Spanning 3-connected index of graphs

Wei Xiong · Zhao Zhang · Hong-Jian Lai

Published online: 29 December 2012 © Springer Science+Business Media New York 2012

Abstract For an integer s > 0 and for $u, v \in V(G)$ with $u \neq v$, an (s; u, v)-pathsystem of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a spanning (s; u, v)-path system if V(H) = V(G). The spanning connectivity $\kappa^*(G)$ of graph G is the largest integer s such that for any integer k with $1 \leq k \leq s$ and for any $u, v \in V(G)$ with $u \neq v$, G has a spanning (k; u, v)-pathsystem. Let G be a simple connected graph that is not a path, a cycle or a $K_{1,3}$. The spanning k-connected index of G, written $s_k(G)$, is the smallest nonnegative integer m such that $L^m(G)$ is spanning k-connected. Let $l(G) = \max\{m : G \text{ has a divalent}$ path of length m that is not both of length 2 and in a K_3 }, where a divalent path in G is a path whose interval vertices have degree two in G. In this paper, we prove that $s_3(G) \leq l(G) + 6$. The key proof to this result is that every connected 3-triangular graph is 2-collapsible.

Keywords Spanning *k*-connected index · 3-triangular graph · Line graph · 2-collapsible

1 Introduction

We refer to Bondy and Murty (2008) for terminologies and notations not defined here and consider finite connected graphs only. For a graph G and a vertex $v \in V(G)$, denote

W. Xiong · Z. Zhang (🖂) · H.-J. Lai

College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, People's Republic of China e-mail: hxhzz@163.com

 $N_G(v) = \{u \in V(G) : u \text{ is adjacent to } v \text{ in } G\}$ and $E_G(v) = \{e \in E(G) : e \text{ is incident}$ with $v \text{ in } G\}$. Following Bondy and Murty (2008), we use c(G), $\delta(G)$, $\kappa(G)$, and $\kappa'(G)$ to represent the number of components, the minimum degree, the connectivity, and the edge connectivity of graph G, respectively. For subsets $X, Y \subseteq V(G)$, define $[X, Y]_G = \{xy \in E(G) : x \in X, y \in Y\}$. When H, K are subgraphs of G, we use $[H, K]_G$ for $[V(H), V(K)]_G$. The subscript G is often omitted when G is understood from the context.

The line graph of graph G, written as L(G) or $L^1(G)$, has E(G) as its vertex set, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a common vertex. For an integer $m \ge 1$, we define the *m*-th iterated line graph $L^m(G) = L(L^{m-1}(G))$, where $L^0(G) = G$. Intuitively, when $m \to \infty$, $L^m(G)$ becomes more and more "locally dense". It has been shown that for a connected graph G such that G is not a path, cycle or a $K_{1,3}$, the connectivity and edge-connectivity of $L^m(G)$ grows very fast as the number m increases. See Knor and Niepel (2003), Shao (2010), Shao (2012), Zhang et al. (2012), among others. Therefore, for a graphical property P, it is of interest to study what is the smallest integer m such that $L^m(G)$ has property P. Such smallest integer m is called the P-index of G. The concept of hamiltonian index was first introduced by Chartrand and Wall (1973), who showed that the hamiltonian index exists as a finite number. Clark and Wormald (1983) generalized this idea and introduced hamiltonian-like indices.

A path with initial vertex u and terminal vertex v will be referred to as an (u, v)-path. For an integer s > 0 and for $u, v \in V(G)$ with $u \neq v$, an (s; u, v)-path-system of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a *spanning* (s; u, v)-path system if V(H) = V(G). A graph G is *spanning* s-connected if for any $u, v \in V(G)$ with $u \neq v$ and for any k with $1 \leq k \leq s$, G has a spanning (k; u, v)-path-system. The *spanning connectivity* $\kappa^*(G)$ of graph G is the largest integer s such that G is spanning s-connected. Thus $\kappa^*(G) \geq 1$ if and only if G is hamiltonian-connected.

The concept of (s; u, v)-path system has been used in the design and the implementation of parallel routing and efficient information transmission in larger-scale networking systems (see Akers and Krishnamurthy 1989, Hsu 1994, Lin et al. 2007 and references therein). By the definition, spanning *s*-connectivity is a combined generalization of *s*-connectivity and hamiltonicity, which is closely related with faulty-tolerance of networks. The study on spanning connectivity has received a lot of attention recently (see Albert et al. 2001, Lin et al. 2007, Tsai et al. 2004 and references therein).

In this paper, we study *spanning k-connected index* $s_k(G)$, which is the smallest nonnegative integer *m* such that $L^m(G)$ is spanning *k*-connected. A key to the main result of this paper is a result on 2-collapsible graphs.

Catlin (1988), introduced collapsible graphs as a tool to study supereulerian graphs. Motivated by Catlin's work, the concept of collapsible graphs has been generalized to *s*-collapsible graphs in Chen et al. (2012b) and Li (2012). Let O(G) denote the set of vertices in *G* with odd degree.

Definition 1.1 A graph *G* is *s*-collapsible if for any subset $X \subseteq V(G)$ with $|X| \equiv 0 \pmod{2}$, *G* has a spanning subgraph L_X such that

(i) both $O(L_X) = X$ and $\kappa'(L_X) \ge s - 1$, and

(ii) $G - E(L_X)$ is connected. Such L_X is called an (s, X)-subgraph of G.

The concept of collapsible graphs defined in Catlin (1988) coincides with 1-collapsible graphs in Definition 1.1.

An (u, v)-path P of G with $u \neq v$ is called a non-closed path. A non-closed path P of G is called a *divalent path* in G if all the internal vertices of P have degree 2 in G. Following Lai (1988), we define $l(G) = \max\{m : G \text{ has a divalent path of length } m$ which is not a 2-path in a $K_3\}$. By definition, we have $l(K_3) = 1$. A graph G is *k*-triangular if each edge of G lies in at least k triangles, and 1-triangular is abbreviated as triangular. We use J_3^k to denote the collection of k-triangular graphs.

In this paper, we shall prove the following theorems:

Theorem 1.2 Every connected 3-triangular graph G is 2-collapsible.

Theorem 1.3 Let G be a simple connected graph that is not a path, a cycle or $K_{1,3}$. Then $s_3(G) \le l(G) + 6$.

Theorem 1.2 is best possible in the sense that there exists an infinite family graphs in J_3^2 which is not 2-collapsible, as shown in the example below.

Example 1.4 Let $G \cdot H$ denote the graph obtained from $G \cup H$ by identifying a vertex u of G with a vertex v of H. The graph $K_4 \in J_3^2 - J_3^3$ and K_4 is not 2-collapsible. It can be seen that $K_4 \cdot K_4 \cdot \ldots \cdot K_4$ is an infinite family of J_3^2 which is not 2-collapsible.

2 Some notations and preliminaries

The line graph of $K_{1,3}$ is a 3-cycle. The iterated line graph of a cycle is always isomorphic to the same cycle, and the *l*th iterated line graph of a path of length *l* is K_1 . These are trivial cases. Thus we always assume that *G* is a connected graph that is not a path, a cycle, or a $K_{1,3}$.

Let G[X] denote the subgraph of G induced by an edge subset $X \subseteq E(G)$. When no confusion arises, we shall adopt the convention that an edge subset $X \subseteq E(G)$ is also used to denote subgraph G[X].

For two edge sets *X* and *Y*, the symmetric difference of *X* and *Y* is $X \oplus Y = (X \cup Y) - (X \cap Y)$. For graphs *G* and *H*, we define $G \oplus H$ to be the spanning subgraph of $G \cup H$ with edge set $E(G) \oplus E(H)$, called the symmetric difference of *G* and *H*. For a cycle $C = u_1u_2 \dots u_k$, sometimes we may use $G \oplus u_1u_2 \dots u_k$ to denote $G \oplus C$.

For a graph *G*, and for $X \subseteq E(G)$, the contraction G/X is obtained from *G* by identifying the two ends of each edge in *X* and then by deleting the resulting loops. If *H* is a subgraph of *G*, then we write G/H for G/E(H). We use $D_i(G)$ to denote the set of all vertices of degree *i* in *G*. The concept of core is defined as follows, which was first introduced in the dissertation of Shao (2005). Let *G* be a graph such that $\kappa(L(G)) \ge 3$ and such that L(G) is not complete. For each $v \in D_2(G)$, let $E_G(v) = \{e_1^v, e_2^v\}$ and define

$$X_1(G) = \bigcup_{v \in D_1(G)} E_G(v), \text{ and } X_2(G) = \{e_2^v : v \in D_2(G)\}.$$
 (1)

Deringer

Since $\kappa(L(G)) \ge 3$, the minimum degree of L(G) is at least 3, and thus $D_2(G)$ is an independent set of G, and for any $v \in D_2(G), |X_2(G) \cap E_G(v)| = 1$. The *core* of graph G is defined to be

$$G_0 = G/(X_1(G) \cup X_2(G)) = (G - D_1(G))/X_2(G).$$
⁽²⁾

Let C_s denote the collection of all *s*-collapsible graphs. By definition, for $s \ge 1$, any (s + 1, X)-subgraph of *G* is also an (s, X)-subgraph of *G*. This implies that

$$C_{s+1} \subseteq C_s$$
, for any positive integer *s*. (3)

The following previous results are needed in our proofs.

Lemma 2.1 (Proposition 2.2 of Chen et al. 2012b) Let *G* be a graph, and let $s \ge 1$ be an integer. Then the following are equivalent.

- (i) $G \in \mathcal{C}_s$.
- (ii) For any $X \subseteq V(G)$ with $X \equiv 0 \pmod{2}$, G has a spanning connected subgraph L_X such that $O(L_X) = X$ and $\kappa'(G E(L_X)) \ge s 1$.

Lemma 2.2 (Corollary 2.4 of Chen et al. 2012b) Let $s \ge 1$ be an integer. Then C_s satisfies the following.

- (i) $K_1 \in \mathcal{C}_s$
- (ii) If $G \in C_s$ and if $e \in E(G)$, then $G/e \in C_s$.

(iii) If H is a subgraph of G and if $H, G/H \in C_s$, then $G \in C_s$.

Lemma 2.3 (Corollary 2.6 (ii) of Zhang et al. 2012) Let $s \ge 3$ be an integer. Then $L^{l+s}(G)$ is 2^{s-2} -triangular.

Lemma 2.4 (Corollary 1 of Catlin 1988) Let G be a graph. If G contains a spanning tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.

Theorem 2.5 (Theorem 4.3 (iii) of Chen et al. 2012a) Let *G* be a graph with core G_0 , and let $k \ge 3$ be an integer. If for any $e, e' \in E(G_0)$ with $e \ne e', G_0 - \{e, e'\}$ is a (k-1)-collapsible graph, then $\kappa^*(L(G)) \ge k$.

3 Proof of main results

Proof of Theorem 1.2 Suppose *G* is a counterexample.

By Lemma 2.4 and the fact that K_3 is collapsible, *G* is 1-collapsible. By Lemma 2.1, for any vertex subset $X \subseteq V(G)$ with $|X| \equiv 0 \pmod{2}$, *G* has

a spanning connected subgraph
$$L_X$$
 with $O(L_X) = X$. (4)

A subgraph L_X satisfying (4) is said to *have Property* A_X . By Lemma 2.1 and since G is not 2-collapsible, there exists a vertex subset $X \subseteq V(G)$ with $|X| \equiv 0 \pmod{2}$ such that for *any* subgraph L_X with property A_X , $G - E(L_X)$ is not connected. Choose

Fig. 1 Illustration for the proof of Claim 1. In **a** *dotted lines* belong to L_{X_0} , while in **b** *dotted lines* are in L_Y . The same notation is adopted in following figures

 X_0 to be such a vertex subset and choose L_{X_0} to be a subgraph with property A_{X_0} such that

$$r = c(G - E(L_{X_0}))$$
 is as small as possible. (5)

Then $r \geq 2$.

The following observations follow by the definition of symmetric difference and the definition of $G - L_{X_0}$.

Observation 3.1 (i) For a cycle C, $O(L_{X_0} \oplus C) = O(L_{X_0})$.

(ii) If e is an edge joining vertices in different components of $G - E(L_{X_0})$, then $e \in E(L_{X_0})$.

Let H_1, H_2, \ldots, H_r be the connected components of $G - E(L_{X_0})$. For an edge u_1u_2 , denote $W_{u_1u_2} = \{w \in V(G) \mid G[\{u_1u_2w\}] \text{ is a 3-cycle}\}$. Since G is 3-triangular, we have $|W_{u_1u_2}| \ge 3$. For an edge $u_1u_2 \in [H_i, H_j]$ with $i \ne j$, define

$$f_{w,u_1u_2} = \begin{cases} u_1w, & \text{if } w \in V(H_i), \\ u_2w, & \text{if } w \in V(H_j), \end{cases}$$
$$e_{w,u_1u_2} = \begin{cases} u_1w, & \text{if } w \in V(H_j), \\ u_2w, & \text{if } w \in V(H_i). \end{cases}$$

In other words, for a triangle containing an edge $u_1u_2 \in [H_i, H_j]$ (see Fig. 1a for an illustration), f_{w,u_1u_2} is the edge lying in a component, while u_1u_2 and e_{w,u_1u_2} are the two edges crossing the two components. For example, in Fig. 1a, $f_{w_1,u_1u_2} = u_1w_1$ and $e_{w_1,u_1u_2} = u_2w_1$. Further denote

$$W'_{u_1u_2} = W_{u_1u_2} \cap (V(H_i) \cup V(H_j))$$
 and $F_{u_1u_2} = \{f_{w,u_1u_2} \mid w \in W'_{u_1u_2}\}.$

It should be pointed out that the following Claims 1–4 hold for *any* edge crossing different components of $G - E(L_{X_0})$. For simplicity of notation, we assume that the edge is $u_1u_2 \in [H_1, H_2]$.

We use Fig. 1 to illustrate the proof of Claim 1.

Claim 1 If there exists a vertex $w_1 \in W'_{u_1u_2}$ such that $f_{w_1,u_1u_2} \notin E(L_{X_0})$, then for any $w \in W_{u_1u_2} \setminus \{w_1\}, \{u_1w, u_2w\} - E(L_{X_0}) \neq \emptyset$.

Proof Let *C* be the 3-cycle $u_1u_2w_1u_1$ and let $L_Y = L_{X_0} \oplus C$. By definition, $L_Y = (L_{X_0} - \{u_1u_2, u_2w_1\}) \cup \{u_1w_1\}$. If L_Y is not connected, then since u_1w_1 is an edge of L_Y and since L_{X_0} is connected, u_1, u_2 must be in different components of L_Y . If there exists a vertex $w \in W_{u_1u_2}$ such that $\{u_1w, u_2w\} \subseteq E(L_{X_0})$, then u_1wu_2 is a 2-path in L_Y connecting vertex u_1 and u_2 , contrary to the fact that u_1 and u_2 are in different component of L_Y . Hence L_Y is connected, and so by Observation 3.1 (i), L_Y has property A_{X_0} . By the definition $L_Y = L_{X_0} \oplus C$, $(G - E(L_Y)) [V(H_1) \cup V(H_2)]$ is connected, and so $H_1 \cup H_2, H_3, H_4, \ldots, H_r$ are the components of $G - E(L_Y)$. It follows that $c(G - E(L_Y)) = c(G - E(L_{X_0})) - 1$, contrary to (5). □

Claim 2 If $W'_{u_1u_2} \neq \emptyset$, then $F_{u_1u_2} \cap E(L_{X_0}) = \emptyset$.

Proof Notice that for any $w \in W'_{u_1u_2}$, $\{u_1w, u_2w\} = \{f_{w,u_1u_2}, e_{w,u_1u_2}\}$. Since $e_{w,u_1u_2} \in [H_1, H_2]$, by Observation 3.1 (ii), $e_{w,u_1u_2} \in E(L_{X_0})$. Hence, if $F_{u_1u_2} \not\subseteq E(L_{X_0})$, then by Claim 1, for any $w \in W'_{u_1u_2}$, $f_{w,u_1u_2} \notin E(L_{X_0})$, and thus $F_{u_1u_2} \cap E(L_{X_0}) = \emptyset$.

Suppose, by contradiction, that $F_{u_1u_2} \cap E(L_{X_0}) \neq \emptyset$. Then $F_{u_1u_2} \subseteq E(L_{X_0})$. Pick $w_1 \in W'_{u_1u_2}$. Suppose, without loss of generality, that $w_1 \in V(H_1)$ (see Fig. 2). Let $L_Y = L_{X_0} \oplus u_1u_2w_1u_1 = L_{X_0} - \{u_1u_2, u_2w_1, w_1u_1\}$. Let $w_2 \in W_{u_1u_2} - \{w_1\}$. If $w_2 \in \bigcup_{j=3}^r V(H_j)$, then $\{u_1w_2, u_2w_2\} \subseteq E(L_{X_0})$. If $w_2 \in V(H_1) \cup V(H_2)$, then since $F_{u_1u_2} \subseteq E(L_{X_0})$, we have $\{u_1w_2, u_2w_2\} \subseteq E(L_{X_0})$. In any case, $u_1w_2, u_2w_2 \in E(L_Y)$ and so u_1, u_2 are in the same component of L_Y . With a similar argument by replacing u_1u_2 by w_1u_2 , we conclude that for some $w_3 \in W'_{w_1u_2} - \{u_1\}$, $w_1w_3, w_3u_2 \in E(L_Y)$. It follows that L_Y is connected (see Fig. 2(b)), and so by Observation 3.1(i), L_Y has property A_{X_0} . Furthermore, since $G - E(L_Y) = (G - E(L_{X_0})) \cup \{u_1u_2, u_1w_1, u_2w_1\}$, we have $c(G - E(L_Y)) = c(G - E(L_{X_0})) - 1$, contrary to (5).

Claim 3 $W'_{u_1u_2} = W_{u_1u_2}$.

Proof Suppose $W'_{u_1u_2} \neq \emptyset$. Let w_1 be a vertex in $W'_{u_1u_2}$. Then by Claim 2, $f_{w_1,u_1u_2} \notin E(L_{X_0})$. Since for any vertex $w \in W_{u_1u_2} \cap \left(\bigcup_{j=3}^r V(H_j)\right), \{u_1w, u_2w\} \subseteq E(L_{X_0}),$ it follows from Claim 1 that $W_{u_1u_2} = W'_{u_1u_2}$. This proves

either
$$W'_{u_1u_2} = W_{u_1u_2}$$
 or $W'_{u_1u_2} = \emptyset$. (6)

By (6), to prove Claim 3, we assume that $W'_{u_1u_2} = \emptyset$ to derive a contradiction. Pick $w_1 \in W_{u_1u_2}$. Since $W'_{u_1u_2} = \emptyset$, we may assume that $w_1 \in V(H_3)$ (see Fig.3). Let $L_Y = L_{X_0} \oplus u_1u_2w_1u_1$. Then $L_Y = L_{X_0} - \{u_1u_2, u_1w_1, u_2w_1\}$. Since $u_2 \in W_{u_1w_1} - (V(H_1) \cup V(H_3))$, it follows by (6) that $W_{u_1w_1} = W'_{u_1w_1}$. Let $w_2 \in W_{u_1w_1} - \{u_2\}$. Then $w_2 \notin V(H_1) \cup V(H_3)$, and so $\{u_1w_2, w_1w_2\} \subseteq E(L_{X_0})$. It follows that $u_1w_2, w_2w_1 \in E(L_Y)$. Similarly, for some $w_3 \in W_{w_1u_2}, w_1w_3, u_2w_3 \in E(L_Y)$. Hence $\{w_1, u_1, u_2\}$ is connected by the path $u_1w_2w_1w_3u_2$. Thus L_Y is connected and so by Observation 3.1 (i), L_Y has property A_{X_0} . By the definition $L_Y = L_{X_0} \oplus C$,

Fig. 3 Illustration for the proof of Claim 3

 $(G - E(L_Y))[V(H_1 \cup H_2 \cup H_3)]$ is connected, and so $H_1 \cup H_2 \cup H_3, H_4, \ldots, H_r$ are the components of $G - E(L_Y)$. It follows that $c(G - E(L_Y)) = c(G - E(L_{X_0})) - 2$, contrary to (5).

Claim 4 For any vertex $w \in W_{u_1u_2}$, f_{w,u_1u_2} is a cut edge for the component of $G - E(L_{X_0})$ which contains w.

Proof By Claim 3, $W_{u_1u_2} \subseteq V(H_1) \cup V(H_2)$. Let w be an arbitrary vertex of $W_{u_1u_2}$. For simplicity of statement, assume $w \in V(H_2)$. Then $f_{w,u_1u_2} = wu_2$. We are to show wu_2 is a cut edge of H_2 .

First, suppose that there exists a vertex $w_1 \in W_{u_1u_2} \cap V(H_1)$. By Claim 2, both $u_1w_1, u_2w \notin E(L_{X_0})$. Let *C* be the 4-cycle $u_1w_1u_2wu_1$ and let $L_Y = L_{X_0} \oplus C$. By the definition of $L_{X_0} \oplus C$, L_Y is connected (see Fig. 4b), and so by Observation 3.1 L_Y has property A_{X_0} . In order not to violate the choice of L_{X_0} , we must have $c(G - E(L_Y)) \ge c(G - E(L_{X_0}))$, which is possible only if w_1u_1 is a cut edge of H_1 and wu_2 is a cut edge of H_2 (see Fig. 4b).

Next, suppose all vertices of $W_{u_1u_2}$ lie in H_2 . Since $G \in J_3^3$, $W_{u_1u_2} \setminus \{w\}$ has two distinct vertices w_1, w_2 . By Claim 2, $u_2w_i \notin E(L_{X_0})$ for i = 1, 2. Let $L_Y = L_{X_0} \oplus u_1w_1u_2w_2u_1$ (see Fig. 4c, d). Similarly to the above, in order not to violate the choice of L_{X_0} , we have $c(G - E(L_Y)) \ge c(G - E(L_{X_0}))$, which is possible only when the removal of $\{u_2w_1, u_2w_2\}$ from H_2 separates u_2 from $\{w_1, w_2\}$. Let H_{u_2} be the component of $H_2 - \{u_2w_1, u_2w_2\}$ containing u_2 , and $H_{w_1,w_2} = H_2 - H_{u_2}$ (see Fig. 4e). Then $w \in V(H_{u_2})$. Let $L_Z = L_{X_0} \oplus u_1w_1u_2wu_1$ (Fig. 4f). Again, in order

Fig. 4 Illustration for the proof of Claim 4

not to violate the choice of L_{X_0} , we have $c(G - E(L_Z)) \ge c(G - E(L_{X_0}))$. Then, vertex u_2 must be separated from vertex w in $G - E(L_Z)$, which is possible only when edge u_2w is a cut edge of H_{u_2} , and thus a cut edge of H_2 (Fig. 4f).

For i = 1, 2, denote $F_{H_i} = \bigcup_{u_1 \in V(H_1), u_2 \in V(H_2)} (F_{u_1u_2} \cap E(H_i))$. By Claim 3, at least one of F_{H_1} and F_{H_2} is nonempty, say F_{H_1} . By Claim 4, every edge $f \in F_{H_1}$ is a cut edge of H_1 . Choose such a cut edge f that one component of $H_1 - f$ contains no edge of F_{H_1} . Suppose $f = f_{w_1,u_1u_2}$, and that the two components of $H_1 - f$ are H_{w_1} and H_{u_1} , such that

$$E(H_{w_1}) \cap F_{H_1} = \emptyset. \tag{7}$$

Claim 5 There exists an infinite sequence of vertices $\{u_3, u_4, ...\}$ and a sequence of corresponding subgraphs $\{H_{u_3}, H_{u_4}, ...\}$ satisfying the following conditions:

- (i) $u_{i+2} \in W(w_1u_{i+1}) \setminus \{u_1, u_i\} (i = 1, 2, ...),$
- (ii) $u_{i+2} \in V(H_{u_{i+1}})$, $u_{i+1}u_{i+2}$ is a cut edge of $H_{u_{i+1}}$, and $H_{u_{i+2}}$ is the component of $H_{u_{i+1}} u_{i+1}u_{i+2}$ containing vertex u_{i+2} (where $H_{u_2} = H_2$).

Proof We prove this claim by induction, and illustrate the proof by Fig. 5.

For the basic step, let u_3 be a vertex in $W_{w_1u_2} \setminus \{u_1\}$. By Claim 2, $f_{u_3,w_1u_2} \in E(G) - E(L_{X_0})$. Since w_1u_1 is the only edge of $G - E(L_{X_0})$ between H_{w_1} and H_{u_1} , $u_3 \notin V(H_{u_1})$. If $u_3 \in V(H_{w_1})$, then by Claim 4, w_1u_3 is a cut edge of H_1 . Then w_1u_3 is an edge in $E(H_{w_1}) \cap F_{H_1}$, contradicting (7). Hence, $u_3 \notin V(H_{w_1})$. By Claim 3, we have $u_3 \in V(H_2)$. By Claim 4, u_2u_3 is a cut edge of H_2 . Let H_{u_3} be the components of $H_2 - u_2u_3$ containing u_3 . Then u_3 and H_{u_3} satisfy the conditions of the claim for i = 1.

Fig. 5 Illustration for Claim 5

Suppose by induction that for some positive integer k, one has found a vertex sequence $\{u_3, \ldots, u_{k+2}\}$ and the corresponding subgraphs $\{H_{u_3}, \ldots, H_{u_{k+2}}\}$ satisfying (i) and (ii). Let u_{k+3} be a vertex in $W_{w_1u_{k+2}} \setminus \{u_1, u_{k+1}\}$ (such vertex exists by $|W_{w_1u_{k+2}}| \ge 3$). By Claim 2, $f_{u_{k+3},w_1u_{k+2}} \in E(G) - E(L_{X_0})$. Since w_1u_1 is the only edge of $G - E(L_{X_0})$ between H_{w_1} and $H_{u_1}, u_{k+3} \notin V(H_{u_1})$. If $u_{k+3} \in V(H_{w_1})$, then by Claim 4, w_1u_{k+3} is a cut edge of H_1 . Then w_1u_{k+3} is an edge in $E(H_{w_1}) \cap F_{H_1}$, contradicting (7). Hence, $u_{k+3} \notin V(H_{w_1})$. By Claim 3, we have $u_{k+3} \in V(H_2)$. By Claim 4, u_2u_{k+3} is a cut edge of H_2 . Since $u_{k+1}u_{k+2} \in E(G - E(L_{X_0}))$ is a cut edge of H_2 , $u_{k+3} \in H_{u_{k+2}}$. Then $u_{k+2}u_{k+3}$ is a cut edge of $H_{u_{k+2}}$. Let $H_{u_{k+3}}$ be the components of $H_{u_{k+2}} - u_{k+2}u_{k+3}$ containing u_{k+3} . Then, sequences $\{u_3, \ldots, u_{k+2}, u_{k+3}\}$ and $\{H_{u_3}, \ldots, H_{u_{k+2}}, H_{u_{k+3}}\}$ satisfy the conditions of the claim. This completes the induction step.

By Claim 5, $H_{u_{i+2}}$ is a *proper* subgraph of $H_{u_{i+1}}$ for $i \ge 1$. Combining this with $\{H_{u_3}, H_{u_4}, \ldots\}$ being an *infinite* sequence of subgraphs of H_2 , we obtain a contradiction to the assumption that G is finite. Theorem 1.2 is proved.

Proof of Theorem 1.3 By Lemma 2.3, $L^{l+5}(G)$ is 8-triangular. Hence, for any distinct edges $e, e' \in E(L^{l+5}(G)), L^{l+5}(G) - \{e, e'\}$ is 6-triangular, and thus $L^{l+5}(G)$ is 2-collapsible by Theorem 1.2. Then by Theorem 2.5, $\kappa^*(L^{l+6}(G)) \ge 3$. Theorem 1.3 is proved.

Acknowledgments The work is supported by NSFC (61222201).

References

Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38:555–566

Albert M, Aldred REL, Holton D (2001) On 3*-connected graphs. Australas J Comb 24:193–208 Bondy JA, Murty USR (2008) Graph theory. Springer, New York

Catlin PA (1988) A reduction method to find spanning Eulerian subgraphs. J Graph Theory 12:199–211 Chartrand G, Wall CE (1973) On the hamiltonian index of a graph. Stud Sci Math Hung 8:38–43

Chen Y, Chen Z-H, Lai H-J, Li P, Wei E (2012a) On spanning disjoint paths in line graphs, Graphs Combi, accepted

Chen Y, Lai H-J, Li H, Li P (2012b) Supereulerian graphs with width s and s-collapsible graphs, submitted Clark LH, Wormald NC (1983) Hamiltonian-like indices of the graphs. Ars Comb 15:131–148

- Hsu DF (1994) On container width and length in graphs, groups, and netwoeks. IEICE Trans Fund E77– A:668–680
- Knor M, Niepel L (2003) Connectivity of iterated line graphs. Discret Appl Math 125:255-266
- Lai H-J (1988) On the hamiltonian index. Discret Math 69:43–53

Li P (2012) Bases and cycles of matroids and graphs. West Virginia University, PhD. Dissertation (2012)

- Lin CK, Huang HM, Hsu LH (2007) On the spanning connectivity of graphs. Descret Math 307:285-289
- Lin CK, Tan JJM, Hsu DF, Hsu LH (2007) On the spanning connectivity and spanning laceability of hypercube-like networks. Theor Comput Sci 381:218–229
- Shao YH (2005) Claw-free graphs and line graphs. West Virginia University, Ph. D. Dissertation (2005)

Shao YH (2010) Connectivity of iterated line graphs. Discret Appl Math 158:2081-2087

Shao YH (2012) Essential edge connectivity of line graphs, submitted

- Tsai CH, Tan JJM, Hsu LH (2004) The super connected property of recursive circulant graphs. Inf Process Lett 91:293–298
- Zhang LL, Shao YH, Chen GH, Xu XP, Zhou J (2012) s-Vertex pancyclic index. Graphs Comb 28:393-406