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Let τ (G) and λ2(G) be the maximum number of edge-disjoint
spanning trees and the second largest eigenvalue of a graph G ,
respectively. Motivated by a question of Seymour on the relation-
ship between eigenvalues of a graph G and τ (G), Cioabă and Wong
conjectured that for any integers k � 2, d � 2k and a d-regular
graph G , if λ2(G) < d − 2k−1

d+1 , then τ (G) � k. They proved this con-
jecture for k = 2,3. Gu, Lai, Li and Yao generalized this conjecture
to simple graph and conjectured that for any integer k � 2 and
a graph G with minimum degree δ and maximum degree �, if
λ2(G) < 2δ − � − 2k−1

δ+1 then τ (G) � k. In this paper, we prove that

λ2(G) � δ− 2k−2/k
δ+1 implies τ (G) � k and show the two conjectures

hold for sufficiently large n.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We only consider finite and simple graph in this paper. Undefined notation will follow Bondy and
Murty [1]. Let G be a graph. We use κ ′(G) to represent the edge connectivity of G and τ (G) to
represent the maximum number of edge-disjoint spanning trees of G . See Palmer’s survey [11] for a
literature review on τ (G).

Let G be a simple graph with vertex set {v1, . . . , vn}. The adjacent matrix of G is the n × n matrix
A(G) := (aij), where aij = 1 if vi and v j are adjacent and otherwise aij = 0. As G is simple and
undirected, A(G) is symmetric (0,1)-matrix. The eigenvalues of G are the eigenvalues of A(G). We
use λi(G) to denote the ith largest eigenvalue of G . So λ1(G) � λ2(G) � · · · � λn(G). Motivated by
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Kirchhoff’s matrix tree theorem [8] and by a problem of Seymour (see Ref. [19] of [5]), Cioabă and
Wong [5] considered the following problem.

Problem 1.1. (See [5].) Let G be a connected graph. Determine the relationship between τ (G) and
eigenvalues of G .

Cioabă and Wong proposed the following conjecture.

Conjecture 1.2. (Cioabă and Wong [5]) Let k and d be two integers with d � 2k � 4. If G is a d-regular graph
with λ2(G) < d − 2k−1

d+1 , then τ (G) � k.

A fundamental theorem of Nash-Williams and Tutte characterizes graphs with at least k edge-
disjoint spanning trees. Let (V 1, . . . , Vt) be a sequence of disjoint vertex subsets of V (G) and
e(V 1, . . . , Vt) means the number of edges whose ends lie in different V i ’s.

Theorem 1.3. (Nash-Williams [10] and Tutte [13]) Let G be a connected graph and let k > 0 be an integer.
Then τ (G) � k if and only if for any partition (V 1, . . . , Vt) of V (G), e(V 1, . . . , Vt) � k(t − 1).

Using this theorem, Cioabă and Wong [5] proved Conjecture 1.2 for k = 2,3 and also constructed
some examples to show the bound is essentially best possible. For general k, using the following
result of Cioabă [4], Cioabă and Wong [5] obtained Theorem 1.5.

Theorem 1.4. (Cioabă [4]) Let k and d be two integers with d � k � 2. If G is a d-regular graph with λ2(G) <

d − (k−1)n
(d+1)(n−d−1)

then κ ′(G) � k.

Theorem 1.5. (Cioabă and Wang [5]) Let k and d be two integers with d � 2k � 4. If G is a d-regular graph
with λ2(G) < d − 2(2k−1)

d+1 , then τ (G) � k.

Later, Gu, Lai, Li and Yao [9] generalize this investigation into general simple graph and propose
the following conjecture.

Conjecture 1.6. (Gu, Lai, Li and Yao [9]) Let k be an integer with k � 2 and G be a graph with minimum degree
δ � 2k and maximum degree �. If λ2(G) < 2δ − � − 2k−1

δ+1 , then τ (G) � k.

In fact, Gu, Lai, Li and Yao [9] generalize Theorem 1.4 into general simple graph case and obtained
the following result, and use this result to prove the their main theorem, stated as Theorem 1.8.

Theorem 1.7. (Gu, Lai, Li and Yao [9]) Let k � 2 be an integer and G be a graph with minimum degree δ � 2k
and maximum degree �. If λ2(G) < 2δ − � − 2(k−1)

δ+1 , then κ ′(G) � k.

Theorem 1.8. (Gu, Lai, Li and Yao [9]) Let k � 2 be an integer, G be a graph with minimum degree δ and
maximum degree �.

(i) If δ � 4 and λ2(G) < 2δ − � − 3
δ+1 , then τ (G) � 2.

(ii) If δ � 6 and λ2(G) < 2δ − � − 5
δ+1 , then τ (G) � 3.

(iii) For k � 4, if δ � 2k and λ2(G) < 2δ − � − 3k−1
δ+1 , then τ (G) � k.

Utilizing Theorem 1.3, Gusfield [6] proved a relationship between edge-connectivity of G and τ (G)

for a graph G . (A generalization of this result can be found in [3].)

Theorem 1.9. If κ ′(G) � 2k, then τ (G) � k.
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The purpose of this paper is to make further investigation of Conjecture 1.2 and Conjecture 1.6.
The following results are obtained.

Theorem 1.10. Let G be a graph with minimum degree δ � k � 2 and of order n. If λ2(G) � δ − (k−1)n
(δ+1)(n−δ−1)

,

then κ ′(G) � k.

Theorem 1.11. Let G be a graph with minimum degree δ � 2k � 4 and of order n. If λ2(G) � δ − 2k−2/k
δ+1 or

λ2(G) � δ − 2k−1
δ+1 and n � (2k − 1)(δ + 1), then τ (G) � k.

Theorem 1.10 is a generalization to simple graph of Theorem 1.4 which is better than Theorem 1.7.
When k = 2, Theorem 1.11 is slightly stronger than the two conjectures. For general k, Theorem 1.11
suggests the two conjectures hold for sufficiently large n.

The main tool of this paper is eigenvalue interlacing. In the next section, some preliminaries about
eigenvalue interlacing and quotient matrices, which will be used in this paper, are displayed. In Sec-
tion 3 and Section 4, Theorem 1.10 and Theorem 1.11 will be proved, respectively.

2. Preliminaries

Given two non-increasing real sequences λ1 � λ2 � · · · � λn and μ1 � μ2 � · · · � μm with n > m,
the second sequence is said to interlace the first one if λi � μi � λn−m+i for i = 1, . . . ,m. If there
exists i such that μ j = λ j for 1 � j � i and μ j = λn−m+ j for i + 1 � j � m, then the interlacing is
called tight. For convenience, we say the eigenvalues of a matrix B interlace the eigenvalues of a
matrix A, it means the non-increasing eigenvalue sequence of B interlaces that of A.

Let (V 1, . . . , Vt) be a partition of V (G). For 1 � i, j � t , let bij denote the average number of
neighbors in V j of the vertices in V i . The quotient matrix of this partition is the t × t matrix B whose
(i, j)th entry equals bij . The partition is called equitable if for each i, j, every vertex in V i has the
same number of neighbors in V j . Haemers [7] showed the eigenvalues of the quotient matrix are in
fact interlacing the eigenvalues of G .

Theorem 2.1. (Haemers [7]) Let G be a graph. Then the eigenvalues of any quotient matrix B of G interlace the
eigenvalues of G. Furthermore, if the interlacing is tight then the partition is equitable.

The next theorem is known as the Cauchy Interlace Theorem. A proof of this theorem can be found
on page 186 of [12].

Theorem 2.2. If H is an induced subgraph of G, then the eigenvalues of H interlace the eigenvalues of G.

For a graph G , we use d̄(G) to represent the average degree of G .

Theorem 2.3. (Proposition 3.1.2 in [2]) Let G be a graph with largest eigenvalue λ1 and average degree d̄. Then
λ1 � d̄. Furthermore, if the equality holds then G is regular.

Note that spectrum of a disconnected graph is the union of the spectrum of its components. From
the above two theorem, the following corollary can be obtained easily.

Corollary 2.4. (Cioabă and Wong [4]) Let S and T be disjoint vertex subsets of G and e(S, T ) = 0. Then
λ2(G) � λ2(G[S ∪ T ]) � min{λ1(G[S]), λ1(G[T ])} � min{d̄(G[S]), d̄(G[T ])}.

3. Eigenvalues and edge connectivity

In this section, we prove Theorem 1.10 which is useful to deduce Theorem 1.11.



Q. Liu et al. / Linear Algebra and its Applications 444 (2014) 146–151 149
Proof of Theorem 1.10. Suppose that G is not k-edge connected. Then there is a partition (A, B) of G
such that e(A, B) = r � k − 1. Let |A| = n1, |B| = n2. Then n1 + n2 = n. First, we show that

at least one vertex in A has no neighbor in B. (1)

Suppose, by contrary, that for all v ∈ A, N(v)∩ B �= ∅. Then pick u ∈ A and then r = e(A, B) = |N(u)∩
B|+|e(A −{u}, B)| � |N(u)∩ B|+|A −{u}| � |N(u)∩ B|+|N(u)∩ A| = d(u) � δ � k, a contradiction, and
(1) holds. By (1), pick v0 ∈ A so that N(v0) ∩ B = ∅. Then n1 = |A| � |N(v0) ∪ {v0}| � δ + 1. Similarly,
n2 � δ + 1. Together with n1 + n2 = n, we have δ + 1 � n1 � n − δ − 1. Thus, n1n2 = n1(n − n1) �
(δ + 1)(n − δ − 1). Let d1 = 1

n1

∑
v∈A d(v) and d2 = 1

n2

∑
v∈B d(v). Then d1,d2 � δ, and the quotient

matrix of the partition (A, B) is

A2 =
[

d1 − r
n1

r
n1

r
n2

d2 − r
n2

]
.

As the characteristic polynomial of A2 is λ2 − (d1 − r
n1

+ d2 − r
n2

)λ + (d1 − r
n1

)(d2 − r
n2

) − r2

n1n2
, by

quadratic formula,

λ2(A2) = 1

2

(
d1 − r

n1
+ d2 − r

n2

−
√(

d1 − r

n1
+ d2 − r

n2

)2

− 4

(
d1 − r

n1

)(
d2 − r

n2

)
+ 4

r2

n1n2

)

= 1

2

(
d1 − r

n1
+ d2 − r

n2
−

√(
d1 − r

n1
− d2 + r

n2

)2

+ 4
r2

n1n2

)

= 1

2

(
d1 + d2 − r

n1
− r

n2
−

√
(d1 − d2)2 +

(
r

n1
+ r

n2

)2

+ 2(d1 − d2)

(
r

n2
− r

n1

))

� 1

2

(
d1 + d2 − r

n1
− r

n2
−

√
(d1 − d2)2 +

(
r

n1
+ r

n2

)2

+ 2|d1 − d2|
(

r

n2
+ r

n1

))

= 1

2

(
d1 + d2 − r

n1
− r

n2
−

(
|d1 − d2| + r

n1
+ r

n2

))

= min{d1,d2} − rn

n1n2

� δ − (k − 1)n

(δ + 1)(n − δ − 1)
.

On the other hand, by Theorem 2.1, λ2(A2) � λ2(G) � δ − (k−1)n
(δ+1)(n−δ−1)

. Thus we must have λ2(A2) =
λ2(G) = δ − (k−1)n

(δ+1)(n−δ−1)
, and so both r = k − 1 and d1 = d2 = δ. Hence G must be δ-regular. Then,

also by quadratic formula,

λ1(A2) = 1

2

(
δ − r

n1
+ δ − r

n2

+
√(

δ − r

n1
+ δ − r

n2

)2

− 4

(
d1 − r

n1

)(
d2 − r

n2

)
+ 4

r2

n1n2

)

= 1

2

(
2δ − r

n1
− r

n2
+

√(
δ − r

n1
− δ + r

n2

)2

+ 4
r2

n1n2

)

= 1

2

(
2δ − r

n
− r

n
+

√(
r

n
− r

n

)2

+ 4
r2

n n

)

1 2 1 2 1 2
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= 1

2

(
2δ − r

n1
− r

n2
+

(
r

n1
+ r

n2

))
= δ = λ1(G).

Hence, the interlacing is tight. By Theorem 2.1, the partition is equitable. So, every vertex in A has the
same number of neighbors in B . This, together with (1), forces r = e(A, B) = 0. However r = k − 1 > 0,
a contradiction, which completes the proof. �
4. Eigenvalues and edge-disjoint trees

In this section, we give the proof of Theorem 1.11. In order to simplify the proof, we restate the
theorem here as follows.

Theorem 4.1. Let G be a graph with minimum degree δ � 2k � 4 and of order n and λ2(G) � δ − 2k−μ
δ+1 . If

μ = 2/k or μ = 1 and n � (2k − 1)(δ + 1), then τ (G) � k.

Proof. Suppose, by contrary and by Theorem 1.3, there is a partition (V 1, . . . , Vt) of V (G) such that
e(V 1, . . . , Vt) � k(t − 1) − 1. For each i = 1,2, . . . , let xi = |{ j | d(V j) = i}|. Then 2e(V 1, . . . , Vt) =∑∞

i=1 ixi and
∑∞

i=1 xi = t . It follows that
∑∞

i=1 2kxi = 2kt and
∑∞

i=1 ixi � 2k(t − 1) − 2. The difference
of them implies

∑∞
i=1(2k − i)xi � 2k + 2. Note that (2k − i)xi � 0 for i � 2k. So

2k−1∑
i=1

(2k − i)xi � 2k + 2. (2)

For each V i (1 � i � t), if d(V i) � 2k − 1 < δ then |V i | � δ + 1. For, otherwise, every vertex
in V i has at most δ − 1 neighbors in V i and thus has at least one neighbor outside V i . Let v ∈ V i .
Then d(V i) � |N(v) − V i | + |V i − {v}| � |N(v) − V i | + |N(v) ∩ V i | = d(v) � δ � 2k, a contradic-
tion. So, among V 1, . . . , Vt there are at least

∑2k−1
i=1 xi sets whose orders are at least δ + 1. Hence

n = |V (G)| � (δ + 1)
∑2k−1

i=1 xi . Let M := ∑2k−1
i=1 xi . Then

n � M(δ + 1). (3)

Denote γ � 
2k + 1 − μ − δ+1
n (2k − μ)�. Then it is easy to see that δ − 2k−μ

δ+1 � δ − (γ −1)n
(δ+1)(n−δ−1)

.

Thus, by the assumption of the theorem, λ2(G) � δ − (γ −1)n
(δ+1)(n−δ−1)

. By assigning the value of γ to k in
Theorem 1.10, κ ′(G) � γ . If μ = 1 and n � (δ + 1)(2k − 1), then

κ ′(G) � 2k − 1. (4)

On the other hand, if μ = 2
k we shall show (4) holds too.

In fact, by (3), κ ′(G) � γ � 2k + 1 − �μ + 2k−μ
M . Denote

r = 2k + 1 −
⌈

2

k
+ 2k − 2/k

M

⌉
. (5)

Then κ ′(G) � r, which implies xi = 0 for i = 1, . . . , r − 1. Since G is a counterexample, we have
τ (G) � k − 1. By Theorem 1.9, we must have κ ′(G) � 2k − 1. It follows from κ ′(G) � r that

r � 2k − 1, (6)

and

2k + 2 �
2k−1∑
i=1

(2k − i)xi =
2k−1∑
i=r

(2k − i)xi

� (2k − r)
2k−1∑
i=r

xi

= (2k − r)M.
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Substituting (5) into the above inequality, we have

2k + 2 �
(⌈

2

k
+ 2k − 2/k

M

⌉
− 1

)
M

<

(
2

k
+ 2k − 2/k

M

)
M = 2k − 2

k
+ 2

k
M.

It follows that M > k + 1. Substitute it into (5),

r � 2k + 1 −
⌈

2

k
+ 2k − 2/k

k + 1

⌉
= 2k − 1,

which implies (4) holds.
Combining (4) with (2), one can see that for each i = 1,2, . . . ,2k − 2, xi = 0 and M = x2k−1 �

2k + 2. Without loss of generality, we may assume that V i satisfies d(V i) = 2k − 1 for i = 1, . . . ,

2k + 2. Considering V 1, as d(V 1) = 2k − 1, there exists i ∈ {2, . . . ,2k + 2} such that e(V 1, V i) = 0,
i = 2 say. Then by Corollary 2.4, λ2(G) � min{λ1(G[V 1]), λ1(G[V 2])} � min{d̄(G[V 1]), d̄(G[V 2])} =
min{ 1

|V i |
∑

u∈V i
d(u)−d(V i): i = 1,2} � δ− 2k−1

δ+1 . By the assumption of the theorem, the equality must

hold, which implies there exists i ∈ {1,2} such that λ1(G[V i]) = d̄(G[V i]) = 1
|V i |

∑
u∈V i

d(u)−d(V i). By
Theorem 2.3, G[V i] is regular, which forces 2k − 1 = d(V i) = 0, a contradiction. The proof is com-
plete. �

When k � 3, for regular graphs, there still exists a small gap between the conjecture and Theo-
rem 4.1. However, the gap is small enough to make us give the following conjecture.

Conjecture 4.2. Let G be a graph with minimum degree δ � 2k � 4. If λ2(G) < δ − 2k−1
δ+1 , then τ (G) � k.
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