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Abstract A graph G is supereulerian if G has a spanning eulerian subgraph. Boesch et al. [J. Graph

Theory, 1, 79–84 (1977)] proposed the problem of characterizing supereulerian graphs. In this paper,

we prove that any 3-edge-connected graph with at most 11 edge-cuts of size 3 is supereulerian if and

only if it cannot be contractible to the Petersen graph. This extends a former result of Catlin and Lai

[J. Combin. Theory, Ser. B, 66, 123–139 (1996)].
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1 Introduction

We consider finite, undirected and loopless graphs. Undefined terms and notaions will follow
Bondy and Murty [4]. In particular, κ(G) and κ′(G) denote the connectivity and the edge-
connectivity of a graph G, respectively. A graph G is nontrivial if |E(G)| > 0, and we write
H ⊆ G to mean that H is a subgraph of G. Let O(G) denote the set of all odd degree vertices
of a graph G, and g(G) (called the girth of G) be the length of a shortest cycle in G. A graph
G is even if O(G) = ∅, and is eulerian if it is both even and connected. If G has a spanning
eulerian subgraph, then G is supereulerian. The supereulerian graph problem, raised by Boesch
et al. [3], seeks to characterize supereulerian graphs. Pulleyblank [16] showed that determining
if a graph is supereulerian, even when restricted to planar graphs, is NP-complete. For more
in the literature on supereulerian graphs, see Catlin’s survey [6] and its update by Chen and
Lai [11].
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For X ⊆ E(G), the contraction G/X is obtained from G by contracting each edge of X and
deleting the resulting loops. If H ⊆ G, we write G/H for G/E(H). If H is connected, let vH

denote the vertex in G/H to which H is contracted, in this case, H is called the preimage of
vH .

A graph G is collapsible if for every even subset R ⊆ V (G), G has a spanning connected
subgraph HR with O(HR) = R. In particular, K1 is both supereulerian and collapsible, and
any collapsible graph G is supereulerian.

In [5], Catlin showed that every graph G has a unique collection of pairwise disjoint maximal
collapsible subgraphs H1, H2, . . . , Hc. The graph obtained from G by contracting each Hi into
a single vertex (1 ≤ i ≤ c), is called the reduction of G. A graph is reduced if it is the reduction
of some other graph.

Since every 4-edge-connected graph is collapsible [5], and so supereulerian [15], efforts to
characterize supereulerian graphs have been within families of 3-edge-connected graphs. Chen et
al. [10, 12, 13] investigated conditions under which a 3-edge-connected graph G is supereulerian
if and only if G cannot be contracted to the Petersen graph. These settled the 3-edge-connected
case of a conjecture by Benhocine et al. [1]. Caltin et al. considered 3-edge-connected graphs
with limited number of 3-edge cuts. They proved the following:

Theorem 1.1 ([9, Theorem 3.12]) Let G be a 3-edge-connected graph. If G has at most 10
edge-cuts of size 3, then exactly one of these holds :

(i) G is supereulerian ;
(ii) The reduction of G is the Petersen graph.

Theorem 1.2 ([9, Theorem 3.14]) Let G be a 3-edge-connected graph. If G has at most 11
edge-cuts of size 3, then exactly one of these holds :

(i) G is supereulerian ;
(ii) The reduction of G is the Petersen graph ;
(iii) The reduction of G is a nonsupereulerian graph of order between 17 and 19, with girth

at least 5, with exactly 11 vertices of degree 3 and 1 vertex of degree 5, and with the remaining
vertices independent and of degree 4.

It has been a question whether graphs stated in Theorem 1.2 (iii) exist or not. In this paper,
we settle this problem by showing that no such graphs exist.

Theorem 1.3 Let G be a 3-edge-connected graph. If G has at most 11 edge-cuts of size 3,
then the following are equivalent :

(i) G is supereulerian ;
(ii) The reduction of G is not the Petersen graph.

The following notations will be used throughout this paper. For a graph G and integer
i ≥ 1, let Di(G) = {v|dG(v) = i, v ∈ V (G)} and di(G) = |Di(G)|. When G is understood, we
write di for di(G). Let F (G) denote the minimum number of extra edges that must be added
to G so that the resulting graph has two edge-disjoint spanning trees. Let EG(v) = {uv|uv ∈
E(G), u ∈ V (G)} and NG(v) = {u|uv ∈ E(G), u ∈ V (G)}. When G is understood, we write
N(v) for NG(v) and E(v) for EG(v).

Our proof depends on a new sufficient condition for a graph to be supereulerian. Let F
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denote the collection of all connected graphs satisfying each of the following:

(F1) d5(G) = 1, d3(G) = 11,

(F2) 3 ≤ δ(G) ≤ Δ(G) ≤ 5,

(F3) g(G) ≥ 5, and

(F4) no edge of G joins two vertices of even degree in G.

The following associate result plays an important role in our proof of Theorem 1.3.

Theorem 1.4 Let G ∈ F be a graph. Then G is supereulerian.

The paper will be organized as follows. In the next section, we present the preliminaries
of Catlin’s reduction method and the related theory that will be used in the proofs. We then
prove Theorem 1.3 assuming the validity of Theorem 1.4. The last section will be devoted to
the proof of Theorem 1.4.

2 Prerequisites

In this section, we present Catlin’s reduction method to be used in our proofs.

Theorem 2.1 ([5, Theorems 3, 5 and 8]) Let G be a connected graph.

(i) Let H be a collapsible subgraph of G. Then G is supereulerian if and only if G/H is
supereulerian.

(ii) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(iii) Let G′ be the reduction of G. Then G is supereulerian if and only if G′ is supereulerian,
and G is collapsible if and only if G′ = K1.

(iv) If G is reduced, then every subgraph of G is also reduced.

Theorem 2.2 ([8, Theorem 1.5]) Let G be a reduced graph. If F (G) ≤ 2, then G ∈
{K1, K2, K2,t(t ≥ 1)}.
Theorem 2.3 ([7, Theorem 7]) If G is a connected reduced graph, then F (G) = 2|V (G)| −
|E(G)| − 2.

Corollary 2.4 If G is a connected reduced graph, then 2F (G) = 3d1 + 2d2 + d3 −
∑

j≥5(j −
4)dj − 4.

Proof As |V (G)| =
∑

j≥1 dj and 2|E(G)| =
∑

j≥1 jdj , by Theorem 2.3, we have 2F (G) =
3d1 + 2d2 + d3 −

∑
j≥5(j − 4)dj − 4. �

Theorem 2.5 ([9, Theorem 3.1]) Let G be a 3-edge-connected graph with F (G) = 3. If G is
nonsupereulerian and reduced, then each of the following holds :

(i) G has no edge joining two vertices of even degree ;

(ii) G has girth at least 5;

(iii) G has no subgraph H with κ′(H) ≥ 2 and F (H) = 2.

For a graph G, an edge-cut X ⊂ E(G) is called essential edge-cut, if each component of
G − X has at least one edge.

Lemma 2.6 Let G be a 3-edge-connected nonsupereulerian reduced graph with F (G) = 3.
Then every edge-cut of size 3 is not an essential edge-cut (i.e., the number of edge-cut of size
3 is equal to d3(G)).
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Proof Let X ⊆ E(G) be an edge-cut of size 3, and H1 and H2 the two components of G−X.
By (iv) of Theorem 2.1, H1 and H2 are both reduced. Then by Theorem 2.3,

F (G) = 2|V (G)| − |E(G)| − 2

= 2(|V (H1)| + |V (H2)|) − (|E(H1)| + |E(H2)| + |X|) − 2

= 2|V (H1)| − |E(H1)| − 2 + 2|V (H2)| − |E(H2)| − 3

= F (H1) + F (H2) − 1,

and so F (G)+1 = F (H1)+F (H2). Since F (G) = 3, min{F (H1), F (H2)} ≤ 2 (say F (H1) ≤ 2).
By Theorem 2.2, H1 ∈ {K1, K2, K2,t(t ≥ 1)}. If H1 = K1, then X is not an essential edge-cut.
If H1 = K2 or H1 = K2,1, then vertex of degree 2 will appear, contrary to κ′(G) ≥ 3. Hence
H1 = K2,t (t ≥ 2). Since K2,t (t ≥ 2) contains C4, this is contrary to (ii) of Theorem 2.5. This
completes the proof of the lemma. �

3 Proof of Theorem 1.3

Let G′ be the reduction of G. By Theorem 2.1 (iii), it suffices to show that G′ either is
supereulerian or is the Petersen graph. We shall show that G is contractible to the Petersen
graph with the following assumption:

G′ is not supereulerian. (3.1)

Since G has at most 11 edge cut of size 3, G′ has at most 11 edge cut of size 3. Thus
d3(G′) ≤ 11. Since κ′(G′) ≥ κ′(G) ≥ 3, d1(G′) = d2(G′) = 0. By Corollary 2.4, we have

2F (G′) = 3d1(G′)+2d2(G′)+d3(G′)−
∑

j≥5

(j−4)dj(G′)−4 = d3(G′)−
∑

j≥5

(j−4)dj(G′)−4. (3.2)

By (3.2) and by d3(G′) ≤ 11, F (G′) ≤ 3. If F (G′) ≤ 2, then by Theorem 2.2, G′ ∈
{K1, K2, K2,t(t ≥ 1)}. By (3.1), G′ �= K1, and so G′ ∈ {K2, K2,t(t ≥ 1)}, contrary to the fact
that κ′(G′) ≥ 3. Hence F (G′) = 3.

In the rest of the proof, we will write dj for dj(G′), j ≥ 1. By (3.2) and by F (G′) = 3,

10 = d3 −
∑

j≥5

(j − 4)dj . (3.3)

Thus 11 ≥ d3 ≥ 10. If d3 = 10, by Lemma 2.6, G′ has exactly 10 edge-cuts of size 3. Hence by
Theorem 1.1, G′ is the Petersen graph. If d3 = 11, then by (3.3), d5 = 1, dj = 0, j ≥ 6. Thus
V (G′) = D3(G′) ∪ D4(G′) ∪ D5(G′). Then by Theorem 2.5, G′ ∈ F . Thus by Theorem 1.4, G′

is supereulerian, contrary to (3.1). This completes the proof of Theorem 1.3. �

4 Proof of Theorem 1.4

Let G ∈ F be a graph. Throughout this section, we always use w ∈ V (G) to denote the unique
vertex of degree 5. Let H be the subgraph induced by the vertices of distance at least 2 from w

in G and G0 = G−E(H). Define S = N(w)∩D4(G), T = N(w)∩D3(G), S1 =
⋃

u∈S N(u)−w,
T1 = (

⋃
v∈T N(v)) ∩ D3(G) and T2 = (

⋃
v∈T N(v)) ∩ D4(G). Let W = V (H) − (S1 ∪ T1 ∪ T2),

and let
a = |D3(G) ∩ W | and b = |D4(G) ∩ W |.
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Lemma 4.1 With the notations above, each of the following holds.
(i) N(w) = S ∪ T .
(ii) V (G0) = V (G) and E(G0) =

⋃
u∈S∪T E(u).

(iii) ∀u, v ∈ S ∪ T with u �= v, N(u) ∩ N(v) − w = ∅.
(iv) G0 is acyclic.
(v) (S1 ∪ T1 ∪ T2) ⊆ V (H) and S1 ⊆ D3(G).
(vi) |S1| = 3|S| and |T1| + |T2| = 2|T |.
(vii) d3(G) = |S1| + |T | + |T1| + a and d4(G) = |S| + |T2| + b.
(viii) |E(H[V (H) ∩ D3(G)])| = 1

2 ((3a + 2(|S1| + |T1|)) − (4b + 3|T2|)), and 4b + 3|T2| ≤
3a + 2(|S1| + |T1|).
Proof (i) follows from (F1) and (F2). The definition of H implies (ii). (iii) and (iv) follow
from (F3) and (v) follows from (F4). Since S ⊆ D4(G) and T ⊆ D3(G), for every u ∈ S,
|N(u) ∩ V (H)| = 3 and for every v ∈ T , |N(v) ∩ V (H)| = 2. These imply (vi).

By the definitions of S1, T1 and T2 and by (F3), S1, T1 and T2 are mutually disjoint. Then
direct computation yields (vii). By the definition of H, |V (H)| = a + b + |S1|+ |T1|+ |T2|. Let
H1 = H[V (H) ∩ D3(G)]. Then counting

∑
v∈V (H1)

dG(v) in two different ways, we obtain

3a + 3(|S1| + |T1|) =
∑

v∈V (H1)

dG(v) = 2|E(H1)| + |S1| + |T1| + 4b + 3|T2|,

and so (viii) follows. �

By (F1), 11 = d3(G) = 3|S| + |T | + |T1| + a ≥ 3|S| + |T | = 3|S| + 5 − |S|, and so

|S| ≤ 3, where |S| = 3 only if |T1| + a = 0. (4.1)

Throughout this section, let

S = {u1, u2, . . . , u|S|}, (4.2)

N(ui) ∩ V (H) = {w3i−2, w3i−1, w3i}, where 1 ≤ i ≤ |S|,
T = {v1, v2, . . . , v5−|S|},
N(vi) ∩ V (H) = {w3|S|+2j−1, w3|S|+2j}, where 1 ≤ j ≤ 5 − |S| = |T |.

As |S| ≤ 3, 3|S| + 2(5 − |S|) ≤ 13. By (F3),

wi �= wj if and only if i �= j for 1 ≤ i, j ≤ 13. (4.3)

Lemma 4.2 G must be one of 8 possible graphs.

Proof By (4.1), |S| ≤ 3 and so we can analyze cases when |S| takes different values.

Case 1 |S| = 3.
Then |T | = 2. By (4), |T1|+a = 0. As d3(G) = 11, D3(G) = T∪S1 and |T2| = 2|T |−|T1| = 4.

By Lemma 4.1 (viii), 0 ≤ b ≤ 1. If b = 1, then V (G)∩W ∩D4(G) has a vertex z. Since |T1| = 0
and by (F4), N(z) ⊆ S1. Since dG(z) = 4, for some i ∈ {1, 2, 3}, |N(z) ∩ N(ui)| ≥ 2, whence
G[(N(z) ∩N(ui)) ∪ {z, u1}] induces a C4, contrary to (F3). Therefore in Case 1, b = 0, and so
there is only one possible graph, called G2, as presented in Table 1 below.

Case 2 |S| = 2.
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As d3(G) = 11, |T1| = 11 − |T | − |S1| − a = 2 − a and |T2| = 6 − (2 − a) = 4 + a. Then by
Lemma 4.1 (viii), 4b + 3(4 + a) ≤ 3a + 2(6 + 2 − a), and so, a + 2b ≤ 2. Therefore, there will
be 4 different possible graphs in this case. Let G1, G3, G4, G5 denote such a graph when a = 2
and b = 0, or when a = 0 and b = 1, or when a = 1 and b = 0, or a = 0 and b = 0, respectively,
as presented in Table 1 below.

Case 3 |S| = 1.

In this case, |T1| = 11 − |T | − |S1| − a = 4 − a and |T2| = 8 − (4 − a) = 4 + a. By
Lemma 4.1 (viii), 4b + 3(4 + a) ≤ 3a + 2(3 + 4− a), and so a + 2b ≤ 1. Let G6, G7 denote such
a graph when a = 1 and b = 0, or when a = 0 and b = 0, respectively, as presented in Table 1
below.

Case 4 |S| = 0.

Then S = S1 = ∅. Again by d3(G) = 11, |T1| = 11 − |T | − |S1| − a = 6 − a and |T2| =
10− (6− a) = 4 + a. Then by Lemma 4.1 (viii), 4b + 3(4 + a) ≤ 3a + 2(0 + 6− a), and so a = 0
and b = 0. Thus there is one such graph, denoted by G8, as presented in Table 1 below.

Summing up, we list the 8 possibilities of G in the following Table 1, with n = |V (G)|.
G n S S1 T |T1| T1 ∪ T2 a b

G1 20 {u1, u2} {w1, w2, . . . , w6} {v1, v2, v3} 0 {w7, w8, . . . , w12} 2 0

G2 19 {u1, u2, u3} {w1, w2, . . . , w9} {v1, v2} 0 {w10, w11, w12, w13} 0 0

G3 19 {u1, u2} {w1, w2, . . . , w6} {v1, v2, v3} 2 {w7, w8, . . . , w12} 0 1

G4 19 {u1, u2} {w1, w2, . . . , w6} {v1, v2, v3} 1 {w7, w8, . . . , w12} 1 0

G5 18 {u1, u2} {w1, w2, . . . , w6} {v1, v2, v3} 2 {w7, w8, . . . , w12} 0 0

G6 18 {u1} {w1, w2, w3} {v1, v2, v3, v4} 3 {w4, w5, . . . , w11} 1 0

G7 17 {u1} {w1, w2, w3} {v1, v2, v3, v4} 4 {w4, w5, . . . , w11} 0 0

G8 16 ∅ ∅ {v1, v2, v3, v4, v5} 6 {w1, w2, . . . , w10} 0 0

Table 1 The graphs Gi (1 ≤ i ≤ 8)

This proves the lemma. �

Throughout the rest of this section, the graphs Gi (1 ≤ i ≤ 8), will be these graphs defined
in Table 1.

Lemma 4.3 If G ∈ {G1, G3, G6, G8}, then |E(H[V (H) ∩ D3(G)])| = 0 and 4b + 3|T2| =
3a + 2(|S1| + |T1|).
Proof By Lemma 4.1 (viii), it suffices to show that 4b + 3|T2| = 3a + 2(|S1| + |T1|).

If G = G1, then a = 2, b = 0, |T1| = 0 and |S1| = 6. By Lemma 4.1 (vi), |T2| = 2|T | = 6.
Thus 4b + 3|T2| = 18 = 3a + 2(|S1|+ |T1|). If G = G3, then a = 0, b = 1, |T1| = 2, |T2| = 4 and
|S1| = 6. Thus 4b + 3|T2| = 16 = 3a + 2(|S1| + |T1|). If G = G6, then a = 1, b = 0, |T1| = 3,
|T2| = 5 and |S1| = 3. Thus 4b + 3|T2| = 15 = 3a + 2(|S1| + |T1|). If G = G8, then a = b = 0,
|T1| = 6, |T2| = 4 and |S1| = 0. Thus 4b + 3|T2| = 12 = 3a + 2(|S1| + |T1|). �

Lemma 4.4 G �= G3.

Proof Suppose G = G3. Then as shown in Table 1, G0 is isomorphic to G′
3 in Figure 1 (see

Section 6). Thus S = {u1, u2}, S1 = {w1, w2, w3, w4, w5, w6}, T = {v1, v2, v3}, a = 0, b = 1,
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|T1| = 2 and |T2| = 4. Denote the vertex of degree 4 in V (G3)∩W by x. If the two vertices in T1

have one common neighbor in T (say v1 ∈ N(w7)∩N(w8), and so T1 = {w7, w8}), then by (F4),
N(x) ⊆ S1 ∪T1. Since |N(x)| = 4, either T1 ⊆ N(x), whence G[{v1, x}∪T1] contains a 4-cycle,
contrary to (F3); or for some i = 1, 2, |N(x) ∩ N(ui)| ≥ 2, whence G[(N(x) ∩ N(ui)) ∪ {x, ui}]
has a 4-cycle, contrary to (F3). Hence by symmetry, we may assume that T1 = {w7, w9}.
By (F3) and (F4), w7, w9 ∈ N(x), w8 ∈ N(w9) and w10 ∈ N(w7), and so NH(w11) ⊆ S1 =
N(u1) ∪ N(u2). Since w11 ∈ D3(H), then for some i ∈ {1, 2}, |NH(w11) ∩ N(ui)| ≥ 2, and so
G{w11, ui} ∪ (NH(w11) ∩ N(ui)) contains a 4-cycle, contrary to (F3). �

Lemma 4.5 G �= G6.

Proof Suppose G = G6. Then as shown in Table 1, G0 is isomorphic to G′
6 in Figure 1.

Thus we have S = {u1}, S1 = {w1, w2, w3}, T = {v1, v2, v3, v4}, a = 1 and b = 0. Then
|T1| = 3 and |T2| = 5. Denote the vertex of degree 3 in V (G6) ∩ W by x. By Lemma 4.3,
|E(H[V (H) ∩ D3(G)])| = |E(G6[S1 ∪ T1])| = 0, and so NH(w1) ∪ NH(w2) ∪ NH(w3) ⊆ T2.

By (F3), NH(wi) ∩ NH(wj) = ∅ for all i �= j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, and so |NH(w1) ∪
NH(w2) ∪ NH(w3)| = 6, contrary to the fact that |T2| = 5. �

Lemma 4.6 G �= G7.

Proof Suppose G = G7. Then as shown in Table 1, G0 is isomorphic to G′
7 in Figure 1. Thus

we have S = {u1}, S1 = {w1, w2, w3}, T = {v1, v2, v3, v4} and a = b = 0. Then |T1| = 4
and |T2| = 4. By (F4) and Lemma 4.1 (viii), |E(G7[S1] ∪ T1)| = |E(H[V (H) ∩ D3(G)])| =
1
2 ((3a + 2(|S1| + |T1|)) − (4b + 3|T2|)) = 1. By (F3), for any i �= j with i, j ∈ {1, 2, 3},
NH(wi) ∩ NH(wj) = ∅. As in this case, {w1, w2, w3} ⊆ D2(H), and so |NH(w1) ∪ NH(w2) ∪
NH(w3)| = 6. Since |E(G7[S1] ∪ T1)| = 1, we have |(NH(w1) ∪ NH(w2) ∪ NH(w3)) ∩ T1| ≤ 1,
and so |(NH(w1) ∪ NH(w2) ∪ NH(w3)) ∩ T2| ≥ 5 by NH(w1) ∪ NH(w2) ∪ NH(w3) ⊆ T1 ∪ T2,
contrary to the fact that |T2| = 4. �

Lemma 4.7 If G = G1, then G is supereulerian.

Proof Suppose G = G1. We use the notation in Table 1 for G1. As a = 2, let D3(G) ∩ W =
{x, y}. By Lemma 4.3, E(G[S1∪{x, y}]) = ∅. Hence N(x)∪N(y) ⊆ T2 = {w7, w8, w9, w10, w11,

w12}.
If N(x)∩N(y) �= ∅, then there is a vertex in T2 (say w7) which is adjacent to neither x nor

y. Hence NH(w7) ⊆ S1. Since vertex w7 has degree 3 in H, C4 must be induced. Therefore
N(x) ∩ N(y) = ∅.

Without loss of generality, by (F3) we may assume that x ∈ N(w7)∩N(w9)∩N(w11), and
y ∈ N(w8) ∩ N(w10) ∩ N(w12). Thus |N(w7) ∩ S1| = |N(w8) ∩ S1| = 2. By (F3), without
loss of generality, we may assume that w7 ∈ N(w1) ∩ N(w4) and w8 ∈ N(w2) ∩ N(w5). Hence
|N(w3) ∩ {w9, w10, w11, w12}| = |N(w6) ∩ {w9, w10, w11, w12}| = 2. By symmetry and by (F3),
we may also assume that w3 ∈ N(w9) ∩ N(w11) and w6 ∈ N(w10) ∩ N(w12).

By the assumptions above, we got a graph G′
1 = G[E(G0) ∪ {xw7, xw9, xw11, yw8, yw10,

yw12, w1w7, w4w7, w2w8, w5w8, w3w9, w3w11, w6w10, w6w12}] (see Figure 1). Then G′
1 is a span-

ning subgraph of G. Since G′
1−{wv1, wv2, wv3, w3w11, w6w12, xw9, yw10} is a spanning eulerian

subgraph of G′
1, G is supereulerian. �
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Lemma 4.8 If G = G2, then G is supereulerian.

Proof Suppose G = G2. We use the notation in Table 1 for G2. Then T1 = ∅, and so by
Lemma 4.1 (vi), T2 = {w10, w11, w12, w13}. As a = b = 0, 3a + 2(|S1| + |T1|) − 4b + 3|T2| =
18− 12 = 6, and so by Lemma 4.1 (viii) and by (F4), |E(G[S1])| = 3. Let H1 = H −E(G[S1]).

By (F3), g(G) ≥ 5, and so NH1(w10) ∩ NH1(w11) = ∅ and NH1(w12) ∩ NH1(w13) = ∅. Let
P = NH1(w10) ∪ NH1(w11) and Q = NH1(w12) ∪ NH1(w13). Then by (F4),

P ∪ Q ⊆ S1. (4.4)

As {w10, w11, w12.w13} ⊆ D3(H1), |NH1(w10)| = |NH1(w11)| = |NH1(w12)| = |NH1(w13)| = 3.
Thus |P | = |Q| = 6. If |P ∩ Q| ≥ 5, then NH1(w10) ⊆ (P ∩ Q) or NH1(w11) ⊆ (P ∩ Q). We
suppose NH1(w10) ⊆ (P ∩ Q). By |NH1(w10)| = 3, w10 has two neighbors in some member
of {NH1(w12), NH1(w13)}, say in NH1(w12). Thus the two neighbors and {w10, w12} together
induce a 4-cycle in G, contrary to (F3). If |P ∩ Q| ≤ 2, then |P ∪ Q| ≥ 10 > 9 = |S1|, contrary
to (4.4). Hence 3 ≤ |P ∩ Q| ≤ 4.

Case 1 |P ∩ Q| = 4.

Since |P ∩ Q| = 4 and |S| = 3, for some ui ∈ S, |(P ∩ Q) ∩ N(ui)| ≥ 2. Hence
we may assume that w1, w2 ∈ (P ∩ Q) ∩ N(u1). By (F3), NH1(w1) ∩ NH1(w2) = ∅. As
{w1, w2} ⊆ (P ∩ Q) ∩ D2(H), we have |NH1(w1) ∩ {w10, w11}| = |NH1(w1) ∩ {w12, w13}| = 1
and |NH1(w2) ∩ {w10, w11}| = |NH1(w2) ∩ {w12, w13}| = 1. Hence by NH1(w1) ∩ NH1(w2) = ∅,
{w10, w11, w12, w13} ⊆ NH1(w1) ∪ NH1(w2). Without loss of generality, assume that {w1w10,

w1w12, w2w11, w2w13} ⊆ E(G2). By symmetry and (F3), we may further assume {w10w4,
w10w7,w11w5,w11w8} ⊆ E(G2). As |P ∪ Q| = |P | + |Q| − |P ∩ Q| = 8 < 9 = |S1| and
by (4.4), |S1 − P ∪Q| = 1. If w3 ∈ P ∪Q, then by {w10, w11, w12, w13} ⊆ NH1(w1) ∪NH1(w2),
for some i ∈ {10, 11, 12, 13}, |N(wi) ∩ NH1(u1)| ≥ 2, say |N(w10) ∩ NH1(u1)| ≥ 2. Then
G[{u1, w10}∪ (N(w10)∩NH1(u1))] contains a 4-cycle, contrary to (F3). Therefore, w3 /∈ P ∪Q.

It follows that either w6 ∈ N(w12) and w9 ∈ N(w13) or w6 ∈ N(w13) and w9 ∈ N(w12).
By symmetry, we assume w6 ∈ N(w12) and w9 ∈ N(w13). Thus w3 must be adjacent to one of
vertices w4, w5 and w6. The proofs for each of these subcases will be similar, and so we shall
only prove the case when w3w4 ∈ E(G) and omit the others.

Let G′
2 = G0 +{w1w10, w1w12, w2w11, w2w13, w10w4, w10w7, w11w5, w11w8, w6w12, w9w13,

w3w4} (see Figure 1). Then G′
2 is a spanning subgraph of G. As G′

2 − {wv2, v1w10, w1w12,

w2w13} is a spanning eulerian subgraph of G′
2, G is supereulrian.

Case 2 |P ∩ Q| = 3.

By (4.4) and |P ∪ Q| = |P | + |Q| − |P ∩ Q| = 9 = |S1|, P ∪ Q = S1, and so Δ(G2[S1]) =
1. Let P ∪ Q = {z1, z2, z3}. Hence {NH1(z1), NH1(z2), NH1(z3)} ⊂ {{w10, w12}, {w10, w13},
{w11, w12}, {w11, w13}}. By symmetry, we may assume NH1(z1) = {w10, w12}, NH1(z2) =
{w10, w13} and NH1(z3) = {w11, w12}. Let G′′

2 = G0 +E(H1). Then G′′
2 is a spanning subgraph

of G. (An example with z1 = w1, z2 = w4, z3 = w7 is shown in Figure 1.) By |E(G2[S1])| = 3
and Δ(G2[S1]) = 1, O(G′′

2) = {w, v1, v2, z1, z2, z3}. It follows that G′′
2 − {wv1, z1w10, z2w10,

z3w12, v2w12} is a spanning eulerian subgraph of G′′
2 , and so G is supereulrian. �

Lemma 4.9 If G = G4, then G is supereulerian.
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Proof Suppose G = G4. We use the notation in Table 1 for G4. As a = 1, let D3(G)∩W = {x}.
Since |T1| = 1, by Lemma 4.1 (vi), |T2| = 2|T | − |T1| = 5. Without loss of generality, let
T1 = {w7} and so T2 = {w8, w9, w10, w11, w12}. By Lemma 4.1 (viii), |E(G4[S1 ∪ {w7, x}])| =
3a + 2(|S1| + |T1|) − 4b + 3|T2| = 1. Let E(G4[S1 ∪ {w7, x}]) = {e}.
Case 1 x is not incident with e.

Since E(G4[S1∪{w7, x}]) = {e}, x is an isolated vertex in G4[S1∪{w7, x}] and so N(x) ⊆ T2.
If N(x) ⊆ T2 − {w8}, then by |N(x)| = 3, for some i ∈ {2, 3}, |N(vi) ∩ N(x)| ≥ 2, and so
G[{x, vi} ∪ (N(vi) ∩N(x))] has a 4-cycle, contrary to (F3). Hence x ∈ N(w8). Without loss of
generality, we may assume x ∈ N(w9) ∩ N(w11).

Thus by (F4), NH(w10) ⊆ S1 ∪ {w7}. If NH(w10) ⊆ S1, then as |NH(w10)| = 3, for
some i ∈ {1, 2}, |N(ui) ∩ NH(w10)| ≥ 2, and so G[{ui, w10} ∪ (N(ui) ∩ NH(w10))] has a 4-
cycle, contrary to (F3). Hence w10 ∈ N(w7). Similarly, w12 ∈ N(w7). Since |NH(w8)| = 3,
w8 �∈ N(w7) and x ∈ NH(w8), we have |NH(w8) ∩ S1| = 2. Then by (F3), w8 must be
adjacent to one vertex in {w1, w2, w3} and to one vertex in {w4, w5, w6}. Thus we may as-
sume w8 ∈ N(w1) ∩ N(w4). Since e cannot be incident with two vertices in {w1, w2, w3},
with w8 ∈ N(w1), one of {w2, w3} must be adjacent to two vertices in {w9, w10, w11, w12}.
Similarly, one of {w5, w6} must be adjacent to two vertices in {w9, w10, w11, w12}. With-
out loss of generality, let |N(w2) ∩ {w9, w10, w11, w12}| = |N(w5) ∩ {w9, w10, w11, w12}| = 2.
By (F3), {NH(w2), NH(w5)} = {{w9, w12}, {w10, w11}} and NH(w2) �= NH(w5). By symmetry,
we assume {w2w9, w2w12, w5w10, w5w11} ⊆ E(G4). Note that NH(w3) ∩ {w7, w8} = ∅ and
NH(w6) ∩ {w7, w8} = ∅.

Under these assumptions, we shall show e = w3w6. If NH(w3) ⊆ {w9, w10, w11, w12}, then
NH(w3) ∈ {{w9, w10}, {w9, w11}, {w9, w12}, {w10, w11}, {w10, w12}, {w11, w12}} by |NH(w3)| =
2. In any case, G would have a 4-cycle (see Table 2), contrary to (F3).

NH(w3) is in G has a 4-cycle in

w9, w10 G[{w3, w9, w10, v2}]
w9, w11 G[{w3, w9, w11, x}]
w9, w12 G[{w3, w9, w12, w2}]
w10, w11 G[{w3, w10, w11, w5}]
w10, w12 G[{w3, w10, w12, w7}]
w11, w12 G[{w3, w11, w12, v3}]

Table 2 Possible 4-cycles in G

Hence, by NH(w3) ∩ {w7, w8} = ∅, |NH(w3) ∩ {w4, w5, w6}| ≥ 1. If |NH(w3) ∩ {w4, w5, w6}| ≥
2, then G[N(w3) ∩ N(u2) ∪ {w3}] contains a 4-cycle, contrary to (F3). Hence |NH(w3) ∩
{w4, w5, w6}| = 1. By symmetry, |NH(w6) ∩ {w1, w2, w3}| = 1. As {e} = E(G1[S1 ∪ {w7, x}]),
we have e = w3w6.

Let G′
4 = G0 + {xw8, xw9, xw11, w7w10, w7w12, w1w8, w4w8, w2w9, w2w12, w5w10, w5w11,

w3w6}. Thus we obtained a spanning subgraph G′
4 of G4 (see Figure 1). Since G′

4−{wv1, wv2,

wv3, w7w10, w5w11, w2w12, xw9} is a spanning eulerian subgraph of G′
4, G4 is supereulerian.

Case 2 x is incident with e.
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If e = xw7, then as |E(G1[S1 ∪ {w7, x}])| = 1, NH(w1) ∪ NH(w2) ∪ NH(w3) ⊆ {w8, w9,
w10, w11, w12} and by g(G4) ≥ 5, NH(wi) ∩ NH(wj) = ∅ (i �= j, i = 1, 2, 3, j = 1, 2, 3).
Hence |NH(w1)∪NH(w2)∪NH(w3)| = 6, contrary to NH(w1)∪NH(w2)∪NH(w3) ⊆ {w8, w9,
w10, w11, w12}. Therefore x /∈ N(w7) and so |N(x) ∩ S1| = 1. Thus by (F3), for every
v ∈ {w8, w9, w10, w11, w12}, NH(v) ∩ {x, w7} �= ∅. Therefore,

{w8, w9, w10, w11, w12} ⊆ NH(x) ∪ NH(w7),

and so
|NH(x) ∪ NH(w7) ∩ {w8, w9, w10, w11, w12}| ≥ 5.

But as dH(x) = 3, dH(w7) = 2 and |NH(x) ∩ S1| = 1,

|(NH(w7) ∪ NH(x)) ∩ {w8, w9, w10, w11, w12}| ≤ 4,

contrary to |NH(x) ∪ NH(w7) ∩ {w8, w9, w10, w11, w12}| ≥ 5. �

Lemma 4.10 If G = G5, then G is supereulerian.

Proof Suppose G = G5. We use the notation in Table 1 for G5, and so S = {u1, u2},
S1 = {w1, w2, w3, w4, w5, w6}, T = {v1, v2, v3} and a = b = 0. Since |T1| = 2, by Lemma
4.1 (vi), |T2| = 2|T | − |T1| = 4. By Lemma 4.1 (viii),

|E(G5[S1 ∪ T1])| = 3a + 2(|S1| + |T1|) − 4b + 3|T2| = 2.

Denote
E(G5[S1 ∪ T1]) = {e1, e2}.

As |T1| = 2, we may assume that T1 = {w7, w
′} for some w′ ∈ {w8, w9, . . . , w12}.

Case 1 w′ ∈ N(v1). Then w′ = w8.
Without loss of generality, we may assume that w1, w4 and w7 ∈ N(w9), and that w2,

w5 and w8 ∈ N(w10). Then each of w11 and w12 must be adjacent to one in {w7, w8}. By
symmetry, assume w7w11, w8w12 ∈ E(G5). As w9, w11 ∈ N(w7) and as w10, w12 ∈ N(w8), both
of e1 and e2 can only be adjacent to vertices in S1. By (F3), g(G5) ≥ 5, and so e1 is not adjacent
to e2. Since NH(w9) = {w1, w4, w7} and NH(w10) = {w2, w5, w8}, each of w3 and w6 is adjacent
to at least one in {w11, w12}. Thus we may assume that w3w11, w6w12 ∈ E(G5) (the proofs for
the other cases w3w12, w6w11 ∈ E(G5) or w3w11, w6w11 ∈ E(G5) or w3w12, w6w12 ∈ E(G5) are
similar).

Let G′
5 = G0 + {w1w9, w4w9, w7w9, w2w10, w5w10, w8w10, w7w11, w8w12, w3w11, w6w12}.

Then G′
5 is a spanning subgraph of G5 (see Figure 1). Since G′

5−{wv1, wv2, wv3, w7w11, w8w12}
is a spanning eulerian subgraph of G′

5, G5 is supeuelerian.

Case 2 w′ /∈ N(v1). Thus we may assume that w′ = w9.
Then by (F3), w8w9, w10w7 ∈ E(G5). By symmetry, each of w11 and w12 must be adjacent

to one in {w7, w9}, to one in {w1, w2, w3} and one in {w4, w5, w6}. Without loss of generality,
we assume vertex w1, w4 and w7 ∈ N(w11), and w2, w5 and w9 ∈ N(w12). Let G′′

5 = G0 +
{w8w9, w7w10, w1w11, w4w11, w7w11, w2w12, w5w12, w9w12}. Thus G′′

5 is a spanning subgraph
G5 (see Figure 1).

As NH(w7) = {w10, w11} and NH(w9) = {w8, w12}, E(G5[S1] ∪ T1) = E(G5[S1]). By (F3),
Δ(G5[S1]) = 1. Since NH(w11) = {w1, w4, w7} and NH(w12) = {w2, w5, w9}, each of w3
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and w6 is adjacent to w8 or w10. If {w3w10, w6w8} ⊂ E(G5) (or similarly, {w3w8, w6w10} ⊂
E(G5)), then G′′

5 + {w3w10, w6w8} − {wv1, wv2, wv3, w8w9, w7w10} is an eulerian subgraph of
G′′

5 + {w3w10, w6w8} which spans G5, and so G5 is supereulerian.
If {w3w8, w6w8} ⊂ E(G5) (or similarly, {w3w10, w6w10} ⊂ E(G5)), then G′′

5 +{w3w8, w6w8}
−{wv3, v1w7, v2w9} is a spanning eulerian subgraph of G′′

5 + {w3w8, w6w8} that spans G5, and
so G5 must be supereulerian. �

Lemma 4.11 If G = G8, then G is supereulerian.

Proof Suppose G = G8. We use the notation in Table 1 for G8, and so S = ∅, T =
{v1, v2, v3, v4, v5}. By Lemma 4.3,

|E(H[V (H) ∩ D3(G)]) = ∅,
and so

H is a bipartite graph with a vertex bipartition (T1, T2). (4.5)

By (F3), for any i with 1 ≤ i ≤ 5,

NH(w2i−1) ∩ NH(w2i) = ∅. (4.6)

Without loss of generality, assume that w8, w10 ∈ T2. Define

T ′ = {v ∈ T : NH(v) ⊆ T2}.
If |T ′| ≥ 2, as |T1| = 6 and |T2| = 4, we may assume {w7, w8, w9, w10} = T2. By (F3) and (4.5),
NH(w7) ∪ NH(w8) = {w1, w2, w3, w4, w5, w6} = NH(w9) ∪ NH(w10), |NH(w7)| = |NH(w8)| =
|NH(w9)| = |NH(w10)| = 3 and NH(w7) ∩ NH(w8) = NH(w9) ∩ NH(w10) = ∅. It follows that
either |NH(w7)∩NH(w9)| ≥ 2 or |NH(w7)∩NH(w10)| ≥ 2, forcing G8 to has a 4-cycle, contrary
to (F3). Hence |T ′| ≤ 1.

Case 1 |T ′| = 1.
We may assume that T ′ = {v5}, and so by symmetry, assume that T2 = {w6, w8, w9, w10}.

By (4.6) and (F3), we have that NH(w9) ∪ NH(w10) = {w1, w2, w3, w4, w5, w7}. By symme-
try, let {w1w9, w3w9, w5w9} ⊂ E(G8), it follows {w2w10, w4w10, w7w10} ⊂ E(G8). By (F3),
w6w7, w5w8 ∈ E(G8). Let G′

8 = G0 +{w1w9, w3w9, w5w9, w2w10, w4w10, w7w10, w6w7, w5w8}.
Thus G′

8 is a spanning subgraph of G8 (see Figure 1). Since G′
8 − {wv1, wv2, wv3, w5w9, w9v5,

w7v4} is eulerian, G8 is supereulerian.

Case 2 |T ′| = 0.
Then we may assume that T2 = {w4, w6, w8, w10}. By (4.6) and by symmetry, we may

assume that {w1w4, w1w6, w2w8, w2w10} ⊂ E(G8). As w8, w10 ∈ N(w2), by (F3), w3 /∈ N(w8)∩
N(w10), and so w3w6 ∈ E(G8). Similarly, w4w5, w7w10, w8w9 ∈ E(G8). Let G′′

8 = G0 +
{w1w4, w1w6, w2w8, w2w10, w3w6, w4w5, w7w10, w8w9}. Thus G′′

8 is a spanning subgraph of
G8 (see Figure 1). As wv3w5w4v2w3w6w1v1w2w10w7v4w8w9v5w is a Hamilton cycle of G′′

8 , G8

is supereulerian. �

5 Remarks

Remark 5.1 Both Theorem 1.1 (Theorem 3.12 of [9]) and Theorem 1.3 in this paper raise
the following a question: if G is a 3-edge-connected graph and if the number of 3-edge-cuts of



302 Li X. M., et al.

G is k, what is the largest value of k such that every 3-edge-connected graph G with at most k

edge-cuts of size 3 is supereulerian if and only if G cannot be contracted to the Petersen graph?
Theorem 1.1 says that k ≥ 10 and in this paper we prove k ≥ 11. However, since either of
the two Blanusa snarks (see [2] or [14]) is 3-edge-connected and nonsupereulerian, has exactly
18 edge-cuts of size 3, and cannot be contracted to the Petersen graph, we have k ≤ 17. We
conclude this section by conjecturing that k = 17.
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