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Abstract For an integer s > 0 and for u, v ∈ V (G) with u �= v, an (s; u, v)-path-
system of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and
such an H is called a spanning (s; u, v)-path system if V (H) = V (G). The spanning
connectivity κ∗(G) of graph G is the largest integer s such that for any integer k with
1 ≤ k ≤ s and for any u, v ∈ V (G) with u �= v, G has a spanning (k; u, v)-path-
system. Let G be a simple connected graph that is not a path, a cycle or a K1,3. The
spanning k-connected index of G, written sk(G), is the smallest nonnegative integer
m such that Lm(G) is spanning k-connected. Let l(G) = max{m : G has a divalent
path of length m that is not both of length 2 and in a K3}, where a divalent path in
G is a path whose interval vertices have degree two in G. In this paper, we prove that
s3(G) ≤ l(G) + 6. The key proof to this result is that every connected 3-triangular
graph is 2-collapsible.

Keywords Spanning k-connected index · 3-triangular graph · Line graph ·
2-collapsible

1 Introduction

We refer to Bondy and Murty (2008) for terminologies and notations not defined here
and consider finite connected graphs only. For a graph G and a vertex v ∈ V (G), denote
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NG(v) = {u ∈ V (G) : u is adjacent to v in G} and EG(v) = {e ∈ E(G) : e is incident
with v in G}. Following Bondy and Murty (2008), we use c(G), δ(G), κ(G), and κ ′(G)

to represent the number of components, the minimum degree, the connectivity, and
the edge connectivity of graph G, respectively. For subsets X, Y ⊆ V (G), define
[X, Y ]G = {xy ∈ E(G) : x ∈ X, y ∈ Y }. When H, K are subgraphs of G, we use
[H, K ]G for [V (H), V (K )]G . The subscript G is often omitted when G is understood
from the context.

The line graph of graph G, written as L(G) or L1(G), has E(G) as its vertex set,
and two vertices in L(G) are adjacent if and only if the corresponding edges in G
have a common vertex. For an integer m ≥ 1, we define the m-th iterated line graph
Lm(G) = L(Lm−1(G)), where L0(G) = G. Intuitively, when m → ∞, Lm(G)

becomes more and more “locally dense”. It has been shown that for a connected graph
G such that G is not a path, cycle or a K1,3, the connectivity and edge-connectivity of
Lm(G) grows very fast as the number m increases. See Knor and Niepel (2003), Shao
(2010), Shao (2012), Zhang et al. (2012), among others. Therefore, for a graphical
property P, it is of interest to study what is the smallest integer m such that Lm(G)

has property P. Such smallest integer m is called the P-index of G. The concept of
hamiltonian index was first introduced by Chartrand and Wall (1973), who showed that
the hamiltonian index exists as a finite number. Clark and Wormald (1983) generalized
this idea and introduced hamiltonian-like indices.

A path with initial vertex u and terminal vertex v will be referred to as an (u, v)-path.
For an integer s > 0 and for u, v ∈ V (G) with u �= v, an (s; u, v)-path-system of
G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H
is called a spanning (s; u, v)-path system if V (H) = V (G). A graph G is spanning
s-connected if for any u, v ∈ V (G) with u �= v and for any k with 1 ≤ k ≤ s, G has
a spanning (k; u, v)-path-system. The spanning connectivity κ∗(G) of graph G is the
largest integer s such that G is spanning s-connected. Thus κ∗(G) ≥ 1 if and only if
G is hamiltonian-connected.

The concept of (s; u, v)-path system has been used in the design and the imple-
mentation of parallel routing and efficient information transmission in larger-scale
networking systems (see Akers and Krishnamurthy 1989, Hsu 1994, Lin et al. 2007
and references therein). By the definition, spanning s-connectivity is a combined
generalization of s-connectivity and hamiltonicity, which is closely related with faulty-
tolerance of networks. The study on spanning connectivity has received a lot of atten-
tion recently (see Albert et al. 2001, Lin et al. 2007, Tsai et al. 2004 and references
therein).

In this paper, we study spanning k-connected index sk(G), which is the smallest
nonnegative integer m such that Lm(G) is spanning k-connected. A key to the main
result of this paper is a result on 2-collapsible graphs.

Catlin (1988), introduced collapsible graphs as a tool to study supereulerian graphs.
Motivated by Catlin’s work, the concept of collapsible graphs has been generalized to
s-collapsible graphs in Chen et al. (2012b) and Li (2012). Let O(G) denote the set of
vertices in G with odd degree.

Definition 1.1 A graph G is s-collapsible if for any subset X ⊆ V (G) with |X | ≡ 0
(mod 2) , G has a spanning subgraph L X such that
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(i) both O(L X ) = X and κ ′(L X ) ≥ s − 1, and
(ii) G − E(L X ) is connected.

Such L X is called an (s, X)-subgraph of G.

The concept of collapsible graphs defined in Catlin (1988) coincides with
1-collapsible graphs in Definition 1.1.

An (u, v)-path P of G with u �= v is called a non-closed path. A non-closed path
P of G is called a divalent path in G if all the internal vertices of P have degree 2 in
G. Following Lai (1988), we define l(G) = max{m : G has a divalent path of length
m which is not a 2-path in a K3}. By definition, we have l(K3) = 1. A graph G is
k-triangular if each edge of G lies in at least k triangles, and 1-triangular is abbreviated
as triangular. We use J k

3 to denote the collection of k-triangular graphs.
In this paper, we shall prove the following theorems:

Theorem 1.2 Every connected 3-triangular graph G is 2-collapsible.

Theorem 1.3 Let G be a simple connected graph that is not a path, a cycle or K1,3.
Then s3(G) ≤ l(G) + 6.

Theorem 1.2 is best possible in the sense that there exists an infinite family graphs
in J 2

3 which is not 2-collapsible, as shown in the example below.

Example 1.4 Let G · H denote the graph obtained from G ∪ H by identifying a vertex
u of G with a vertex v of H. The graph K4 ∈ J 2

3 − J 3
3 and K4 is not 2-collapsible. It

can be seen that K4 · K4 · . . . · K4 is an infinite family of J 2
3 which is not 2-collapsible.

2 Some notations and preliminaries

The line graph of K1,3 is a 3-cycle. The iterated line graph of a cycle is always
isomorphic to the same cycle, and the lth iterated line graph of a path of length l is
K1. These are trivial cases. Thus we always assume that G is a connected graph that
is not a path, a cycle, or a K1,3.

Let G[X ] denote the subgraph of G induced by an edge subset X ⊆ E(G). When
no confusion arises, we shall adopt the convention that an edge subset X ⊆ E(G) is
also used to denote subgraph G[X ].

For two edge sets X and Y, the symmetric difference of X and Y is X ⊕ Y =
(X ∪Y )− (X ∩Y ). For graphs G and H, we define G ⊕ H to be the spanning subgraph
of G ∪ H with edge set E(G) ⊕ E(H), called the symmetric difference of G and H.
For a cycle C = u1u2 . . . uk , sometimes we may use G ⊕u1u2 . . . uk to denote G ⊕C .

For a graph G, and for X ⊆ E(G), the contraction G/X is obtained from G by
identifying the two ends of each edge in X and then by deleting the resulting loops. If H
is a subgraph of G, then we write G/H for G/E(H). We use Di (G) to denote the set of
all vertices of degree i in G. The concept of core is defined as follows, which was first
introduced in the dissertation of Shao (2005). Let G be a graph such that κ(L(G)) ≥ 3
and such that L(G) is not complete. For each v ∈ D2(G), let EG(v) = {ev

1, ev
2} and

define

X1(G) =
⋃

v∈D1(G)

EG(v), and X2(G) = {ev
2 : v ∈ D2(G)}. (1)
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Since κ(L(G)) ≥ 3, the minimum degree of L(G) is at least 3, and thus D2(G) is an
independent set of G, and for any v ∈ D2(G), |X2(G) ∩ EG(v)| = 1. The core of
graph G is defined to be

G0 = G/(X1(G) ∪ X2(G)) = (G − D1(G))/X2(G). (2)

Let Cs denote the collection of all s-collapsible graphs. By definition, for s ≥ 1,
any (s + 1, X)-subgraph of G is also an (s, X)-subgraph of G. This implies that

Cs+1 ⊆ Cs, for any positive integer s. (3)

The following previous results are needed in our proofs.

Lemma 2.1 (Proposition 2.2 of Chen et al. 2012b) Let G be a graph, and let s ≥ 1
be an integer. Then the following are equivalent.

(i) G ∈ Cs .
(ii) For any X ⊆ V (G) with X ≡ 0 (mod 2), G has a spanning connected subgraph

L X such that O(L X ) = X and κ ′(G − E(L X )) ≥ s − 1.

Lemma 2.2 (Corollary 2.4 of Chen et al. 2012b) Let s ≥ 1 be an integer. Then Cs

satisfies the following.

(i) K1 ∈ Cs

(ii) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs .
(iii) If H is a subgraph of G and if H, G/H ∈ Cs , then G ∈ Cs .

Lemma 2.3 (Corollary 2.6 (ii) of Zhang et al. 2012) Let s ≥ 3 be an integer. Then
Ll+s(G) is 2s−2-triangular.

Lemma 2.4 (Corollary 1 of Catlin 1988) Let G be a graph. If G contains a spanning
tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.

Theorem 2.5 (Theorem 4.3 (iii) of Chen et al. 2012a) Let G be a graph with core G0,
and let k ≥ 3 be an integer. If for any e, e′ ∈ E(G0) with e �= e′, G0 − {e, e′} is a
(k − 1)-collapsible graph, then κ∗(L(G)) ≥ k.

3 Proof of main results

Proof of Theorem 1.2 Suppose G is a counterexample.
By Lemma 2.4 and the fact that K3 is collapsible, G is 1-collapsible. By Lemma

2.1, for any vertex subset X ⊆ V (G) with |X | ≡ 0 (mod 2), G has

a spanning connected subgraph L X with O(L X ) = X. (4)

A subgraph L X satisfying (4) is said to have Property AX . By Lemma 2.1 and since
G is not 2-collapsible, there exists a vertex subset X ⊆ V (G) with |X | ≡ 0 (mod 2)

such that for any subgraph L X with property AX , G−E(L X ) is not connected. Choose
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(a) (b)

Fig. 1 Illustration for the proof of Claim 1. In a dotted lines belong to L X0 , while in b dotted lines are in
LY . The same notation is adopted in following figures

X0 to be such a vertex subset and choose L X0 to be a subgraph with property AX0

such that

r = c(G − E(L X0)) is as small as possible. (5)

Then r ≥ 2.
The following observations follow by the definition of symmetric difference and

the definition of G − L X0 .

Observation 3.1 (i) For a cycle C, O(L X0 ⊕ C) = O(L X0).
(ii) If e is an edge joining vertices in different components of G − E(L X0), then

e ∈ E(L X0).

Let H1, H2, . . . , Hr be the connected components of G − E(L X0). For an edge
u1u2, denote Wu1u2 = {w ∈ V (G) | G[{u1u2w}] is a 3-cycle}. Since G is 3-triangular,
we have |Wu1u2 | ≥ 3. For an edge u1u2 ∈ [Hi , Hj ] with i �= j , define

fw,u1u2 =
{

u1w, if w ∈ V(Hi),

u2w, if w ∈ V(Hj),

ew,u1u2 =
{

u1w, if w ∈ V(Hj),

u2w, if w ∈ V(Hi).

In other words, for a triangle containing an edge u1u2 ∈ [Hi , Hj ] (see Fig. 1a for an
illustration), fw,u1u2 is the edge lying in a component, while u1u2 and ew,u1u2 are the
two edges crossing the two components. For example, in Fig. 1a, fw1,u1u2 = u1w1
and ew1,u1u2 = u2w1. Further denote

W ′
u1u2

= Wu1u2 ∩ (V (Hi ) ∪ V (Hj )) and Fu1u2 = { fw,u1u2 | w ∈ W ′
u1u2

}.

It should be pointed out that the following Claims 1–4 hold for any edge crossing
different components of G − E(L X0). For simplicity of notation, we assume that the
edge is u1u2 ∈ [H1, H2].

We use Fig. 1 to illustrate the proof of Claim 1.
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Claim 1 If there exists a vertex w1 ∈ W ′
u1u2

such that fw1,u1u2 �∈ E(L X0), then for
any w ∈ Wu1u2 \ {w1}, {u1w, u2w} − E(L X0) �= ∅.

Proof Let C be the 3-cycle u1u2w1u1 and let LY = L X0 ⊕ C . By definition, LY =
(L X0 − {u1u2, u2w1}) ∪ {u1w1}. If LY is not connected, then since u1w1 is an edge
of LY and since L X0 is connected, u1, u2 must be in different components of LY . If
there exists a vertex w ∈ Wu1u2 such that {u1w, u2w} ⊆ E(L X0), then u1wu2 is a
2-path in LY connecting vertex u1 and u2, contrary to the fact that u1 and u2 are in
different component of LY . Hence LY is connected, and so by Observation 3.1 (i), LY

has property AX0 . By the definition LY = L X0 ⊕ C, (G − E(LY )) [V (H1) ∪ V (H2)]
is connected, and so H1 ∪ H2, H3, H4, . . . , Hr are the components of G − E(LY ). It
follows that c(G − E(LY )) = c(G − E(L X0)) − 1, contrary to (5). ��
Claim 2 If W ′

u1u2
�= ∅, then Fu1u2 ∩ E(L X0) = ∅.

Proof Notice that for any w ∈ W ′
u1u2

, {u1w, u2w} = { fw,u1u2 , ew,u1u2}. Since
ew,u1u2 ∈ [H1, H2], by Observation 3.1 (ii), ew,u1u2 ∈ E(L X0). Hence, if Fu1u2 �⊆
E(L X0), then by Claim 1, for any w ∈ W ′

u1u2
, fw,u1u2 �∈ E(L X0), and thus

Fu1u2 ∩ E(L X0) = ∅.
Suppose, by contradiction, that Fu1u2 ∩ E(L X0) �= ∅. Then Fu1u2 ⊆ E(L X0). Pick

w1 ∈ W ′
u1u2

. Suppose, without loss of generality, that w1 ∈ V (H1) (see Fig. 2). Let
LY = L X0 ⊕ u1u2w1u1 = L X0 − {u1u2, u2w1, w1u1}. Let w2 ∈ Wu1u2 − {w1}.
If w2 ∈ ⋃r

j=3 V (Hj ), then {u1w2, u2w2} ⊆ E(L X0). If w2 ∈ V (H1) ∪ V (H2),
then since Fu1u2 ⊆ E(L X0), we have {u1w2, u2w2} ⊆ E(L X0). In any case,
u1w2, u2w2 ∈ E(LY ) and so u1, u2 are in the same component of LY . With a similar
argument by replacing u1u2 by w1u2, we conclude that for some w3 ∈ W ′

w1u2
−{u1},

w1w3, w3u2 ∈ E(LY ). It follows that LY is connected (see Fig. 2(b)), and so
by Observation 3.1(i), LY has property AX0 . Furthermore, since G − E(LY ) =
(G − E(L X0))∪{u1u2, u1w1, u2w1}, we have c(G − E(LY )) = c(G − E(L X0))−1,
contrary to (5). ��
Claim 3 W ′

u1u2
= Wu1u2 .

Proof Suppose W ′
u1u2

�= ∅. Let w1 be a vertex in W ′
u1u2

. Then by Claim 2, fw1,u1u2 �∈
E(L X0). Since for any vertex w ∈ Wu1u2 ∩

(⋃r
j=3 V (Hj )

)
, {u1w, u2w} ⊆ E(L X0),

it follows from Claim 1 that Wu1u2 = W ′
u1u2

. This proves

either W ′
u1u2

= Wu1u2 or W ′
u1u2

= ∅. (6)

By (6), to prove Claim 3, we assume that W ′
u1u2

= ∅ to derive a contradiction.
Pick w1 ∈ Wu1u2 . Since W ′

u1u2
= ∅, we may assume that w1 ∈ V (H3) (see Fig.3).

Let LY = L X0 ⊕ u1u2w1u1. Then LY = L X0 − {u1u2, u1w1, u2w1}. Since u2 ∈
Wu1w1 − (V (H1)∪ V (H3)), it follows by (6) that Wu1w1 = W ′

u1w1
. Let w2 ∈ Wu1w1 −

{u2}. Then w2 �∈ V (H1) ∪ V (H3), and so {u1w2, w1w2} ⊆ E(L X0). It follows that
u1w2, w2w1 ∈ E(LY ). Similarly, for some w3 ∈ Ww1u2 , w1w3, u2w3 ∈ E(LY ).
Hence {w1, u1, u2} is connected by the path u1w2w1w3u2. Thus LY is connected and
so by Observation 3.1 (i), LY has property AX0 . By the definition LY = L X0 ⊕ C ,
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(a) (b)

Fig. 2 Illustration for the proof of Claim 2

(a) (b)

Fig. 3 Illustration for the proof of Claim 3

(G − E(LY )) [V (H1 ∪ H2 ∪ H3)] is connected, and so H1 ∪ H2 ∪ H3, H4, . . . , Hr are
the components of G − E(LY ). It follows that c(G − E(LY )) = c(G − E(L X0))− 2,
contrary to (5). ��

Claim 4 For any vertex w ∈ Wu1u2 , fw,u1u2 is a cut edge for the component of
G − E(L X0) which contains w.

Proof By Claim 3, Wu1u2 ⊆ V (H1) ∪ V (H2). Let w be an arbitrary vertex of Wu1u2 .
For simplicity of statement, assume w ∈ V (H2). Then fw,u1u2 = wu2. We are to
show wu2 is a cut edge of H2.

First, suppose that there exists a vertex w1 ∈ Wu1u2 ∩ V (H1). By Claim 2, both
u1w1, u2w �∈ E(L X0). Let C be the 4-cycle u1w1u2wu1 and let LY = L X0 ⊕C . By the
definition of L X0 ⊕C, LY is connected (see Fig. 4b), and so by Observation 3.1 LY has
property AX0 . In order not to violate the choice of L X0 , we must have c(G−E(LY )) ≥
c(G − E(L X0)), which is possible only if w1u1 is a cut edge of H1 and wu2 is a cut
edge of H2 (see Fig. 4b).

Next, suppose all vertices of Wu1u2 lie in H2. Since G ∈ J 3
3 , Wu1u2 \ {w} has

two distinct vertices w1, w2. By Claim 2, u2wi �∈ E(L X0) for i = 1, 2. Let LY =
L X0 ⊕ u1w1u2w2u1 (see Fig. 4c, d). Similarly to the above, in order not to violate
the choice of L X0 , we have c(G − E(LY )) ≥ c(G − E(L X0)), which is possible only
when the removal of {u2w1, u2w2} from H2 separates u2 from {w1, w2}. Let Hu2 be
the component of H2 − {u2w1, u2w2} containing u2, and Hw1,w2 = H2 − Hu2 (see
Fig. 4e). Then w ∈ V (Hu2). Let L Z = L X0 ⊕ u1w1u2wu1 (Fig. 4f). Again, in order
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Illustration for the proof of Claim 4

not to violate the choice of L X0 , we have c(G − E(L Z )) ≥ c(G − E(L X0)). Then,
vertex u2 must be separated from vertex w in G − E(L Z ), which is possible only when
edge u2w is a cut edge of Hu2 , and thus a cut edge of H2 (Fig. 4f). ��

For i = 1, 2, denote FHi = ⋃
u1∈V (H1),u2∈V (H2)

(
Fu1u2 ∩ E(Hi )

)
. By Claim 3, at

least one of FH1 and FH2 is nonempty, say FH1 . By Claim 4, every edge f ∈ FH1 is
a cut edge of H1. Choose such a cut edge f that one component of H1 − f contains
no edge of FH1 . Suppose f = fw1,u1u2 , and that the two components of H1 − f are
Hw1 and Hu1 , such that

E(Hw1) ∩ FH1 = ∅. (7)

Claim 5 There exists an infinite sequence of vertices {u3, u4, . . .} and a sequence of
corresponding subgraphs {Hu3 , Hu4 , . . .} satisfying the following conditions:

(i) ui+2 ∈ W (w1ui+1) \ {u1, ui } (i = 1, 2, . . .),
(ii) ui+2 ∈ V (Hui+1), ui+1ui+2 is a cut edge of Hui+1 , and Hui+2 is the component of

Hui+1 − ui+1ui+2 containing vertex ui+2 (where Hu2 = H2).

Proof We prove this claim by induction, and illustrate the proof by Fig. 5.
For the basic step, let u3 be a vertex in Ww1u2 \ {u1}. By Claim 2 , fu3,w1u2 ∈

E(G) − E(L X0). Since w1u1 is the only edge of G − E(L X0) between Hw1 and Hu1 ,
u3 �∈ V (Hu1). If u3 ∈ V (Hw1), then by Claim 4, w1u3 is a cut edge of H1. Then w1u3
is an edge in E(Hw1)∩ FH1 , contradicting (7). Hence, u3 �∈ V (Hw1). By Claim 3 , we
have u3 ∈ V (H2). By Claim 4, u2u3 is a cut edge of H2. Let Hu3 be the components
of H2 − u2u3 containing u3. Then u3 and Hu3 satisfy the conditions of the claim for
i = 1.
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Fig. 5 Illustration for Claim 5

Suppose by induction that for some positive integer k, one has found a vertex
sequence {u3, . . . , uk+2} and the corresponding subgraphs {Hu3, . . . , Huk+2} satisfy-
ing (i) and (ii). Let uk+3 be a vertex in Ww1uk+2 \ {u1, uk+1} (such vertex exists by
|Ww1uk+2 | ≥ 3). By Claim 2, fuk+3,w1uk+2 ∈ E(G) − E(L X0). Since w1u1 is the only
edge of G − E(L X0) between Hw1 and Hu1 , uk+3 �∈ V (Hu1). If uk+3 ∈ V (Hw1), then
by Claim 4, w1uk+3 is a cut edge of H1. Then w1uk+3 is an edge in E(Hw1) ∩ FH1 ,
contradicting (7). Hence, uk+3 �∈ V (Hw1). By Claim 3, we have uk+3 ∈ V (H2). By
Claim 4, u2uk+3 is a cut edge of H2. Since uk+1uk+2 ∈ E(G − E(L X0)) is a cut edge
of H2, uk+3 ∈ Huk+2 . Then uk+2uk+3 is a cut edge of Huk+2 . Let Huk+3 be the compo-
nents of Huk+2 − uk+2uk+3 containing uk+3. Then, sequences {u3, . . . , uk+2, uk+3}
and {Hu3, . . . , Huk+2 , Huk+3} satisfy the conditions of the claim. This completes the
induction step. ��

By Claim 5, Hui+2 is a proper subgraph of Hui+1 for i ≥ 1. Combining this with
{Hu3, Hu4 , . . .} being an infinite sequence of subgraphs of H2, we obtain a contradic-
tion to the assumption that G is finite. Theorem 1.2 is proved.

Proof of Theorem 1.3 By Lemma 2.3, Ll+5(G) is 8-triangular. Hence, for any distinct
edges e, e′ ∈ E(Ll+5(G)), Ll+5(G) − {e, e′} is 6-triangular, and thus Ll+5(G) is 2-
collapsible by Theorem 1.2. Then by Theorem 2.5, κ∗(Ll+6(G)) ≥ 3. Theorem 1.3
is proved.
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