On Group Choosability of Graphs, II

H. Chuang - H.-J. Lai • G. R. Omidi -
K. Wang • N. Zakeri

Received: 6 October 2011 / Revised: 30 January 2013 / Published online: 6 March 2013
© Springer Japan 2013

Abstract

Given a group A and a directed graph G, let $F(G, A)$ denote the set of all maps $f: E(G) \rightarrow A$. Fix an orientation of G and a list assignment $L: V(G) \mapsto 2^{A}$. For an $f \in F(G, A), G$ is (A, L, f)-colorable if there exists a map $c: V(G) \mapsto$ $\cup_{v \in V(G)} L(v)$ such that $c(v) \in L(v), \forall v \in V(G)$ and $c(x)-c(y) \neq f(x y)$ for every edge $e=x y$ directed from x to y. If for any $f \in F(G, A), G$ has an (A, L, f)-coloring, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at least k and for any k-list assignment $L: V(G) \rightarrow 2^{A}$, then G is k-group choosable. The group choice number, denoted by $\chi_{g l}(G)$, is the minimum k such that G is k group choosable. In this paper, we prove that every planar graph is 5-group choosable, and every planar graph with girth at least 5 is 3 -group choosable. We also consider extensions of these results to graphs that do not have a K_{5} or a $K_{3,3}$ as a minor, and discuss group choosability versions of Hadwiger's and Woodall's conjectures.

[^0]Keywords Colorings • Group colorings • List coloring • Group list colorings • Group choice number • Group connectivity

1 Introduction

In this paper, we consider finite and simple graphs. Undefined terms and notations can be found in [1]. In particular, for a simple connected graph G, and for any $v \in V(G)$, $d_{G}(v), \Delta(G), \kappa(G), c(G)$, and $\chi(G)$ denote the degree of vertex v, the maximum degree, the connectivity, the number of components of G and the chromatic number of G, respectively. When the graph G is understood from the context, we also use $d(v)$ for $d_{G}(v)$. If G is a directed graph, we again use $E(G)$ to denote the set of directed edges of G, and by $(u, v) \in E(G)$ we mean that a directed edge oriented from u to v is in G. A cycle of length n is referred as an n-cycle. If X is a vertex subset or an edge subset, then $G[X]$ is the subgraph of G induced by X. For a subset $S \subseteq V(G)$, let $N_{G}(S)$ denote the vertices in G that is adjacent to at least one vertex in S, and let $N_{G}[S]=N_{G}(S) \cup S$. Throughout this paper, \mathbb{Z} denotes the set of integers, and for $m \in \mathbb{Z}$ with $m>0, \mathbb{Z}_{m}$ denote the cyclic group of order m.

A list assignment of a graph G is a map L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of colors. A proper vertex coloring c of G is an L-coloring of G if $\forall v \in$ $V(G), c(v) \in L(v)$. For an integer k, a k-list assignment of G is a list assignment L with $|L(v)|=k$ for each vertex $v \in V(G) ; G$ is k-choosable if G has an L-coloring for every k-list assignment L of G. The choice number, $\chi_{l}(G)$, is the minimum k such that G is k-choosable.

Throughout this paper, A denotes a group with identity 0 . We will use addition to denote the binary operation of A even when A is not Abelian. For a graph G, let $F(G, A)=\{f: E(G) \rightarrow A\}$. Fix an orientation of G. Given an $f \in F(G, A)$, a map $c: V(G) \rightarrow A$ such that $c(x)-c(y) \neq f(x y)$ for any $(x, y) \in E(G)$ is an (A, f)-coloring of G. If for any $f \in F(G, A), G$ has an (A, f)-coloring, then G is A-colorable. It is known [8] that whether G is A-colorable is independent of the orientation of G. The group chromatic number of $\mathrm{G}, \chi_{g}(G)$, is the minimum k such that G is A-colorable for any group A of order at least k.

Given a group A and a graph G, let $F(G, A)$ denote the set of all maps $f: E(G) \rightarrow$ A. Fix an orientation of G and a list assignment $L: V(G) \rightarrow 2^{A}$. For an $f \in F(G, A)$, G is (A, L, f)-colorable if there exists a map $c: V(G) \rightarrow \cup_{v \in V(G)} L(v)$ such that $c(v) \in L(v), \forall v \in V(G)$ and $c(x)-c(y) \neq f(x y)$ for any $(x, y) \in E(G)$. If for any $f \in F(G, A), G$ has an (A, L, f)-coloring, then G is (A, L)-colorable. If G is (A, L)-colorable for any group A of order at least k and for any k-list assignment $L: V(G) \rightarrow 2^{A}$, then G is k-group choosable. The group choice number, denoted by $\chi_{g l}(G)$, is the minimum k such that G is k-group choosable.

The concept of group choosability was first introduced in [13] and the basic properties of $\chi_{g l}$ were discussed in [3]. By definition,

$$
\begin{equation*}
|V(G)| \geq \chi_{g l}(G) \geq \max \left\{\chi_{g}(G), \chi_{l}(G)\right\} \tag{1}
\end{equation*}
$$

A graph H is a minor of a graph K if H is the contraction image of a subgraph of K. A graph G is H-minor free if G does not have H as a minor. Hadwiger [5] posed a well-known conjecture

Conjecture 1.1 (Hadwiger [5]) For all $k \geq 1$, every k-chromatic graph has the complete graph K_{k} as a minor.

Hadwiger's conjecture holds for $k \leq 4$ (see [4,5]), and for the case $k \in\{5,6\}$, it is equivalent to the Four-color Theorem [5,19]. More results on Hadwiger's conjecture may be found in [10, 11,20]. In [17], Mirzakhani constructed examples to show that there exists a planar graph G with $\chi_{g}(G) \geq \chi_{l}(G) \geq 5$. In [21], Thomasen proved that for a planar graph $G, \chi_{l}(G) \leq 5$. These results are later extended to graphs without K_{5} minors or $K_{3,3}$-minors, as shown in [7,15,16]. In [11], Kawarabayashi and Mohar proposed a relaxed version of Hadwiger's conjecture.

Conjecture 1.2 (Kawarabayashi and Mohar [11]) There exists a constant c such that every graph without K_{k}-minors is ck-choosable.

This motivates a similar conjecture for group choice number of graphs.
Conjecture 1.3 There exists a constant c such that every graph without K_{k}-minors is ck-group choosable.

In [2], Chartrand, Geller and Hedetniemi proposed a conjecture, which was later corrected and reformulated by Woodall [25], as follows.

Conjecture 1.4 (Chartrand, Geller and Hedetniemi [2], Woodall [25]) Let $k \geq 1$ be an integer, any graph G with $\chi(G) \geq k$ has either a complete graph K_{k} or a complete bipartite graph $K_{\left\lfloor\frac{k+1}{2}\right\rfloor,\left\lceil\frac{k+1}{2}\right\rceil}$ as a minor.

Conjectures 1.1 and 1.4 might have motivated Woodall to propose a conjecture on choice number to forbid a complete bipartite minor.

Conjecture 1.5 (Woodall [26]) Every graph with no $K_{r, s}$-minor is $(r+s-1)$-choosable.

Results evidencing Conjecture 1.5 can be found in the literature (see e.g. [9, 26, 27]). Here, we present a group choosability version of it.

Conjecture 1.6 Every graph with no $K_{r, s}$-minor is $(r+s-1)$-group choosable.
In this paper, we investigate the group choice number for planar graphs, K_{5}-minor free graphs and $K_{r, s}$-minor free graphs with smaller values of r and s. In the next section, we prove that every simple planar graph is 5 -group choosable. Then we extend this to K_{5}-minor free graphs and $K_{3,3}$-minor free graphs in consequent sections. In the last section, we prove that every $K_{3,3}$-minor free graph with large girth is 3-choosable.

2 Group Choosability of Planar Graphs

In [3], it is prove that
Lemma 2.1 Let G be a graph, then $\chi_{g l}(G) \leq \max _{H \subseteq G}\{\delta(H)\}+1$.
Thus if G is a planar graph, then $\chi_{g l}(G) \leq 6$. In this section, we shall modified the methods used in [21] and [16] to prove that every planar graph is 5-group choosable. As in [1], a planar embedding of a planar graph G is referred as a plane graph, and the unique unbounded face of G is referred as the outer face of G. If F is a face of a plane graph G, then the edges of G incident with F induces a subgraph $\partial(F)$ of G, called the boundary of F. We shall use $\operatorname{Out}(G)$ to denote the outer face boundary of G. A plane graph G is near triangulation if every face of G other than the outer face is a triangle. Also as in [1], if a plane graph G has a cycle C, then the simple curve C partitions the plane into two open sets, called the interior and exterior of C, respectively. The vertices of G contained in the interior of C together with $V(C)$ induces the subgraph $\operatorname{Int}(C)$, and the vertices of G contained in the exterior of C together with $V(C)$ induces the subgraph $\operatorname{Ext}(C)$. A cycle C of a plane graph G is separating if both $V(\operatorname{Int}(C)) \neq V(C)$ and $V(\operatorname{Ext}(C)) \neq V(C)$.

Theorem 2.2 Suppose that G is a near triangulation plane graph with outer face C and that A is a group with $|A| \geq 5$. Let $e=v_{1} v_{2} \in E(C), H=G\left[\left\{v_{1}, v_{2}\right\}\right]$, and $L: V(G) \mapsto 2^{A}$ be a list assignment of G satisfying

$$
|L(v)|\left\{\begin{array}{l}
\geq 5 \text { if } v \notin V(C) \\
=1 \text { if } v \in\left\{v_{1}, v_{2}\right\} \\
\geq 3 \text { if } v \in V(C)-\left\{v_{1}, v_{2}\right\}
\end{array}\right.
$$

If $f \in F(G, A)$ and if H is $\left(A,\left.L\right|_{V(H)},\left.f\right|_{E(H)}\right)$-colorable. Then any $\left(A,\left.L\right|_{V(H)}\right.$, $\left.\left.f\right|_{E(H)}\right)$-coloring of H can be extended to an (A, L, f)-coloring of G.

Proof Let $n=|V(G)|$ and we argue by induction on n. By Lemma 2.1, the theorem holds trivially for $n \leq 5$, and so we assume that $n>5$. If G has a cut vertex z, then G has two connected edge-disjoint subgraphs G_{1} and G_{2}, such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{z\}$. We may assume that $v_{1}, v_{2} \in V\left(G_{1}\right)$. By induction, any $\left(A,\left.L\right|_{V(H)},\left.f\right|_{E(H)}\right)$-coloring c_{0} of H can be extended to an $\left(A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$ coloring c_{1} of G_{1}. Let $z^{\prime} \in N_{G_{2}}(z) \cap V\left(G_{2}-z\right)$ such that $z z^{\prime}$ is oriented from z to z^{\prime}. Since $\left|L\left(z^{\prime}\right)\right| \geq 3, L\left(z^{\prime}\right)-\left\{-f\left(z z^{\prime}\right)+c_{1}(z)\right\} \neq \emptyset$ and so one can color z^{\prime} with a color $c_{1}\left(z^{\prime}\right) \in L\left(z^{\prime}\right)-\left\{-f\left(z z^{\prime}\right)+c_{1}(z)\right\}$. By induction again, c_{1} on $G_{2}\left[\left\{z, z^{\prime}\right\}\right]$ can be extended to an $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$-coloring c_{2} of G_{2}. By definition, an (A, L, f) coloring c of G extending c_{0} can be obtained by combining c_{1} and c_{2}. Hence we may assume that $\kappa(G) \geq 2$. Thus C is a cycle. We assume that C is so oriented that $C=v_{1} v_{2} \cdots v_{p} v_{1}$ is a directed cycle.
Case 1 The cycle C has a chord.
Let $v_{i} v_{j} \neq v_{1} v_{p}$ with $1 \leq i \leq j \leq p$ and $i \leq p-2$ denote this chord of C, and let $C_{1}=v_{1} v_{2} \cdots v_{i} v_{j} v_{j+1} \cdots v_{p} v_{1}$ be the cycle contains v_{1}, v_{p} and the chord $v_{i} v_{j}$ and $C_{2}=v_{i} v_{i+1} \cdots v_{j} v_{i}$. By induction, any $\left(A,\left.L\right|_{V(H)},\left.f\right|_{E(H)}\right)$-coloring c_{0} of H can be extended to an $\left(A,\left.L\right|_{V\left(\operatorname{Int}\left(C_{1}\right)\right)},\left.f\right|_{E\left(\operatorname{Int}\left(C_{1}\right)\right)}\right)$-coloring c_{1} of $\operatorname{Ext}\left(C_{1}\right)$. By induction
again, c_{1} on $\operatorname{Ext}\left(C_{2}\right)\left[\left\{v_{i}, v_{j}\right\}\right]$ can be extended to an $\left(A,\left.L\right|_{V\left(\operatorname{Int}\left(C_{2}\right)\right)},\left.f\right|_{\left.E\left(\operatorname{Int}\left(C_{2}\right)\right)\right)-}\right.$ coloring c_{2} of $\operatorname{Ext}\left(C_{2}\right)$. By definition, an (A, L, f)-coloring c of G extending c_{0} can be obtained by combining c_{1} and c_{2}.
Case 2 The cycle C has no chords.
Let $v_{1}, u_{1}, \ldots, u_{m}, v_{p-1}$ denote the neighbors of v_{p} in G. Let $G^{\prime}=G-v_{p}$, $L\left(v_{1}\right)=\{a\}$. Since C has no chord and since G is a near triangulation, we may assume that $C^{\prime}=v_{1} v_{2} \cdots v_{p-1} u_{m} \cdots, u_{2} u_{1} v_{1}$ is a directed cycle, which is also the outer cycle of G^{\prime}. We further assume that for each $1 \leq i \leq m$, the edge $v_{p} u_{i}$ is directed from v_{p} to u_{i}. Since $\left|L\left(v_{p}\right)\right| \geq 3$, there are two distinct colors $x, y \in L\left(v_{p}\right)-\left\{f\left(v_{p} v_{1}\right)+a\right\}$. For $1 \leq i \leq m$, since C has no chords, $\left|L\left(u_{i}\right)\right| \geq 5$. Define

$$
L^{\prime}(z)= \begin{cases}L\left(u_{i}\right)-\left\{-f\left(v_{p} u_{i}\right)+x,-f\left(v_{p} u_{i}\right)+y\right\} & \text { if } z=u_{i}, 1 \leq i \leq m \\ L(z) & \text { otherwise } .\end{cases}
$$

By induction, any $\left(A,\left.L\right|_{V(H)},\left.f\right|_{E(H)}\right)$-coloring c_{0} of H can be extended to an $\left(A,\left.L^{\prime}\right|_{V\left(G^{\prime}\right)},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c^{\prime} of G^{\prime}. Extend c^{\prime} to a coloring c on $V(G)$ by coloring v_{p} with $t \in\{x, y\}-\left\{-f\left(v_{p-1} v_{p}\right)+c^{\prime}\left(v_{p-1}\right)\right\}$. By the choices of x and y, c is an (A, L, f)-coloring of G extending c_{0}.

Corollary 2.3 Let G be a planar graph. Then $\chi_{g l}(G) \leq 5$.
By (1), Theorem 2.2 extends Theorem 2.1 in [16]. In [14], Král, Prangrác and Voss constructed a family of planar graphs G with $\chi_{g}(G)=5$. By (1), the upper bound in Corollary 2.3 is sharp.

3 On Group Choosability Version of Hadwiger's Conjecture

In this section, we investigate the group choosability version of Hadwiger's conjecture, and provide some evidence for Conjecture 1.3 by showing that it holds for $k \leq 5$ with $c=1$. The cases when $k=1,2$ are trivial. It has been shown in [3] that $\chi_{g l}(G) \leq 2$ if and only if G is a forest. As K_{3}-minor free graphs are precisely the forests, Conjecture 1.3 holds for $k=3$ with $c=1$ as well. We shall show that the same holds when $k \leq 5$ and $c=1$ in this section. The case when $k=4$ follows immediately from the following Theorem of Direc and Lemma 2.1.

Theorem 3.1 (Dirac [4]) If G is a simple K_{4}-minor free graph, then $\delta(G) \leq 2$.
Corollary 3.2 If G is a simple K_{4}-minor free graph, then $\chi_{g l}(G) \leq 3$.
Proof By Theorem 3.1, $\max _{H \subseteq G}\{\delta(H)\} \leq 2$ and so the corollary follows from Lemma 2.1.

For the case when $k=5$, we need more tools. Let G_{1} and G_{2} be two graphs whose intersection $G_{1} \cap G_{2}$ is a complete graph on $k \leq 3$ vertices. The graph obtained from the union $G_{1} \cup G_{2}$ by deleting the edges of $G_{1} \cap G_{2}$ is called the k-sum of G_{1} and G_{2}. The Wagner graph, is the graph depicted below (Fig. 1).

Theorem 3.3 (Wagner [24]) Let G be a connected K_{5}-minor free graph. One of the following must hold.

Fig. 1 The Wagner graph
(i) G is a planar.
(ii) G is isomorphic to the Wagner graph.
(iii) G is isomorphic to $K_{3,3}$.
(iv) For some $i \in\{1,2,3\}, G$ is the i-sum of two graphs G_{1} and G_{2}, such that both G_{1} and G_{2} are proper minors of G.

Note that if G is isomorphic to $K_{3,3}$ or to the Wagner graph, then $\max _{H \subseteq G}\{\delta(H)\}=$ $3<5$. Thus the next lemma can be routinely verified.

Lemma 3.4 Let G be a $K_{3,3}$ or the Wagner graph, and H be a subgraph of G isomorphic to a K_{2}, A be a group of order at least 5, and $L: V(G) \rightarrow 2^{A}$ be a list assignment of G with $|L(v)| \geq 5$ for every $v \in V(G)$. If $f \in F(G, A)$, then any $\left(A,\left.L\right|_{H},\left.f\right|_{H}\right)$-coloring c_{0} of H can be extended to an (A, L, f)-coloring c of G.

Theorem 3.5 Let G be a K_{5}-minor free graph, H be a subgraph of G isomorphic to a K_{2} or a K_{3}, A be a group of order at least 5 , and $L: V(G) \rightarrow 2^{A}$ be a list assignment of G with $|L(v)| \geq 5$ for every $v \in V(G)$. If $f \in F(G, A)$, then any $\left(A,\left.L\right|_{H},\left.f\right|_{H}\right)$-coloring c_{0} of H can be extended to an (A, L, f)-coloring c of G.

Proof We argue by contradiction and assume that
G is a counterexample with $|V(G)|$ minimized.
It follows from (2) that $\kappa(G) \geq 2$. If G has two subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{v_{1}, v_{2}\right\}$, then we may assume that the edge $e=v_{1} v_{2}$ is in both G_{1} and G_{2} with $f(e) \in A$, and that H is a subgraph of G_{1}. By (2), c_{0} of H can be extended to an $\left(A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1} of G_{1}; and $\left.c_{1}\right|_{\left\{v_{1}, v_{2}\right\}}$ can be extended to an $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$-coloring c_{2} of G_{2}. Thus an (A, L, f) coloring c of G can be obtained by combining c_{1} and c_{2}, contrary to (2). This proves Claim 1 below.
Claim $1 \kappa(G) \geq 3$.
Claim $2 G$ is non-planar.
By contradiction, we assume that G is planar. If $H=K_{2}$ or if $H=K_{3}$ is not a separating cycle of G, then we may assume that G is a plane graph such that H is either on the outer face (when $H=K_{2}$ or H is the outer face (when $H=K_{3}$ is not separating). If $H=K_{2}$, then the theorem follows from Theorem 2.2. If H is the outer cycle, we denote $V(H)=\{u, v, w\}$ may assume that all edges incident with w in G
are directed from w under the orientation of G. Let $G^{\prime}=G-w$ and $L^{\prime}: V\left(G^{\prime}\right) \rightarrow 2^{A}$ be defined as follows

$$
L^{\prime}(x)= \begin{cases}L(x)-\{-f(w x)+c(w)\} & \text { if } x w \in E(G) \\ L(x) & \text { otherwise }\end{cases}
$$

By Theorem 2.2, c_{0} on $\{u, v\}$ can be extended to G^{\prime}. This coloring of G^{\prime}, together with the original value of $c_{0}(w)$, is an extension of c_{0}, contrary to (2).

Hence $H=K_{3}$ is a separating cycle of G. By (2), c_{0} can be extended to an $\left(A,\left.L\right|_{V(\operatorname{Int}(H))},\left.f\right|_{E(\operatorname{Int}(H))}\right)$-coloring c_{1} and an $\left(A,\left.L\right|_{V(E x t(H))},\left.f\right|_{E(E x t(H)))}\right)$-coloring c_{2}. It follows that an extension to an (A, L, f)-coloring of G is obtained by combining c_{1} and c_{2}, contrary to (2). This proves Claim 2.

By Claims 1 and 2, by Lemma 3.4 and by Theorem 3.3, we may assume that G is the 3 -sum of G_{1} and G_{2}, such that each of G_{1} and G_{2} is a proper minor of G. Since G is K_{5}-minor free, G_{1} and G_{2} are also K_{5}-minor free. Let $C=G_{1} \cap G_{2}$ be the 3-cycle. By the definition of 3-sums, $G=G_{1} \cup G_{2}-E(C)$. Hence we may assume that H is a subgraph of G_{1}, and that f is also defined on C arbitrarily. By (2), c_{0} can be extended to an $\left(A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1}. By (2) again, $\left.c_{1}\right|_{V(C)}$ can be extended to an $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$-coloring c_{2}. It follows that an extension to an (A, L, f)-coloring of G is obtained by combining c_{1} and c_{2}, contrary to (2).

The following is the direct consequence of Theorem 3.5.
Corollary 3.6 Every K_{5}-minor free graph is 5-group choosable.

4 On Group Choosability Version of Woodall's Conjecture

In this section, we investigate the group choosability version of Woodall's conjecture, and prove that Conjecture 1.6 holds for some values of r and s.

Theorem 4.1 Let G be a $K_{r, s}$-minor free graph with $r \leq s$. For $r=1,2, G$ is ($r+s-1$)-group choosable.

Proof For $r=1$, since the maximum degree of G is at most $s-1$, by Lemma 2.1, $\chi_{g l}(G) \leq s$. Now let $r=2, S_{1}=\left\{v_{1}\right\} \subseteq V(G), G_{1}=\left\langle N_{G}\left[S_{1}\right]\right\rangle$ and $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{t_{1}-1}, v_{t_{1}}\right\}$. Without loss of generality, assume $v_{1} v$ is a directed edge from v_{1} to v for each $v \in N_{G}\left(v_{1}\right)$. Suppose that A is a group with $|A| \geq s+1$, $L: V(G) \rightarrow 2^{A}$ with $|L(v)|=s+1$ for each $v \in V(G)$ and $f \in F(G, A)$. Now let $a_{1} \in L\left(v_{1}\right), L_{1}: V\left(G_{1}-S_{1}\right) \rightarrow 2^{A}$ with $L_{1}(v)=L(v)-\left\{-f\left(v_{1} v\right)+a_{1}\right\}$ for each $v \in V\left(G_{1}-S_{1}\right)$. Since $G_{1}-S_{1}$ is $K_{1, s}$-minor free, there is an $\left(A, L_{1},\left.f\right|_{G_{1}-S_{1}}\right)$ coloring \bar{c}_{1} for $G_{1}-S_{1}$. By assigning a_{1} to v_{1}, we extend \bar{c}_{1} to an $\left(A,\left.L\right|_{G_{1}},\left.f\right|_{G_{1}}\right)$ coloring c_{1} for G_{1}. If $G=G_{1}$ we are done otherwise let j_{1} be the greatest integer in $\left[1, t_{1}\right]$ such that $N_{G}\left(v_{j_{1}}\right)-V\left(G_{1}\right)=\left\{v_{t_{1}+1}, \ldots, v_{t_{2}}\right\} \neq \emptyset$. Again assume $v_{j_{1}} v$ is a directed edge for each $v \in N_{G}\left(v_{j_{1}}\right)-V\left(G_{1}\right)$. Suppose $S_{2}=S_{1} \cup\left\{v_{j_{1}}\right\}$, $G_{2}=\left\langle N_{G}\left[S_{2}\right]\right\rangle$. Now let $L_{2}: V\left(G_{2}-S_{2}\right) \rightarrow 2^{A}$ be a list assignment of G_{2} with $L_{2}(v)=L(v)-\left\{-f\left(v_{j_{1}} v\right)+c_{1}\left(v_{j_{1}}\right)\right\}$ for each $v \in N_{G}\left(v_{j_{1}}\right)-V\left(G_{1}\right)$ and $L_{2}(v)=\left\{c_{1}(v)\right\}$, otherwise. Since $G_{2}-S_{2}$ is $K_{1, s}$-minor free, there is an
($A, L_{2},\left.f\right|_{G_{2}-S_{2}}$)-coloring \bar{c}_{2} for $G_{2}-S_{2}$. By assigning a_{1} and $c_{1}\left(v_{j_{1}}\right)$ to v_{1} and $v_{j_{1}}$, respectively, we extend \bar{c}_{2} to an $\left(A,\left.L\right|_{G_{2}},\left.f\right|_{G_{2}}\right)$-coloring c_{2} for G_{2}. If $G=G_{2}$ we are done otherwise let j_{2} be the greatest integer in $\left[1, t_{2}\right]$ such that $N_{G}\left(v_{j_{2}}\right)-V\left(G_{2}\right)=$ $\left\{v_{t_{2}+1}, \ldots, v_{t_{3}}\right\} \neq \emptyset, S_{3}=S_{2} \cup\left\{v_{j_{2}}\right\}$ and $G_{3}=\left\langle N_{G}\left[S_{3}\right]\right\rangle$ and repeat the same procedure. It is clear that for some natural number d, there is an (A, L, f)-coloring c_{d} for $G_{d}=G$.

Theorem 4.2 (Hall [6]) Let G be a graph without $K_{3,3}$ minors. One of the followings must hold.
(i) G is a planar graph,
(ii) $G \cong K_{5}$,
(iii) G is a 1 -sum or 2 -sum of two graphs G_{1} and G_{2}, such that both G_{1} and G_{2} are proper minors of G.
 that $H \cong K_{2}$. Let A be a group, $L: V(G) \rightarrow 2^{A}$ be a 5 -list assignment, and $f \in F(G, A)$ be a map. Then any $\left(A,\left.L\right|_{V(H)},\left.f\right|_{E(H)}\right)$-coloring c_{0} of H can be extended to an (A, L, f)-coloring c of G.

Proof We argue by contradiction and assume that

$$
\begin{equation*}
G \text { is a counterexample with }|V(G)| \text { minimized. } \tag{3}
\end{equation*}
$$

By (1) and by Theorem 2.2, the theorem holds if G is a K_{5} or is a planar graph. By (3), $G \not \not K_{5}, G$ is not planar, and $\kappa(G) \geq 2$. Thus by Theorem $4.2, G$ is a 2 -sum of G_{1} and G_{2} such that G_{1} and G_{2} are proper minors of G. We may assume that H is a subgraph of G_{1}. By the definition of a 2 -sum, $K=G_{1} \cap G_{2} \cong K_{2}$. We may assume that f is also defined on $E(K)$ arbitrarily.

By (3), c_{0} can be extended to an ($\left.A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1}. By (3) again, $\left.c_{1}\right|_{V(K)}$ can also be extended to an $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$-coloring c_{2}. Hence an (A, L, f)-coloring c of G can be obtained by combining c_{1} and c_{2}, contrary to (3).

A number of other upper bounds for $\chi_{g l}$ within some of the $K_{r, s}$-minor free graphs are in fact consequences of the next theorem and Lemma 2.1.

Theorem 4.4 Let G be a graph. Each of the following holds.
(i) (Kawarabayashi and Toft [12]) If $\delta(G) \geq 6$, then G has a $K_{3,4}$-minor.
(ii) (Kawarabayashi and Toft [12]) If $\delta(G) \geq 8$, then G has a $K_{4,4-m i n o r .}$
(iii) (Kawarabayashi [7]) Let G be a graph such that $|V(G)| \geq 2 k+2$ and $|E(G)| \geq$ $2 k(|V(G)|-k-1)+1$, where $k \geq 2$. Then G has a $K_{4, k}$-minor.

Part (i) and (ii) of the next corollary follows from Theorem 4.4 and Lemma 2.1.
Corollary 4.5 Let G be a graph. Each of the following holds.
(i) If G is a $K_{3,4}$-minor free, then $\chi_{g l}(G) \leq 6$.

(iii) If G is a $K_{4, k}$-minor free, then $\chi_{g l}(G) \leq 4 k$.

Proof It suffices to prove Corollary 4.5 (iii). Let G be a counterexample with $|V(G)|$ minimized. Then for some group A with $|A| \geq 4 k$, for a $4 k$-list assignment $L: V(G) \rightarrow 2^{A}$ and an $f \in F(G, A), G$ does not have an (A, L, f) coloring. If G has a vertex v with $d_{G}(v)<4 k$, then by the minimality of G, $G-v$ has an $\left(A,\left.L\right|_{V(G-v)},\left.f\right|_{E(G-v)}\right)$-coloring c^{\prime}. Since $d_{G}(v)<4 k$ and since $|L(v)| \geq 4 k, c^{\prime}$ can be extended to an (A, L, f)-coloring by coloring v with a color in $L(v)-c^{\prime}\left(N_{G}(v)\right)$. Thus we must have $\delta(G) \geq 4 k$. It follows that $|E(G)| \geq 2 k|V(G)|$ and $|V(G)| \geq 4 k+1$. By Theorem 4.4 (iii), G must have a $K_{4, k}$-minor, contrary to the assumption that G is $K_{4, k}$-minor free.

5 K3,3-Minor Free Graphs with Girth At least 5

In this section, we shall modify the proof techniques of Thomassen in [22] and [23] to prove that every planar graph with girth at least 5 is 3-group choosable, and extend this result to $K_{3,3}$-minor free graphs.

Theorem 5.1 Let G be a plane digraph with outer face boundary $\operatorname{Out}(G)$ and with girth at least 5, A a group with $|A| \geq 3$, and $f \in F(G, A)$. Let P with $V(P)=$ $\left\{v_{1}, v_{2}, \ldots, v_{q}\right\}, 1 \leq q \leq 6$, be a path or cycle such that $V(P) \subseteq V(\operatorname{Out}(G))$, and $c_{0}: V(P) \rightarrow A$ be an $\left(A,\left.f\right|_{E(G[V(P)])}\right)$-coloring. Let $L: V(G) \rightarrow 2^{A}$ be a list assignment of G such that
(i) $\forall v \in V(P), L(v)=\left\{c_{0}(v)\right\}$;
(ii) $\forall v \in V(G)-V(O u t(G)),|L(v)|=3$;
(iii) $\forall w \in V(\operatorname{Out}(G))-V(P),|L(v)| \geq 2$; and
(iv) any edge in $E(G[\{v \in V(G):|L(v)| \leq 2\}])$ is joining two vertices in P.

Then c_{0} can be extended to an (A, L, f)-coloring c of G.
Proof We argue by contradiction and assume that
G is a counterexample with $|V(G)|$ minimized.
Let c_{0} be an $\left(A,\left.L\right|_{V(P)},\left.f\right|_{E(P)}\right)$-coloring. By (4), G is connected. Suppose that G has a cut vertex. Then G has two subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u\}$. Assume that if $u \notin V(P)$ and that $P \subset G_{1}$. By (4), c_{0} can be extended to $\left(A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1} of G_{1} and $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$ coloring c_{2} of G_{2}. Thus an (A, L, f)-coloring c of G extending c_{0} is obtained by combining c_{1} and c_{2}, contrary to (4). Hence

$$
\begin{equation*}
\kappa(G) \geq 2 \tag{5}
\end{equation*}
$$

By (5), $\operatorname{Out}(G)$ is a cycle C. Suppose that C has a chord e. Then $C \cup e$ has two cycles C_{1} and C_{2} such that $C_{1} \cap C_{2}$ is the subgraph induced by the edge $e=u v$. We may assume that $v_{1} \in V\left(C_{1}\right)$. Since G is a plane graph and since P is a path, $V(P) \cap V\left(C_{1}\right)$ will induce a path P^{\prime} of C_{1} which may contain the chord e. Let G_{i} be the plane subgraph of G with $\operatorname{Out}\left(G_{i}\right)=C_{i}$. By (4), the restriction of c_{0} on P^{\prime} can
be extended to an $\left(A,\left.L\right|_{V\left(G_{1}\right)},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1}, and by (4) again, the restriction of c_{1} on $C\left[V\left(C_{2}\right) \cap(V(P) \cup\{u, v\})\right]$ can be extended to an $\left(A,\left.L\right|_{V\left(G_{2}\right)},\left.f\right|_{E\left(G_{2}\right)}\right)$ coloring c_{2}. Thus an (A, L, f)-coloring c of G can be obtained by combining c_{1} and c_{2}, contrary to (4). Hence

$$
\begin{equation*}
C \text { has no chords. } \tag{6}
\end{equation*}
$$

In particular, C has no chords joining two vertices in $V(P)$. Hence we may choose the notation so that $C=v_{1} \cdots v_{q} \cdots v_{k} v_{1}$ is a directed cycle with $\left(v_{i}, v_{i+1}\right) \in E(C)$ for each $i(\bmod k)$. If $G[V(P)]$ is a cycle, then by (6), $P=C$, and so $q=k$. Let $G^{\prime}=G-v_{q}$. For each $w \in N_{G}\left(v_{q}\right)$, we assume that $\left(v_{q}, w\right) \in E(G)$. Then update $L(w)$ for G^{\prime} by deleting $c_{0}\left(v_{q}\right)-f\left(v_{q} w\right)$ from the original list $L(w)$. Since the girth of G is at least 5 , the neighbors of v_{q} will be an independent set in $\operatorname{Out}\left(G^{\prime}\right)$, and so G^{\prime} also satisfies the hypothesis of Theorem 5.1. By (4), $\left.c_{0}\right|_{V(P)-v_{q}}$ can be extended to an $\left(A,\left.L\right|_{V\left(G^{\prime}\right)},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c of G^{\prime}. Define $c\left(v_{q}\right)=c_{0}\left(v_{q}\right)$. Then c is in deed an (A, L, f)-coloring of G extending c_{0}, contrary to (4). Thus we may assume that

$$
\begin{equation*}
P \text { is a path and } k \geq q+1 . \tag{7}
\end{equation*}
$$

If $k \leq q+2$, then we extend c_{0} by coloring v_{q+1}, \ldots, v_{k} with $c_{0}\left(v_{q+1}\right) \in L\left(v_{q+1}\right)-$ $\left\{c_{0}\left(v_{q}\right)-f\left(v_{q}, v_{q+1}\right)\right\}, \ldots, c_{0}\left(v_{k}\right) \in L\left(v_{k}\right)-\left\{c_{0}\left(v_{k-1}\right)-f\left(v_{k-1}, v_{k}\right), f\left(v_{k} v_{1}\right)+\right.$ $\left.c_{0}\left(v_{1}\right)\right\}$, respectively. Let $G^{\prime \prime}=G-\left\{v_{q+1}, \ldots, v_{k}\right\}$ and update the list of the vertices of $G^{\prime \prime}$ by, for each $w \in(V(G)-V(C)) \cap N_{G}\left(v_{j}\right)$, (assuming $\left(v_{j}, w\right) \in E(G)$), resetting $L(w)$ as $L(w)-\left\{c_{0}\left(v_{j}\right)-f\left(v_{j} w\right)\right\}$, where $q+1 \leq j \leq k$. Since girth of G is at least $5,(V(G)-V(C)) \cap N_{G}\left(v_{j}\right)$ is an independent set. Thus by (4), c_{0} can be extended first to an $\left(A,\left.\left.L\right|_{V\left(G^{\prime \prime}\right)} \cdot f\right|_{E\left(G^{\prime \prime}\right)}\right)$-coloring c^{\prime}. Hence an (A, L, f)-coloring c of G is obtained by combining c^{\prime} and c_{0} on the vertices v_{q+1}, \ldots, v_{k}, contrary to (4). Thus, by the assumption of Theorem 5.1 (i), (iii) and (iv),

$$
\begin{equation*}
k \geq q+3,\left|L\left(v_{j}\right)\right| \geq 2, q+1 \leq j \leq k, \text { and }\left|L\left(v_{q+1}\right)\right|=\left|L\left(v_{k}\right)\right|=3 \tag{8}
\end{equation*}
$$

Claim 1 If $q \geq 3$, then for any i with $2 \leq i \leq q-1, d\left(v_{i}\right) \geq 3$. Moreover, for any v_{i} with $q<i \leq k$, if $d_{G}\left(v_{i}\right)=2$, then $\left|L\left(v_{i}\right)\right|=2$.

By contradiction, we assume that $d_{G}\left(v_{i}\right)=2$ for some i with $2 \leq i \leq q-1$. Let $e_{i}=\left(v_{i-1}, v_{i+1}\right)$ be a new edge oriented from v_{i-1} to v_{i+1} and let $G^{\prime}=G-v_{i}+e_{i}$. Define $g \in F\left(G^{\prime}, A\right)$ by $g(e)=f(e)$ if $e \in E\left(G-v_{i}\right)$ and $g\left(e_{i}\right) \in A-\left\{c_{0}\left(v_{i-1}\right)-\right.$ $\left.c_{0}\left(v_{i+1}\right)\right\}$. As $V\left(G^{\prime}\right) \subseteq V(G)$, by (4), G^{\prime} has an $\left(A,\left.L\right|_{V\left(G^{\prime}\right)}, g\right)$-coloring c^{\prime} extending c_{0} on $V(P)-v_{i}$. Obtain c from c^{\prime} by setting $c\left(v_{i}\right)=c_{0}\left(v_{i}\right)$. Then c is an (A, L, f) coloring extending c_{0}, contrary to (4).

If for some i with $q<i \leq k$, both $d_{G}\left(v_{i}\right)=2$ and $\left|L\left(v_{i}\right)\right|=3$, then let $G^{\prime \prime}=$ $G-v_{i}+v_{i-1} v_{i+1}$ such that the new edge is so oriented that $\left(v_{i-1}, v_{i+1}\right) \in E\left(G^{\prime \prime}\right)$, and let f^{\prime} be obtained from $\left.f\right|_{E\left(G-v_{i}\right)}$ by defining $f^{\prime}\left(v_{i-1} v_{i+1}\right)$ arbitrarily. By (4), c_{0} can be extended to an $\left(A,\left.L\right|_{V\left(G-v_{i}\right)}, f^{\prime}\right)$-coloring c of $G^{\prime \prime}$. Since $\left|L\left(v_{i}\right)\right| \geq 3$, choose $c\left(v_{i}\right) \in L\left(v_{i}\right)-\left\{c\left(v_{i-1}\right)+f\left(v_{i-1}, v_{i}\right), c\left(v_{i+1}+f\left(v_{i}, v_{i+1}\right)\right\}\right.$ to obtain an (A, L, f)-coloring of G, extending c_{0}.

Claim $2 G$ does not have a cycle C^{\prime} with $\left|V\left(C^{\prime}\right)\right| \leq 6$ such that both $V\left(\operatorname{Int}\left(C^{\prime}\right)\right)-$ $V\left(C^{\prime}\right) \neq \emptyset$ and $V\left(\operatorname{Ext}\left(C^{\prime}\right)\right)-V\left(C^{\prime}\right) \neq \emptyset$.

If such C^{\prime} exists, then by (4), c_{0} can be extended first to an $\left(A,\left.L\right|_{V\left(E x t\left(C^{\prime}\right)\right)}\right.$, $\left.\left.f\right|_{E\left(E x t\left(C^{\prime}\right)\right)}\right)$-coloring c^{\prime}, and then $\left.c^{\prime}\right|_{V\left(C^{\prime}\right)}$ can be extended to an $\left(A,\left.L\right|_{V\left(\operatorname{Int}\left(C^{\prime}\right)\right)}\right.$, $\left.\left.f\right|_{E\left(\operatorname{Int}\left(C^{\prime}\right)\right.}\right)$-coloring $c^{\prime \prime}$. Hence an (A, L, f)-coloring c of G extending c_{0} can be obtained by combining both c^{\prime} and $c^{\prime \prime}$.

Claim $3 G$ has no path of the form $v_{i} u v_{j}$, where $u \in V(\operatorname{Int}(C)-V(C))$ and $1 \leq i<j \leq k$.

Suppose that G has a path $P^{\prime}=v_{i} u v_{j}$, such that $u \in V(\operatorname{Int}(C)-V(C))$ and $1 \leq i<j \leq k$. Let $C_{1}=v_{1} v_{2} \cdots v_{i} u v_{j} \cdots v_{k} v_{1}$ and $C_{2}=u v_{i} v_{i+1} \cdots v_{j} u$ denote the two cycles in the subgraph induced by $E(C) \cup E\left(P^{\prime}\right)$ such that $\left|V\left(C_{1}\right) \cap V(P)\right| \geq$ $\left|V\left(C_{2}\right) \cap V(P)\right|$. Assume that among all such paths P^{\prime}, we choose one so that

$$
\begin{equation*}
\left|V\left(\operatorname{Int}\left(C_{2}\right)\right)\right| \text { is minimized. } \tag{9}
\end{equation*}
$$

By (9), u is not adjacent to any $v_{t}, i+1 \leq t \leq j-1$. Since girth of G is at least 5, $i+1<j-1$. If $|V(C)| \leq 6$, then by Claim 2, $V\left(\operatorname{Int}\left(C_{2}\right)\right)=V\left(C_{2}\right)$. By (6) and (9), every vertex in $\left\{v_{i+1}, \ldots, v_{j-1}\right\}$ must be of degree 2 in G. By Claim $1, i+1 \geq q$. By Theorem 5.1 (iv), at least one vertex v in $\left\{v_{i+1}, \ldots, v_{j-1}\right\}$ satisfies $|L(v)| \geq 3$, contrary to Claim 1. Hence $|V(C)| \geq 7$. Let $X=\left\{x \in\left\{v_{i+1}, v_{j-1}\right\}-V(P):|L(x)| \leq 2\right\}$.

Suppose that $X \neq \emptyset$. Assume that for each $x \in X$ and for any $w \in N_{G}(x)-V(P)$, $(x, w) \in E(G)$. Extend c_{0} by defining $c_{0}(x) \in L(x)$ for each $x \in X$, and for each $w \in N_{G}(x)-V(P)$, update $L(w)$ as $L(w)-\left\{c_{0}(x)-f(x w)\right\}$. If $v_{i+1} \in X$, then by Theorem 5.1 (iv), both $\left|L\left(v_{i}\right)\right| \geq 3$ and $\left|L\left(v_{i+2}\right)\right| \geq 3$, whence we can update $L\left(v_{i}\right)$ as $L\left(v_{i}\right)-\left\{c_{0}(x)+f\left(v_{i} v_{i+1}\right)\right\}$ and $L\left(v_{i+2}\right)$ as $L\left(v_{i+2}\right)-\left\{c_{0}(x)-f\left(v_{i+1} v_{i+2}\right\}\right.$. Similarly, if $v_{j-1} \neq v_{i+1}$, then we update $L\left(v_{j-2}\right)$ as $L\left(v_{j-2}\right)-\left\{c_{0}(x)+f\left(v_{j-2} v_{j-1}\right)\right\}$ and $L\left(v_{j}\right)$ as $L\left(v_{j}\right)-\left\{c_{0}(x)-f\left(v_{j-1} v_{j}\right)\right\}$.

Now let $G^{\prime}=G-X$, and let L^{\prime} denote the updated list assignment of $V\left(G^{\prime}\right)$. Since the girth of G is at least 5, G^{\prime} satisfies Theorem 5.1 (iv). By (4), the restriction of c_{0} to $V(P) \cap V\left(G^{\prime}\right)$ can be extended to an $\left(A,\left.L\right|_{V\left(G^{\prime}\right)},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c. Together with $c_{0}\left(v_{i+1}\right)$ and $c_{0}\left(v_{j-1}\right), c$ is indeed an (A, L, f)-coloring of G, extending c_{0}, contrary to (4).

Hence $X=\emptyset$. By (4), c_{0} can be extended to an $\left(A,\left.L\right|_{V\left(\operatorname{Int}\left(C_{1}\right)\right.},\left.f\right|_{\left.E\left(\operatorname{Int}\left(C_{1}\right)\right)\right) \text {-col- }}\right.$ oring c_{1}. The restriction of c_{1} on $\left(V(P) \cap V\left(C_{2}\right)\right) \cup\left\{v_{i}, u, v_{j}\right\}$ can be extended to an $\left(A,\left.L\right|_{V\left(\operatorname{Int}\left(C_{2}\right)\right.},\left.f\right|_{E\left(\operatorname{Int}\left(C_{2}\right)\right)}\right)$-coloring c_{2}. Thus an (A, L, f)-coloring of G extending c_{0} can be obtained by combining c_{1} and c_{2}, contrary to (4).

With similar arguments, Claim 4 below can also be obtained.
Claim $4 G$ has no path of the form $v_{i} u u^{\prime} v_{j}$, where $u, u^{\prime} \in V(\operatorname{Int}(C)-V(C))$ and $1 \leq i<j \leq k$.

Suppose that G has a path $P^{\prime}=v_{i} u u^{\prime} v_{j}$, such that $u, u^{\prime} \in V(\operatorname{Int}(C)-V(C))$ and $1 \leq i<j \leq k$. Let $C_{1}=v_{1} v_{2} \cdots v_{i} u v_{j} \cdots v_{k} v_{1}$ and $C_{2}=u v_{i} v_{i+1} \cdots v_{j} u$ denote the two cycles in the subgraph induced by $E(C) \cup E\left(P^{\prime}\right)$ such that $\left|V\left(C_{1}\right) \cap V(P)\right| \geq$ $\left|V\left(C_{2}\right) \cap V(P)\right|$. Assume that among all such paths P^{\prime}, we choose one so that (9) holds.

By Claim 3 and (9), u or u^{\prime} is not adjacent to any $v_{t}, i+1 \leq t \leq j-1$. Since girth of G is at least $5, i+1 \leq j-1$. By Claim 2 and (9), we may further assume that $\left|V\left(C_{2}\right)\right| \geq 7$ and so $i+1<j-1$.

Let $X=\left\{x \in\left\{v_{i+1}, v_{j-1}\right\}-V(P):|L(x)| \leq 2\right\}$. If $X \neq \emptyset$, then extend c_{0} to include $c_{0}(x) \in L(x)$ for each $x \in X$, update $L(w)$ as in the proof of Claim 3, for all $w \in N_{G}\left(v_{i+1}\right) \cup N_{G}\left(v_{j-1}\right)-V(P)$, to obtain an updated list assignment L^{\prime} of $G^{\prime}=G-X$. Extend c_{0} by defining By (4), G^{\prime} has an $\left(A, L^{\prime},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c extending c_{0}. By including $c_{0}(x)$ for $x \in X$, we obtain an (A, L, f)-coloring c of G extending c_{0}, contrary to (4).

By (8), $\left|L\left(v_{q+2}\right)\right| \geq 2$. As in [23], to complete the proof, we consider the following cases.

Case $1\left|L\left(v_{q+2}\right)\right|=3$.
Assume that for any $w \in N_{G}\left(v_{q}\right)-V(P),\left(v_{q}, w\right) \in E(G)$. By (6), $N_{G}\left(v_{q}\right) \cap$ $V(C)=\left\{v_{q-1}, v_{q+1}\right\}$. For each $w \in N_{G}\left(v_{q}\right)-V(P)$, reset $L(w)$ as $L(w)-\left\{c_{0}\left(v_{q}\right)-\right.$ $\left.f\left(v_{q} w\right)\right\}$, and denote the updated list assignment as L^{\prime}. As girth of G is at least 5, these $N_{G}\left(v_{q}\right)-V(C)$ is an independent set. By Claim 3, no edge in G joins a $w \in N_{G}\left(v_{q}\right)-V(C)$ to a vertex in $V(C)$. Since $\left|L\left(v_{q+2}\right)\right|=3$, in G^{\prime}, v_{q+1} is not adjacent to any vertex v with $\left|L^{\prime}(v)\right| \leq 2$. Thus $G^{\prime}=G-v_{q}$ satisfies the hypothesis of Theorem 5.1 with G^{\prime} replacing G. By (4), c_{0} can be extended to an ($\left.A, L^{\prime},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c of G^{\prime}. Extending c by coloring v_{q} with $c_{0}\left(v_{q}\right)$, we obtain an (A, L, f)-coloring extending c_{0}, contrary to (4).
Case $2 k=q+3$.
By (8), $\left|L\left(v_{k}\right)\right|=3$. Assume that for any $w \in N_{G}\left(v_{k}\right)-V(C),\left(v_{k}, w\right) \in E(G)$, and for any $w^{\prime} \in N_{G}\left(v_{q+2}\right)-V(C),\left(v_{q+2}, w^{\prime}\right) \in E(G)$. By (6), $N_{G}\left(v_{k}\right) \cap V(C)=$ $\left\{v_{q+2}, v_{1}\right\}$, and $N_{G}\left(v_{q+2}\right) \cap V(C)=\left\{v_{q+1}, v_{k}\right\}$. Extend c_{0} by setting $c_{0}\left(v_{q+2}\right) \in$ $L\left(v_{q+2}\right)$ and $c_{o}\left(v_{k}\right) \in L\left(v_{k}\right)$. For each $w \in N_{G}\left(v_{k}\right)-V(C)$, reset $L(w)$ as $L(w)-$ $\left\{c_{0}\left(v_{k}\right)-f\left(v_{k} w\right)\right\}$; and for each $w^{\prime} \in N_{G}\left(v_{q+2}\right)-V(C)$, reset $L\left(w^{\prime}\right)$ as $L\left(w^{\prime}\right)-$ $\left\{c_{0}\left(v_{q+2}\right)-f\left(v_{q+2} w^{\prime}\right)\right\}$ and $L\left(v_{q+1}\right)$ as $L\left(v_{q+1}\right)-\left\{c_{0}\left(v_{q+2}\right)+f\left(v_{q+1} v_{q+2}\right)\right\}$. Denote the updated list assignment as L^{\prime}. Let $G^{\prime}=G-\left\{v_{q+2}, v_{k}\right\}$. As girth of G is at least 5, and by Claims 3 and $4,\left(N_{G}\left(v_{q+2}\right) \cup N_{G}\left(v_{k}\right)\right)-V\left(C-\left\{v_{q+1}, v_{1}\right\}\right)$ is an independent set of G^{\prime}. Thus G^{\prime} satisfies the hypothesis of Theorem 5.1. By (4), the restriction of c_{0} in G^{\prime} can be extended to an $\left(A, L^{\prime},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c of G^{\prime}. Together with $c_{0}\left(v_{q+2}\right)$ and $c_{0}\left(v_{k}\right)$, we obtain an (A, L, f)-coloring extending c_{0}, contrary to (4).

Case $3 k \geq q+4,\left|L\left(v_{q+2}\right)\right|=2$ and $\left|L\left(v_{q+4}\right)\right|=3$.
By Theorem 5.1 (iv), $\left|L\left(v_{q+3}\right)\right|=3$. Assume that for any $w \in N_{G}\left(v_{q+1}\right)-V(C)$, $\left(v_{q+1}, w\right) \in E(G)$, and for any $w^{\prime} \in N_{G}\left(v_{q+2}\right)-V(C),\left(v_{q+2}, w^{\prime}\right) \in E(G)$. By (6), $N_{G}\left(v_{q+1}\right) \cap V(C)=\left\{v_{q}, v_{q+2}\right\}$, and $N_{G}\left(v_{q+2}\right) \cap V(C)=\left\{v_{q+1}, v_{q+3}\right\}$. Extend c_{0} to $V(P) \cup\left\{v_{q+1}, v_{q+2}\right\}$ such that $c_{0}\left(v_{q+1}\right) \in L\left(v_{q+1}\right)-\left\{c_{0}\left(v_{q}\right)-f\left(v_{q} v_{q+1}\right)\right\}$ and $c_{0}\left(v_{q+2}\right) \in L\left(v_{q+2}\right)-\left\{c_{0}\left(v_{q+1}\right)-f\left(v_{q+1} v_{q+2}\right)\right\}$. For each $w \in N_{G}\left(v_{q+1}\right)-V(C)$, reset $L(w)$ as $L(w)-\left\{c_{0}\left(v_{q+1}\right)-f\left(v_{q+1} w\right)\right\}$; and for each $w^{\prime} \in N_{G}\left(v_{q+2}\right)-V(C-$ $\left.v_{q+3}\right)$, reset $L\left(w^{\prime}\right)$ as $L\left(w^{\prime}\right)-\left\{c_{0}\left(v_{q+2}\right)-f\left(v_{q+2} w^{\prime}\right)\right\}$. Denote the updated list assignment as L^{\prime} and let $G^{\prime}=G-\left\{v_{q+1}, v_{q+2}\right\}$. As girth of G is at least 5 , and by Claims 3 and $4,\left(N_{G}\left(v_{q+1}\right) \cup N_{G}\left(v_{q+2}\right)\right)-V\left(C-\left\{v_{q}, v_{q+3}\right\}\right)$ is an independent set of G^{\prime}. Since $\left|L\left(v_{q+4}\right)\right|=3, v_{q+2}$ is not adjacent to any vertex v with $\left|L^{\prime}(v)\right| \leq 2$. Thus G^{\prime} satisfies
the hypothesis of Theorem 5.1. By (4), the restriction of c_{0} in G^{\prime} can be extended to an $\left(A, L^{\prime},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c of G^{\prime}. Together with $c_{0}\left(v_{q+1}\right)$ and $c_{0}\left(v_{q+2}\right)$, we obtain an (A, L, f)-coloring extending c_{0}, contrary to (4).

Case $4\left|L\left(v_{q+2}\right)\right|=\left|L\left(v_{q+4}\right)\right|=2$.
Let $L\left(v_{q+4}\right)=\left\{a_{1}, a_{2}\right\}$. By Theorem 5.1 (iv), $\left|L\left(v_{q+3}\right)\right|=3$, and so there exists an $a \in L\left(v_{q+3}\right)$ such that $a \notin\left\{f\left(v_{q+3} v_{q+4}\right)+a_{1}, f\left(v_{q+3} v_{q+4}\right)+a_{2}\right\}$. By (6), c_{0} can be extended to $c_{0}: V\left(G\left[V(P) \cup\left\{v_{q+1}, v_{q+2}, v_{q+3}\right\}\right]\right) \rightarrow A$ such that

$$
\begin{equation*}
c_{0}\left(v_{q+1}\right) \in L\left(v_{q+1}\right), c_{0}\left(v_{q+2}\right) \in L\left(v_{q+2}\right), \text { and } c\left(v_{q+3}\right)=a \tag{10}
\end{equation*}
$$

Assume that for any $w \in N_{G}\left(v_{q+1}\right)-V(C),\left(v_{q+1}, w\right) \in E(G)$, for any $w^{\prime} \in$ $N_{G}\left(v_{q+2}\right)-V(C),\left(v_{q+2}, w^{\prime}\right) \in E(G)$, and for any $w^{\prime \prime} \in N_{G}\left(v_{q+3}\right)-V(C)$, $\left(v_{q+3}, w^{\prime \prime}\right) \in E(G)$.

For each $w \in N_{G}\left(v_{q+1}\right)-V(C)$, reset $L(w)$ as $L(w)-\left\{c_{0}\left(v_{q+1}\right)-f\left(v_{q+1} w\right)\right\}$, for each $w^{\prime} \in N_{G}\left(v_{q+2}\right)-V(C)$, reset $L\left(w^{\prime}\right)$ as $L\left(w^{\prime}\right)-\left\{c_{0}\left(v_{q+2}\right)-f\left(v_{q+2} w^{\prime}\right)\right\}$, and for each $w^{\prime \prime} \in N_{G}\left(v_{q+3}\right)-V(C)$, reset $L\left(w^{\prime \prime}\right)$ as $L\left(w^{\prime \prime}\right)-\left\{c_{0}\left(v_{q+3}\right)-f\left(v_{q+3} w^{\prime \prime}\right)\right\}$. Denote the updated list assignment as L^{\prime} and let $G^{\prime}=G-\left\{v_{q+1}, v_{q+2}, v_{q+3}\right\}$. As girth of G is at least 5, and by Claims 3 and $4,\left(N_{G}\left(v_{q+1}\right) \cup N_{G}\left(v_{q+2}\right)\right) \cup N_{G}\left(v_{q+3}\right)-$ $V\left(C-\left\{v_{q}, v_{q+4}\right\}\right)$ is an independent set of G^{\prime}. Since $L^{\prime}\left(v_{q+4}\right)=L\left(v_{q+4}\right)$, any edge joining two vertices in $\left\{v \in V\left(G^{\prime}\right):\left|L^{\prime}(v)\right| \leq 2\right\}$ are edges in P, and so G^{\prime} satisfies the hypothesis of Theorem 5.1. By (4), the restriction of c_{0} in G^{\prime} can be extended to an $\left(A, L^{\prime},\left.f\right|_{E\left(G^{\prime}\right)}\right)$-coloring c of G^{\prime}. Together with $c_{0}\left(v_{q+1}\right), c_{0}\left(v_{q+2}\right)$, and $c_{0}\left(v_{q+3}\right)$, we obtain an (A, L, f)-coloring extending c_{0}, contrary to (4).

The following corollary is the direct consequence of Theorem 5.1.
Corollary 5.2 Every planar graph with girth at least 5 is 3-group choosable.
In [18], the author conjectured if $H \in\left\{K_{3,3}, K_{5}\right\}$, then every H-minor free graph with girth at least 5 is 3 -group choosable. Applying Theorem 4.2 and Corollary 5.2, we show that the conjecture holds for $H=K_{3,3}$.

Theorem 5.3 Let G be a $K_{3,3}$-minor free graph with girth at least 5 , then $\chi_{g l}(G) \leq 3$.
Proof Suppose that A is an abelian group of order at least $3, G$ is a $K_{3,3}$-minor free graph with girth at least $5, L: V(G) \rightarrow 2^{A}$ is a 3-list assignment of G and $f \in F(G, A)$. We argue by induction on $|V(G)|$ to prove the conclusion. By Theorem 5.1, Theorem 5.3 holds if G is planar. Hence by Theorem 4.2 and by the assumption that G has girth at least 5, we may assume that G is connected and has two subgraphs G_{1} and G_{2} such that
$G=G_{1} \cup G_{2},\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=i \leq 2, G_{2}$ is planar with $\left|G_{2}\right|$ minimized.
If $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$, then by induction, G_{1} has an $\left(A,\left.L\right|_{G_{1}},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1}. By Theorem 5.3 with $P=\{v\},\left.c_{1}\right|_{\{v\}}$ can be extended to an $\left(A,\left.L\right|_{G_{2}},\left.f\right|_{E\left(G_{2}\right)}\right)$-coloring c_{2}. Hence, an (A, L, f)-coloring for G can be obtained by combining c_{1} and c_{2}.

Thus we assume that G is 2-connected and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u, v\}$. By induction, G_{1} has an $\left(A,\left.L\right|_{G_{1}},\left.f\right|_{E\left(G_{1}\right)}\right)$-coloring c_{1}. If $\left|V\left(G_{2}\right)\right| \leq 5$, as the girth of G is
at least 5, every vertex in $V\left(G_{2}\right)-\{u, v\}$ must have degree 2 , and so $\left.c_{1}\right|_{\{u, v\}}$ can be extended to an $\left(A,\left.L\right|_{G_{2}},\left.f\right|_{G_{2}}\right)$-coloring c_{2} of G_{2}. Hence an (A, L, f)-coloring of G can be obtained by combining c_{1} and c_{2}. Therefore, we assume that $\left|V\left(G_{2}\right)\right| \geq 6$.

If $u v \notin E(G)$, let $G^{\prime \prime}=G \cup Q$ be a graph obtained from G by joining u and v with a new path $Q=u x y z v$ on 4-edges with $x, y, z \notin V(G)$. Let $S \subseteq A$ be a subset with $|S|=3, h \in F\left(G^{\prime \prime}, A\right)$ and $L^{\prime \prime}: V\left(G^{\prime \prime}\right) \rightarrow 2^{A}$ be given by

$$
h(e)=\left\{\begin{array}{ll}
0 & \text { if } e \in E(Q) \\
f(e) & \text { if } e \in E(G)
\end{array} \text { and } L^{\prime \prime}(v)= \begin{cases}S & \text { if } v \in\{x, y, z\} \\
L(e) & \text { if } v \in V(G)\end{cases}\right.
$$

By induction, $G_{1} \cup Q$ has an $\left(A,\left.L^{\prime \prime}\right|_{V\left(G_{1} \cup Q\right)},\left.h\right|_{E\left(G_{1} \cup Q\right)}\right)$-coloring c_{1}. Since G_{2} is minimal, by Theorem 4.2, $G_{2}+u v$ is planar and so $G_{2} \cup Q$ is planar. Now in $G_{2} \cup Q$ there are at most four colored vertices. So we can apply Theorem 5.1 to $G_{2} \cup Q$ and find an $\left(A,\left.L^{\prime}\right|_{G_{2} \cup Q},\left.f^{\prime}\right|_{G_{2} \cup Q}\right)$-coloring, c_{2}, for $G_{2} \cup Q$. Combining c_{1} and c_{2}, we find an (A, L, f)-coloring for G. The proof for the case when $u v \in E(G)$ is a similar argument, and will be omitted.

Acknowledgments The research of the third author is partially carried out in the IPM-Isfahan Branch and in part supported by a grant from IPM (No. 91050416).

References

1. Bondy, J.A., Murty, U. S. R.: Graph theory. Springer, New York (2008)
2. Chartrand, G., Geller, D. P., Hedetniemi, T.: Graphs with forbidden subgraphs. J. Comb. Theory 10, 1241 (1971)
3. Chuang, H., Lai, H.-J., Omidi, G.R., Zakeri, N.: On group choosability of graphs I, Ars Combinatoria (accepted)
4. Dirac, G.A.: A property of 4-chromatic graphs and some remarks on critical graphs. J. Lond. Math. Soc. 27, 85-92 (1952)
5. Hadwiger, H.: Ber eine Klassifikation der Streckenkomplexe, Vierteljahrsschr. Naturforsch. Ges. Zrich. 88, 133-142 (1943)
6. Hall, D. W.: A note on primitive skew curves. Bull. Am. Math. Soc 49, 932-937 (1943)
7. Hea, W., Miaoa, W., Shenb, Y.: Another proof of the 5-choosability of K_{5}-minor-free graphs. Discret. Math. 308, 4024-4026 (2008)
8. Jaeger, F., Linial, N., Payan, C., Tarsi, M.: Group connectivity of graphs-a non-homogeneouse analogue of nowhere-zero flow properties. J. Comb. Theory Ser. B, 56, 165-182 (1992)
9. Kawarabayashi, K.: List coloring graphs without $K_{4, k}$-minors. Discret. Appl. Math 157, 659662 (2009)
10. Kawarabayashi, K.: Minors in 7-chromatic graphs (priprint)
11. Kawarabayashi, K., Mohar, B.: A relaxed Hadwiger's conjecture for list-colorings. J. Comb. Theory Ser. B 97, 647-651 (2007)
12. Kawarabayashi, K., Toft, B.: Any 7-chromatic graph has K_{7} or $K_{4,4}$ as a minor. Combinatorica 25, 327353 (2005)
13. Král, D., Nejedlý, P.: Group coloring and list group coloring are Π_{2}^{P}-complete. In: Lecture notes in computer science, vol. 3153, pp. 274-287. Springer-Verlag (2004)
14. Král, D., Prangrác, O., Voss, H.: A note on group colorings. J. Graph Theory 50, 123-129 (2005)
15. Lai, H.-J. Li, X.: On group chromatic number of graphs. Graphs Comb. 214, 69-474 (2005)
16. Lai, H.-J., Zhang, X.: Group colorability of graphs without K_{5}-minors. Graphs Comb. 18, 147154 (2002)
17. Mirzakhani, M.: A small non-4-choosable planar graph. Bull. Inst. Comb. Appl. 17, 15-18 (1996)
18. Omidi, G.R.: A note on group choosability of graphs with girth at least 4. Graphs Comb. 27, 269273 (2011)
19. Robertson, N., Seymour, P.D., Thomas, R.: Hadwiger's conjecture for K_{6}-free graphs. Combinatorica 13, 279-361 (1993)
20. S̆krekovski, R.: Choosability of K_{5}-minor free graphs. Discret. Math. 190, 223-226 (1998)
21. Thomassen, C.: Every planar graph is 5-choosable. J. Comb. Theory Ser. B 62, 180-1821 (1994)
22. Thomassen, C.: 3-list-coloring planar graphs of girth 5. J. Comb. Theory Ser. B 64, 101-107 (1997)
23. Thomassen, C.: A short list color proof of Gr zsch's theorem. J. Comb. Theory Ser. B 88, 189-192 (2003)
24. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 570-590 (1937)
25. Woodall, D.R.: Improper colourings of graphs. In: Nelson, R., Wilson, R.J. (eds.) Graph colouring. Pitman research notes 218, pp. 45-63. Longman (1990)
26. Woodall, D.R.: List colorings of graphs. Surveys in combinatorics (sussex). Lond. Math. Soc. Lect. Note Ser. 288, 269-301 (2001)
27. Woodall, D.R.: Defective choosability of graphs with no edge-plus-independent-set minor. J. Graph Theory 45, 51-56 (2004)

[^0]: H. Chuang • G. R. Omidi • N. Zakeri

 Department of Mathematical Sciences, Isfahan University of Technology, 84156-83111, Isfahan, Iran
 H.-J. Lai

 College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang,
 Peoples Republic of China
 H.-J. Lai $(\boxtimes) \cdot$ K. Wang

 Department of Mathematics, West Virginia University, Morgantown, WV 26505, USA
 e-mail: hjlai@math.wvu.edu
 G. R. Omidi

 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran

