectively. Then, similar to Claim 2,
we also have

(A, (IQ ′ − {z ′

4}) ∪ {z ′

3})D = ((IQ ′ − {z ′

3}) ∪ {z ′

4}, B)D = ∅. (3.13)

This, together with IQ ′ ⊆ T , implies T ⊈ N+

D (A) and T ⊈ N−

D (B). So, |N+

D (a) ∩ T |, |N−

D (b) ∩ T | ≤ t − 1. It follows that
d+

D (a) + d−

D (b) ≤ |A| − 1 + |B| − 1 + r + 2(t − 1) = n − p − q + t − 4 ≤ δ+
+ δ−

− p − q + t . Thus p + q ≤ t . Together
this with (3.7), the equation holds, which implies p = q = 1, t = 2, r = 0 and |A| = δ+, |B| = δ−.

If |IQ ′ | ≥ 2, then T = IQ ′ as IQ ′ ⊆ T . By the fact a ∈ A0 and b ∈ B0, |N+

D (a)∩ IQ ′ | ≥ d+

D (a)−|A|+1 ≥ 1 and |N−

D (b)∩ IQ ′ | ≥

d−

D (b) − |B| + 1 ≥ 1. Combining these with (3.13), az ′

4, z
′

3b ∈ A(D) and z ′

3 ≠ z ′

4. Thus, H − A(Q ′) − IQ ′ + z3Q̄ ′z ′

3buPvaz ′

4Q̄
′z4

is an eulerian subdigraph violating (3.3).
So, |IQ ′ | = 1 and let T = IQ ′ ∪ {w}. By Claim 4(ii), Claim 2 and by (3.13), a′w, wb′

∈ A(D) for any a′
∈ A0 and any

b′
∈ B0. Furthermore, if there exist vertices a′′

∈ A0 and b′′
∈ B0 such that a′′w, wb′′

∉ A(H), then H + a′′wb′′uPva′′ is an
eulerian subdigraph violating (3.3). Hence, without loss of generality, we may assume a′w ∈ A(H) for any a′

∈ A0. Thus
d−

H (w) ≥ |A0|. As H is eulerian, d+

H (w) = d−

H (w) ≥ |A0|. Moreover, since no arc in (A, {w})D lies in any (B, A)-dipath, by
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Lemma 3.2, w cannot lie in any increment of (B, A)-dipath. It follows that λH(B, A) = 2. If, for every b′
∈ B0, wb′

∈ A(H),
then λH(B, A) = λH(A, B) ≥ max{|A − A0|, |B − B0|} + min{|A0|, |B0|} ≥ min{|A|, |B|} ≥ 4, a contradiction. Hence, there
exists b0 ∈ B0 such that wb0 ∉ A(H). Also, by λH(A, B) ≤ 2, we see that |N+

H (w) ∩ B| ≤ 2 − |A − A0|. Thus |N+

H (w) ∩ A| =

d+

H (w) − |N+

H (w) ∩ B| ≥ |A0| − 2 + |A − A0| > 1, which implies there exists a vertex a0 ∈ A such that wa0 ∈ A(H). Thus,
H − wa0 + wb0uPva0 is an eulerian subdigraph violating (3.3), a contradiction which completes the proof of this claim.

Claim 6. p = 1.

Suppose, p ≥ 2. By (3.12), p = q = t = 2 and r = 0. Then by Claim 1(iii), |A| ≥ δ+
− 1, |B| ≥ δ−

− 1 and thus
n = |A| + |B| + p + q + r + t ≥ δ+

+ δ−
+ 4 ≥ n, which implies |A| = δ+

− 1, |B| = δ−
− 1.

Let T = {w1, w2}. For any vertex a′
∈ A0, if a′z ′

2 ∈ A(D) then H ⊖ Q + z1uPva′z ′

2Q̄ z2 is an eulerian subdigraph of order
|V (H)| − q + p + 1 > |V (H)|, contrary to (3.3). Hence N+

D (a′) ⊆ (A − {a′
}) ∪ T and |N+

D (a′) ∩ T | ≥ d+

D (a′) − |A − {a′
}| ≥

δ+
− |A| + 1 = 2, which implies a′w1, a′w2 ∈ A(D). Similarly, for any b′

∈ B0, we also have w1b′, w2b′
∈ A(D).

Since λH(A, B) = 1, max{|A− A0|, |B− B0|}+min{|N−

H (w1)∩ A|, |N+

H (w1)∩ B|} ≤ 1. Without loss of generality, we may
assume |N−

H (w1) ∩ A| ≤ |N+

H (w1) ∩ B|. Then

max{|A − A0|, |B − B0|} + |N−

H (w1) ∩ A| ≤ 1. (3.14)

Since |A0| = |A|−|A−A0| ≥ δ+
−1−1 ≥ 2, there exists a vertex a0 ∈ A0 such that a0w1 ∉ A(H). By (3.3), ({w1}, B)D ⊆ A(H).

So, |N+

H (w1)| ≥ |N+

H (w1)∩B| ≥ |B0|. On the other hand, ifN−

H (w1)∩B ≠ ∅, say b′
∈ N−

H (w1)∩B, thenH−b′w1+b′uPva0w1

is an eulerian subdigraph violating (3.3). Hence N−

H (w1) ∩ B = ∅, and so |N−

H (w1)| = |N−

H (w1) ∩ A| + |N−

H (w1) ∩ T | ≤

|N−

H (w1)∩A|+1. By (3.14), |N−

H (w1)| ≤ 1+|N−

H (w1)∩A| ≤ 2−max{|A−A0|, |B−B0|} ≤ 2−|B−B0|. Combining this with
|N+

H (w1)| ≥ |B0|, δ−
− 1 = |B| = |B0| + |B − B0| ≤ 2, contrary to the fact that δ−

≥ 4. The proof of this claim is completed.
By Claim 5, and since H is eulerian, λH(B, A) = 1 and so λH(A, B) = 1. By Menger’s Theorem, H ⊖ Q has a partition, say

{A′, B′
}, such that A ⊆ A′, B ⊆ B′ and |∂+

H−A(Q )(A
′)| = 1. As Q is the only (B, A)-dipath in H , (B′, A′)H−A(Q ) = ∅. Choose such

a partition {A′, B′
} such that

µ := min{|A′
| − |A|, |B′

| − |B|} is minimized. (3.15)

Denote ∂+

H (A′) = {a′b′
}, where a′

∈ A′ and b′
∈ B′. Then |A′

| ≥ |A| ≥ δ+, |B′
| ≥ |B| ≥ δ−. For vertices x and y, define

δx=y =


1 if x = y
0 otherwise.

As |A′
−A|+ |B′

−B| = t ≤ 2, from (3.15) we see thatµ ≤ 1. Next, we show D ∈ F0(k1, k2, 2) for some k1, k2, by discussing
two cases according to the value of µ.
Case 1. µ = 0.

In this case, either A′
= A or B′

= B. Without loss of generality, wemay assume A′
= A. First, we give the following claim.

Claim 7. N−

D (z ′

2) ∩ A ≠ ∅.

Suppose, to the contrary, that N−

D (z ′

2) ∩ A = ∅. Then by Claim 2, (A, IQ )D = ∅. For any x ∈ A − {a′
}, by Claim 1(ii),

|N+

D (x)∩K | = |N+

D (x)∩(K ∪B)| ≥ d+

D (x)−(|A|−1) ≥ 1, where K = (B′
−B)∪R. Furthermore, we have the following claim.

(7A) For any x ∈ A − {a′
}, |N+

D (x) ∩ K | ≥ 1 and for any y ∈ K with N−

D (y) ∩ (A − {a′
}) ≠ ∅, |N+

D (y) ∩ A| ≥ 1.
The first part of (7A) is true clearly. For the last part, let y ∈ K and a1 ∈ A − {a′

} such that a1y ∈ A(D). If there exists
b1 ∈ N−

H (y)∩B, thenH−b1y+b1ua1y is an eulerian subdigraphwith |V (H)|+1 vertices, contrary to (3.3). So,N−

H (y)∩B = ∅.
Hence d+

H (y) = d−

H (y) = |N−

H (y) ∩ K | + δy=b′ ≤ 2, since |K | = n − |A| − |B| − p − q ≤ n − δ+
− δ−

− 2 ≤ 2. Also, we
have N+

D−A(H)(y) ∩ B = ∅, as otherwise, assuming b2 ∈ N+

D−A(H)(y) ∩ B, H + yb2uPva1y is a bigger eulerian subdigraph, a
contradiction to (3.3). Hence, |N+

D (y) ∩ A| = d+

D (y) − |N+

H (y) ∩ B| − |N+

D (y) ∩ K | ≥ δ+
− d+

H (y) − 1 ≥ 1. This proves (7A).
As a′b′ is the only arc from A to B′, there exists x1 ∈ A such that either x1a′

∈ A(H) or a′x1 ∈ A(D) − A(H), since
otherwise, for any x′

∈ A − {a′
}, x′a′

∉ A(H) and a′x′
∉ A(D) − A(H), thus d−

H (a′) = |N−

H (a′) ∩ IQ | ≤ 1 and
d+

H (a′) = d+

D (a′)−d+

D−A(H)(a
′) ≥ δ+

−|N+

D (a′)∩K | ≥ 4−|K | ≥ 2, a contradiction. Next, for each i ≥ 1,wepick yi ∈ N+

D (xi)∩K
and xi+1 ∈ N+

D (yi) ∩ (A − {a′
}). The existence of such yi is assured by (7A). If for some i, such an xi does not exist, then by

(7A), N+

D (yi−1) ∩ A = {a′
}. Thus, if x1a′

∈ A(H) then let H ′
= H − x1a′

+ x1y1x2 . . . yi−1a′, and if a′x1 ∈ A(D) − A(H) then let
H ′

= H + a′x1y1x2 . . . yi−1a′. Then H ′ is an eulerian subdigraph with at least |A(H)|+1 arcs, contrary to (3.4). Hence, we can
form sequences x1, x2, . . . and y1, y2, . . .. Then there is a dicycleC whose arcs are in {xiyi, yixi+1 | i = 1, 2 . . .} ⊆ A(D)−A(H).
Thus H + A(C) is an eulerian subdigraph, contrary to (3.4). This finish the proof of Claim 7.

Assume a1z ′

2 ∈ A(D) for some a1 ∈ A. Then z ′

2 ≠ z ′

1 by Claim 2 and IQ = {z ′

1, z
′

2} by (3.12). Thus Q̄ = Q and
|B′

− B| = n − |A| − |B| − p − q − r ≤ n − δ+
− δ−

− 3 ≤ 1.
Note thatQ is a (B, A)-dipath. If V (Q [z1, z ′

2])∩(B′
−B) = ∅, thenQ [z1, z ′

2] = z1z ′

1z
′

2 and thusH−z1z ′

1z
′

2+z1uPva1z ′

2 is an
eulerian subdigraph with exactly |V (H)| vertices and |A(H)| + 1 arcs, contrary to (3.4). Hence, V (Q [z1, z ′

2]) ∩ (B′
− B) ≠ ∅.

Together with the fact |B′
−B| ≤ 1, we see that |B′

−B| = 1. Let B′
−B = {w}. Then either Q = z1wz ′

1z
′

2z2 or Q = z1z ′

1wz ′

2z2.
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In fact, we will show Q = z1wz ′

1z
′

2z2. Suppose Q = z1z ′

1wz ′

2z2. If there exists a vertex b2 ∈ B−{b′
} such that b2w ∈ A(H),

then H − b2wz ′

2 + b2uPva1z ′

2 is a spanning eulerian subdigraph, contrary to (3.2). So, N−

H (w) ∩ B = ∅. This, together with
w ∉ IQ , forces w = b′ and N−

H−A(Q )(w) = {a′
}. It follows that |N+

H−A(Q )(w)| = 1 and thus {A∪{w}, B} is also a candidate par-
tition of {A′, B′

}, in which the value of µ is also 0. Then similar to Claim 7, we also have N+

D (z ′

1) ∩ B ≠ ∅. Let b1 ∈ B such that
z ′

1b1 ∈ A(D). Then H − A(Q ) + z1z ′

1b1uPva1z ′

2z2 is a spanning eulerian subdigraph, contrary to (3.2). Hence, Q = z1wz ′

1z
′

2z2.
Now, we show that D ∈ F0(k1, k2, 2), in which {z ′

1, u} plays the role of U in the definition. To this end, it suffices to
show (A ∪ {z ′

2}, {z
′

1})D = ({z ′

1}, B
′)D = ∅ and |(A ∪ {z ′

2}, B
′)D| = 1. In fact, by Claim 2, (A, {z ′

1})D = ∅. If z ′

2z
′

1 ∈ A(D),
then H − z1Qz2 + z1uPva1z ′

2z
′

1z
′

2z2 is a spanning eulerian subdigraph, contrary to (3.2). Thus, (A ∪ {z ′

2}, {z
′

1})D = ∅. If
there exists z ′

1b3 ∈ ({z ′

1}, B
′)D for some b3 ∈ B′, then if b3 ∈ B then H − z1Qz2 + z1z ′

1b3uPva1z ′

2z2 is a spanning eule-
rian subdigraph, contrary to (3.2), and if b3 = w then H − z1Qz2 + z1uPva1z ′

2z2 + wz ′

1w is a spanning eulerian subdi-
graph, contrary to (3.2) again. So, ({z ′

1}, B
′)D = ∅. Finally, by Claim 1(ii) and Claim 2, (A ∪ {z ′

2}, B)D ⊆ A(H). If there exists
a2w ∈ (A ∪ {z ′

2}, {w})D ∩ (A(D) − A(H)), then H − z1Qw + z1uPv(a1)a2w is an eulerian subdigraph with at least |V (H)|
vertices and with at least |A(H)| + 1 arcs, contrary to (3.3) or (3.4). So, |(A ∪ {z ′

2}, B
′)D| = |(A ∪ {z ′

2}, B
′)H | = |{a′b′

}| = 1.
Hence, D ∈ F0(k1, k2, 2), where k1 = |A| and k2 = |B′

| − 1 = |B|.
Case 2. µ = 1.

In this case, |A′
| = |A| + 1 = δ+

+ 1, |B′
| = |B| + 1 = δ−

+ 1 and q = 1. In order to show D ∈ F0(k1, k2, 2) for some
k1, k2, we give the following claim firstly.

Claim 8. |(A′, B′)D| = 1.

Since |∂+

H (A′)| = 1, it suffices to show that (A′, B′)D−A(H) = ∅. Suppose there exists an arc xy ∈ (A′, B′)D−A(H). First, we
assume x ∈ A. Then, by Claim 1(ii), y ∈ B − B′. Furthermore, if there exists a vertex y′

∈ B such that y′y ∈ A(H) then
H − y′y + y′uPvxy is an eulerian subdigraph with at least |V (H)| + 1 vertices, contrary to (3.3). Hence N−

H (y) ∩ B = ∅. This,
together with N+

H−A(Q )(y) ∩ A′
= ∅, implies that |N+

H−A(Q )(y) ∩ B| = d+

H−A(Q )(y) = d−

H−A(Q )(y) = |N−

H−A(Q )(y) ∩ A′
|. It follows

that |∂+

H−A(Q )(A
′
∪ {y})| = |∂+

H−A(Q )(A)| = 1, which implies {A′
∪ {y}, B} is a candidate of partition (A′, B′) such that µ = 0,

contrary to the assumption of this case. Hence, x ∉ A. Similarly, we also have y ∉ B. Thus A′
= A ∪ {x} and B′

= B ∪ {y} and
|∂+

D (A′)| = 2. For any x′
∈ A − {a′

}, d+

D (x′) = |N+

D (x′) ∩ (A′
− {x′

})| ≤ |A′
− {x′

}| = δ+, which implies A′
− {x′

} ⊆ N+

D (x′).
In particular, x′x ∈ A(D). Thus A − {a′

} ⊆ N−

D (x). Similarly, B − {b′
} ⊆ N+

D (y).
If there exists a vertex x′

∈ A − {a′
} such that x′x ∉ A(H), then ({y}, B)D ⊆ A(H), as otherwise, say yb1 ∈ A(D) − A(H)

for some b1 ∈ B, then H + yb1uPvx′xy is an eulerian subdigraph violating (3.3). Thus, d+

H (y) ≥ |B − {b′
}| = δ−

− 1 ≥ 3. On
the other hand, if there exists b2 ∈ B such that b2y ∈ A(H) then H − b2y + b2uPvx′xy is an eulerian subdigraph violating
(3.3). Hence, d−

H (y) = |N−

H (y) ∩ A′
| ≤ 1, a contradiction to the fact d+

H (y) = d−

H (y). Therefore, A − {a′
} ⊆ N−

H (x). Then
d−

H (x) ≥ δ+
−1 ≥ 3. Thus, |N+

H (x)∩A| = |∂+

H (x)−{a′b′
}| ≥ d+

H (x)−1 = d−

H (x)−1 ≥ 2. So there is a vertex x1 ∈ A−{a′
} such

that xx1, x1x ∈ A(H). Similarly, there exists a vertex y1 ∈ B−{b′
} such that yy1, y1y ∈ A(H). ThenH−xx1−y1y+xy+y1uPvx1

is an eulerian subdigraph with at least |V (H)| + 1 vertices, contrary to (3.3). This proves Claim 8.
By Claim 8, let (A′, B′)D = {u1v1}, where u1 ∈ A′, v1 ∈ B′. By the assumption of this case, assume A′

= A ∪ {u2} and
B′

= B ∪ {v2}. As |A′
| = δ+

+ 1, u2 ∈ N+

D (x) for x ∈ A − {u1}. Thus A − {u1} ⊆ N−

D (u2).
By Claims 2 and 8, in order to showD ∈ F0(k1, k2, 2) for some k1, k2, it suffices to show that u2z ′

1 ∉ A(D) and z ′

1v2 ∉ A(D).
Suppose, without loss of generality, that u2z ′

1 ∈ A(D). If there exists u3 ∈ N+

D (z ′

1) ∩ A such that u2u3 ∈ A(H), then
H −u2u3 +u2z ′

1u3 is an eulerian subdigraph of Dwith |A(H)|+1 arcs, a contradiction to (3.4). So, N+

H (u2)∩N+

D (z ′

1)∩A = ∅.
Also, by Claim 2, |N+

D (z ′

1) ∩ A| = d+

D (z ′

1) − |N+

D (z ′

1) ∩ B′
| ≥ δ+

− 1. Thus, by Claim 8, d+

H (u2) ≤ |N+

H (u2) ∩ A| + 1 ≤

|A|−|N+

D (z ′

1)∩A|+1 ≤ 2. It follows that |N−

D−A(H)(u2)∩A−{u1}| ≥ |N−

D (u2)∩A−{u1}|−d+

H (u2) ≥ |A−{u1}|−d−

H (u2) ≥ 1.
Let u4 ∈ N−

D−A(H)(u2) ∩ A− {u1}. Then H ⊖ Q + z1uPvx2u4z ′

1z2 is a spanning eulerian subdigraph, a contradiction. Similarly,
z ′

1v2 ∉ A(D). So, D ∈ F0(δ
+, δ−, 2), which completes the proof. �

If we focus on the minimum degree condition, the following corollary can be obtained easily from Theorem 3.4.

Corollary 3.5. Let D be a digraph of order n ≥ 11 and minimum degree min{δ+(D), δ−(D)} ≥ n/2 − 2. Then D is not
supereulerian if and only if n is even and D ∈ F0(n/2 − 2, n/2 − 2, 2).
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