Spanning 3-connected index of graphs

Wei Xiong • Zhao Zhang • Hong-Jian Lai

Published online: 29 December 2012
© Springer Science+Business Media New York 2012

Abstract

For an integer $s>0$ and for $u, v \in V(G)$ with $u \neq v$, an $(s ; u, v)$-pathsystem of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a spanning $(s ; u, v)$-path system if $V(H)=V(G)$. The spanning connectivity $\kappa^{*}(G)$ of graph G is the largest integer s such that for any integer k with $1 \leq k \leq s$ and for any $u, v \in V(G)$ with $u \neq v, G$ has a spanning $(k ; u, v)$-pathsystem. Let G be a simple connected graph that is not a path, a cycle or a $K_{1,3}$. The spanning k-connected index of G, written $s_{k}(G)$, is the smallest nonnegative integer m such that $L^{m}(G)$ is spanning k-connected. Let $l(G)=\max \{m: G$ has a divalent path of length m that is not both of length 2 and in a $\left.K_{3}\right\}$, where a divalent path in G is a path whose interval vertices have degree two in G. In this paper, we prove that $s_{3}(G) \leq l(G)+6$. The key proof to this result is that every connected 3-triangular graph is 2-collapsible.

Keywords Spanning k-connected index • 3-triangular graph • Line graph • 2-collapsible

1 Introduction

We refer to Bondy and Murty (2008) for terminologies and notations not defined here and consider finite connected graphs only. For a graph G and a vertex $v \in V(G)$, denote

[^0]$N_{G}(v)=\{u \in V(G): u$ is adjacent to v in $G\}$ and $E_{G}(v)=\{e \in E(G): e$ is incident with v in $G\}$. Following Bondy and Murty (2008), we use $c(G), \delta(G), \kappa(G)$, and $\kappa^{\prime}(G)$ to represent the number of components, the minimum degree, the connectivity, and the edge connectivity of graph G, respectively. For subsets $X, Y \subseteq V(G)$, define $[X, Y]_{G}=\{x y \in E(G): x \in X, y \in Y\}$. When H, K are subgraphs of G, we use $[H, K]_{G}$ for $[V(H), V(K)]_{G}$. The subscript G is often omitted when G is understood from the context.

The line graph of graph G, written as $L(G)$ or $L^{1}(G)$, has $E(G)$ as its vertex set, and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have a common vertex. For an integer $m \geq 1$, we define the m-th iterated line graph $L^{m}(G)=L\left(L^{m-1}(G)\right.$), where $L^{0}(G)=G$. Intuitively, when $m \rightarrow \infty, L^{m}(G)$ becomes more and more "locally dense". It has been shown that for a connected graph G such that G is not a path, cycle or a $K_{1,3}$, the connectivity and edge-connectivity of $L^{m}(G)$ grows very fast as the number m increases. See Knor and Niepel (2003), Shao (2010), Shao (2012), Zhang et al. (2012), among others. Therefore, for a graphical property P, it is of interest to study what is the smallest integer m such that $L^{m}(G)$ has property P. Such smallest integer m is called the P-index of G. The concept of hamiltonian index was first introduced by Chartrand and Wall (1973), who showed that the hamiltonian index exists as a finite number. Clark and Wormald (1983) generalized this idea and introduced hamiltonian-like indices.

A path with initial vertex u and terminal vertex v will be referred to as an (u, v)-path. For an integer $s>0$ and for $u, v \in V(G)$ with $u \neq v$, an $(s ; u, v)$-path-system of G is a subgraph H of G consisting of s internally disjoint (u, v)-paths, and such an H is called a spanning ($s ; u, v$)-path system if $V(H)=V(G)$. A graph G is spanning s-connected if for any $u, v \in V(G)$ with $u \neq v$ and for any k with $1 \leq k \leq s, G$ has a spanning $(k ; u, v)$-path-system. The spanning connectivity $\kappa^{*}(G)$ of graph G is the largest integer s such that G is spanning s-connected. Thus $\kappa^{*}(G) \geq 1$ if and only if G is hamiltonian-connected.

The concept of $(s ; u, v)$-path system has been used in the design and the implementation of parallel routing and efficient information transmission in larger-scale networking systems (see Akers and Krishnamurthy 1989, Hsu 1994, Lin et al. 2007 and references therein). By the definition, spanning s-connectivity is a combined generalization of s-connectivity and hamiltonicity, which is closely related with faultytolerance of networks. The study on spanning connectivity has received a lot of attention recently (see Albert et al. 2001, Lin et al. 2007, Tsai et al. 2004 and references therein).

In this paper, we study spanning k-connected index $s_{k}(G)$, which is the smallest nonnegative integer m such that $L^{m}(G)$ is spanning k-connected. A key to the main result of this paper is a result on 2-collapsible graphs.

Catlin (1988), introduced collapsible graphs as a tool to study supereulerian graphs. Motivated by Catlin's work, the concept of collapsible graphs has been generalized to s-collapsible graphs in Chen et al. (2012b) and Li (2012). Let $O(G)$ denote the set of vertices in G with odd degree.

Definition 1.1 A graph G is s-collapsible if for any subset $X \subseteq V(G)$ with $|X| \equiv 0$ $(\bmod 2), G$ has a spanning subgraph L_{X} such that
(i) both $O\left(L_{X}\right)=X$ and $\kappa^{\prime}\left(L_{X}\right) \geq s-1$, and
(ii) $G-E\left(L_{X}\right)$ is connected.

Such L_{X} is called an (s, X)-subgraph of G.
The concept of collapsible graphs defined in Catlin (1988) coincides with 1-collapsible graphs in Definition 1.1.

An (u, v)-path P of G with $u \neq v$ is called a non-closed path. A non-closed path P of G is called a divalent path in G if all the internal vertices of P have degree 2 in G. Following Lai (1988), we define $l(G)=\max \{m: G$ has a divalent path of length m which is not a 2-path in a $\left.K_{3}\right\}$. By definition, we have $l\left(K_{3}\right)=1$. A graph G is k-triangular if each edge of G lies in at least k triangles, and 1-triangular is abbreviated as triangular. We use J_{3}^{k} to denote the collection of k-triangular graphs.

In this paper, we shall prove the following theorems:
Theorem 1.2 Every connected 3-triangular graph G is 2-collapsible.
Theorem 1.3 Let G be a simple connected graph that is not a path, a cycle or $K_{1,3}$. Then $s_{3}(G) \leq l(G)+6$.

Theorem 1.2 is best possible in the sense that there exists an infinite family graphs in J_{3}^{2} which is not 2-collapsible, as shown in the example below.
Example 1.4 Let $G \cdot H$ denote the graph obtained from $G \cup H$ by identifying a vertex u of G with a vertex v of H. The graph $K_{4} \in J_{3}^{2}-J_{3}^{3}$ and K_{4} is not 2-collapsible. It can be seen that $K_{4} \cdot K_{4} \cdot \ldots \cdot K_{4}$ is an infinite family of J_{3}^{2} which is not 2-collapsible.

2 Some notations and preliminaries

The line graph of $K_{1,3}$ is a 3-cycle. The iterated line graph of a cycle is always isomorphic to the same cycle, and the l th iterated line graph of a path of length l is K_{1}. These are trivial cases. Thus we always assume that G is a connected graph that is not a path, a cycle, or a $K_{1,3}$.

Let $G[X]$ denote the subgraph of G induced by an edge subset $X \subseteq E(G)$. When no confusion arises, we shall adopt the convention that an edge subset $X \subseteq E(G)$ is also used to denote subgraph $G[X]$.

For two edge sets X and Y, the symmetric difference of X and Y is $X \oplus Y=$ $(X \cup Y)-(X \cap Y)$. For graphs G and H, we define $G \oplus H$ to be the spanning subgraph of $G \cup H$ with edge set $E(G) \oplus E(H)$, called the symmetric difference of G and H. For a cycle $C=u_{1} u_{2} \ldots u_{k}$, sometimes we may use $G \oplus u_{1} u_{2} \ldots u_{k}$ to denote $G \oplus C$.

For a graph G, and for $X \subseteq E(G)$, the contraction G / X is obtained from G by identifying the two ends of each edge in X and then by deleting the resulting loops. If H is a subgraph of G, then we write G / H for $G / E(H)$. We use $D_{i}(G)$ to denote the set of all vertices of degree i in G. The concept of core is defined as follows, which was first introduced in the dissertation of Shao (2005). Let G be a graph such that $\kappa(L(G)) \geq 3$ and such that $L(G)$ is not complete. For each $v \in D_{2}(G)$, let $E_{G}(v)=\left\{e_{1}^{v}, e_{2}^{v}\right\}$ and define

$$
\begin{equation*}
X_{1}(G)=\bigcup_{v \in D_{1}(G)} E_{G}(v), \quad \text { and } \quad X_{2}(G)=\left\{e_{2}^{v}: v \in D_{2}(G)\right\} . \tag{1}
\end{equation*}
$$

Since $\kappa(L(G)) \geq 3$, the minimum degree of $L(G)$ is at least 3, and thus $D_{2}(G)$ is an independent set of G, and for any $v \in D_{2}(G),\left|X_{2}(G) \cap E_{G}(v)\right|=1$. The core of graph G is defined to be

$$
\begin{equation*}
G_{0}=G /\left(X_{1}(G) \cup X_{2}(G)\right)=\left(G-D_{1}(G)\right) / X_{2}(G) \tag{2}
\end{equation*}
$$

Let \mathcal{C}_{s} denote the collection of all s-collapsible graphs. By definition, for $s \geq 1$, any $(s+1, X)$-subgraph of G is also an (s, X)-subgraph of G. This implies that

$$
\begin{equation*}
\mathcal{C}_{s+1} \subseteq \mathcal{C}_{s}, \text { for any positive integer } s \tag{3}
\end{equation*}
$$

The following previous results are needed in our proofs.
Lemma 2.1 (Proposition 2.2 of Chen et al. 2012b) Let G be a graph, and let $s \geq 1$ be an integer. Then the following are equivalent.
(i) $G \in \mathcal{C}_{s}$.
(ii) For any $X \subseteq V(G)$ with $X \equiv 0(\bmod 2)$, G has a spanning connected subgraph L_{X} such that $O\left(L_{X}\right)=X$ and $\kappa^{\prime}\left(G-E\left(L_{X}\right)\right) \geq s-1$.

Lemma 2.2 (Corollary 2.4 of Chen et al. 2012b) Let $s \geq 1$ be an integer. Then \mathcal{C}_{s} satisfies the following.
(i) $K_{1} \in \mathcal{C}_{s}$
(ii) If $G \in \mathcal{C}_{s}$ and if $e \in E(G)$, then $G / e \in \mathcal{C}_{s}$.
(iii) If H is a subgraph of G and if $H, G / H \in \mathcal{C}_{s}$, then $G \in \mathcal{C}_{s}$.

Lemma 2.3 (Corollary 2.6 (ii) of Zhang et al. 2012) Let $s \geq 3$ be an integer. Then $L^{l+s}(G)$ is 2^{s-2}-triangular.

Lemma 2.4 (Corollary 1 of Catlin 1988) Let G be a graph. If G contains a spanning tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.

Theorem 2.5 (Theorem 4.3 (iii) of Chen et al. 2012a) Let G be a graph with core G_{0}, and let $k \geq 3$ be an integer. If for any $e, e^{\prime} \in E\left(G_{0}\right)$ with $e \neq e^{\prime}, G_{0}-\left\{e, e^{\prime}\right\}$ is a ($k-1$)-collapsible graph, then $\kappa^{*}(L(G)) \geq k$.

3 Proof of main results

Proof of Theorem 1.2 Suppose G is a counterexample.
By Lemma 2.4 and the fact that K_{3} is collapsible, G is 1-collapsible. By Lemma 2.1, for any vertex subset $X \subseteq V(G)$ with $|X| \equiv 0(\bmod 2), G$ has

$$
\begin{equation*}
\text { a spanning connected subgraph } L_{X} \text { with } O\left(L_{X}\right)=X \text {. } \tag{4}
\end{equation*}
$$

A subgraph L_{X} satisfying (4) is said to have Property A_{X}. By Lemma 2.1 and since G is not 2-collapsible, there exists a vertex subset $X \subseteq V(G)$ with $|X| \equiv 0(\bmod 2)$ such that for any subgraph L_{X} with property $A_{X}, G-E\left(L_{X}\right)$ is not connected. Choose

(a)

(b)

Fig. 1 Illustration for the proof of Claim 1. In a dotted lines belong to $L_{X_{0}}$, while in \mathbf{b} dotted lines are in L_{Y}. The same notation is adopted in following figures
X_{0} to be such a vertex subset and choose $L_{X_{0}}$ to be a subgraph with property $A_{X_{0}}$ such that

$$
\begin{equation*}
r=c\left(G-E\left(L_{X_{0}}\right)\right) \text { is as small as possible. } \tag{5}
\end{equation*}
$$

Then $r \geq 2$.
The following observations follow by the definition of symmetric difference and the definition of $G-L_{X_{0}}$.

Observation 3.1 (i) For a cycle C, $O\left(L_{X_{0}} \oplus C\right)=O\left(L_{X_{0}}\right)$.
(ii) If e is an edge joining vertices in different components of $G-E\left(L_{X_{0}}\right)$, then $e \in E\left(L_{X_{0}}\right)$.

Let $H_{1}, H_{2}, \ldots, H_{r}$ be the connected components of $G-E\left(L_{X_{0}}\right)$. For an edge $u_{1} u_{2}$, denote $W_{u_{1} u_{2}}=\left\{w \in V(G) \mid G\left[\left\{u_{1} u_{2} w\right\}\right]\right.$ is a 3-cycle $\}$. Since G is 3-triangular, we have $\left|W_{u_{1} u_{2}}\right| \geq 3$. For an edge $u_{1} u_{2} \in\left[H_{i}, H_{j}\right]$ with $i \neq j$, define

$$
\begin{aligned}
& f_{w, u_{1} u_{2}}= \begin{cases}u_{1} w, & \text { if } \mathrm{w} \in \mathrm{~V}\left(\mathrm{H}_{\mathrm{i}}\right), \\
u_{2} w, & \text { if } \mathrm{w} \in \mathrm{~V}\left(\mathrm{H}_{\mathrm{j}}\right),\end{cases} \\
& e_{w, u_{1} u_{2}}= \begin{cases}u_{1} w, & \text { if } \mathrm{w} \in \mathrm{~V}\left(\mathrm{H}_{\mathrm{j}}\right), \\
u_{2} w, & \text { if } \mathrm{w} \in \mathrm{~V}\left(\mathrm{H}_{\mathrm{i}}\right) .\end{cases}
\end{aligned}
$$

In other words, for a triangle containing an edge $u_{1} u_{2} \in\left[H_{i}, H_{j}\right]$ (see Fig. 1a for an illustration), $f_{w, u_{1} u_{2}}$ is the edge lying in a component, while $u_{1} u_{2}$ and $e_{w, u_{1} u_{2}}$ are the two edges crossing the two components. For example, in Fig. 1a, $f_{w_{1}, u_{1} u_{2}}=u_{1} w_{1}$ and $e_{w_{1}, u_{1} u_{2}}=u_{2} w_{1}$. Further denote

$$
W_{u_{1} u_{2}}^{\prime}=W_{u_{1} u_{2}} \cap\left(V\left(H_{i}\right) \cup V\left(H_{j}\right)\right) \quad \text { and } \quad F_{u_{1} u_{2}}=\left\{f_{w, u_{1} u_{2}} \mid w \in W_{u_{1} u_{2}}^{\prime}\right\}
$$

It should be pointed out that the following Claims 1-4 hold for any edge crossing different components of $G-E\left(L_{X_{0}}\right)$. For simplicity of notation, we assume that the edge is $u_{1} u_{2} \in\left[H_{1}, H_{2}\right]$.

We use Fig. 1 to illustrate the proof of Claim 1.

Claim 1 If there exists a vertex $w_{1} \in W_{u_{1} u_{2}}^{\prime}$ such that $f_{w_{1}, u_{1} u_{2}} \notin E\left(L_{X_{0}}\right)$, then for any $w \in W_{u_{1} u_{2}} \backslash\left\{w_{1}\right\},\left\{u_{1} w, u_{2} w\right\}-E\left(L_{X_{0}}\right) \neq \emptyset$.

Proof Let C be the 3-cycle $u_{1} u_{2} w_{1} u_{1}$ and let $L_{Y}=L_{X_{0}} \oplus C$. By definition, $L_{Y}=$ $\left(L_{X_{0}}-\left\{u_{1} u_{2}, u_{2} w_{1}\right\}\right) \cup\left\{u_{1} w_{1}\right\}$. If L_{Y} is not connected, then since $u_{1} w_{1}$ is an edge of L_{Y} and since $L_{X_{0}}$ is connected, u_{1}, u_{2} must be in different components of L_{Y}. If there exists a vertex $w \in W_{u_{1} u_{2}}$ such that $\left\{u_{1} w, u_{2} w\right\} \subseteq E\left(L_{X_{0}}\right)$, then $u_{1} w u_{2}$ is a 2-path in L_{Y} connecting vertex u_{1} and u_{2}, contrary to the fact that u_{1} and u_{2} are in different component of L_{Y}. Hence L_{Y} is connected, and so by Observation 3.1 (i), L_{Y} has property $A_{X_{0}}$. By the definition $L_{Y}=L_{X_{0}} \oplus C,\left(G-E\left(L_{Y}\right)\right)\left[V\left(H_{1}\right) \cup V\left(H_{2}\right)\right]$ is connected, and so $H_{1} \cup H_{2}, H_{3}, H_{4}, \ldots, H_{r}$ are the components of $G-E\left(L_{Y}\right)$. It follows that $c\left(G-E\left(L_{Y}\right)\right)=c\left(G-E\left(L_{X_{0}}\right)\right)-1$, contrary to (5).

Claim 2 If $W_{u_{1} u_{2}}^{\prime} \neq \emptyset$, then $F_{u_{1} u_{2}} \cap E\left(L_{X_{0}}\right)=\emptyset$.
Proof Notice that for any $w \in W_{u_{1} u_{2}}^{\prime},\left\{u_{1} w, u_{2} w\right\}=\left\{f_{w, u_{1} u_{2}}, e_{w, u_{1} u_{2}}\right\}$. Since $e_{w, u_{1} u_{2}} \in\left[H_{1}, H_{2}\right]$, by Observation 3.1 (ii), $e_{w, u_{1} u_{2}} \in E\left(L_{X_{0}}\right)$. Hence, if $F_{u_{1} u_{2}} \nsubseteq$ $E\left(L_{X_{0}}\right)$, then by Claim 1, for any $w \in W_{u_{1} u_{2}}^{\prime}, f_{w, u_{1} u_{2}} \notin E\left(L_{X_{0}}\right)$, and thus $F_{u_{1} u_{2}} \cap E\left(L_{X_{0}}\right)=\emptyset$.

Suppose, by contradiction, that $F_{u_{1} u_{2}} \cap E\left(L_{X_{0}}\right) \neq \emptyset$. Then $F_{u_{1} u_{2}} \subseteq E\left(L_{X_{0}}\right)$. Pick $w_{1} \in W_{u_{1} u_{2}}^{\prime}$. Suppose, without loss of generality, that $w_{1} \in V\left(H_{1}\right)$ (see Fig. 2). Let $L_{Y}=L_{X_{0}} \oplus u_{1} u_{2} w_{1} u_{1}=L_{X_{0}}-\left\{u_{1} u_{2}, u_{2} w_{1}, w_{1} u_{1}\right\}$. Let $w_{2} \in W_{u_{1} u_{2}}-\left\{w_{1}\right\}$. If $w_{2} \in \bigcup_{j=3}^{r} V\left(H_{j}\right)$, then $\left\{u_{1} w_{2}, u_{2} w_{2}\right\} \subseteq E\left(L_{X_{0}}\right)$. If $w_{2} \in V\left(H_{1}\right) \cup V\left(H_{2}\right)$, then since $F_{u_{1} u_{2}} \subseteq E\left(L_{X_{0}}\right)$, we have $\left\{u_{1} w_{2}, u_{2} w_{2}\right\} \subseteq E\left(L_{X_{0}}\right)$. In any case, $u_{1} w_{2}, u_{2} w_{2} \in E\left(L_{Y}\right)$ and so u_{1}, u_{2} are in the same component of L_{Y}. With a similar argument by replacing $u_{1} u_{2}$ by $w_{1} u_{2}$, we conclude that for some $w_{3} \in W_{w_{1} u_{2}}^{\prime}-\left\{u_{1}\right\}$, $w_{1} w_{3}, w_{3} u_{2} \in E\left(L_{Y}\right)$. It follows that L_{Y} is connected (see Fig. 2(b)), and so by Observation 3.1(i), L_{Y} has property $A_{X_{0}}$. Furthermore, since $G-E\left(L_{Y}\right)=$ $\left(G-E\left(L_{X_{0}}\right)\right) \cup\left\{u_{1} u_{2}, u_{1} w_{1}, u_{2} w_{1}\right\}$, we have $c\left(G-E\left(L_{Y}\right)\right)=c\left(G-E\left(L_{X_{0}}\right)\right)-1$, contrary to (5).

Claim $3 W_{u_{1} u_{2}}^{\prime}=W_{u_{1} u_{2}}$.
Proof Suppose $W_{u_{1} u_{2}}^{\prime} \neq \emptyset$. Let w_{1} be a vertex in $W_{u_{1} u_{2}}^{\prime}$. Then by Claim 2, $f_{w_{1}, u_{1} u_{2}} \notin$ $E\left(L_{X_{0}}\right)$. Since for any vertex $w \in W_{u_{1} u_{2}} \cap\left(\bigcup_{j=3}^{r} V\left(H_{j}\right)\right),\left\{u_{1} w, u_{2} w\right\} \subseteq E\left(L_{X_{0}}\right)$, it follows from Claim 1 that $W_{u_{1} u_{2}}=W_{u_{1} u_{2}}^{\prime}$. This proves

$$
\begin{equation*}
\text { either } W_{u_{1} u_{2}}^{\prime}=W_{u_{1} u_{2}} \text { or } W_{u_{1} u_{2}}^{\prime}=\emptyset \tag{6}
\end{equation*}
$$

By (6), to prove Claim 3, we assume that $W_{u_{1} u_{2}}^{\prime}=\emptyset$ to derive a contradiction. Pick $w_{1} \in W_{u_{1} u_{2}}$. Since $W_{u_{1} u_{2}}^{\prime}=\emptyset$, we may assume that $w_{1} \in V\left(H_{3}\right)$ (see Fig.3). Let $L_{Y}=L_{X_{0}} \oplus u_{1} u_{2} w_{1} u_{1}$. Then $L_{Y}=L_{X_{0}}-\left\{u_{1} u_{2}, u_{1} w_{1}, u_{2} w_{1}\right\}$. Since $u_{2} \in$ $W_{u_{1} w_{1}}-\left(V\left(H_{1}\right) \cup V\left(H_{3}\right)\right)$, it follows by (6) that $W_{u_{1} w_{1}}=W_{u_{1} w_{1}}^{\prime}$. Let $w_{2} \in W_{u_{1} w_{1}}-$ $\left\{u_{2}\right\}$. Then $w_{2} \notin V\left(H_{1}\right) \cup V\left(H_{3}\right)$, and so $\left\{u_{1} w_{2}, w_{1} w_{2}\right\} \subseteq E\left(L_{X_{0}}\right)$. It follows that $u_{1} w_{2}, w_{2} w_{1} \in E\left(L_{Y}\right)$. Similarly, for some $w_{3} \in W_{w_{1} u_{2}}, w_{1} w_{3}, u_{2} w_{3} \in E\left(L_{Y}\right)$. Hence $\left\{w_{1}, u_{1}, u_{2}\right\}$ is connected by the path $u_{1} w_{2} w_{1} w_{3} u_{2}$. Thus L_{Y} is connected and so by Observation 3.1 (i), L_{Y} has property $A_{X_{0}}$. By the definition $L_{Y}=L_{X_{0}} \oplus C$,

(b)

Fig. 2 Illustration for the proof of Claim 2

Fig. 3 Illustration for the proof of Claim 3
$\left(G-E\left(L_{Y}\right)\right)\left[V\left(H_{1} \cup H_{2} \cup H_{3}\right)\right]$ is connected, and so $H_{1} \cup H_{2} \cup H_{3}, H_{4}, \ldots, H_{r}$ are the components of $G-E\left(L_{Y}\right)$. It follows that $c\left(G-E\left(L_{Y}\right)\right)=c\left(G-E\left(L_{X_{0}}\right)\right)-2$, contrary to (5).

Claim 4 For any vertex $w \in W_{u_{1} u_{2}}, f_{w, u_{1} u_{2}}$ is a cut edge for the component of $G-E\left(L_{X_{0}}\right)$ which contains w.

Proof By Claim 3, $W_{u_{1} u_{2}} \subseteq V\left(H_{1}\right) \cup V\left(H_{2}\right)$. Let w be an arbitrary vertex of $W_{u_{1} u_{2}}$. For simplicity of statement, assume $w \in V\left(H_{2}\right)$. Then $f_{w, u_{1} u_{2}}=w u_{2}$. We are to show $w u_{2}$ is a cut edge of H_{2}.

First, suppose that there exists a vertex $w_{1} \in W_{u_{1} u_{2}} \cap V\left(H_{1}\right)$. By Claim 2, both $u_{1} w_{1}, u_{2} w \notin E\left(L_{X_{0}}\right)$. Let C be the 4-cycle $u_{1} w_{1} u_{2} w u_{1}$ and let $L_{Y}=L_{X_{0}} \oplus C$. By the definition of $L_{X_{0}} \oplus C, L_{Y}$ is connected (see Fig. 4b), and so by Observation 3.1 L_{Y} has property $A_{X_{0}}$. In order not to violate the choice of $L_{X_{0}}$, we must have $c\left(G-E\left(L_{Y}\right)\right) \geq$ $c\left(G-E\left(L_{X_{0}}\right)\right)$, which is possible only if $w_{1} u_{1}$ is a cut edge of H_{1} and $w u_{2}$ is a cut edge of H_{2} (see Fig. 4b).

Next, suppose all vertices of $W_{u_{1} u_{2}}$ lie in H_{2}. Since $G \in J_{3}^{3}, W_{u_{1} u_{2}} \backslash\{w\}$ has two distinct vertices w_{1}, w_{2}. By Claim 2, $u_{2} w_{i} \notin E\left(L_{X_{0}}\right)$ for $i=1$, 2. Let $L_{Y}=$ $L_{X_{0}} \oplus u_{1} w_{1} u_{2} w_{2} u_{1}$ (see Fig. 4c, d). Similarly to the above, in order not to violate the choice of $L_{X_{0}}$, we have $c\left(G-E\left(L_{Y}\right)\right) \geq c\left(G-E\left(L_{X_{0}}\right)\right)$, which is possible only when the removal of $\left\{u_{2} w_{1}, u_{2} w_{2}\right\}$ from H_{2} separates u_{2} from $\left\{w_{1}, w_{2}\right\}$. Let $H_{u_{2}}$ be the component of $H_{2}-\left\{u_{2} w_{1}, u_{2} w_{2}\right\}$ containing u_{2}, and $H_{w_{1}, w_{2}}=H_{2}-H_{u_{2}}$ (see Fig. 4e). Then $w \in V\left(H_{u_{2}}\right)$. Let $L_{Z}=L_{X_{0}} \oplus u_{1} w_{1} u_{2} w u_{1}$ (Fig. 4f). Again, in order

Fig. 4 Illustration for the proof of Claim 4
not to violate the choice of $L_{X_{0}}$, we have $c\left(G-E\left(L_{Z}\right)\right) \geq c\left(G-E\left(L_{X_{0}}\right)\right)$. Then, vertex u_{2} must be separated from vertex w in $G-E\left(L_{Z}\right)$, which is possible only when edge $u_{2} w$ is a cut edge of $H_{u_{2}}$, and thus a cut edge of H_{2} (Fig. 4f).

For $i=1,2$, denote $F_{H_{i}}=\bigcup_{u_{1} \in V\left(H_{1}\right), u_{2} \in V\left(H_{2}\right)}\left(F_{u_{1} u_{2}} \cap E\left(H_{i}\right)\right)$. By Claim 3, at least one of $F_{H_{1}}$ and $F_{H_{2}}$ is nonempty, say $F_{H_{1}}$. By Claim 4, every edge $f \in F_{H_{1}}$ is a cut edge of H_{1}. Choose such a cut edge f that one component of $H_{1}-f$ contains no edge of $F_{H_{1}}$. Suppose $f=f_{w_{1}, u_{1} u_{2}}$, and that the two components of $H_{1}-f$ are $H_{w_{1}}$ and $H_{u_{1}}$, such that

$$
\begin{equation*}
E\left(H_{w_{1}}\right) \cap F_{H_{1}}=\emptyset . \tag{7}
\end{equation*}
$$

Claim 5 There exists an infinite sequence of vertices $\left\{u_{3}, u_{4}, \ldots\right\}$ and a sequence of corresponding subgraphs $\left\{H_{u_{3}}, H_{u_{4}}, \ldots\right\}$ satisfying the following conditions:
(i) $u_{i+2} \in W\left(w_{1} u_{i+1}\right) \backslash\left\{u_{1}, u_{i}\right\}(i=1,2, \ldots)$,
(ii) $u_{i+2} \in V\left(H_{u_{i+1}}\right), u_{i+1} u_{i+2}$ is a cut edge of $H_{u_{i+1}}$, and $H_{u_{i+2}}$ is the component of $H_{u_{i+1}}-u_{i+1} u_{i+2}$ containing vertex u_{i+2} (where $H_{u_{2}}=H_{2}$).

Proof We prove this claim by induction, and illustrate the proof by Fig. 5.
For the basic step, let u_{3} be a vertex in $W_{w_{1} u_{2}} \backslash\left\{u_{1}\right\}$. By Claim 2, $f_{u_{3}, w_{1} u_{2}} \in$ $E(G)-E\left(L_{X_{0}}\right)$. Since $w_{1} u_{1}$ is the only edge of $G-E\left(L_{X_{0}}\right)$ between $H_{w_{1}}$ and $H_{u_{1}}$, $u_{3} \notin V\left(H_{u_{1}}\right)$. If $u_{3} \in V\left(H_{w_{1}}\right)$, then by Claim $4, w_{1} u_{3}$ is a cut edge of H_{1}. Then $w_{1} u_{3}$ is an edge in $E\left(H_{w_{1}}\right) \cap F_{H_{1}}$, contradicting (7). Hence, $u_{3} \notin V\left(H_{w_{1}}\right)$. By Claim 3, we have $u_{3} \in V\left(H_{2}\right)$. By Claim $4, u_{2} u_{3}$ is a cut edge of H_{2}. Let $H_{u_{3}}$ be the components of $H_{2}-u_{2} u_{3}$ containing u_{3}. Then u_{3} and $H_{u_{3}}$ satisfy the conditions of the claim for $i=1$.

Fig. 5 Illustration for Claim 5

Suppose by induction that for some positive integer k, one has found a vertex sequence $\left\{u_{3}, \ldots, u_{k+2}\right\}$ and the corresponding subgraphs $\left\{H_{u_{3}}, \ldots, H_{u_{k+2}}\right\}$ satisfying (i) and (ii). Let u_{k+3} be a vertex in $W_{w_{1} u_{k+2}} \backslash\left\{u_{1}, u_{k+1}\right\}$ (such vertex exists by $\left|W_{w_{1} u_{k+2}}\right| \geq 3$). By Claim 2, $f_{u_{k+3}, w_{1} u_{k+2}} \in E(G)-E\left(L_{X_{0}}\right)$. Since $w_{1} u_{1}$ is the only edge of $G-E\left(L_{X_{0}}\right)$ between $H_{w_{1}}$ and $H_{u_{1}}, u_{k+3} \notin V\left(H_{u_{1}}\right)$. If $u_{k+3} \in V\left(H_{w_{1}}\right)$, then by Claim 4, $w_{1} u_{k+3}$ is a cut edge of H_{1}. Then $w_{1} u_{k+3}$ is an edge in $E\left(H_{w_{1}}\right) \cap F_{H_{1}}$, contradicting (7). Hence, $u_{k+3} \notin V\left(H_{w_{1}}\right)$. By Claim 3, we have $u_{k+3} \in V\left(H_{2}\right)$. By Claim 4, $u_{2} u_{k+3}$ is a cut edge of H_{2}. Since $u_{k+1} u_{k+2} \in E\left(G-E\left(L_{X_{0}}\right)\right)$ is a cut edge of $H_{2}, u_{k+3} \in H_{u_{k+2}}$. Then $u_{k+2} u_{k+3}$ is a cut edge of $H_{u_{k+2}}$. Let $H_{u_{k+3}}$ be the components of $H_{u_{k+2}}-u_{k+2} u_{k+3}$ containing u_{k+3}. Then, sequences $\left\{u_{3}, \ldots, u_{k+2}, u_{k+3}\right\}$ and $\left\{H_{u_{3}}, \ldots, H_{u_{k+2}}, H_{u_{k+3}}\right\}$ satisfy the conditions of the claim. This completes the induction step.

By Claim 5, $H_{u_{i+2}}$ is a proper subgraph of $H_{u_{i+1}}$ for $i \geq 1$. Combining this with $\left\{H_{u_{3}}, H_{u_{4}}, \ldots\right\}$ being an infinite sequence of subgraphs of H_{2}, we obtain a contradiction to the assumption that G is finite. Theorem 1.2 is proved.

Proof of Theorem 1.3 By Lemma 2.3, $L^{l+5}(G)$ is 8-triangular. Hence, for any distinct edges $e, e^{\prime} \in E\left(L^{l+5}(G)\right), L^{l+5}(G)-\left\{e, e^{\prime}\right\}$ is 6-triangular, and thus $L^{l+5}(G)$ is 2collapsible by Theorem 1.2. Then by Theorem $2.5, \kappa^{*}\left(L^{l+6}(G)\right) \geq 3$. Theorem 1.3 is proved.

Acknowledgments The work is supported by NSFC (61222201).

References

Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38:555-566
Albert M, Aldred REL, Holton D (2001) On 3*-connected graphs. Australas J Comb 24:193-208
Bondy JA, Murty USR (2008) Graph theory. Springer, New York
Catlin PA (1988) A reduction method to find spanning Eulerian subgraphs. J Graph Theory 12:199-211
Chartrand G, Wall CE (1973) On the hamiltonian index of a graph. Stud Sci Math Hung 8:38-43
Chen Y, Chen Z-H, Lai H-J, Li P, Wei E (2012a) On spanning disjoint paths in line graphs, Graphs Combi, accepted
Chen Y, Lai H-J, Li H, Li P (2012b) Supereulerian graphs with width s and s-collapsible graphs, submitted Clark LH, Wormald NC (1983) Hamiltonian-like indices of the graphs. Ars Comb 15:131-148

Hsu DF (1994) On container width and length in graphs, groups, and netwoeks. IEICE Trans Fund E77-A:668-680
Knor M, Niepel L (2003) Connectivity of iterated line graphs. Discret Appl Math 125:255-266
Lai H-J (1988) On the hamiltonian index. Discret Math 69:43-53
Li P (2012) Bases and cycles of matroids and graphs. West Virginia University, PhD. Dissertation (2012)
Lin CK, Huang HM, Hsu LH (2007) On the spanning connectivity of graphs. Descret Math 307:285-289
Lin CK, Tan JJM, Hsu DF, Hsu LH (2007) On the spanning connectivity and spanning laceability of hypercube-like networks. Theor Comput Sci 381:218-229
Shao YH (2005) Claw-free graphs and line graphs. West Virginia University, Ph. D. Dissertation (2005)
Shao YH (2010) Connectivity of iterated line graphs. Discret Appl Math 158:2081-2087
Shao YH (2012) Essential edge connectivity of line graphs, submitted
Tsai CH, Tan JJM, Hsu LH (2004) The super connected property of recursive circulant graphs. Inf Process Lett 91:293-298
Zhang LL, Shao YH, Chen GH, Xu XP, Zhou J (2012) s-Vertex pancyclic index. Graphs Comb 28:393-406

[^0]: W. Xiong \cdot Z. Zhang $(\boxtimes) \cdot$ H.-J. Lai

 College of Mathematics and System Sciences, Xinjiang University, Urumqi,
 Xinjiang 830046, People's Republic of China
 e-mail: hxhzz@163.com
 H.-J. Lai

 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

