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Abstract Given a group A and a directed graph G, let F(G, A) denote the set of all
maps f : E(G) → A. Fix an orientation of G and a list assignment L : V (G) �→ 2A.
For an f ∈ F(G, A), G is (A, L , f )-colorable if there exists a map c : V (G) �→
∪v∈V (G)L(v) such that c(v) ∈ L(v), ∀v ∈ V (G) and c(x) − c(y) �= f (xy) for every
edge e = xy directed from x to y. If for any f ∈ F(G, A), G has an (A, L , f )-color-
ing, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at
least k and for any k-list assignment L : V (G) → 2A, then G is k-group choosable.
The group choice number, denoted by χgl(G), is the minimum k such that G is k-
group choosable. In this paper, we prove that every planar graph is 5-group choosable,
and every planar graph with girth at least 5 is 3-group choosable. We also consider
extensions of these results to graphs that do not have a K5 or a K3,3 as a minor, and
discuss group choosability versions of Hadwiger’s and Woodall’s conjectures.
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1 Introduction

In this paper, we consider finite and simple graphs. Undefined terms and notations can
be found in [1]. In particular, for a simple connected graph G, and for any v ∈ V (G),
dG(v), �(G), κ(G), c(G), and χ(G) denote the degree of vertex v, the maximum
degree, the connectivity, the number of components of G and the chromatic num-
ber of G, respectively. When the graph G is understood from the context, we also
use d(v) for dG(v). If G is a directed graph, we again use E(G) to denote the set
of directed edges of G, and by (u, v) ∈ E(G) we mean that a directed edge ori-
ented from u to v is in G. A cycle of length n is referred as an n-cycle. If X is a
vertex subset or an edge subset, then G[X ] is the subgraph of G induced by X . For
a subset S ⊆ V (G), let NG(S) denote the vertices in G that is adjacent to at least
one vertex in S, and let NG[S] = NG(S) ∪ S. Throughout this paper, Z denotes the
set of integers, and for m ∈ Z with m > 0, Zm denote the cyclic group of order
m.

A list assignment of a graph G is a map L that assigns to each vertex v ∈ V (G)

a list L(v) of colors. A proper vertex coloring c of G is an L-coloring of G if ∀v ∈
V (G), c(v) ∈ L(v). For an integer k, a k-list assignment of G is a list assignment L
with |L(v)| = k for each vertex v ∈ V (G); G is k-choosable if G has an L-coloring
for every k-list assignment L of G. The choice number, χl(G), is the minimum k such
that G is k-choosable.

Throughout this paper, A denotes a group with identity 0. We will use addition
to denote the binary operation of A even when A is not Abelian. For a graph G, let
F(G, A) = { f : E(G) → A}. Fix an orientation of G. Given an f ∈ F(G, A), a
map c : V (G) → A such that c(x) − c(y) �= f (xy) for any (x, y) ∈ E(G) is an
(A, f )-coloring of G. If for any f ∈ F(G, A), G has an (A, f )-coloring, then G
is A-colorable. It is known [8] that whether G is A-colorable is independent of the
orientation of G. The group chromatic number of G, χg(G), is the minimum k such
that G is A-colorable for any group A of order at least k.

Given a group A and a graph G, let F(G, A) denote the set of all maps f : E(G) →
A. Fix an orientation of G and a list assignment L : V (G) → 2A. For an f ∈ F(G, A),
G is (A, L , f )-colorable if there exists a map c : V (G) → ∪v∈V (G)L(v) such that
c(v) ∈ L(v), ∀v ∈ V (G) and c(x) − c(y) �= f (xy) for any (x, y) ∈ E(G). If for
any f ∈ F(G, A), G has an (A, L , f )-coloring, then G is (A, L)-colorable. If G
is (A, L)-colorable for any group A of order at least k and for any k-list assignment
L : V (G) → 2A, then G is k-group choosable. The group choice number, denoted
by χgl(G), is the minimum k such that G is k-group choosable.

The concept of group choosability was first introduced in [13] and the basic prop-
erties of χgl were discussed in [3]. By definition,

|V (G)| ≥ χgl(G) ≥ max{χg(G), χl(G)}. (1)
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A graph H is a minor of a graph K if H is the contraction image of a subgraph of
K . A graph G is H -minor free if G does not have H as a minor. Hadwiger [5] posed
a well-known conjecture

Conjecture 1.1 (Hadwiger [5]) For all k ≥ 1, every k-chromatic graph has the com-
plete graph Kk as a minor.

Hadwiger’s conjecture holds for k ≤ 4 (see [4,5]), and for the case k ∈ {5, 6}, it is
equivalent to the Four-color Theorem [5,19]. More results on Hadwiger’s conjecture
may be found in [10,11,20]. In [17], Mirzakhani constructed examples to show that
there exists a planar graph G with χg(G) ≥ χl(G) ≥ 5. In [21], Thomasen proved that
for a planar graph G, χl(G) ≤ 5. These results are later extended to graphs without
K5 minors or K3,3-minors, as shown in [7,15,16]. In [11], Kawarabayashi and Mohar
proposed a relaxed version of Hadwiger’s conjecture.

Conjecture 1.2 (Kawarabayashi and Mohar [11]) There exists a constant c such that
every graph without Kk-minors is ck-choosable.

This motivates a similar conjecture for group choice number of graphs.

Conjecture 1.3 There exists a constant c such that every graph without Kk-minors is
ck-group choosable.

In [2], Chartrand, Geller and Hedetniemi proposed a conjecture, which was later
corrected and reformulated by Woodall [25], as follows.

Conjecture 1.4 (Chartrand, Geller and Hedetniemi [2], Woodall [25]) Let k ≥ 1 be
an integer, any graph G with χ(G) ≥ k has either a complete graph Kk or a complete
bipartite graph K� k+1

2 �,
 k+1
2 � as a minor.

Conjectures 1.1 and 1.4 might have motivated Woodall to propose a conjecture on
choice number to forbid a complete bipartite minor.

Conjecture 1.5 (Woodall [26]) Every graph with no Kr,s -minor is (r + s − 1)-choo-
sable.

Results evidencing Conjecture 1.5 can be found in the literature (see e.g. [9,26,27]).
Here, we present a group choosability version of it.

Conjecture 1.6 Every graph with no Kr,s -minor is (r + s − 1)-group choosable.

In this paper, we investigate the group choice number for planar graphs, K5-minor
free graphs and Kr,s-minor free graphs with smaller values of r and s. In the next sec-
tion, we prove that every simple planar graph is 5-group choosable. Then we extend
this to K5-minor free graphs and K3,3-minor free graphs in consequent sections. In the
last section, we prove that every K3,3-minor free graph with large girth is 3-choosable.
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2 Group Choosability of Planar Graphs

In [3], it is prove that

Lemma 2.1 Let G be a graph, then χgl(G) ≤ maxH⊆G{δ(H)} + 1.

Thus if G is a planar graph, then χgl(G) ≤ 6. In this section, we shall modified the
methods used in [21] and [16] to prove that every planar graph is 5-group choosable.
As in [1], a planar embedding of a planar graph G is referred as a plane graph, and
the unique unbounded face of G is referred as the outer face of G. If F is a face of a
plane graph G, then the edges of G incident with F induces a subgraph ∂(F) of G,
called the boundary of F . We shall use Out (G) to denote the outer face boundary
of G. A plane graph G is near triangulation if every face of G other than the outer
face is a triangle. Also as in [1], if a plane graph G has a cycle C , then the simple
curve C partitions the plane into two open sets, called the interior and exterior of
C , respectively. The vertices of G contained in the interior of C together with V (C)

induces the subgraph I nt (C), and the vertices of G contained in the exterior of C
together with V (C) induces the subgraph Ext (C). A cycle C of a plane graph G is
separating if both V (I nt (C)) �= V (C) and V (Ext (C)) �= V (C).

Theorem 2.2 Suppose that G is a near triangulation plane graph with outer face C
and that A is a group with |A| ≥ 5. Let e = v1v2 ∈ E(C), H = G[{v1, v2}], and
L : V (G) �→ 2A be a list assignment of G satisfying

|L(v)|
⎧
⎨

⎩

≥ 5 if v /∈ V (C),

= 1 if v ∈ {v1, v2}
≥ 3 if v ∈ V (C) − {v1, v2}

If f ∈ F(G, A) and if H is (A, L|V (H), f |E(H))-colorable. Then any (A, L|V (H),

f |E(H))-coloring of H can be extended to an (A, L , f )-coloring of G.

Proof Let n = |V (G)| and we argue by induction on n. By Lemma 2.1, the theorem
holds trivially for n ≤ 5, and so we assume that n > 5. If G has a cut vertex z, then
G has two connected edge-disjoint subgraphs G1 and G2, such that G = G1 ∪ G2
and V (G1) ∩ V (G2) = {z}. We may assume that v1, v2 ∈ V (G1). By induction, any
(A, L|V (H), f |E(H))-coloring c0 of H can be extended to an (A, L|V (G1), f |E(G1))-
coloring c1 of G1. Let z′ ∈ NG2(z) ∩ V (G2 − z) such that zz′ is oriented from z to
z′. Since |L(z′)| ≥ 3, L(z′) − {− f (zz′) + c1(z)} �= ∅ and so one can color z′ with a
color c1(z′) ∈ L(z′)−{− f (zz′)+c1(z)}. By induction again, c1 on G2[{z, z′}] can be
extended to an (A, L|V (G2), f |E(G2))-coloring c2 of G2. By definition, an (A, L , f )-
coloring c of G extending c0 can be obtained by combining c1 and c2. Hence we
may assume that κ(G) ≥ 2. Thus C is a cycle. We assume that C is so oriented that
C = v1v2 · · · vpv1 is a directed cycle.
Case 1 The cycle C has a chord.

Let viv j �= v1vp with 1 ≤ i ≤ j ≤ p and i ≤ p −2 denote this chord of C , and let
C1 = v1v2 · · · viv jv j+1 · · · vpv1 be the cycle contains v1, vp and the chord viv j and
C2 = vivi+1 · · · v jvi . By induction, any (A, L|V (H), f |E(H))-coloring c0 of H can be
extended to an (A, L|V (I nt (C1)), f |E(I nt (C1)))-coloring c1 of Ext (C1). By induction
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again, c1 on Ext (C2)[{vi , v j }] can be extended to an (A, L|V (I nt (C2)), f |E(I nt (C2)))-
coloring c2 of Ext (C2). By definition, an (A, L , f )-coloring c of G extending c0 can
be obtained by combining c1 and c2.
Case 2 The cycle C has no chords.

Let v1, u1, . . . , um, vp−1 denote the neighbors of vp in G. Let G ′ = G − vp,
L(v1) = {a}. Since C has no chord and since G is a near triangulation, we may assume
that C ′ = v1v2 · · · vp−1um · · · , u2u1v1 is a directed cycle, which is also the outer cycle
of G ′. We further assume that for each 1 ≤ i ≤ m, the edge vpui is directed from vp

to ui . Since |L(vp)| ≥ 3, there are two distinct colors x, y ∈ L(vp) − { f (vpv1) + a}.
For 1 ≤ i ≤ m, since C has no chords, |L(ui )| ≥ 5. Define

L ′(z) =
{

L(ui ) − {− f (vpui ) + x,− f (vpui ) + y} if z = ui , 1 ≤ i ≤ m
L(z) otherwise.

By induction, any (A, L|V (H), f |E(H))-coloring c0 of H can be extended to an
(A, L ′|V (G ′), f |E(G ′))-coloring c′ of G ′. Extend c′ to a coloring c on V (G) by coloring
vp with t ∈ {x, y} − {− f (vp−1vp) + c′(vp−1)}. By the choices of x and y, c is an
(A, L , f )-coloring of G extending c0. ��
Corollary 2.3 Let G be a planar graph. Then χgl(G) ≤ 5.

By (1), Theorem 2.2 extends Theorem 2.1 in [16]. In [14], Král, Prangrác and Voss
constructed a family of planar graphs G with χg(G) = 5. By (1), the upper bound in
Corollary 2.3 is sharp.

3 On Group Choosability Version of Hadwiger’s Conjecture

In this section, we investigate the group choosability version of Hadwiger’s conjecture,
and provide some evidence for Conjecture 1.3 by showing that it holds for k ≤ 5 with
c = 1. The cases when k = 1, 2 are trivial. It has been shown in [3] that χgl(G) ≤ 2 if
and only if G is a forest. As K3-minor free graphs are precisely the forests, Conjecture
1.3 holds for k = 3 with c = 1 as well. We shall show that the same holds when
k ≤ 5 and c = 1 in this section. The case when k = 4 follows immediately from the
following Theorem of Direc and Lemma 2.1.

Theorem 3.1 (Dirac [4]) If G is a simple K4-minor free graph, then δ(G) ≤ 2.

Corollary 3.2 If G is a simple K4-minor free graph, then χgl(G) ≤ 3.

Proof By Theorem 3.1, maxH⊆G{δ(H)} ≤ 2 and so the corollary follows from
Lemma 2.1. ��

For the case when k = 5, we need more tools. Let G1 and G2 be two graphs whose
intersection G1 ∩ G2 is a complete graph on k ≤ 3 vertices. The graph obtained from
the union G1 ∪ G2 by deleting the edges of G1 ∩ G2 is called the k-sum of G1 and
G2. The Wagner graph, is the graph depicted below (Fig. 1).

Theorem 3.3 (Wagner [24]) Let G be a connected K5-minor free graph. One of the
following must hold.
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Fig. 1 The Wagner graph

(i) G is a planar.
(ii) G is isomorphic to the Wagner graph.

(iii) G is isomorphic to K3,3.
(iv) For some i ∈ {1, 2, 3}, G is the i-sum of two graphs G1 and G2, such that both

G1 and G2 are proper minors of G.

Note that if G is isomorphic to K3,3 or to the Wagner graph, then maxH⊆G{δ(H)} =
3 < 5. Thus the next lemma can be routinely verified.

Lemma 3.4 Let G be a K3,3 or the Wagner graph, and H be a subgraph of G iso-
morphic to a K2, A be a group of order at least 5, and L : V (G) → 2A be a list
assignment of G with |L(v)| ≥ 5 for every v ∈ V (G). If f ∈ F(G, A), then any
(A, L|H , f |H )-coloring c0 of H can be extended to an (A, L , f )-coloring c of G.

Theorem 3.5 Let G be a K5-minor free graph, H be a subgraph of G isomorphic
to a K2 or a K3, A be a group of order at least 5, and L : V (G) → 2A be a list
assignment of G with |L(v)| ≥ 5 for every v ∈ V (G). If f ∈ F(G, A), then any
(A, L|H , f |H )-coloring c0 of H can be extended to an (A, L , f )-coloring c of G.

Proof We argue by contradiction and assume that

G is a counterexample with |V (G)| minimized. (2)

It follows from (2) that κ(G) ≥ 2. If G has two subgraphs G1 and G2 such that
G = G1 ∪ G2 and V (G1) ∩ V (G2) = {v1, v2}, then we may assume that the edge
e = v1v2 is in both G1 and G2 with f (e) ∈ A, and that H is a subgraph of G1. By (2),
c0 of H can be extended to an (A, L|V (G1), f |E(G1))-coloring c1 of G1; and c1|{v1,v2}
can be extended to an (A, L|V (G2), f |E(G2))-coloring c2 of G2. Thus an (A, L , f )-
coloring c of G can be obtained by combining c1 and c2, contrary to (2). This proves
Claim 1 below.
Claim 1 κ(G) ≥ 3.
Claim 2 G is non-planar.

By contradiction, we assume that G is planar. If H = K2 or if H = K3 is not a
separating cycle of G, then we may assume that G is a plane graph such that H is
either on the outer face (when H = K2 or H is the outer face (when H = K3 is not
separating). If H = K2, then the theorem follows from Theorem 2.2. If H is the outer
cycle, we denote V (H) = {u, v, w} may assume that all edges incident with w in G
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are directed from w under the orientation of G. Let G ′ = G −w and L ′ : V (G ′) → 2A

be defined as follows

L ′(x) =
{

L(x) − {− f (wx) + c(w)} if xw ∈ E(G)

L(x) otherwise

By Theorem 2.2, c0 on {u, v} can be extended to G ′. This coloring of G ′, together
with the original value of c0(w), is an extension of c0, contrary to (2).

Hence H = K3 is a separating cycle of G. By (2), c0 can be extended to an
(A, L|V (I nt (H)), f |E(I nt (H)))-coloring c1 and an (A, L|V (Ext (H)), f |E(Ext (H)))-col-
oring c2. It follows that an extension to an (A, L , f )-coloring of G is obtained by
combining c1 and c2, contrary to (2). This proves Claim 2.

By Claims 1 and 2, by Lemma 3.4 and by Theorem 3.3, we may assume that G is
the 3-sum of G1 and G2, such that each of G1 and G2 is a proper minor of G. Since
G is K5-minor free, G1 and G2 are also K5-minor free. Let C = G1 ∩ G2 be the
3-cycle. By the definition of 3-sums, G = G1 ∪ G2 − E(C). Hence we may assume
that H is a subgraph of G1, and that f is also defined on C arbitrarily. By (2), c0
can be extended to an (A, L|V (G1), f |E(G1))-coloring c1. By (2) again, c1|V (C) can be
extended to an (A, L|V (G2), f |E(G2))-coloring c2. It follows that an extension to an
(A, L , f )-coloring of G is obtained by combining c1 and c2, contrary to (2). ��

The following is the direct consequence of Theorem 3.5.

Corollary 3.6 Every K5-minor free graph is 5-group choosable.

4 On Group Choosability Version of Woodall’s Conjecture

In this section, we investigate the group choosability version of Woodall’s conjecture,
and prove that Conjecture 1.6 holds for some values of r and s.

Theorem 4.1 Let G be a Kr,s -minor free graph with r ≤ s. For r = 1, 2, G is
(r + s − 1)-group choosable.

Proof For r = 1, since the maximum degree of G is at most s − 1, by Lemma
2.1, χgl(G) ≤ s. Now let r = 2, S1 = {v1} ⊆ V (G), G1 = 〈NG [S1]〉 and
NG(v1) = {v2, v3, . . . , vt1−1, vt1}. Without loss of generality, assume v1v is a directed
edge from v1 to v for each v ∈ NG(v1). Suppose that A is a group with |A| ≥ s + 1,
L : V (G) → 2A with |L(v)| = s + 1 for each v ∈ V (G) and f ∈ F(G, A). Now let
a1 ∈ L(v1), L1 : V (G1 − S1) → 2A with L1(v) = L(v) − {− f (v1v) + a1} for each
v ∈ V (G1 − S1). Since G1 − S1 is K1,s-minor free, there is an (A, L1, f |G1−S1)-
coloring c1 for G1 − S1. By assigning a1 to v1, we extend c1 to an (A, L|G1 , f |G1)-
coloring c1 for G1. If G = G1 we are done otherwise let j1 be the greatest inte-
ger in [1, t1] such that NG(v j1) − V (G1) = {vt1+1, . . . , vt2} �= ∅. Again assume
v j1v is a directed edge for each v ∈ NG(v j1) − V (G1). Suppose S2 = S1 ∪ {v j1},
G2 = 〈NG [S2]〉. Now let L2 : V (G2 − S2) → 2A be a list assignment of G2
with L2(v) = L(v) − {− f (v j1v) + c1(v j1)} for each v ∈ NG(v j1) − V (G1)

and L2(v) = {c1(v)}, otherwise. Since G2 − S2 is K1,s-minor free, there is an
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(A, L2, f |G2−S2)-coloring c2 for G2 − S2. By assigning a1 and c1(v j1) to v1 and v j1 ,
respectively, we extend c2 to an (A, L|G2 , f |G2)-coloring c2 for G2. If G = G2 we are
done otherwise let j2 be the greatest integer in [1, t2] such that NG(v j2) − V (G2) =
{vt2+1, . . . , vt3} �= ∅, S3 = S2 ∪{v j2} and G3 = 〈NG [S3]〉 and repeat the same proce-
dure. It is clear that for some natural number d, there is an (A, L , f )-coloring cd for
Gd = G.

Theorem 4.2 (Hall [6]) Let G be a graph without K3,3 minors. One of the followings
must hold.

(i) G is a planar graph,
(ii) G ∼= K5,

(iii) G is a 1-sum or 2-sum of two graphs G1 and G2, such that both G1 and G2 are
proper minors of G.

Theorem 4.3 Let G be a K3,3-minor free graph, and let H be a subgraph of G such
that H ∼= K2. Let A be a group, L : V (G) → 2A be a 5-list assignment, and
f ∈ F(G, A) be a map. Then any (A, L|V (H), f |E(H))-coloring c0 of H can be
extended to an (A, L , f )-coloring c of G.

Proof We argue by contradiction and assume that

G is a counterexample with |V (G)| minimized. (3)

By (1) and by Theorem 2.2, the theorem holds if G is a K5 or is a planar graph. By
(3), G �∼= K5, G is not planar, and κ(G) ≥ 2. Thus by Theorem 4.2, G is a 2-sum of
G1 and G2 such that G1 and G2 are proper minors of G. We may assume that H is a
subgraph of G1. By the definition of a 2-sum, K = G1 ∩ G2 ∼= K2. We may assume
that f is also defined on E(K ) arbitrarily.

By (3), c0 can be extended to an (A, L|V (G1), f |E(G1))-coloring c1. By (3) again,
c1|V (K ) can also be extended to an (A, L|V (G2), f |E(G2))-coloring c2. Hence an
(A, L , f )-coloring c of G can be obtained by combining c1 and c2, contrary to (3). ��

A number of other upper bounds for χgl within some of the Kr,s-minor free graphs
are in fact consequences of the next theorem and Lemma 2.1.

Theorem 4.4 Let G be a graph. Each of the following holds.

(i) (Kawarabayashi and Toft [12]) If δ(G) ≥ 6, then G has a K3,4-minor.
(ii) (Kawarabayashi and Toft [12]) If δ(G) ≥ 8, then G has a K4,4-minor.

(iii) (Kawarabayashi [7]) Let G be a graph such that |V (G)| ≥ 2k+2 and |E(G)| ≥
2k(|V (G)| − k − 1) + 1, where k ≥ 2. Then G has a K4,k-minor.

Part (i) and (ii) of the next corollary follows from Theorem 4.4 and Lemma 2.1.

Corollary 4.5 Let G be a graph. Each of the following holds.

(i) If G is a K3,4-minor free, then χgl(G) ≤ 6.
(ii) If G is a K4,4-minor free, then χgl(G) ≤ 8.

(iii) If G is a K4,k-minor free, then χgl(G) ≤ 4k.
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Proof It suffices to prove Corollary 4.5(iii). Let G be a counterexample with
|V (G)| minimized. Then for some group A with |A| ≥ 4k, for a 4k-list assign-
ment L : V (G) → 2A and an f ∈ F(G, A), G does not have an (A, L , f )-
coloring. If G has a vertex v with dG(v) < 4k, then by the minimality of G,
G − v has an (A, L|V (G−v), f |E(G−v))-coloring c′. Since dG(v) < 4k and since
|L(v)| ≥ 4k, c′ can be extended to an (A, L , f )-coloring by coloring v with a color in
L(v)−c′(NG(v)). Thus we must have δ(G) ≥ 4k. It follows that |E(G)| ≥ 2k|V (G)|
and |V (G)| ≥ 4k + 1. By Theorem 4.4 (iii), G must have a K4,k-minor, contrary to
the assumption that G is K4,k-minor free. ��

5 K3,3-Minor Free Graphs with Girth At least 5

In this section, we shall modify the proof techniques of Thomassen in [22] and [23]
to prove that every planar graph with girth at least 5 is 3-group choosable, and extend
this result to K3,3-minor free graphs.

Theorem 5.1 Let G be a plane digraph with outer face boundary Out (G) and with
girth at least 5, A a group with |A| ≥ 3, and f ∈ F(G, A). Let P with V (P) =
{v1, v2, . . . , vq}, 1 ≤ q ≤ 6, be a path or cycle such that V (P) ⊆ V (Out (G)), and
c0 : V (P) → A be an (A, f |E(G[V (P)]))-coloring. Let L : V (G) → 2A be a list
assignment of G such that

(i) ∀v ∈ V (P), L(v) = {c0(v)};
(ii) ∀v ∈ V (G) − V (Out (G)), |L(v)| = 3;

(iii) ∀w ∈ V (Out (G)) − V (P), |L(v)| ≥ 2; and
(iv) any edge in E(G[{v ∈ V (G) : |L(v)| ≤ 2}]) is joining two vertices in P.

Then c0 can be extended to an (A, L , f )-coloring c of G.

Proof We argue by contradiction and assume that

G is a counterexample with |V (G)| minimized. (4)

Let c0 be an (A, L|V (P), f |E(P))-coloring. By (4), G is connected. Suppose that G
has a cut vertex. Then G has two subgraphs G1 and G2 such that G = G1 ∪ G2 and
V (G1) ∩ V (G2) = {u}. Assume that if u /∈ V (P) and that P ⊂ G1. By (4), c0 can
be extended to (A, L|V (G1), f |E(G1))-coloring c1 of G1 and (A, L|V (G2), f |E(G2))-
coloring c2 of G2. Thus an (A, L , f )-coloring c of G extending c0 is obtained by
combining c1 and c2, contrary to (4). Hence

κ(G) ≥ 2. (5)

By (5), Out (G) is a cycle C . Suppose that C has a chord e. Then C ∪ e has two
cycles C1 and C2 such that C1 ∩ C2 is the subgraph induced by the edge e = uv.
We may assume that v1 ∈ V (C1). Since G is a plane graph and since P is a path,
V (P) ∩ V (C1) will induce a path P ′ of C1 which may contain the chord e. Let Gi be
the plane subgraph of G with Out (Gi ) = Ci . By (4), the restriction of c0 on P ′ can
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be extended to an (A, L|V (G1), f |E(G1))-coloring c1, and by (4) again, the restriction
of c1 on C[V (C2) ∩ (V (P) ∪ {u, v})] can be extended to an (A, L|V (G2), f |E(G2))-
coloring c2. Thus an (A, L , f )-coloring c of G can be obtained by combining c1 and
c2, contrary to (4). Hence

C has no chords. (6)

In particular, C has no chords joining two vertices in V (P). Hence we may choose
the notation so that C = v1 · · · vq · · · vkv1 is a directed cycle with (vi , vi+1) ∈ E(C)

for each i (mod k). If G[V (P)] is a cycle, then by (6), P = C , and so q = k. Let
G ′ = G − vq . For each w ∈ NG(vq), we assume that (vq , w) ∈ E(G). Then update
L(w) for G ′ by deleting c0(vq) − f (vqw) from the original list L(w). Since the girth
of G is at least 5, the neighbors of vq will be an independent set in Out (G ′), and so
G ′ also satisfies the hypothesis of Theorem 5.1. By (4), c0|V (P)−vq can be extended
to an (A, L|V (G ′), f |E(G ′))-coloring c of G ′. Define c(vq) = c0(vq). Then c is in
deed an (A, L , f )-coloring of G extending c0, contrary to (4). Thus we may assume
that

P is a path and k ≥ q + 1. (7)

If k ≤ q+2, then we extend c0 by coloring vq+1, . . . , vk with c0(vq+1) ∈ L(vq+1)−
{c0(vq) − f (vq , vq+1)}, . . . , c0(vk) ∈ L(vk) − {c0(vk−1) − f (vk−1, vk), f (vkv1) +
c0(v1)}, respectively. Let G ′′ = G − {vq+1, . . . , vk} and update the list of the vertices
of G ′′ by, for each w ∈ (V (G) − V (C)) ∩ NG(v j ), (assuming (v j , w) ∈ E(G)),
resetting L(w) as L(w)−{c0(v j )− f (v jw)}, where q + 1 ≤ j ≤ k. Since girth of G
is at least 5, (V (G) − V (C)) ∩ NG(v j ) is an independent set. Thus by (4), c0 can be
extended first to an (A, L|V (G ′′). f |E(G ′′))-coloring c′. Hence an (A, L , f )-coloring c
of G is obtained by combining c′ and c0 on the vertices vq+1, . . . , vk , contrary to (4).
Thus, by the assumption of Theorem 5.1 (i), (iii) and (iv),

k ≥ q + 3, |L(v j )| ≥ 2, q + 1 ≤ j ≤ k, and |L(vq+1)| = |L(vk)| = 3. (8)

Claim 1 If q ≥ 3, then for any i with 2 ≤ i ≤ q − 1, d(vi ) ≥ 3. Moreover, for any vi

with q < i ≤ k, if dG(vi ) = 2, then |L(vi )| = 2.
By contradiction, we assume that dG(vi ) = 2 for some i with 2 ≤ i ≤ q − 1. Let

ei = (vi−1, vi+1) be a new edge oriented from vi−1 to vi+1 and let G ′ = G − vi + ei .
Define g ∈ F(G ′, A) by g(e) = f (e) if e ∈ E(G − vi ) and g(ei ) ∈ A − {c0(vi−1) −
c0(vi+1)}. As V (G ′) ⊆ V (G), by (4), G ′ has an (A, L|V (G ′), g)-coloring c′ extending
c0 on V (P) − vi . Obtain c from c′ by setting c(vi ) = c0(vi ). Then c is an (A, L , f )-
coloring extending c0, contrary to (4).

If for some i with q < i ≤ k, both dG(vi ) = 2 and |L(vi )| = 3, then let G ′′ =
G − vi + vi−1vi+1 such that the new edge is so oriented that (vi−1, vi+1) ∈ E(G ′′),
and let f ′ be obtained from f |E(G−vi ) by defining f ′(vi−1vi+1) arbitrarily. By (4),
c0 can be extended to an (A, L|V (G−vi ), f ′)-coloring c of G ′′. Since |L(vi )| ≥ 3,
choose c(vi ) ∈ L(vi ) − {c(vi−1) + f (vi−1, vi ), c(vi+1 + f (vi , vi+1)} to obtain an
(A, L , f )-coloring of G, extending c0.
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Claim 2 G does not have a cycle C ′ with |V (C ′)| ≤ 6 such that both V (I nt (C ′)) −
V (C ′) �= ∅ and V (Ext (C ′)) − V (C ′) �= ∅.

If such C ′ exists, then by (4), c0 can be extended first to an (A, L|V (Ext (C ′)),
f |E(Ext (C ′)))-coloring c′, and then c′|V (C ′) can be extended to an (A, L|V (I nt (C ′)),
f |E(I nt (C ′))-coloring c′′. Hence an (A, L , f )-coloring c of G extending c0 can be
obtained by combining both c′ and c′′.

Claim 3 G has no path of the form vi uv j , where u ∈ V (I nt (C) − V (C)) and
1 ≤ i < j ≤ k.

Suppose that G has a path P ′ = vi uv j , such that u ∈ V (I nt (C) − V (C)) and
1 ≤ i < j ≤ k. Let C1 = v1v2 · · · vi uv j · · · vkv1 and C2 = uvivi+1 · · · v j u denote
the two cycles in the subgraph induced by E(C)∪ E(P ′) such that |V (C1)∩ V (P)| ≥
|V (C2) ∩ V (P)|. Assume that among all such paths P ′, we choose one so that

|V (I nt (C2))| is minimized. (9)

By (9), u is not adjacent to any vt , i + 1 ≤ t ≤ j − 1. Since girth of G is at least 5,
i + 1 < j − 1. If |V (C)| ≤ 6, then by Claim 2, V (I nt (C2)) = V (C2). By (6) and (9),
every vertex in {vi+1, . . . , v j−1} must be of degree 2 in G. By Claim 1, i + 1 ≥ q. By
Theorem 5.1 (iv), at least one vertexv in {vi+1, . . . , v j−1} satisfies |L(v)| ≥ 3, contrary
to Claim 1. Hence |V (C)| ≥ 7. Let X = {x ∈ {vi+1, v j−1} − V (P) : |L(x)| ≤ 2}.

Suppose that X �= ∅. Assume that for each x ∈ X and for any w ∈ NG(x)− V (P),
(x, w) ∈ E(G). Extend c0 by defining c0(x) ∈ L(x) for each x ∈ X , and for each
w ∈ NG(x) − V (P), update L(w) as L(w) − {c0(x) − f (xw)}. If vi+1 ∈ X , then by
Theorem 5.1 (iv), both |L(vi )| ≥ 3 and |L(vi+2)| ≥ 3, whence we can update L(vi )

as L(vi )−{c0(x)+ f (vivi+1)} and L(vi+2) as L(vi+2)−{c0(x)− f (vi+1vi+2}. Sim-
ilarly, if v j−1 �= vi+1, then we update L(v j−2) as L(v j−2) − {c0(x) + f (v j−2v j−1)}
and L(v j ) as L(v j ) − {c0(x) − f (v j−1v j )}.

Now let G ′ = G − X , and let L ′ denote the updated list assignment of V (G ′). Since
the girth of G is at least 5, G ′ satisfies Theorem 5.1 (iv). By (4), the restriction of c0 to
V (P) ∩ V (G ′) can be extended to an (A, L|V (G ′), f |E(G ′))-coloring c. Together with
c0(vi+1) and c0(v j−1), c is indeed an (A, L , f )-coloring of G, extending c0, contrary
to (4).

Hence X = ∅. By (4), c0 can be extended to an (A, L|V (I nt (C1), f |E(I nt (C1)))-col-
oring c1. The restriction of c1 on (V (P) ∩ V (C2)) ∪ {vi , u, v j } can be extended to an
(A, L|V (I nt (C2), f |E(I nt (C2)))-coloring c2. Thus an (A, L , f )-coloring of G extending
c0 can be obtained by combining c1 and c2, contrary to (4).

With similar arguments, Claim 4 below can also be obtained.

Claim 4 G has no path of the form vi uu′v j , where u, u′ ∈ V (I nt (C) − V (C)) and
1 ≤ i < j ≤ k.

Suppose that G has a path P ′ =vi uu′v j , such that u, u′ ∈ V (I nt (C)−V (C)) and
1 ≤ i < j ≤ k. Let C1 = v1v2 · · · vi uv j · · · vkv1 and C2 = uvivi+1 · · · v j u denote
the two cycles in the subgraph induced by E(C)∪E(P ′) such that |V (C1)∩V (P)|≥
|V (C2)∩V (P)|. Assume that among all such paths P ′, we choose one so that (9) holds.

123



560 Graphs and Combinatorics (2014) 30:549–563

By Claim 3 and (9), u or u′ is not adjacent to any vt , i + 1 ≤ t ≤ j − 1. Since girth
of G is at least 5, i + 1 ≤ j − 1. By Claim 2 and (9), we may further assume that
|V (C2)| ≥ 7 and so i + 1 < j − 1.

Let X = {x ∈ {vi+1, v j−1} − V (P) : |L(x)| ≤ 2}. If X �= ∅, then extend c0 to
include c0(x) ∈ L(x) for each x ∈ X , update L(w) as in the proof of Claim 3, for
all w ∈ NG(vi+1) ∪ NG(v j−1) − V (P), to obtain an updated list assignment L ′ of
G ′ = G − X . Extend c0 by defining By (4), G ′ has an (A, L ′, f |E(G ′))-coloring c
extending c0. By including c0(x) for x ∈ X , we obtain an (A, L , f )-coloring c of G
extending c0, contrary to (4).

By (8), |L(vq+2)| ≥ 2. As in [23], to complete the proof, we consider the following
cases.

Case 1 |L(vq+2)| = 3.
Assume that for any w ∈ NG(vq) − V (P), (vq , w) ∈ E(G). By (6), NG(vq) ∩

V (C) = {vq−1, vq+1}. For each w ∈ NG(vq)−V (P), reset L(w) as L(w)−{c0(vq)−
f (vqw)}, and denote the updated list assignment as L ′. As girth of G is at least
5, these NG(vq) − V (C) is an independent set. By Claim 3, no edge in G joins a
w ∈ NG(vq) − V (C) to a vertex in V (C). Since |L(vq+2)| = 3, in G ′, vq+1 is
not adjacent to any vertex v with |L ′(v)| ≤ 2. Thus G ′ = G − vq satisfies the
hypothesis of Theorem 5.1 with G ′ replacing G. By (4), c0 can be extended to an
(A, L ′, f |E(G ′))-coloring c of G ′. Extending c by coloring vq with c0(vq), we obtain
an (A, L , f )-coloring extending c0, contrary to (4).

Case 2 k = q + 3.
By (8), |L(vk)| = 3. Assume that for any w ∈ NG(vk) − V (C), (vk, w) ∈ E(G),

and for any w′ ∈ NG(vq+2) − V (C), (vq+2, w
′) ∈ E(G). By (6), NG(vk) ∩ V (C) =

{vq+2, v1}, and NG(vq+2) ∩ V (C) = {vq+1, vk}. Extend c0 by setting c0(vq+2) ∈
L(vq+2) and co(vk) ∈ L(vk). For each w ∈ NG(vk) − V (C), reset L(w) as L(w) −
{c0(vk) − f (vkw)}; and for each w′ ∈ NG(vq+2) − V (C), reset L(w′) as L(w′) −
{c0(vq+2)− f (vq+2w

′)} and L(vq+1) as L(vq+1)−{c0(vq+2)+ f (vq+1vq+2)}. Denote
the updated list assignment as L ′. Let G ′ = G −{vq+2, vk}. As girth of G is at least 5,
and by Claims 3 and 4, (NG(vq+2)∪ NG(vk))− V (C −{vq+1, v1}) is an independent
set of G ′. Thus G ′ satisfies the hypothesis of Theorem 5.1. By (4), the restriction of c0
in G ′ can be extended to an (A, L ′, f |E(G ′))-coloring c of G ′. Together with c0(vq+2)

and c0(vk), we obtain an (A, L , f )-coloring extending c0, contrary to (4).

Case 3 k ≥ q + 4, |L(vq+2)| = 2 and |L(vq+4)| = 3.
By Theorem 5.1 (iv), |L(vq+3)| = 3. Assume that for any w ∈ NG(vq+1)− V (C),

(vq+1, w) ∈ E(G), and for any w′ ∈ NG(vq+2) − V (C), (vq+2, w
′) ∈ E(G). By (6),

NG(vq+1) ∩ V (C) = {vq , vq+2}, and NG(vq+2) ∩ V (C) = {vq+1, vq+3}. Extend c0
to V (P) ∪ {vq+1, vq+2} such that c0(vq+1) ∈ L(vq+1) − {c0(vq) − f (vqvq+1)} and
c0(vq+2) ∈ L(vq+2) − {c0(vq+1) − f (vq+1vq+2)}. For each w ∈ NG(vq+1) − V (C),
reset L(w) as L(w)−{c0(vq+1)− f (vq+1w)}; and for each w′ ∈ NG(vq+2)−V (C −
vq+3), reset L(w′) as L(w′)−{c0(vq+2)− f (vq+2w

′)}. Denote the updated list assign-
ment as L ′ and let G ′ = G −{vq+1, vq+2}. As girth of G is at least 5, and by Claims 3
and 4, (NG(vq+1)∪NG(vq+2))−V (C −{vq , vq+3}) is an independent set of G ′. Since
|L(vq+4)| = 3, vq+2 is not adjacent to any vertex v with |L ′(v)| ≤ 2. Thus G ′ satisfies
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the hypothesis of Theorem 5.1. By (4), the restriction of c0 in G ′ can be extended to
an (A, L ′, f |E(G ′))-coloring c of G ′. Together with c0(vq+1) and c0(vq+2), we obtain
an (A, L , f )-coloring extending c0, contrary to (4).

Case 4 |L(vq+2)| = |L(vq+4)| = 2.
Let L(vq+4) = {a1, a2}. By Theorem 5.1 (iv), |L(vq+3)| = 3, and so there exists

an a ∈ L(vq+3) such that a /∈ { f (vq+3vq+4)+ a1, f (vq+3vq+4)+ a2}. By (6), c0 can
be extended to c0 : V (G[V (P) ∪ {vq+1, vq+2, vq+3}]) → A such that

c0(vq+1) ∈ L(vq+1), c0(vq+2) ∈ L(vq+2), and c(vq+3) = a. (10)

Assume that for any w ∈ NG(vq+1) − V (C), (vq+1, w) ∈ E(G), for any w′ ∈
NG(vq+2) − V (C), (vq+2, w

′) ∈ E(G), and for any w′′ ∈ NG(vq+3) − V (C),
(vq+3, w

′′) ∈ E(G).
For each w ∈ NG(vq+1) − V (C), reset L(w) as L(w) − {c0(vq+1) − f (vq+1w)},

for each w′ ∈ NG(vq+2)−V (C), reset L(w′) as L(w′)−{c0(vq+2)− f (vq+2w
′)}, and

for each w′′ ∈ NG(vq+3)− V (C), reset L(w′′) as L(w′′)−{c0(vq+3)− f (vq+3w
′′)}.

Denote the updated list assignment as L ′ and let G ′ = G − {vq+1, vq+2, vq+3}. As
girth of G is at least 5, and by Claims 3 and 4, (NG(vq+1)∪ NG(vq+2))∪ NG(vq+3)−
V (C − {vq , vq+4}) is an independent set of G ′. Since L ′(vq+4) = L(vq+4), any edge
joining two vertices in {v ∈ V (G ′) : |L ′(v)| ≤ 2} are edges in P , and so G ′ satisfies
the hypothesis of Theorem 5.1. By (4), the restriction of c0 in G ′ can be extended to
an (A, L ′, f |E(G ′))-coloring c of G ′. Together with c0(vq+1), c0(vq+2), and c0(vq+3),
we obtain an (A, L , f )-coloring extending c0, contrary to (4). ��

The following corollary is the direct consequence of Theorem 5.1.

Corollary 5.2 Every planar graph with girth at least 5 is 3-group choosable.

In [18], the author conjectured if H ∈ {K3,3, K5}, then every H -minor free graph
with girth at least 5 is 3-group choosable. Applying Theorem 4.2 and Corollary 5.2,
we show that the conjecture holds for H = K3,3.

Theorem 5.3 Let G be a K3,3-minor free graph with girth at least 5, then χgl(G) ≤ 3.

Proof Suppose that A is an abelian group of order at least 3, G is a K3,3-minor
free graph with girth at least 5, L : V (G) → 2A is a 3-list assignment of G and
f ∈ F(G, A). We argue by induction on |V (G)| to prove the conclusion. By Theorem
5.1, Theorem 5.3 holds if G is planar. Hence by Theorem 4.2 and by the assumption
that G has girth at least 5, we may assume that G is connected and has two subgraphs
G1 and G2 such that

G = G1 ∪ G2, |V (G1) ∩ V (G2)| = i ≤ 2, G2 is planar with |G2| minimized. (11)

If V (G1) ∩ V (G2) = {v}, then by induction, G1 has an (A, L|G1 , f |E(G1))-coloring
c1. By Theorem 5.3 with P = {v}, c1|{v} can be extended to an (A, L|G2 , f |E(G2))-col-
oring c2. Hence, an (A, L , f )-coloring for G can be obtained by combining c1 and c2.

Thus we assume that G is 2-connected and V (G1) ∩ V (G2) = {u, v}. By induc-
tion, G1 has an (A, L|G1 , f |E(G1))-coloring c1. If |V (G2)| ≤ 5, as the girth of G is
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at least 5, every vertex in V (G2) − {u, v} must have degree 2, and so c1|{u,v} can be
extended to an (A, L|G2 , f |G2)-coloring c2 of G2. Hence an (A, L , f )-coloring of G
can be obtained by combining c1 and c2. Therefore, we assume that |V (G2)| ≥ 6.

If uv /∈ E(G), let G ′′ = G ∪ Q be a graph obtained from G by joining u and v

with a new path Q = uxyzv on 4-edges with x, y, z �∈ V (G). Let S ⊆ A be a subset
with |S| = 3, h ∈ F(G ′′, A) and L ′′ : V (G ′′) → 2A be given by

h(e) =
{

0 if e ∈ E(Q)

f (e) if e ∈ E(G)
and L ′′(v) =

{
S if v ∈ {x, y, z}
L(e) if v ∈ V (G)

By induction, G1 ∪ Q has an (A, L ′′|V (G1∪Q), h|E(G1∪Q))-coloring c1. Since G2 is
minimal, by Theorem 4.2, G2 + uv is planar and so G2 ∪ Q is planar. Now in G2 ∪ Q
there are at most four colored vertices. So we can apply Theorem 5.1 to G2 ∪ Q and
find an (A, L ′|G2∪Q, f ′|G2∪Q)-coloring, c2, for G2 ∪ Q. Combining c1 and c2, we
find an (A, L , f )-coloring for G. The proof for the case when uv ∈ E(G) is a similar
argument, and will be omitted. ��
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