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1. Introduction

We consider finite digraphs that do not have loops or parallel arcs (bi-direction edges are allowed). For undefined terms
and notations, refer to [3] for graphs and [1] for digraphs. To avoid possible confusion, we use ditrails, dipaths and dicycles
to mean directed trails, paths, and cycles, while trails, paths and cycles refer to undirected graph terminology. Let D be a
digraph. We use both notations uv and (u, v) to denote an arc oriented from a vertex u to a vertex v. We use G = G(D) to
denote the underlying graph of D. If X and Y are disjoint subsets of V (D), then Ap(X, Y) denotes the maximum number of
arc-disjoint dipaths from X to Y in D. As in [1], A(D) denotes the set of arcs in D, c(D) denotes the number of components of
the underlying graph of D, and § (D), §~ (D) denote the minimum out-degree and the minimum in-degree of D, respectively.
For a pair of disjoint sets X, Y C V(D), define

X,Y)p={(x,y) e AD):xeXandy € Y}.

WhenY =V — X, we use
g X)=X,V—X)p, and 9, (X) = (V—X,X)p.

When X = {v}, we also use 37 (v) = 7 ({v}) and 9, (v) = 9, ({v}). As in [1], we denote
Ng(v) ={ue V(D) : (v,u) € AD)} and N, (v) ={uecV(D): (u,v) € AD)}.

A graph G is eulerian if G is connected without vertices of odd degree, and G is supereulerian if G has a spanning eulerian
subgraph. In [2], Boesch et al. raised the problem to determine when a graph is supereulerian, and they remarked that such
a problem would be a difficult one. In [6], Pulleyblank confirmed the remark by showing that the problem to determine if a
graph is supereulerian, even within planar graphs, is NP-complete. For more literature on supereulerian graphs, see Catlin’s
excellent survey [4] and its supplement [5].
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The purpose of this paper is to investigate the digraph version of the supereulerian problem. A digraph D is strongly
connected if there is a (u, v)-dipath for any two vertices u, v. Furthermore, D is said to be eulerian if D is strongly connected
and for every vertex v € V(D), d;(v) = dp (v). Thus D is eulerian if and only if D itself is a closed ditrail. A digraph D
is supereulerian if D has a spanning eulerian subdigraph H. The main result of this paper determines a best possible lower
bound of the minimum degree to assure a simple digraph to be supereulerian, and to characterize all the extremal digraphs.

In Section 2, we derive a necessary condition for a digraph to be supereulerian, and apply it to find candidates of the
extremal graphs for the main result. The proof of the main result is stated and proved in Section 3.

2. A necessary condition

Let D be a strong digraph and U C V(D). Then D[U], the digraph induced by U, has ditrails Py, ..., P; such that

U§:1 V(P;) = UandA(P)NA(P) = Q)fo?anyi # j.Let T (U) be the minimum value of such t. Then c(G(D[U])) < t(U) < |U|.
Forany A C V(D) — U, denote B := V(D) — U — A and let

h(U, A) := min{|d; (A)|, |8, (A)[} + min{|(U, B)p|, |(B, U)p|} — T(U), and

h(U) := min{h(U,A) : ANU = @}.
Then we have the following proposition.

Proposition 2.1. If D has a spanning eulerian subdigraph, then for any U C V (D), h(U) > 0.
Proof. Suppose that D has a spanning eulerian subdigraph H but for some U, h(U) < 0. Without loss of generality, we may
assume that for some vertex set A disjoint with U, h(U, A) < 0. Let B := V(D) — U — A. Then
min{|d7 (A)], |9, (A)|} 4+ min{|(U, B)p|, |(B, U)pl} < T(U).
Since H is spanning and eulerian, H has a closed ditrail visiting every vertex in U, and so by the definition of 7 (U),
185 (U)] = 13 (U)] = T(U).
It follows that
|95 (W) =195 (A)| = max{|(U, A)ul, |(A, U)ul)
= max{|3; (V)| — |(U, Bul, 185 (U)] — (B, U}
=9y (U)| — min{|(U, B)ul, |(B, U)nl}
> t(U) — min{|(U, B)pl, |(B, U)pl}
> min{|d5 (A)], 13, (A},
a contradiction. H
The proposition above can be used to show that there exists a family of strong digraphs each of which has a large
minimum degree but contains no spanning eulerian subdigraphs.

Example 2.2. Let kq, k,, | > 2 be integers, and D; and D, be two disjoint complete digraphs of order k; + 1 and k, + 1,
respectively, and let U be an independent set disjoint from V(D;) U V(D,) with |U| = L. Let # (kq, k, I) denote the family
of digraphs such that D € ¥ (kq, k;, I) if and only if D is the digraph obtained from D; U D, U U by adding all arcs directed
from every vertex in U and D, to every vertex in D1, and all arcs directed from every vertex in D, to every vertex in U, and
then by adding an set of | — 1 arcs directed from some vertices in D; to some vertices in D,.

Assume ki, k, > |—1.Forany D € ¥ (kq, k», ), Dhasn = k; + k, + 1+ 2 vertices, and is a strong digraph with minimum
degree 7 (D) = kyand 6~ (D) = k,.LetA = V(D;).Then h(U, A) = |8§(A)|—|—|(U, V((D)—U—-A)p|—tU)=(1-1)—-I<0O.
By Proposition 2.1, D does not have a spanning eulerian subdigraph. By direct computation, for each D € F(kq, k3, 2),
8T (D) + 6~ (D) = |V(D)| — 4. Let Fy(kq, k2, 2) be the set of spanning subdigraphs D’ of the digraphs in # (k1, ky, 2) which
satisfy T (D) + 6~ (D) = |[V(D")| — 4.

Then no digraph in %y (kq, k2, 2) has a spanning eulerian subdigraph. In the next section, we will show %y (kq, k3, 2) is
the only counterexample under the condition §7(D) + 8§~ (D) > |V(D)| —4and §*, 5~ > 4.

Also, if we do not assume that the digraph is strong, we can find non-supereulerian digraphs with a higher minimum
degree sum.

Example 2.3. Let kq, k, > 1 and let D; and D, be two disjoint complete digraphs of order k; and k,, respectively. Obtain
D(kq, ky) from D; U D, by adding all arcs directed from every vertex in D, to every vertex in D;. Then §7(D) = k; — 1,
8~ (D) =k, —1,andso 8T (D)+8 (D) = |[V(D)|—2 > |V(D)| — 4. However, D is not strong and so cannot be supereulerian.

3. A degree condition for the existence of a spanning Eulerian subdigraph

In this section, we shall show that for a strong digraph D, if min{§* (D), §~(D)} > 4 and §*(D) + 6§~ (D) > |V(D)| — 4,
then D is supereulerian. Throughout this section, D denotes a digraph on n vertices, st = §7(D) and §~ = §~ (D).
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Definition 3.1. Let H be an eulerian subdigraph of a digraph D. Suppose for some disjoint vertex subsets X, Y € V(H), Q is
an (X, Y)-ditrail of H. Let H' be the connected component of the underlying graph of H — A(Q) containing both ends of Q.
Define Iy = V(H) — V(H’), called the increment of Q with respect to H. If the eulerian subdigraph H is clear from context,
we also say Iy is the increment of Q.

Suppose Q isfromx € X toy € Y.Since H is eulerian, H has a minimum (x, y)-ditrail that contains all arcs in H[Ip ] and Q.

This ditrail is denoted by Q. Note that it is possible that Q = Q. Also, the underlying graph of H [Io ] might not be connected.

Using these definitions and notations, we have the following observations, stated as a lemma below.

Lemma 3.2. Let D be a digraph, H be an eulerian subdigraph of D, and X, Y C V (H) be two disjoint vertex subsets. Then each of
the following holds.

() If Q isan (X, Y)-ditrail of H then (V(H — Ig), Io)y U (Io, V(H — Ip))u S A(Q).

(ii) If Q is an (X, Y)-ditrail such that |A(Q)| is minimized, thenlo N (X UY) = 0.

(i) If Q1 and Q; are two arc-disjoint (X, Y)-ditrails of H, then either Iy, NIy, = @.

Proof. By the definition of I, all the arcs of H between V(H — Ip) and I, lie in Q. So (i) follows. For (ii), suppose Q is from
x € Xtoy € Y.As H is eulerian, by the definition of Q, Q visits every vertex of Ip. IfIp N (X UY) # @, then there exists a
vertexx' € X NI oravertexy € Y Nly. Thus Q[x, y] or Q[x, y']is an (X, Y)-ditrail with fewer arcs, a contradiction.

For (iii), suppose, to the contrary, thatlp, Ny, # @.LetXq = Iy, —lg,, Xo = lg, —Io,, X3 = I, Nlg, and X4 = V(D) —Iqy, Uly, .
Then by (i), 8D+(X,-UX3) C A(Qy) fori = 1, 2. Also, as Q; and Q,, are arc-disjoint, (X3, X4)p = #and V(Q;) NX; # P fori =1, 2.
By the definitions OfIQ] and IQZ‘ (X,‘, X3)D U (Xg, Xi)D ;é @ fori = 1, 2. So, (X], X3)D - A(Ql) (and thus (X], Xg)D HA(Q]) = @)
and (X3, X2)p C A(Qy), contradicts the fact Q; is adipath. H

Lemma 3.3. Let D be a strong digraph of order n and minimum out-degree T > 2 and minimum in-degree §~ > 2, H be an
eulerian subdigraph of D with maximum order. If n > max{§™, 87} + 3, then |V(H)| > max{§™, 6~} + 3.

Proof. Without loss of generality, we may assume 87 > §~. Suppose, to the contrary, that |V(H)| < §* + 2 < n. Let P be
a ditrail of D such that |V (P)| is maximized and subject to this, |A(P)| is minimized. Assume P is an (x, y)-ditrail for some
vertices x, y. Then, by the choice of P, NJ (y) € V(P)and

g V) NAPP) = 0, (3.1)

since otherwise, there exists an out-arc of y in P. Then y lies in P[x, y'], where ¥’ be the immediate predecessor of y in P.
Thus, P[x, y'] is an (x, y')-ditrail with |V (P)| vertices and |A(P)| — 1 arcs, a contradiction to the choice of P.

Let yo € V(P) such that there exists a (y, yp)-ditrail Q with V(Q) C V(P[yo, y]) and A(Q) N A(P) = @, and furthermore,
we choose yq so that |V (P[yo, y])| is maximized. Note that such yy does exist, as any out-neighbor of y is such a candidate
by (3.1).

Denote K = V(P[yo, y]). By the choice of yg, yQyoPy is an eulerian subdigraph of D of order |K|. By assumption,
n > |H| > |K|. Then, by the strongness of D, there exist y; € K and z; ¢ K such that y;z; € A(D). In this proof, for
any vertex w € V(P), denote by w™ the next vertex of w in P and by w™ the previous vertex of w in P.

Proposition 1. yy; € A(D) and yw € A(D) forany w € K — {y, y1}.

Suppose, to the contrary, that yy; € A(D). If zy &€ V(P), then xPyy1z, is a ditrail of D of order |V (P)| + 1, a contradiction
to the choice of P. So, zy € V(P). This, together with the fact zy & K, forces zy € V(P[x, yo]) — {yo}. However, as z; & K
and y1 € V(P[x,y0]) — {yo} (by the choice of yy), y1z1 & A(P). Thus, z; € V(P) is a vertex satisfying that yy,z; is a ditrail
arc-disjoint with P and P[zy, y] is longer than P[yy, y], contrary to the choice of yo. Hence, yy, & A(D). Then, by the choice of P,
IK| > [NF () U{y, y1}| > 8T + 2. This, together with the assumption that [K| < |[H| < 8 + 2, forces the proposition.

From Proposition 1 and the assumption, |K| = |H| = §* + 2.

Proposition 2. N (y) C K.
Suppose, to the contrary, that there exists a vertexy’ € N (y) — K. Then by the strongness of D, there is a dipath, denoted
by P/, from K to y'. By the arbitrariness of y; and by Proposition 1, P’ is orientated from y, and ny e ADD)ify # yf. Thus

yoPylP’y’yy;rPyyo is an eulerian subdigraph of order at least |K |+1 = 81+ 3 vertices, contrary to the assumption. The proposition
is proved.

Since D is strong, there is a dipath P’ from z; to K for z; ¢ V(H). Denote by y, the endpoint of P'. If there is no
such a dipath P’ such that y, € V(P[yo,y1]) — {y1}, then y, € V(P[y1,y]) and y{P'y, is arc-disjoint with P, and so
xPy1P’y2Pyy1+Py; is a ditrail with at least |V(P)| + 1 vertices, contrary to the choice of P. Hence, D has such a dipath P’
such that y, € V(P[yo, y1] — {y1}). By the arbitrariness of y; and by Proposition 1, NB“ (y2) € K.

Ify,y € A(D), then szy1zlP/y2ynyyy0Pyz is an eulerian subdigraph of order at least |K| 4 1, contrary to the assumption.
So,y.y ¢ A(D). Moreover, ifyzy;r € A(D), then yoPy1zlP/y2nyyy0 is an eulerian subdigraph of order at least |[K|+ 1, contrary
to the assumption again. Hence, yzy;r & A(D). Thus, N,j (y2) € K — {y,, y{r,y}. This, together with the fact |[K| = §* + 2,
forces y7 = y.
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By 6~ > 2 and by Proposition 2, there exists y3 € K — {y1, y} such that y;y € A(D). Thenys; € V(P[yo, y1] — {¥1}).
Also, by Proposition 1, yy; € A(D). So, if zy & V(P) then xPysyysPy,z; is a ditrail with |V (P)| + 1 vertices, contrary to the
choice of P, and if z; € V(P) then z; € V(P[x, yol) — {Vo} and thus z;Py;yy3sPy z; is an eulerian subdigraph with at least
IK| + 1 =81 + 3 vertices, contrary to the assumption. M

Theorem 3.4. Let D be a strong digraph of order n and minimum out-degree T > 4 and minimum in-degree §~ > 4. If
81t + 8~ > n — 4, then the following are equivalent.

(i) G has a spanning eulerian subdigraph.

(ii) Either 87 + 8~ > n — 4, or for some integer ky, ky, 87 = kq, 8~ = ky but D & Fo(kq, k2, 2).

Proof. By Example 2.2, it suffices to prove that (ii) implies (i). By the definition of #y(k1, ks, 2), for every digraph D €
Folky, ky, 2), 8T (D) + 8 (D) = n — 4. So, we may assume that

D is not supereulerian, (3.2)

to prove that D € F4(kq, ky, 2) for some integer kq, k,. Choose an eulerian subdigraph H of D such that

|V (H)| is maximized, (3.3)
and subject to (3.3),
|A(H)| is maximized. (3.4)

Let P be a ditrail of D — V(H) with p = |V(P)| vertices such that |V (P)| is maximum. Assume P is from u to v. By (3.2),
p > 1. By the choice of P, N, (u) U N[J{(v) C V(H) UV (P). Define

A=Nj(w)NV(H) and B= N, ) NV(H).

Claim 1. We may choose a ditrail P such that each of the following holds.

(HANB=4.

(ii) (A, B)p C A(H) and (B, A)p NA(H) = @.

(iii) |JA| > 6T —p+1,|B| =6~ —p+ 1.

(iv)A £ Wand B # 0.

Claim 1(i)~(ii) follow from (3.3), and definition of A and B. For (iii), by definition of A, |A| > d;} (v) — [Ng (v) N V(P)| >
8T —(p—1) =68% — p+ 1.Similarly, |B| > §~ — p + 1. Thus, (iii) holds.

For (iv), let Py be a ditrail of D — V(H) such that |V (Pp)| is maximized and subject to this, |[A(Py)| is minimized. Assume
Py is from ug to vg. Similar to (3.1) in the proof of Lemma 3.3,

dp (ug) NA(P) =¥ and 8 (vo) NA(Py) = ¥.

If there exist vertices v; € (N (vo) N V(Po)) U {vo} and u; € (Np (uo) N V(Py)) U {uo} such that Nj (v1) N V(H) # @ and
N (u1) N V(H) = @, then ujugPuov; is a candidate of ditrail P satisfying (iv). So, it suffices to show the existence of such

vertices u; and v;.
By contradiction and without loss of generality, we may assume no such v; exists. Then N,j(vo) N V(H) = @. So,

|(Ng (vo) N V(Py)) U {vo}| = 8 + 1. Also, by Lemma 3.3, [V(H)| > max{§*,57} + 3.So, [V(P)| < n — [V(H)| <
n —max{8*, 87} — 3 < min{s*, §7} + 1.1t follows that (N (vo) N V(Py)) U {ve} = V(Po). Thus, the existence of v, is
ensured by the strongness of D. This finishes the proof of Claim 1.

Since H is an eulerian subdigraph of D, H contains a (B, A)-dipath Q. Choose such a (B, A)-dipath Q of H such that

|Io| is minimized and subject to this, |A(Q)| is minimized. (3.5)

Then, by Lemma 3.2(ii), I is disjoint with A U B. Assume Q is fromz; € Btoz, € A. Then V(Q) N (AU B) = {z1, z,}. Let z}

be the first vertex of Q in I and z) the last vertex of Q in I,. Note that it is possible that z; = zJ.
For simplicity, we denote H©SQ to be the subgraph of H by removing all the arcs of Q and then removing the increment I, .
Let g = |lIg|. As zyuPvz; is a (z;, z3)-ditrail of D arc-disjoint with H, if ¢ < p, then H © Q + P’ is an eulerian subdigraph
with order [V(H)| — q + p > |V (H)|, contrary to (3.3). Hence q > p. Define

R=V(D)—-V(H) —V({P), T=VH)—A-B—1I, r=|R| and t=|T|.
Then by Claim 1,
n=|VMD)|=|Al+|Bl+p+q+1r+t

>8T4+86 +2—p+q+r+t>nt+q+r+t—p—2. (3.6)
Thus we have obtained
p<q, q+r+t<p+2 and r+t<2. (3.7)

Claim 2. Both (A, (I — {z,}) U {z;}))p = P and ((Iq — {z{}) U {23}, B)p = 0.



Y. Hong et al. / Discrete Mathematics 330 (2014) 87-95 91

By symmetry, it suffices to show that (A, (Ip, — {z}}) U {z{}))p = #. By contradiction, assume that D has an arc
azz € (A, (Ip — {z2}) U {z1})p. By Lemma 3.2, az3 ¢ A(H). We first establish each of the following.
(2A)N, (Z)) NA =@ and N (z,) N B = 0.

By symmetry, it suffices to show N, (z})) N A = @.1f N, (z}) N A # §, then we may assume that z3; = z]. Hence
P’ = zyuPvaz; Q2z, is a (z1, z5)-dipath, edge-disjoint from H © Q. It follows that (H © Q) + P’ is an eulerian subdigraph of
order |V(H)| —q+ (p 4+ q) > |V(H)|, contrary to (3.3). Therefore (2A) must hold.

(2B)N7 (z3) N\B=@and N (z3) NV(P) = @.

If there exists a vertex b € N;{ (z3) N B, then by Lemma 3.2, z3b ¢ A(H), and so H + azsbuPwva is an eulerian subdigraph
of order at least |V (H)| + 1, violating (3.3). If there exists a vertex w € Ng (z3) NV (P), then H 4+ azzwPva is an eulerian
subdigraph with at least |V (H)| 4+ 1 vertices, contrary to (3.3). Hence (2B) holds.

(2C) z3a ¢ A(D) and N} (z3) N Iq = {z}.

Suppose zza € A(D). If zza & A(H), then H + azza is an eulerian subdigraph with exactly |V (H)| vertices and |A(H)| + 2
arcs, contrary to (3.4). Hence zsa € A(H). By Lemma 3.2, zza € A(Q). It follows that a = z, and z3 = z),. This, together with
the fact z3 € (Io — {z3}) U {z}}, forces z; = z|. Thus a € N, (z), contrary to (2A). Hence, zsa ¢ A(D).

To show Nj (z3) Nl = {z,}, we first show that z, € N (z3) Nlq.1fz3z, ¢ A(D), then H S Q +z,uPvaz;Qz, is an eulerian
subdigraph of order |V (H)| — q 4+ p + [V(Q[z3, ZD| > |V(H)| —q+p+ 3 > |V(H)|, contrary to (3.3).

Then, we show that N;r (z3) Nl < {z,}. If there exists another vertex z, € (NL;r (z3) — {z;}) N g, then D[Ig] — z324 has
a (z4,7})-dipathQ’,andsoH © Q + zlquazgz4Q/z§sz is an eulerian subdigraph of order |[V(H)| —q+p+|V( Q)|+ 1 >
|V(H)| — q+ p+ 3 > |V(H)|, contrary to (3.3). Thus (2C) must hold.

(2D)z3z, € A(D),q =3,p=1,t =0, |A] = 8 and |B| = §~. Moreover, if there is an arc zb € ((Io — {z;}) U {z}}, B)p, then
21z € A(D).

By (2C), we have z3z) € A(D) directly. Moreover, by (2A)-(2C), we have shown that N[J{ (z3) CSAURUT U {z}}, and so

di(z3) <|A—{a}| +r+t+1=|A +r+t.Itfollows that |[A| > d}(z3) —r —t > 8" —r —t,and so

n=|Al+Bl+p+q+r+t
>8" —r—t+8 —p+1+p+q+r+t
=8 +6 +q+1
>n+q-—3.

It follows that ¢ < 3. Moreover,H © Q + zlquaz3z§sz is an eulerian subdigraph of D of order |V(H)| — q + p + 2. By
(3.3),|IVH)| —gq+p+2 < |V(H)| and so q > p + 2. This, together with (3.7), forcesq = p+2 > 3andr =t = 0,and
so we must have ¢ = 3,p = 1,232, € A(D) and |A| = 8™, |B| = §~. Arguing similarly, we conclude that if there is an arc
zb € (Ig, B)p, then z;z € A(D), and so (2D) follows.

Since t = 0, H has exactly one (B, A)-dipath, and so by H being eulerian and by Menger’s Theorem (Page 170, Theorem
7.16 of [3]), [(A, B)y| < Ax(A,B) = Ay(B,A) = 1.By Claim 1(ii), |(A, B)p| < 1. Hence, there is a vertex b € B such that
N, (b) A = #. Also, as p = 1, by Claim 1(i), N, (b) N V(P) = . So, N, (b) € BU Iy.By |B| = &7, there must be a
z4 € Ny (b) N . By Lemma 3.2, z4b & A(H).

By(2A)andasb € B,z4 # z).Also,by (2B)z4 # z3.Moreover, ifz4 = z; then HOQ +z,Qz;buPvaz;z,Qz, is an eulerian sub-
digraph of D violating (3.3). Hence z4 € Iy —{z], Z}, z3}. This, together with |Io | = q = 3, forces z] = z}, and so I, has exactly
three vertices z}, z3, z4. As z4 # z7,z4b € ((Io — {z}}) U{Z}}, B)p. By (2D), 124 € A(D). So, H © Q +2,Qz;Qz, + az3z z4sbuPva
is a spanning eulerian subdigraph of D, contrary to (3.2). This establishes Claim 2.

Define

Ag={x€A:N;x)NB=¢} and By={xeB:N,(x) NA=0}. (3.8)

By (3.5), every (B, A)-dipath has increment at least g, and by Lemma 3.2, any two arc-disjoint (B, A)-dipath have disjoint
increment, and so Ay (B,A) < t/q + 1. As H is eulerian, |8§(U)| = |05 (U)| forany U € V(D). It follows from Menger’s
Theorem (Page 170, Theorem 7.16 of [3]) that Ay (A, B) = Ay (B, A) < t/q + 1. By the definition of Ay and By and by (3.7),

max{|A — Ao, [B—Bo|} < Ay(A,B) <t/q+1=<3. (3.9)
By Claim 2,
N (A) NIy C{z}} and N, (B)NIy C {z;}. (3.10)

Claim 3. There exist vertices a € Ag and b € By such that az}, zib & A(D).

By symmetry, it suffices to prove the existence of a. We shall show the following statements.
(3A)A0 ;é ¢ and By # @.

By contradiction, we assume that Ay = @. By (3.9) and Claim 1(iii), §* < |A|+p—1 < p+t/q < p+t/p.1f Ay (B, A) > 2,
then there is a (B, A)-dipath Q' disjoint with Io. Thenp < q < |lo/| < |T| =t < 2,and so 8" < 3, contrary to the fact that
st > 4.
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Hence Ay(B,A) = landso |A| = |A —Ap| = 1.Then A = {z,}. Also by Ay(A,B) = 1, |N5r(zz) N Bl < 1.By (3.3),
N (z2) N"V(P) = ¥ and by Claim 2, [N (z2) Nlg| < 1.Hence [RUT| > [N, (z2) N (RUT)| > dff (z2) — INj (z2) N (BUIg)| >
8T — 2 > 2. This, together with (3.7), forces RUT| = 2 and |N5r (z2) NIg| = 1.Then by Claim 2, z,Z}, € A(D). It follows that
H9Q+zlquzzz§sz is an eulerian subdigraph of D with order |V (H)| —q+p+1.By (3.3),q > p+1.Alsoby (3.7),r+t < p+
2—q < 1,acontradiction to the deduced fact |RUT| = 2. This proves Ay # . The proof for By # (Jis similar and so (3A) holds.
(3B) There exists a vertex a € Ag such that az) ¢ A(D).

Assume that for every a’ € Ao, a'z) € A(D). By (3A), pick a vertexa’ € Ap. ThenH © Q + Z1qua/Z§Q22 is an eulerian
subdigraph of order at least [V(H)] —q+p + 1.By (3.3), [V(H)| —q+p+ 1 < |V(H)|and soq > p + 1 > 2. Hence by
(3.7),wehaver +t < 1.

Forany a” € Ay — {z,}, by the assumption and by Lemma 3.2, a"z; € A(D) —A(H). So, by (3.4),z,a” & A(D). Furthermore,
by Claim 2, Nj (z,) N B = @. Also, by (3.3), Nj (z,) N V(P) = #.S0,Nj (z,) € [(RUT Ulg) NN (z))]1U (A — Ag) U {z,}. This,
together with 8 > 4 and (3.9), implies that

INF(z) Nlg| > df (Z) —[A— Aol — (r+t) —1>2—(r+1t)—t/q. (3.11)

Asq > 2andr +t < 1,from (3.11), [IN7(z)) Nlg| > 1.letz; € Nj(z,) Nl and d € Nj(z,) N A Then
HoeQ + z1qua/z§z3sz is an eulerian subdigraph of order at least |V (H)| — q + p + 2. This, together with (3.7), implies
g=p+2andr =t = 0,and so |V(Q[zs, Z,])| = 2.Thus V(H) = AUBUI,. Again by (3.11), |N5’(z§)ﬂIQ| > 2,and so there s
avertex zj € Ig — {2}, z3} such that z,z, € A(D). Since |V(Q[z§,z§])| * |V(Q[z3,z§])| =2, |V(Q[z§,z§])| > 3. ThusHSQ +
Z qua’zézész is an eulerian subdigraph of order at least |V (H)| —q+p+3 > |V (H)|, contrary to (3.3). This proves Claim 3.

Claim 4. Let a € Ay, b € By. Each of the following holds.
(i) Nf (@) N (BUIy) = @and Ny (b) N (AU Iy) = 0.
(i) N7 (@) N V(P) = @ and N, (b) N V(P) = 0.
(iii) Nj (@) CRUT U (A — {a}) and N, (b)) CRUT U (B — {b}).
(iv) ({a}, R)p U (R, {b})p < A(D) — A(H).
(v) Foranyx € RUIg, x & N (a) N N, (b).

By (3.8), Nf (@) N B = @ and N, (b) N A = (. By Claims 2 and 3, N (a) N Io = @ and N, (b) NIy = @. This proves (i).
Claim 4(ii) follows (3.3), (iv) follows from the definition of H and R, and (iii) follows from Claim 3(i)-(ii).

For (v), if for somex € RUIp,x € Ng(a) NNy (b), by (i), x & Ip, and so x € R. By (iv), ax, xb ¢ A(H), and so H + axbuPva
is an eulerian subdigraph of D with [V(H)| + p + 1 > |V (H)| vertices, contrary to (3.3). This proves (v), and completes the
proof for Claim 4.

Claim 4 (v) suggests that each vertex in RU I, contributes at most 1 to df{ (a) +dj (b); and each vertex in T contributes at
most 2 to d; (a) +d;, (b). It follows from Claim 4 that d; (a) +d;, (b) < |A|— 1+ |B|—1+7+2t = |A|+|B|+r+2t—2,and so

n=|Al+Bl+p+q+r+t
>3 +8 +2—r—2t+p+q+r+t=n—-2+p+q—t.

This, together with (3.7), implies
p+q=t+2, 2g+r<4 and p<q<2. (3.12)

Claim 5. Ay(B,A) = 1.

Suppose, that A (B, A) > 2. Then, by the definition of I there exists a (B, A)-dipath Q" in H —Iy. So, Iy Nlg» = ?. Assume

Q' isfromz; € Btoz, € Aand z}, z, are the first vertex and the last vertex in I’ of Q’, respectively. Then, similar to Claim 2,
we also have

(A, (g —{z) U {z5hp = (U — {z3}) U {z,}, B)p = 0. (3.13)

This, together with Iy € T, implies T ¢ N, (A) and T & N, (B). So, [N (a) N T|, N, (b) N T| < t — 1.1t follows that
d3(a)—|—d5(b) <|Al—1+B|—14+r+2(t—1)=n—p—q+t—4<8t+8 —p—q+t.Thusp+ q < t. Together
this with (3.7), the equation holds, which impliesp =q=1,t =2,r =0and |A| = 8™, |B| =§".

If|lg’| > 2,thenT = Iyr aslyr € T.By thefacta € Agandb € By, |N5’(a)ﬂlQ/| > dg(a) —I]A|+1 > 1and [Ny (b)NIy/| >
d; (b) — |B| 4+ 1 > 1. Combining these with (3.13), az}, z}b € A(D) and z} # z,. Thus, H — A(Q") — I’ +23Q/Z;buPvaz,Q'zs
is an eulerian subdigraph violating (3.3).

So, |lg/| = 1and let T = Ipy U {w}. By Claim 4(ii), Claim 2 and by (3.13), d'w, wb’" € A(D) for any ' € Ap and any
b’ € By. Furthermore, if there exist vertices a” € Ag and b” € By such that a”w, wb” & A(H), then H + a’wb"uPva” is an
eulerian subdigraph violating (3.3). Hence, without loss of generality, we may assume a'w € A(H) for any a’ € Ap. Thus
dy;(w) > |Ao|. As H is eulerian, d;;(w) = dy (w) > |Ag|. Moreover, since no arc in (A, {w})p lies in any (B, A)-dipath, by
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Lemma 3.2, w cannot lie in any increment of (B, A)-dipath. It follows that Ay (B, A) = 2.If, for every b’ € By, wbh’ € A(H),
then Ay (B, A) = Ay (A, B) > max{|A — Ag|, |B — Bo|} + min{|Ag|, |Bo|} > min{|A|, |B|} > 4, a contradiction. Hence, there
exists by € By such that why ¢ A(H). Also, by Ay(A, B) < 2, we see that [N} (w) N B| <2 — |A — Ag|. Thus [N (w) NA| =
dif (w) — IN;f (w) NB| > |Ag| — 2 + |A — Ao| > 1, which implies there exists a vertex ap € A such that way € A(H). Thus,
H — wag + wbouPvay is an eulerian subdigraph violating (3.3), a contradiction which completes the proof of this claim.

Claim6. p = 1.

Suppose,p > 2.By(3.12),p = q = t = 2 and r = 0. Then by Claim 1(iii), |A| > 6T — 1, |B| > §~ — 1 and thus
n=|Al+|Bl+p+q+r+t>8"+8 +4>n,whichimplies |A| =8T —1,|B| =8 — 1.

Let T = {w, w,}. For any vertex a’ € Ay, if a'z) € A(D) then H © Q + z;uPva'z,Qz, is an eulerian subdigraph of order
V(H)| —q+p+ 1> |V(H)|, contrary to (3.3). Hence N (@) € (A—{d’}) UT and [N (&) N T| > d (¢) — |A —{d}| >
8T — |A| + 1 = 2, which implies @ w1, a'w, € A(D). Similarly, for any b’ € By, we also have w1b’, w,b" € A(D).

Since Ay (A, B) = 1, max{|A — Aol, |B — Bo|} + min{|N, (w1) NA], |N;(w1) N B|} < 1. Without loss of generality, we may
assume |N;; (w1) NA| < [N{ (wq) N B|. Then

max{|A — Aol, [B — Bo|} + [Ny (w1) NA] < 1. (3.14)

Since |Ag| = |A|—]A—Ag| > 8T —1—1 > 2, there exists a vertex ag € Ag such thatagw; & A(H).By(3.3), (w1}, B)p € AH).
So, IN;f (w1)| > [N (w1)NB| > |By|.On the other hand, if N; (w1) NB # @, say b’ € N, (w;) NB, then H — b'w; +b'uPvagw;
is an eulerian subdigraph violating (3.3). Hence N;; (w1) N B = @, and so [N; (w1)| = [Ny (w1) NA| + [Ny (w1) NT| <
[N (w1) NA|+1.By (3.14), INy (w1)| < 1+ |N, (w1) NA| < 2—max{|A—Ap|, |B—By|} < 2—|B—By|. Combining this with
|N,j(w1)| > |Bo|, 8~ — 1 = |B| = |Bg| + |B — Bg| < 2, contrary to the fact that §~ > 4. The proof of this claim is completed.

By Claim 5, and since H is eulerian, Ay (B, A) = 1 and so Ay (A, B) = 1. By Menger’s Theorem, H © Q has a partition, say
{A’,B'}, such that A C A, B C B’ and |8:{_A(Q) (A)| = 1. As Q is the only (B, A)-dipath in H, (B, A')y_aq) = ¥. Choose such
a partition {A’, B’} such that

= min{|A’| — |A|, |B'| — |B|} is minimized. (3.15)

Denote 9, (A') = {a'b'}, where @’ € A’ and b’ € B. Then |A'| > |A| > &, |B'| > |B| > §. For vertices x and y, define

S = 1 ifx=y
Y7 10 otherwise.

As|A'—A|+|B —B| =t < 2,from(3.15) we see that u < 1. Next, we show D € Fy(kq, ko, 2) for some kq, ky, by discussing
two cases according to the value of u.

Case 1. u = 0.
In this case, either A = A or B’ = B. Without loss of generality, we may assume A" = A. First, we give the following claim.

Claim 7. N, (z)) NA # (.

Suppose, to the contrary, that N (z;) N A = . Then by Claim 2, (A, Iq)p = @. For any x € A — {d’}, by Claim 1(ii),
INS (x) NK| = INj (x) N (KUB)| > d} (x) — (JA|— 1) > 1, where K = (B — B) UR. Furthermore, we have the following claim.
(7A)Foranyx € A— {d'}, INJ (x) N K| > 1and forany y € K with N, (y) N (A — {a'}) # @, IN; (y) NA| > 1.

The first part of (7A) is true clearly. For the last part, lety € K and a; € A — {d’} such that a;y € A(D). If there exists
by € N;; (y)NB, then H —byy+bqua;y is an eulerian subdigraph with |V (H)|+ 1 vertices, contrary to (3.3). So, N;; (y) B = ¢.
Hencedg(y) =d;(y) = IN; ) NK|+8—py < 2,since |[K| =n—|A|—|Bl—p—q<n—38t—68 —2 < 2. Also, we
have NB“_A(H) (y) N B = @, as otherwise, assuming b, € N;_—A(H) (y) N B, H 4+ yb,uPva,y is a bigger eulerian subdigraph, a
contradiction to (3.3). Hence, [N (y) NA| = d} (y) — INf (¥) N B| — N4 (v) NK| > 8" — df (y) — 1 > 1. This proves (7A).

As d'b’ is the only arc from A to B/, there exists x; € A such that either x,a' € A(H) or a'’x; € A(D) — A(H), since
otherwise, for any X' € A — {d'}, Xd" ¢ A(H) and a'x' ¢ A(D) — A(H), thus d,;(a') = [N, (@) Nly| < 1and
dj(a') = df (@) —df_j, (@) = 87Ny (@)NK| > 4—|K| > 2,a contradiction. Next, for eachi > 1,we picky; € Nj (x)NK
and xj;1 € Ng (yi) N (A — {d'}). The existence of such y; is assured by (7A). If for some i, such an x; does not exist, then by
(7A), Ng(y,q) NA = {d'}. Thus, ifx;a’ € A(H) thenlet H' = H — x1d’ + X1y1X, ... y;_1d’, and if a'x; € A(D) — A(H) then let
H' = H+d'x1y1x,> ...yi—1d.Then H' is an eulerian subdigraph with at least |A(H)| + 1 arcs, contrary to (3.4). Hence, we can
form sequences xq, X3, ...andyq, ¥, ....Thenthere is adicycle C whose arcsare in {x;y;, yixir1 | i=1,2...} € A(D)—A(H).
Thus H + A(C) is an eulerian subdigraph, contrary to (3.4). This finish the proof of Claim 7. ~

Assume a,z, € A(D) for some a; € A.Thenz, # Zz; by Claim 2 and I, = {z],z,} by (3.12). Thus Q = Q and
IB—Bl=n—|A|—|Bl—p—q—r<n—-8t—86" —-3<1.

Note that Q is a (B, A)-dipath.If V(Q [z, z;]) N (B'—B) = ¥, then Q[z1, Z}] = z1Z}z, and thus H — z,z1z} +zuPva,z} is an
eulerian subdigraph with exactly |V (H)| vertices and |A(H)| + 1 arcs, contrary to (3.4). Hence, V(Q[z;, Z,]) N (B' — B) # #.
Together with the fact [B' —B| < 1, we see that |B’'— B| = 1. Let B' — B = {w}. Then either Q = z;wz,z}z; or Q = z;Zjwz,z;.
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In fact, we will show Q = z;wz;z}z,. Suppose Q = z1z;wz,z,. If there exists a vertex b, € B— {b’} such that b,w € A(H),
then H — b,wz), + b,uPva,z, is a spanning eulerian subdigraph, contrary to (3.2). So, N (w) N B = ¢. This, together with
w ¢ Io, forces w = b’ and Ny_aw) = {d’}. It follows that |N;7A(Q)(w)| = 1and thus {AU {w}, B} is also a candidate par-
tition of {A’, B'}, in which the value of w is also 0. Then similar to Claim 7, we also have NE{ (z}) NB # Y. Let by € Bsuch that
z1by € A(D). Then H — A(Q) + z1z1b1uPva,z,z, is a spanning eulerian subdigraph, contrary to (3.2). Hence, Q = zwzz,2,.

Now, we show that D € Fy(kq, k2, 2), in which {z], u} plays the role of U in the definition. To this end, it suffices to
show (AU {z3}, {z1)p = ({23}, B)p = ¥ and |[(A U {z}}, B)p| = 1. In fact, by Claim 2, (A, {z{})p = 0.If z;z; € A(D),
then H — z,Qz; + z1uPva,z,z;z,z, is a spanning eulerian subdigraph, contrary to (3.2). Thus, (A U {z}}, {z{})p = 0. If
there exists zib3 € ({z}}, B)p for some b3 € B/, thenif b; € Bthen H — z;Qz, + z1z1bsuPva;z,z, is a spanning eule-
rian subdigraph, contrary to (3.2), and if b3 = w then H — z;Qz; + z;uPva;z,z; + wzjw is a spanning eulerian subdi-
graph, contrary to (3.2) again. So, ({z1}, B)p = @. Finally, by Claim 1(ii) and Claim 2, (A U {z}}, B)p € A(H). If there exists
aww € (AU {Z}}, {w})p N (A(D) — A(H)), then H — z;Qw + zyuPv(a;)a,w is an eulerian subdigraph with at least |V (H)|
vertices and with at least |JA(H)| + 1 arcs, contrary to (3.3) or (3.4). So, |(A U {z}}, B)p| = (AU {z}}, B)u| = {d'b'}| = 1.
Hence, D € Fy(ky, ko, 2), where k; = |A|land k, = |B'| — 1 = |B|.

Case2.n = 1.

In this case, |A'| = |JA|+1=68T+1,|B| = |B|+ 1= 68"+ 1and g = 1.In order to show D € Fy(ky, k;, 2) for some

k1, ko, we give the following claim firstly.

Claim 8. [(A, B))p| = 1.

Since |8:{ (A)| = 1, it suffices to show that (A, B)p_am) = ¥. Suppose there exists an arc xy € (A’, B))p_a). First, we
assume x € A. Then, by Claim 1(ii), y € B — B'. Furthermore, if there exists a vertex y’ € B such that y'y € A(H) then
H —y'y + y'uPvxy is an eulerian subdigraph with at least |V (H)| 4 1 vertices, contrary to (3.3). Hence N, (y) N B = {. This,
together with N;j_, o, (¥) N A" = @, implies that [N;j_, o, ) N Bl = dij_s0,¥) = d5_s0, @) = INg_s0, @) NA'|. It follows
that |8:,“_A(Q) AUl = |8;_A(Q) (A)| = 1, which implies {A’ U {y}, B} is a candidate of partition (A’, B') such that © = 0,
contrary to the assumption of this case. Hence, x ¢ A. Similarly, we also havey ¢ B. Thus A’ = AU {x} and B = BU {y} and
|04 (A')| = 2.Foranyx' € A — {d'},dj (') = [N (X) N (A" — {x'})| < |A' — {x'}| = §F, which implies A’ — {x'} € Nj ().
In particular, x’x € A(D). Thus A — {a’} € N (x). Similarly, B — {b'} € N7 (¥).

If there exists a vertex X' € A — {a’} such that x'x & A(H), then ({y}, B)p C A(H), as otherwise, say yb; € A(D) — A(H)
for some b; € B, then H 4+ yb;uPvx’xy is an eulerian subdigraph violating (3.3). Thus, d;(y) >|B—{b'}=8"—1>3.0n
the other hand, if there exists b, € B such that b,y € A(H) then H — b,y + b,uPvx’xy is an eulerian subdigraph violating
(3.3). Hence, d;; (y) = [N, (y) NA’'| < 1, a contradiction to the fact d: (y) = dy (). Therefore, A — {a’} < Ny (x). Then
di; (x) > 87 —1 > 3.Thus, [N (x) NA| = |9 (x) —{d'b'}| > d}; (x) —1 = dj;(x) — 1 > 2.So there is avertexx; € A—{a’} such
thatxxq, x;x € A(H).Similarly, there exists avertexy; € B—{b’} such thatyyy, y1y € A(H).Then H—xx; —y1y+xy+y1uPvx
is an eulerian subdigraph with at least |V (H)| + 1 vertices, contrary to (3.3). This proves Claim 8.

By Claim 8, let (A’, B)p = {ujv;}, where u; € A’, v; € B'. By the assumption of this case, assume A’ = A U {u,} and
B =BU{v).As|A|=8T+1,u, € Ng(x) forx € A— {uq1}. Thus A — {u1} € Np (u).

By Claims 2 and 8, in order to show D € F,(k, ks, 2) for some ky, ky, it suffices to show that u,z| & A(D) and zjv, & A(D).
Suppose, without loss of generality, that u,z; € A(D). If there exists u3 € Ng(zg) N A such that uyu; € A(H), then
H — uyus + u,zjus is an eulerian subdigraph of D with |A(H)| + 1 arcs, a contradiction to (3.4). So, N,j (upx) N NBL ZHNA=9.
Also, by Claim 2, [N, (z)) N Al = dj(z}) — INg (z})) N B'| > 8" — 1. Thus, by Claim 8, d}; (uz) < [N () NAl+ 1 <
|A| — |ND+(z§)ﬂA| +1 < 2.1t follows that |N5_A(H)(u2)ﬂA—{u1}| > [N (uz) NA—{uq} —dﬁ(uz) > [A—{u}|—dy(up) > 1.
Letuy € NE_A(H) (u2) NA — {uq}. Then H © Q + z1uPvx;,u4212; is a spanning eulerian subdigraph, a contradiction. Similarly,
Ziv, € A(D).So,D € Fo(8T, 87, 2), which completes the proof. ®

If we focus on the minimum degree condition, the following corollary can be obtained easily from Theorem 3.4.

Corollary 3.5. Let D be a digraph of order n > 11 and minimum degree min{8*(D), 8~ (D)} > n/2 — 2. Then D is not
supereulerian if and only if nisevenand D € Fo(n/2 —2,n/2 — 2, 2).
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