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Abstract Thomassen conjectured that every 4-connected line graph is Hamiltonian.
Chen and Lai (Combinatorics and Graph Theory, vol 95, World Scientific, Singapore,
pp 53–69; Conjecture 8.6 of 1995) conjectured that every 3-edge connected and essen-
tially 6-edge connected graph is collapsible. Denote D3(G) the set of vertices of degree
3 of graph G. For e = uv ∈ E(G), define d(e) = d(u) + d(v) − 2 the edge degree of
e, and ξ(G) = min{d(e) : e ∈ E(G)}. Denote by λm(G) the m-restricted edge-con-
nectivity of G. In this paper, we prove that a 3-edge-connected graph with ξ(G) ≥ 7,
and λ3(G) ≥ 7 is collapsible; a 3-edge-connected simple graph with ξ(G) ≥ 7, and
λ3(G) ≥ 6 is collapsible; a 3-edge-connected graph with ξ(G) ≥ 6, λ2(G) ≥ 4, and
λ3(G) ≥ 6 with at most 24 vertices of degree 3 is collapsible; a 3-edge-connected
simple graph with ξ(G) ≥ 6, and λ3(G) ≥ 5 with at most 24 vertices of degree 3 is
collapsible; a 3-edge-connected graph with ξ(G) ≥ 5, and λ2(G) ≥ 4 with at most
9 vertices of degree 3 is collapsible. As a corollary, we show that a 4-connected line
graph L(G) with minimum degree at least 5 and |D3(G)| ≤ 9 is Hamiltonian.
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1 Introduction

Unless stated otherwise, we follow [1] for terminology and notations, and we consider
finite connected graphs without loop. In particular, we use κ(G) and λ(G) to represent
the connectivi t y and edge-connectivity of a graph G. A graph is tr ivial if it contains
no edges. A vertex (edge) cut X of G is essential if G − X has at least two non-trivial
components. For an integer k > 0, a graph G is essentially k-(edge)-connected if G
does not have an essential (edge-)cut X with |X | < k. In particular, the essential edge-
connectivity of G is the size of a minimum essential edge-cut. For u ∈ V (G), let dG(u)

be the degree of u, or simply d(u) if no confusion arises. For e = uv ∈ E(G), define
d(e) = d(u) + d(v) − 2 the edge degree of e, and ξ(G) = min{d(e) : e ∈ E(G)}.

An edge set F is said to be an m-restricted edge-cut of a connected graph G if G−F
is disconnected and each component of G − F contains at least m vertices. Let m-
restricted edge-connectivity (λm(G)) be the minimum size of all m-restricted edge-cut.
Clearly, a minimal essential edge-cut is 2-restricted edge cut, and a 2-restricted edge
cut is an essential edge-cut. So the essential edge-connectivity equals the 2-restricted
edge-connectivity for a graph G. Esfahanian [6] proved that if a connected graph G
with |V (G)| ≥ 4 is not a star K1,n−1, then λ2(G) exists and λ2(G) ≤ ξ(G). Thus, an
essentially k-edge connected graph has edge-degree at least k.

Corresponding to the 3-restricted edge-cut, we define P2-edge-cuts. An edge cut F
of G is a P2-edge-cut of G if at least two components of G − F contain P2, where P2
denote a path with three vertices. Clearly, a minimal P2-edge-cut of G is a 3-restricted
edge-cut of G, and a 3-restricted edge-cut of G is a P2-edge-cut of G. It is not difficult
to see that a P2-edge-cut of G implies a 3-restricted edge-cut. Thus, the size of a
P2-edge-cut of G is not less than the 3-restricted edge-connectivity of G.

Denote Di (G) the set of vertices of degree i and let di (G) = |Di (G)|, respectively.
If there is no confusion, we use Di and di for Di (G) and di (G), respectively. For a
subgraph A ⊆ G, v ∈ V (G), NG(v) denotes the set of the neighbors of v in G and
NG(A) denotes the set (

⋃
v∈V (A) NG(v)) \ V (A). If no confusion, we use an edge uv

for a subgraph whose vertex set is {u, v} and edge set {uv}. Denote G[X ] the subgraph
induced by the vertex set X of V (G).

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where
two vertices in L(G) are adjacent if and only if the corresponding edges in G have
at least one vertex in common. From the definition of a line graph, if L(G) is not a
complete graph, then a subset X ⊆ V (L(G)) is a vertex cut of L(G) if and only if X
is an essential edge cut of G. Thomassen in 1986 posed the following conjecture:

Conjecture 1.1 (Thomassen [16]) Every 4-connected line graph is Hamiltonian.

Theorem 1.2 (Zhan [18]) Every 7-connected line graph is Hamiltonian.

Very recently, an important progress towards Thomassen’s Conjecture was submit-
ted by Kaiser and Vrána [9] in which the following theorem is listed:
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Theorem 1.3 ([9]) 5-connected line graph with minimum degree at least 6 is Hamil-
tonian.

So we clearly have:

Corollary 1.4 6-connected line graph is Hamiltonian.

For the known results on Hamiltonicity of line graphs and claw-free graphs, the
reader is suggested to refer to [7,8,10,12,14,19]. The next conjecture is posed by
Chen and Lai [4]:

Conjecture 1.5 (Chen and Lai Conjecture 8.6 of [4]) Every 3-edge-connected and
essentially 6-edge connected graph G is collapsible.

In this paper, we prove that a 3-edge-connected graph with ξ(G) ≥ 7, and λ3(G) ≥
7 is collapsible; a 3-edge-connected simple graph with ξ(G) ≥ 7, and λ3(G) ≥ 6 is
collapsible; a 3-edge-connected graph with ξ(G) ≥ 6, λ2(G) ≥ 4, and λ3(G) ≥ 6
with at most 24 vertices of degree 3 is collapsible; a 3-edge-connected simple graph
with ξ(G) ≥ 6, and λ3(G) ≥ 5 with at most 24 vertices of degree 3 is collapsible.
a 3-edge-connected graph with ξ(G) ≥ 5, and λ2(G) ≥ 4 with at most 9 vertices of
degree 3 is collapsible. As a corollary, we show that a 4-connected line graph L(G)

with minimum degree at least 5 and |D3(G)| ≤ 9 is Hamiltonian.

2 Reductions

Catlin [2] introduced collapsible graphs. For a graph G, let O(G) denote the set of odd
degree vertices of G. A graph G is eulerian if G is connected with O(G) = ∅, and G is
supereulerian if G has a spanning eulerian subgraph. A graph G is collapsible if for
any subset R ⊆ V (G) with |R| ≡ 0( mod 2), G has a spanning connected subgraph
HR such that O(HR) = R. Note that when R = ∅, a spanning connected subgraph H
with O(H) = ∅ is a spanning eulerian subgraph of G. Thus every collapsible graph is
supereulerian. Catlin [2] showed that any graph G has a unique subgraph H such that
every component of H is a maximally collapsible subgraph of G and every non-trivial
collapsible subgraph of G is contained in a component of H . For a subgraph H of
G, the graph G/H is obtained from G by identifying the two ends of each edge in H
and then deleting the resulting loops. The contraction G/H is called the reduction
of G if H is the maximal collapsible subgraph of G. A graph G is reduced if it is the
reduction of itself. Let F(G) denote the minimum number of edges that must be added
to G so that the resulting graph has two edge-disjoint spanning trees. The following
summarizes some of the former results concerning collapsible graphs.

Theorem 2.1 Let G be a connected graph. Each of the following holds.

(i) (Catlin [2]) If H is a collapsible subgraph of G, then G is collapsible if and only
if G/H is collapsible; G is supereulerian if and only if G/H is supereulerian.

(ii) (Catlin, Theorem 5 of [2]) A graph G is reduced if and only if G contains no
non-trivial collapsible subgraphs. As cycles of length less than 4 are collapsible,
a reduced graph does not have a cycle of length less than 4.
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(iii) (Catlin, Theorem 8 of [2]) If G is reduced and if |E(G)| ≥ 3, then δ(G) ≤ 3,
and 2|V (G)| − |E(G)| ≥ 4.

(iv) (Catlin [2]) If G is reduced and if |E(G)| ≥ 3, then δ(G) ≤ 3 and F(G) =
2|V (G)| − |E(G)| − 2.

(v) (Catlin et al. [3]) Let G be a connected reduced graph. If F(G) ≤ 2, then
G ∈ {K1, K2, K2,t }(t ≥ 1).

Let G be a connected and essentially 3-edge-connected graph such that L(G) is not
a complete graph. The core of this graph G, denoted by G0, is obtained by deleting
all the vertices of degree 1 and contracting exactly one edge xy or yz for each path
xyz in G with dG(y) = 2.

Lemma 2.2 (Shao [15]) Let G be an essentially 3-edge-connected graph G.

(i) G0 is uniquely defined, and λ(G0) ≥ 3.
(ii) If G0 is supereulerian, then L(G) is Hamiltonian.

3 The Lower Bound of the Number of Edges in a Graph Dependent on Edge
Degree

In the following lemma, the graph considered may have loops. Note that a loop is an
edge with two same endpoints. For a graph G and u ∈ V (G), denote EG(u) the set
of edges incident with u in G. When the graph G is understood from the context, we
write Eu for EG(u) simply. When a graph G is understood from the context, we use
δ and n for δ(G) and |V (G)|, respectively.

Lemma 3.1 Let G be a graph with minimum degree δ ≥ 3, ξ(G) ≥ 2δ+k−2 and k ≥
1. Then |E(G)| ≥ 2n + δ2+(k−4)δ−2k

δ+k dδ .

Proof Let N (G) = NG(Dδ), T (G) = V (G) \ (N ∪ Dδ) (or simply, we use N and
T for N (G) and T (G)). Note that G is a graph with ξ(G) ≥ 2δ − 1, then Dδ is an
independent set of G and the degree of the vertices in N is at least δ + k, the vertices
in T is at least δ + 1. We prove this claim by induction on |T |.

We first let |T | = ∅. The degree of the vertex in N is at least δ + k. If |N | > δ
δ+k dδ ,

we have

|E(G)| =
∑

idi

2
≥ δdδ

2
+ δ + k

2
|N | = δ + k

2
n − k

2
dδ

= 2n + δ + k − 4

2
n − k

2
dδ

= 2n + δ + k − 4

2
(dδ + |N |) − k

2
dδ

= 2n + δ − 4

2
dδ + δ + k − 4

2
|N |

≥ 2n + δ − 4

2
dδ + δ + k − 4

2

δ

δ + k
dδ
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= 2n + (δ − 4)(δ + k) + δ(δ + k − 4)

2(δ + k)
dδ

= 2n + δ2 + (k − 4)δ − 2k

δ + k
dδ. (1)

If |N | ≤ δ
δ+k dδ , we have

|E(G)| ≥ δdδ = 2n + δdδ − 2n

= 2n + δdδ − 2(δ + |N |) = 2n + δdδ − 2|N |
= 2n + (δ + 2)dδ − 2δ

δ + k
dδ

= 2n + δ2 + (k − 4)δ − 2k

δ + k
dδ. (2)

Now, we assume |T | = 1 and T = {u}. Clearly, d(u) ≥ δ+1 ≥ 4. We first suppose
d(u) = 2s for some s ≥ 2. Assume that there is l loops on u and let 2s = 2l + 2t .
Now, we delete the l loops of u and label the 2t neighbors corresponding the 2t edges
naturally. Denote the 2t neighbors by N ′(u) = {u1, u2, . . . , u2t } (it is not a set if
G[{u} ∪ N (u)] contains some multi-edges), that is, N ′(u) contains v k times if there
is k edges between u and v. We construct a graph G ′ by (i) : deleting vertex u and
edges uui , i = 1, 2, . . . , 2t ; (i i) : adding new edges u1u2, u3u4, . . . , u2t−1u2t . It
can be seen that Dδ(G) = Dδ(G ′), V (G ′) = V (G) \ {u}, E(G ′) = (E(G) \ Eu) ∪
{u1u2, u3u4, . . . , u2t−1u2t }. Hence, |V (G ′)| = |V (G)|−1, |E(G ′)| = |E(G)|− d(u)

2 ,
ξ(G ′) ≥ 2δ + k − 2. Note that the set T (G ′) is ∅, then we have |E(G ′)| ≥ 2(n − 1)+
δ2+(k−4)δ−2k

δ+k dδ . Therefore,

|E(G)| = |E(G ′)| + d(u)

2

≥ 2|V (G ′)| + δ2 + (k − 4)δ − 2k

δ + k
dδ + d(u)

2

= 2(|V (G)| − 1) + δ2 + (k − 4)δ − 2k

δ + k
dδ + d(u)

2

= 2|V (G)| + δ2 + (k − 4)δ − 2k

δ + k
dδ +

(
d(u)

2
− 2

)

≥ 2|V (G)| + δ2 + (k − 4)δ − 2k

δ + k
dδ. (3)

Next, we suppose u ∈ T with l loops, d(u) = 2s + 1 and 2s + 1 = 2l + 2t + 1 for
some s ≥ 2 and N (u) = {u1, u2, . . . , u2t+1}. Let u′ ∈ N , we first construct G ′ by
adding a new edge uu′. Now, u is in the T (G ′) and dG ′(u) ≥ 6 is even. Similarly, we
construct a new graph G ′′ such that T (G ′′) is empty. Note that dG′ (u)

2 ≥ 3, then
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|E(G ′)| = |E(G ′′)| + dG ′(u)

2

≥ 2|V (G ′′)| + δ2 + (k − 4)δ − 2k

δ + k
dδ + dG ′(u)

2

= 2(|V (G ′)| − 1) + δ2 + (k − 4)δ − 2k

δ + k
dδ + dG ′(u)

2

= 2|V (G)| + δ2 + (k − 4)δ − 2k

δ + k
dδ +

(
dG ′(u)

2
− 2

)

≥ 2|V (G ′)| + δ2 + (k − 4)δ − 2k

δ + k
dδ + 1. (4)

Thus, |E(G)| = |E(G ′)| − 1 ≥ 2|V (G)| + δ2+(k−4)δ−2k
δ+k dδ .

Assume that the claim holds for 1 ≤ |T | < m and |T | = m ≥ 2 in the following.
Take a vertex u ∈ T such that d(u) = min{d(v)|v ∈ T }. Clearly, by the argument
above, if d(u) is even, then, the claim holds by constructing a new graph G ′ (similar
to the case when |T | = 1, i.e. G ′ is constructed by deleting the vertex u, l + t edges,
and adding t new edges) with |T | = m − 1 and then by induction. Assume d(u) is
odd. Similar to the case when |T | = 1. We first construct a new graph G ′ by adding
a new edge as the case |T | = 1. It can be seen that dG ′(u) is even and dG ′(u) ≥ 6.
Then we construct a new graph G ′′ similar to that of |T | = 1, by induction and the
argument similar to that of (4), the claim holds. We complete the proof of the claim. 
�

In this paper, we only need the following three special cases of Lemma 3.1:

Corollary 3.2 Let G is a graph with δ(G) ≥ 3, ξ(G) ≥ 7. Then |E(G)| ≥ 2|V (G)|.
Corollary 3.3 Let G be a graph with δ(G) ≥ 3, ξ(G) ≥ 6. Then |E(G)| ≥ 2|V (G)|−
d3
5 .

Corollary 3.4 Let G be a graph with δ(G) ≥ 3, ξ(G) ≥ 5. Then |E(G)| ≥ 2|V (G)|−
d3
2 .

4 Collapsible graphs and Hamiltonicity of line graphs

Let G ′ be the reduction of G. Note that contraction do not decrease the edge connec-
tivity of G, then G ′ is either a k-edge connected graph or a trivial graph if G is k-edge
connected. Assume that G ′ is the reduction of a 3-edge-connected graph and non-triv-
ial. It follows from Theorem 2.1 (v) and G ′ is 3-edge connected that F(G ′) ≥ 3. Then
by Theorem 2.1 (iv), we have |E(G ′)| ≤ 2|V (G ′)| − 5.

A subgraph of G is called a 2-path or a P2 subgraph of G if it is isomorphic to
a K1,2 or a 2-cycle. An edge cut X of G is a 2-path-edge-cut of G if at least two
components of G − X contain 2-paths. Clearly, a P2-edge-cut of a graph G is also
a 2-path-edge-cut of G. By the definition of a line graph, for a graph G, if L(G) is
not a complete graph, then L(G) is essentially k-connected if and only if G does not
have a 2-path-edge-cut with size less than k. Since G0 is a contraction of G, every
P2-edge-cut of G0 is also a P2-edge-cut of G.
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Lemma 4.1 (Lai et al. Lemma 2.3 of [10]) Let k > 2 be an integer, and let G be a
connected and essentially 3-edge-connected graph. If L(G) is essentially k-connected,
then every 2-path-edge-cut of G0 has size at least k.

We call a vertex of G ′ non-trivial if the vertex is obtained by contracting a col-
lapsible subgraph of G0, and tr ivial, otherwise. Assume that k ≥ 3 is an integer,
and G is a 3-edge-connected and essentially k-edge-connected graph. Thus G0 has no
non-trivial vertex of degree i such that 3 ≤ i < k.

Lemma 4.2 Let G be a reduced 3-edge-connected non-trivial graph. Then d3 ≥ 10.

Proof Since F(G ′) ≥ 3, we have

4|V (G)| − 10 ≥ 2|E(G)| =
∑

idi ≥ 3d3 + 4(|V (G)| − d3) = 4|V (G)| − d3.

Thus, d3 ≥ 10. 
�

If V1 and V2 are two disjoint subsets of V (G), then [V1, V2]G denotes the set of
edges in G with one end in V1 and the other end in V2. When the graph G is under-
stood from the context, we also omit the subscript G and write [V1, V2] for [V1, V2]G .
If H1 and H2 are two vertex disjoint subgraphs of G, then we write [H1, H2] for
[V (H1), V (H2)]. Assume that u is a non-trivial vertex of G ′, and it is obtained by con-
tracting a maximal connected collapsible subgraph H of G. We call H the preimage
of u and let P M(u) = H . If a subgraph X of G ′ is obtained by contracting some
maximal connected collapsible subgraph U of G. We call U the preimage of X and
let P M(X) = U . In particular, we call X non-trivial if X �∼= U .

Theorem 4.3 A 3-edge-connected graph with ξ(G) ≥ 7, and λ3(G) ≥ 7 is collaps-
ible.

Proof Let G be a 3-edge-connected graph with ξ(G) ≥ 7, and λ3(G) ≥ 7 and G ′ be
the reduction of G. By way of contradiction, suppose that G ′ is non-trivial. Note that
F(G ′) ≥ 3 and thus |E(G ′)| ≤ 2|V (G ′)| − 5, then we can obtain a contradiction by
Corollary 3.2 if ξ(G ′) ≥ 7. So we next show that the edge degree of G ′ is at least 7.

Suppose that there is an edge e = uv with d(e) < 7 in G ′. By Theorem 2.1 (ii) and
Lemma 4.2, it is easy to see that G ′ −{u, v} contains a component having at least three
vertices. Note that the edge degree of uv is less than 7, then uv is clearly non-trivial.
Thus, [P M(uv), P M(G ′ − {u, v})]G is a P2-edge-cut of G, but its size is less than 7,
a contradiction. We complete the proof. 
�

Note that a simple graph contains no 2-cycle, then each non-trivial collapsible con-
nected subgraph of a graph having at least three vertices. If we consider the simple
graph, the condition of Theorem 4.3 can be weaken slightly.

Theorem 4.4 A 3-edge-connected simple graph with ξ(G) ≥ 7, and λ3(G) ≥ 6 is
collapsible.
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Proof Let G be a 3-edge-connected simple graph with ξ(G) ≥ 7, and λ3(G) ≥ 6 and
G ′ is the reduction of G. By way of contradiction, suppose that G ′ is non-trivial. Note
that F(G ′) ≥ 3 and thus |E(G ′)| ≤ 2|V (G ′)| − 5, then we can obtain a contradiction
by Corollary 3.2 if ξ(G ′) ≥ 7. So we show that the edge degree of G ′ is at least 7. Not
that G is 3-edge connected and so is G ′, then it is sufficient to show that the contraction
does not product new vertices of degree less than 6.

By Theorem 2.1 (ii), G ′ − {u} contains a component with at least three vertices,
for any vertex u ∈ V (G ′). Suppose that u ∈ V (G ′) is a vertex obtained by con-
tracting a maximal connected collapsible subgraph H of G. If u is non-trivial, then
|V (P M(u))| ≥ 3 sine G is simple graph. Then [P M(u), P M(G ′ − {u})] is a P2-
edge-cut of G. If dG ′(u) < 6, then we get a P2-edge-cut whose size is less than 6, a
contradiction. That is, the edge degree of G ′ is at least 7. We complete the proof. 
�

By Lemma 2.2 and Theorem 4.3, we have

Corollary 4.5 (Zhan [18]) A 7-connected line graph is Hamiltonian.

By a very similar proof to that of Theorems 4.3 and 4.4, we obtain the following
theorem.

Theorem 4.6 A 3-edge-connected graph with ξ(G) ≥ 6, λ2(G) ≥ 4, and λ3(G) ≥ 6
with at most 24 vertices of degree 3 is collapsible.

Proof Let G be a 3-edge-connected graph with ξ(G) ≥ 6, λ2(G) ≥ 4, and λ3(G) ≥ 6
and at most 24 vertices of degree 3, and G ′ be the reduction of G.

By an argument similar to that of Theorem 4.3, one can see that the edge degree
of G ′ is at least 6. In fact, suppose that there is an edge e = uv with d(e) < 6 in
G ′. By Theorem 2.1 (ii) and Lemma 4.2, it is easy to see that G ′ − {u, v} contains a
component having at least three vertices. Note that the edge degree of uv is less that 6,
then uv is clearly non-trivial. Thus, [P M(uv), P M(G ′ − {u, v})]G is a P2-edge-cut
of G, but its size is less that 6, a contradiction.

Note that λ2(G) ≥ 4, then G ′ clearly contains no non-trivial vertex of degree 3, that
is, |D3(G ′)| ≤ |D3(G)| . By Corollary 3.3, we have |E(G ′)| ≥ 2|V (G ′)|− |D3(G ′)|

5 . If

|D3(G ′)| ≤ |D3(G)| ≤ 24, then |E(G ′)| ≥ 2|V (G ′)| − |D3(G ′)|
5 ≥ 2|V (G)| − 4 (note

that the number of edges is an integer) which contradicts |E(G ′)| ≤ 2|V (G ′)| − 5.
Thus, the claim holds. 
�

Similar to Theorem 4.4, we have the following theorem:

Theorem 4.7 A 3-edge-connected simple graph with ξ(G) ≥ 6, and λ3(G) ≥ 5 with
at most 24 vertices of degree 3 is collapsible.

Proof The proof is similar to that of Theorem 4.4. Let G be a 3-edge-connected sim-
ple graph with ξ(G) ≥ 6, and λ3(G) ≥ 5, at most 24 vertices of degree 3, and G ′ is
the reduction of G. By way of contradiction, suppose that G ′ is non-trivial. Note that
F(G ′) ≥ 3 and thus |E(G ′)| ≤ 2|V (G ′)|− 5, then we obtain a contradiction by by an
argument similar to that of Theorem 4.7 if ξ(G ′) ≥ 6. So we show that the edge degree
of G ′ is at least 6. Not that G is 3-edge-connected and so is G ′, then it is sufficient to
show that the contraction does not product a new vertex of degree less than 5.
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By Theorem 2.1 (ii), G ′ − {u} contains a component with at least three vertices,
for any vertex u ∈ V (G ′). Suppose that u ∈ V (G ′) is a vertex obtained by con-
tracting a maximal connected collapsible subgraph H of G. If u is non-trivial, then
|V (P M(u))| ≥ 3 since G is simple graph. Then [P M(u), P M(G ′ − {u})] is a P2-
edge-cut of G. If dG ′(u) < 6, then we get a is a P2-edge-cut less than 6, a contradiction.
Thus, the edge degree of G ′ is at least 6. We complete the proof. 
�
By Theorem 4.7, we have the following corollary:

Corollary 4.8 (Yang et al. [17]) For a 5-connected line graph L(G) with minimum
degree at least 6, if G is simple and |D3(G)| ≤ 24, them L(G) is Hamiltonian.

Similarly as above, we list the following results without proof.

Theorem 4.9 A 3-edge-connected graph with ξ(G) ≥ 5, and λ2(G) ≥ 4 with at most
9 vertices of degree 3 is collapsible.

Theorem 4.10 A 3-edge-connected simple graph with ξ(G) ≥ 5, and λ3(G) ≥ 4
with at most 9 vertices of degree 3 is collapsible.

Corollary 4.11 A 4-connected line graph L(G) with minimum degree at least 5 and
|D3(G)| ≤ 9 is Hamiltonian.
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