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a b s t r a c t

A connected graphG is essentially 4-edge-connected if for any edge cut X ofGwith |X | < 4,
either G − X is connected or at most one component of G − X has edges. In this paper, we
introduce a reductionmethod and investigate the existence of spanning trails in essentially
4-edge-connected graphs. As an application, we prove that if G is 4-edge-connected, then
for any edge subset X0 ⊆ E(G) with |X0| ≤ 3 and any distinct edges e, e′

∈ E(G), G has a
spanning (e, e′)-trail containing all edges in X0, which solves a conjecture posed in [W. Luo,
Z.-H. Chen, W.-G. Chen, Spanning trails containing given edges, Discrete Math. 306 (2006)
87–98].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. Undefined terms will follow [2]. A trail is a finite sequence
T = u0e1u1e2u2 · · · erur , whose terms are alternately vertices and edges, with ei = ui−1ui (1 ≤ i ≤ r), where the edges are
distinct. A trail T is a closed trail if u0 = ur and is called a (u, v)-trail if u0 = u and ur = v, and is called a (e, e′)-trail if e = e1
and e′

= er . A closed trail is also called an Eulerian subgraph. A trail T is called a spanning trail if V (T ) = V (G). A graph is
called supereulerian if it has a spanning closed trail.

A graph G is nontrivial if E(G) ≠ ∅. An edge cut X of a graph G is essential if both components of G− X are nontrivial; and
G is essentially k-edge-connected if G is connected and does not have an essential edge cut of size less than k. It follows from
the definition, we have the following proposition:

Proposition 1.1. Let G be an essentially k-edge-connected graphwith theminimumdegree δ(G) and the edge-connectivity κ ′(G).
Then κ ′(G) = min{δ(G), k}.

For a graph G, the line graph of G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and
only if the corresponding edges in G are adjacent in L(G). It follows from the definitions that a line graph L(G) is k-connected
if and only if G is essentially k-edge-connected. For line graphs, Thomassen has a well known conjecture [12]: ‘‘every
4-connected line graph is Hamiltonian’’. By a theorem of Harary and Nash-Williams [6], to prove Thomassen’s conjecture,
one can prove the equivalent version: every essentially 4-edge-connected graph has a closed trail that contains at least one
vertex of every edge in G.
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On the other hand, motivated by the Chinese postman problem, Boesch et al. [1] introduced the supereulerian problem,
that is to determine if a graph G has a spanning closed trail. Pulleyblank [11] showed that this is an NP-complete problem.
Catlin [3] and Jaeger [7] proved the following:

Theorem 1.2 (Catlin [3] and Jaeger [7]). A 4-edge-connected graph has a spanning closed trail.

As shown in [10], Theorem 1.2 can be improved in the sense that a 4-edge-connected graph can have spanning closed
trail containing some fixed edges. In [10], Luo et al. defined a graph G to be r-edge-Eulerian-connected if for any edge subset
X ⊆ E(G) with |X | ≤ r and any distinct edges e, e′

∈ E(G), G has a spanning (e, e′)-trail containing all edges in X . Define
ξ(r) to be the smallest integer k such that every k-edge-connected graph is r-edge-Eulerian-connected. They proved the
following:

Theorem 1.3 (Luo, Chen and Chen [10]). Let r ≥ 0 be an integer. Then

ξ(r) =


4, 0 ≤ r ≤ 2,
r + 1, r ≥ 4.

For r = 3, Luo et al. [10] indicated that 4 ≤ ξ(3) ≤ 5, and conjectured ξ(3) = 4.
In this paper, we introduce a reduction method on essentially 4-edge-connected graphs and investigate spanning trails

in essentially 4-edge-connected graphs. As an application, we prove the following:

Theorem 1.4. If G is a 4-edge-connected graph, then for any X0 ⊆ E(G) with |X0| ≤ 3 and any distinct edges e, e′
∈ E(G), G has

a spanning (e, e′)-trail T such that X0 ⊆ E(T ). Thus, G is 3-edge-Eulerian-connected and so ξ(3) = 4.

Theorem 1.4 confirmed the conjecture above, and so all the values of ξ(r) are determined for all integer r ≥ 0.
In the rest of the paper, we provide the theory of Catlin’s reduction method which is an important tool to solve problems

related to spanning trails, and introduce a new reduction method on essentially 4-edge-connected graphs in Section 2. The
results of spanning trails in essentially 4-edge-connected graphs are given in Section 3. We will discuss 3-edge-Eulerian-
connected graphs and give the proof of the conjecture ξ(3) = 4 in Section 4.

2. Reductions of essentially 4-edge-connected graphs

In this section, we shall develop a reduction method for essentially 4-edge-connected graphs and prove some associate
results on spanning trails that will be needed in the proof of Theorem 1.4.

Let G be a graph with vertex set V (G) and edge set E(G). For vertex disjoint subsets V1, V2 ⊆ V (G), let [V1, V2]G denotes
the set of all edges in G with one end in V1 and the other in V2. For vertex disjoint subgraphs H, L of G, we write [H, L] =

[V (H), V (L)]G, and define ∂G(H) = [V (H), V (G) − V (H)]G, called the boundary of H in G. When H = K1 is a single vertex v,
we denote ∂G(v) as ∂G(H) and |∂G(v)| = dG(v).

For a graphG and X ⊆ E(G), the contraction G/X is obtained fromG by identifying the two ends of each edge in X and then
by deleting the resulting loops. If H is a subgraph of G, then we write G/H for G/E(H). When H is connected, we use vH to
denote the vertex in G/H ontowhichH is contracted. Note that E(G/H) = E(G)−E(H) and V (G/H) = (V (G)−V (H))∪{vH}.
For an edge xy in E(G), we let θ(xy) be the vertex in G/xy onto which the edge xy is contracted.

A graph G is collapsible [3] if for any subset S ⊆ V (G)with |S| ≡ 0 (mod 2), G has a spanning connected subgraph LS such
that the set of odd degree vertices in LS is precisely S. As shown in [3], if G is a simple graph and H is a maximal collapsible
subgraph of G, then G/H is also a simple graph. Furthermore, Catlin [3] showed that any graph G has a unique collection of
vertex disjoint maximally collapsible subgraphs H1,H2, . . . ,Hc , and G/(H1 ∪H2 ∪ · · · ∪Hc) obtained by contracting each Hi
into a single vertex vHi , is called the reduction of G. As always, K1 is considered both supereulerian and collapsible, and has
infinity edge-connectivity. It was shown in [3] if G′ is the reduction of G, then G′ is simple and K3-free and κ ′(G′) ≥ κ ′(G).
A graph G is reduced if its reduction is G itself. The theory on collapsible graphs is useful for both simple graphs and multi-
graphs. Let F(G) be the minimum number of additional edges that must be added to G to result in a graph G∗ with at least
two edge-disjoint spanning trees. The following are some useful theorems which will be needed.

Theorem 2.1. Let G be a graph and let H be a collapsible subgraph of G. Let vH be the vertex in G/H onto which H is contracted.
(i) [3] Suppose that u ≠ vH andG/H has a (u, v)-trail T ′ containing vH . If v ≠ vH , then G has a (u, v)-trail T with E(T ′) ⊆ E(T )

and V (T ) = (V (T ′) − {vH}) ∪ V (H). If v = vH , then for any v′
∈ V (H), G has a (u, v′)-trail T with E(T ′) ⊆ E(T ) and

V (T ) = (V (T ′) − {vH}) ∪ V (H).
(ii) (Theorem 1.3 of [4]) If κ ′(G) ≥ 2 and F(G) ≤ 2, then the reduction of G is in {K1, K2,t for some integer t ≥ 2}.
(iii) [3] If G is reduced, then F(G) = 2|V (G)| − |E(G)| − 2.
(iv) (Theorem 2.3(iii) of [9]) If G is collapsible, then for any u, v ∈ V (G), G has a spanning (u, v)-trail.
(v) [3] G is supereulerian if and only if G/H is supereulerian. In particular, G is supereulerian if and only if the reduction of G is

supereulerian.

Next, we introduce a new reduction method for preserving essentially 4-edge-connected property of graphs, which
develops the ideas deployed in the proof of Theorem 3.1 in [8].
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Fig. 1. The graphs G1 and G2 from G in Theorem 2.2.

For a graph G and for each integer i > 0, define

Di(G) = {v ∈ V (G) : dG(v) = i}.

Let z ∈ D2(G) with NG(z) = {z1, z2} such that z1 ∈ D4(G) and NG(z1) = {z, w1, w2, w3}. For i ∈ {1, 2, 3}, if wi ∈ D2(G),
then let NG(wi) = {z1, w′

i}. For j ∈ {1, 2}, let G−

j = (G − {z1}) + {zwj, w3−jw3}, and W (G−

j ) = {e = xy ∈ E(G−

j ) : x, y ∈

D2(G−

j )}. Define

Gj = G−

j /W (G−

j ). (1)

For an essentially 4-edge-connected graphG, ifwi ∈ D2(G), thenNG(wi) = {z1, w′

i}∩D2(G) = ∅. Thus, if an edge e ∈ W (G−

j ),
then e ∈ {zwj, w3−jw3} (see Fig. 1).

Theorem 2.2. Let G be an essentially 4-edge-connected graph with δ(G) ≥ 2 and D3(G) = ∅. Let z ∈ D2(G) with NG(z) =

{z1, z2} such that z1 ∈ D4(G) and NG(z1) = {z, w1, w2, w3}. For i ∈ {1, 2, 3}, if wi ∈ D2(G), then let NG(wi) = {z1, w′

i}.
Let G1 and G2 be the graphs defined by (1) above. Then either G1 or G2 is also essentially 4-edge-connected and δ(Gj) ≥ 2 and
D3(Gj) = ∅ (j = 1, 2).

Proof. Since G is essentially 4-edge-connected with δ(G) ≥ 2, by Proposition 1.1, G is 2-edge-connected. Then by the
definition of Gj (j = 1, 2), Gj is connectedwith δ(Gj) ≥ 2 andD3(Gj) = ∅. It suffices to show that either G1 or G2 is essentially
4-edge-connected. For j ∈ {1, 2}, by (1), when w3−jw3 ∈ W (G−

j ), we shall use w3−j to denote the vertex θ(w3−jw3) in Gj;
and when wj ∈ D2(G), use z to denote the vertex θ(zwj) in Gj. Let x1, x2 and x3 denote the vertices in G1 and G2 such that

x1 =


w1 if w1 ∉ D2(G)
w′

1 if w1 ∈ D2(G),
x2 =


w2 if w2 ∉ D2(G)
w′

2 if w2 ∈ D2(G),
(2)

and

x3 =


w3 if w3−j ∉ D2(G) in Gj, j ∈ {1, 2}
w2 if w2 ∈ D2(G) in G1
w1 if w1 ∈ D2(G) in G2.

(3)

The notation x3 in (3) is for the convenience in our discussion below for G1 and G2, respectively. In G1, ifw2 ∈ D2(G), then
(3) defines x3 = w2 in G1; if w2 ∉ D2(G), then (3) defines x3 = w3 (see Fig. 2 for G1). Similarly, one can find what x3 is in G2
from (3).

Since G is essentially 4-edge-connected, by D3(G) = ∅ and by (2),

dG(xi) ≥ 4, if 1 ≤ i ≤ 2. (4)

By way of contradiction, suppose both G1 and G2 are not essentially 4-edge-connected. Then G1 and G2 have minimum
essential edge cuts X and Y , respectively, such that 2 ≤ |X | ≤ 3 and 2 ≤ |Y | ≤ 3.
Claim 1. For any essential edge cuts X in G1 and Y in G2 with 2 ≤ |X | ≤ 3 and 2 ≤ |Y | ≤ 3, X ∩ {zx1, x2x3} = ∅, and Y ∩

{zx2, x1x3} = ∅.
We will prove the case for X only. The proof for Y is similar and hence omitted. By way of contradiction, suppose X con-

tains either zx1 or x2x3, (we may, without lose of generality, assume that z and x2 are in the same component of G1 − X),
then define

X ′
=


(X − zx1) ∪ {z1w1} if zx1 ∈ X and x2x3 ∉ X
(X − x2x3) ∪ {z1w3} if x2x3 ∈ X and zx1 ∉ X
(X − {zx1, x2x3}) ∪ {z1w1, z1w3} if x2x3 ∈ X and zx1 ∈ X .

Thus, X ′ is an essential edge cut of G with |X ′
| = |X |, contrary to the assumption that G is essentially 4-edge-connected.

Claim 1 is proved.
Since X ∩ {zx1, x2x3} = ∅, zx1 and x2x3 must be in distinct components of G1 − X . Let A1 and A2 be the two components

of G1 − X with zx1 ∈ E(A1) and x2x3 ∈ E(A2).
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Fig. 2. All the cases of G1 with labels x1 , x2 , and x3 from G−

1 withW (G−

1 ) ≠ ∅.

Similarly, since {zx2, x1x3} ∩ Y = ∅, zx2, x1x3 are in distinct components of G2 − Y . Let B1 and B2 be the two components
of G2 − Y such that zx2 ∈ E(B1) and x1x3 ∈ E(B2). Hence

|∂G1(A1)| = |∂G1(A2)| = |X | ≤ 3, and |∂G2(B1)| = |∂G2(B2)| = |Y | ≤ 3. (5)

By the definition of G1 and G2, A1 ∩ B1, A1 ∩ B2, A2 ∩ B1 and A2 ∩ B2 are subgraphs of G. Furthermore, we may assume that
z ∈ V (A1 ∩ B1), x1 ∈ V (A1 ∩ B2), and x2 ∈ V (A2 ∩ B1).
Claim 2. |∂G(A1 ∩ B2)| ≥ 4 and |∂G(A2 ∩ B1)| ≥ 4.

By symmetry, we prove |∂G(A1 ∩B2)| ≥ 4 only. By contradiction, suppose |∂G(A1 ∩B2)| ≤ 3. Since G is 2-edge-connected
and essentially 4-edge-connected with D3(G) = ∅, we must have |∂G(A1 ∩ B2)| = 2 and so |V (A1 ∩ B2)| = 1. Hence
V (A1 ∩ B2) = {x1}, contrary to (4). This proves Claim 2.

In the following, we define α1 = |[A1 ∩ B2, A2 ∩ B2]|, α2 = |[A1 ∩ B2, A2 ∩ B1]|, α3 = |[A1 ∩ B1, A2 ∩ B1]|,
β1 = |[A1 ∩ B1, A1 ∩ B2]|, β2 = |[A1 ∩ B1, A2 ∩ B2]|, β3 = |[A2 ∩ B1, A2 ∩ B2]|. Thus by (5),

3
i=1

αi + β2 = |X | ≤ 3 and
3

i=1

βi + α2 = |Y | ≤ 3

and so

α1 + α2 + α3 ≤ 3 − β2 and β1 + β3 + α2 ≤ 3 − β2. (6)

Note that

∂G(A1 ∩ B2) ⊆ [A1 ∩ B2, A1 ∩ B1] ∪ [A1 ∩ B2, A2 ∩ B1] ∪ [A1 ∩ B2, A2 ∩ B2],

∂G(A2 ∩ B1) ⊆ [A2 ∩ B1, A2 ∩ B2] ∪ [A2 ∩ B1, A1 ∩ B1] ∪ [A2 ∩ B1, A1 ∩ B2].

By Claim 2, we have

4 ≤ |∂G(A1 ∩ B2)| ≤ β1 + α2 + α1, and 4 ≤ |∂G(A2 ∩ B1)| ≤ β3 + α3 + α2. (7)

By (7) and (6),

8 ≤ β1 + β3 + α2 + α1 + α2 + α3 ≤ 3 − β2 + 3 − β2 = 6 − 2β2 ≤ 6.

This contradiction establishes the theorem. �

3. Spanning trails in essentially 4-edge-connected graphs

For a reduced graphGwith δ(G) ≥ 2, let di = |Di(G)|. Then |V (G)| =


i≥2 di and 2|E(G)| =


i≥2 idi, by Theorem2.1(iii),

2F(G) = 4

i≥2

di −

i≥2

idi − 4. (8)
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Fig. 3. M(z) and M∗(z) in G.

Hence, if F(G) ≥ 3, then (8) implies
i≥5

(i − 4)di + 10 ≤ 2d2 + d3. (9)

We are now ready to prove themain result of this section, which will be needed to prove the conjecture ξ(3) = 4 in next
section.

Theorem 3.1. Let G be an essentially 4-edge-connected graphwith δ(G) ≥ 2 and |D2(G)∪D3(G)| ≤ 5. Then each of the following
holds.
(i) If |D2(G)| ≤ 3, then G is collapsible.
(ii) Either G is supereulerian or the reduction of G is K2,5 such that all the vertices of degree 2 in the reduction are trivial.
(iii) If |D2(G)| ≥ 2, then for any pair of distinct vertices u, v ∈ D2(G), G has a spanning (u, v)-trail.

Proof. Since G is an essentially 4-edge-connected graph with δ(G) ≥ 2, by Proposition 1.1, κ ′(G) ≥ 2. We argue by contra-
diction and assume that

G is a counterexample with |V (G)| minimized. (10)

If G is collapsible, then Theorem 3.1(i) holds. Hence we may assume that G is not collapsible. Let G′ be the reduction of G.
Then G′

≠ K1 and κ ′(G′) ≥ 2. If F(G′) ≤ 2, then by Theorem 2.1(ii) G′ is a K2,t for some t ≥ 2. Since G is essentially 4-edge-
connected, we must have t ∈ {4, 5} and any vertex in D2(G′) must be a trivial contraction, and so we can view D2(G′) ⊆

D2(G). Thus, |D2(G)| ≥ |D2(G′)| = t ≥ 4. If t = 4, then K2,t = K2,4 is Eulerian and so by Theorem 2.1(v) G is supereulerian.
If G is not supereulerian, then the reduction of G must be K2,5, and so Theorem 3.1(ii) must holds. Moreover, by inspection,
if u ∈ D2(K2,t) and v ∈ V (K2,t − u), then K2,t always has a spanning (u, v)-trail, and so by Theorem 2.1(i), Theorem 3.1(iii)
must hold. Hence we may assume that

the reduction of G is not a K2,t for any integer t ≥ 2. (11)

Thus by Theorem 2.1(ii), F(G′) ≥ 3. By (10), wemay assume that G is reduced. Thus, G = G′. By (9), d2 +d3 ≤ 5. It follows
from (9) that we must have d2 = 5, d3 = 0 and

V (G) = D2(G) ∪ D4(G). (12)

Hence, Gmust be Eulerian, and we are done for the proof of Theorem 3.1(i) and (ii). It remains to prove Theorem 3.1(iii).
We introduce the following notations in our argument. For each vertex z ∈ D2(G), let NG(z) = {z1, z2}. As G is essentially

4-edge-connected, z1, z2 ∈ D4(G). Let NG(z1) = {w1, w2, w3, z} and NG(z2) = {w∗

1, w
∗

2, w
∗

3, z}. Define (see Fig. 3)

M(z) = {w1, w2, w3} and M∗(z) = {w∗

1, w
∗

2, w
∗

3}.

By (10), there exist a pair of distinct vertices u, v ∈ D2(G) such that

G has not spanning (u, v)-trails. (13)

We proceed our proof by verifying the following claims and let D2(G) = {a, b, c, u, v}.

Claim 1. For any z ∈ {a, b, c} = D2(G) − {u, v},
(a) |M(z) ∩ D2(G)| ≥ 2 and |M∗(z) ∩ D2(G)| ≥ 2;
(b) |M(z) ∩ {u, v}| ≥ 1 and |M∗(z) ∩ {u, v}| ≥ 1.

Proof of Claim 1(a). By symmetry, it suffices to show that |M(z)∩D2(G)| ≥ 2. By contradiction, suppose |M(z)∩D2(G)| ≤ 1.
Then we may assumeM(z) ∩ D2(G) ⊆ {w3}.

Using the reductionmethod and the same notations in Theorem 2.2, we obtain two graphs G1 and G2 from Gwith δ(Gi) ≥

2 and D3(Gi) = ∅ (i = 1, 2). By Theorem 2.2, wemay assume that G1 is essentially 4-edge-connected. SinceM(z)∩D2(G) ⊆

{w3}, w1, w2 ∉ D2(G), and by (1), we have G1 = (G − {z1}) + {zw1, w2w3}, x1 = w1, x2 = w2 and x3 = w3. Thus we may
viewD2(G1) = D2(G). By (10), G1 has a spanning (u, v)-trailH ′

1. Since z has degree 2 in G1 and z ∉ {u, v}, zx1 ∈ E(H ′

1). Define

H1 =


G[E(H ′

1 − zx1) ∪ {zz1, z1w1}] if x2x3 ∉ E(H ′

1)
G[E(H ′

1 − {zx1, x2x3}) ∪ {zz1, z1w1, w2z1, z1w3}] if x2x3 ∈ E(H ′

1).

Then H1 is a spanning (u, v)-trial of G, contrary to (13). This proves Claim 1(a).
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(A) (B) b ∈ M∗(a). (C) b ∉ M∗(a).

Fig. 4. Graphs in the proof of Claim 3 of Theorem 3.1.

Proof of Claim 1(b). By way of contradiction, suppose Claim 1(b) is not true. Let z be a vertex in {a, b, c} such that
M(z)∩{u, v} = ∅. Wemay assume that z = a. By Claim 1(a), |M(z)∩D2(G)| ≥ 2. Since z = a ∉ M(z) andM(z)∩{u, v} = ∅,
M(z) ∩ D2(G) = D2(G) − {a, u, v} = {b, c}. We may assume that w1 = b, and w2 = c , and so dG(w1) = dG(w2) = 2 and
dG(w3) = 4. Let NG(wi) = {z, w′

i} (i = 1, 2). Again using the reduction method on G as in Theorem 2.2, we obtained two
graphs G1 and G2 with δ(Gi) ≥ 2 and D3(Gi) = ∅ (i = 1, 2). By Theorem 2.2, we may assume that G1 is essentially 4-edge-
connected. Then since dG(z) = dG(w1) = 2, and dG(w3) = 4, G−

1 = (G−{z1})+{zw1, w2w3} withW (G−

1 ) = {zw1} = {zb},
and so G1 = G−

1 /zw1 with z = θ(zw1) and zw′

1 ∈ E(G1), and with x1 = w′

1, x2 = w′

2 and x3 = w2 = c (see Fig. 2(II) for G1).
Thus, by (10), G1 has a spanning (u, v)-trail H0.

Since {z, x3} = {a, c} ⊆ D2(G1) − {u, v}, zx1 = zw′

1 and x2x3 = w′

2w2 are both in E(H0). Since dG1(w2) = dG1(c) =

dG(c) = 2 and c ∉ {u, v}, w2w3 is also in E(H0). Define

H1 = (H0 − {zx1, w2w3}) + {zz1, z1w1, w1w
′

1, z1w2, z1w3}.

Then H1 is a spanning (u, v)-trail in G, a contradiction. Thus, Claim 1(b) is proved.

Claim 2. For any z ∈ D2(G), |D2(G) ∩ M(z) ∩ M∗(z)| ≤ 1.
By the definition of M(z) and M∗(z), |D2(G) ∩ M(z) ∩ M∗(z)| ≤ 3, where equality holds if and only if G = K2,4. Since

|D2(G)| = d2 = 5, G ≠ K2,4, and so |D2(G) ∩ M(z) ∩ M∗(z)| ≤ 2. If |D2(G) ∩ M(z) ∩ M∗(z)| = 2, then we may assume
that w1 = w∗

1 and w2 = w∗

2 in D2(G). Then {z1w3, z2w∗

3} is an essential edge cut of G, contrary to that G is essentially
4-edge-connected. This proves Claim 2.

Claim 3. For all y ∈ {u, v}, M(y) ∩ M∗(y) ∩ {a, b, c} = ∅.
Without loss of generality, wemay assume y = u. Byway of contradiction, suppose there is a vertex z in {a, b, c} such that

z ∈ M(u)∩M∗(u). LetNG(u) = {u1, u2}. Then zu1 and zu2 are the two edges incidentwith z. LetG0 = G/zu2 withu2 = θ(zu2).
Then u1u2 ∈ E(G0). NoteG0 has the same essentially edge-connectivity asG and δ(G0) ≥ 2with |V (G0)| < |V (G)|. Therefore,
by (10), G0 has a spanning (u, v)-trail H0.

If u1u2 ∈ E(H0), then H = H0 − u1u2 + {u1z, zu2} is a spanning (u, v)-trail in G, contrary to (13). If u1u2 ∉ E(H0), then
sinceH0 is a spanning (u, v)-trail in G0, one and only one of uu1 or uu2 (say uu1) is inH0, thenH = H0 −uu1 +{uu2, u2z, zu1}

is a spanning (u, v)-trail in G, a contradiction again. Claim 3 is proved.
For {a, b, c} = D2(G) − {u, v}, let NG(a) = {a1, a2}, NG(b) = {b1, b2}, and NG(c) = {c1, c2}. Then since G is essentially

4-edge-connected and by (12), d(ai) = d(bi) = d(ci) = 4 where i = 1, 2. Let S = NG(a) ∪ NG(b) ∪ NG(c). If |S| = 2, then
S = NG(a) = NG(b) = NG(c), contrary to Claim 2. Thus, |S| ≥ 3. In the following, we assume NG(a) = {a1, a2} ⊆ S and let
x ∈ S − {a1, a2}. Thus,

S = {a1, a2, x, . . .}.

By Claim 1(a) and (b), |M(a) ∩ D2(G)| ≥ 2, |M∗(a) ∩ D2(G)| ≥ 2, |M(a) ∩ {u, v}| ≥ 1 and |M∗(a) ∩ {u, v}| ≥ 1. We
may assume that b ∈ M(a) = NG(a1) − {a}, u ∈ M(a) = NG(a1) − {a}, and by Claim 3 v ∈ M∗(a) = NG(a2) − {a} and so
u ∉ M∗(a) and v ∉ M(a) (see the Fig. 4(A)).
Case 1. b ∈ M∗(a) (see Fig. 4(B)).
Then NG(b) = {a1, a2} = NG(a). Since NG(c) ⊆ S, c must be adjacent to x, and so x ∈ NG(c). Wemay assume that x = c1 and
M(c) = NG(c1)−{c}. By Claim 1(a), |M(c)∩D2(G)| ≥ 2, c1 must be adjacent to another two degree 2 vertices in addition to
c. Hence, since NG(a) = NG(b), u and v must be the two vertices adjacent to c1 and so NG(u) = {a1, c1} and NG(v) = {a2, c1}.
Therefore, the another vertex c2 in NG(c) is not in {a1, a2}. Otherwise, c ∈ M(u) ∩ M∗(u) or c ∈ M(v) ∩ M∗(v), contrary to
Claim 3. NoteM∗(c) = NG(c2) − {c}. Thus,

D2(G) ∩ M∗(c) = {a, b, u, v, c} ∩ M∗(c) = ∅,

contrary to Claim 1(a) that |M∗(c) ∩ D2(G)| ≥ 2.
Case 2. b ∉ M∗(a) (see Fig. 4(C)).
Then by Claim 1(a),M∗(a) = NG(a2)−{a} must have at least two degree 2 vertices, and so c ∈ M∗(a) = NG(a2)−{a}. Since
b ∉ M∗(a), NG(b) ∩ S ≠ ∅, and so we may assume x ∈ NG(b) − {a1} (see Fig. 4(C)). Then since both u and b are adjacent to
a1, by Claim 3 u is not adjacent to x. By Claim 1(a),M∗(b) = NG(x) − {b} must have at least two degree 2 vertices other than
b and u. Thus, v and c must be inM∗(b) = NG(x) − {b}. Therefore, NG(v) = {a2, x} = NG(c), contrary to Claim 3.

We have a contradiction for each case above, and so the statement (13) is false. The theorem is proved. �
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In Theorem 3.12 of [5], Catlin and Lai proved that if a 3-edge-connected graph G has at most 9 edge cuts of size 3, then G
is supereulerian. For an essentially 4-edge-connected graph Gwith δ(G) ≥ 3, we have the following:

Theorem 3.2. If G is an essentially 4-edge-connected graph with δ(G) ≥ 3 and |D3(G)| < 10, then G is collapsible and has a
spanning (u, v)-trail for any u, v ∈ V (G).

Proof. Since G is essentially 4-edge-connected with δ(G) ≥ 3, by Proposition 1.1, κ ′(G) ≥ 3. Let G′ be the reduction of G.
By way of contradiction, suppose G is not collapsible. Then G′

≠ K1 and κ ′(G′) ≥ 3. Let di = |Di(G′)|. Then since κ ′(G′) ≥ 3,
d1 = d2 = 0. Since G is essentially 4-edge-connected, G does not have an essential edge cut of size 3, and so d3 = |D3(G′)| ≤

|D3(G)| < 10. If F(G′) ≤ 2, then by Theorem 2.1(ii), G′
∈ {K1, K2,t} (t ≥ 2), contrary to G′

≠ K1 and κ ′(G′) ≥ 3. Hence,
F(G′) ≥ 3, then by (9) and d2 = 0,

i≥5

(i − 4)di + 10 ≤ 2d2 + d3;

10 ≤ d3 < 10,

a contradiction. Thus, G must be collapsible. By Theorem 2.1(iv), for any u, v ∈ V (G), G has a spanning (u, v)-trail. The
theorem is proved. �

Remark. The Petersen Graph shows that Theorem 3.2 is best possible in the sense that |D3(G)| < 10 is necessary.

4. Graphs that are 3-edge-Eulerian-connected

In this section, we shall investigate what graphs are 3-edge-Eulerian-connected. First, we prove the following theorem,
as stated in Theorem 1.4, which proves the conjecture posed in [10].

Theorem 4.1. If G is a 4-edge-connected graph, then G is 3-edge-Eulerian-connected and so ξ(3) = 4.

Proof. LetG be a graphwith κ ′(G) ≥ 4, and let X ⊆ E(G) be an edge setwith |X | = 3. Pick any pair of edges e′, e′′
∈ E(G)−X .

Let L be the graph obtained from G by subdividing each edge e ∈ X ∪ {e′, e′′
} exactly once. (That is, for each edge

e = aebe ∈ X ∪ {e′, e′′
}, we replace e by a path aevebe by inserting a new vertex ve). Then D2(L) is the set of the five degree

2 vertices generated by the subdivision, and L is 2-edge-connected and essentially 4-edge-connected. By Theorem 3.1(iii), L
has a spanning (ve′ , ve′′)-trail. This implies that G has a spanning (e′, e′′)-trail containing X , and so by definition, G is 3-edge-
Eulerian-connected. �

As we know many 3-edge-connected graphs such as the Petersen graph have no spanning closed trail, the edge-
connectivity in Theorem 4.1 cannot be lowered to 3-edge-connected. However, a 3-edge-Eulerian-connected graph is not
necessarily 4-edge-connected. For example, let G be a graph obtained from Kn (n ≥ 8) and a vertex v by joining v to v1 and
v2 with two edges vv1 and vv2, where v1, v2 ∈ V (Kn) and v ∉ V (Kn). Then G is a 3-edge-Eulerian connected graph with
d(v) = 2. We have the following necessary conditions for 3-edge-Eulerian-connected graphs.

Proposition 4.2. Let G be a 3-edge-Eulerian-connected graph with |E(G)| ≥ 6. Then G must be essentially 4-edge-connected
with D3(G) = ∅.

Proof. We shall first show that G does not have an edge cut of size 3. By contradiction, assume that G an edge cut of Gwith
|X | = 3. Let H1 and H2 be the two components of G − X with |E(H1)| ≤ |E(H2)|. Since G is 3-edge-Eulerian-connected with
|E(G)| ≥ 6 and |X | = 3, wemay assume that |E(H2)| ≥ 2. Let e1 and e2 be two distinct edges in E(H2). Then G has a spanning
(e1, e2)-trail T with X ⊆ E(T ). Since both e1, e2 ∈ E(H2), T ′

= T/(H2 ∩ T ) is a spanning closed trail of G/H2 that contains
X . Since T ′ is a spanning closed trail and X is an edge cut, |X | = |E(T ′) ∩ X | ≡ 0 (mod 2), contrary to that |X | = 3. Hence G
does not have an edge cut of size 3 and so D3(G) = ∅.

To show G is essentially 4-edge-connected, it suffices to show that G does not have an essential edge cut X ′ with |X ′
| = 2.

By way of contradiction, suppose that such an edge cut X ′ exists and G − X ′ has two components H ′

1 and H ′

2. Since X ′ is an
essential edge cut, we can pick an edge e′

i ∈ E(H ′

i ), (1 ≤ i ≤ 2). Since |X ′
| = 2 < 3 and G is 3-edge-Eulerian-connected,

G has a spanning (e′

1, e
′

2)-trail T
′ such that X ′

⊆ E(T ′). Let e′′ be an edge not in G joining the two end vertices of T ′. Then
T ′

+ e′′ is a spanning closed trail of G+ e′′, which contains a 3-edge-cut X ′
∪ {e′′

} of G+ e′′. This yields a contradiction as the
intersection of any close trail and any edge cut must have an even number of edges. �

Let G be the graph shown in Fig. 5 with s ≥ 6, where v is a vertex of degree 2, and e′
∈ E(H1) and e′′

∈ E(H2). Let X =

{e1, e2, e3} be the set of the three edges shown in Fig. 5. As we can see that a trail started from e1 in H1 must ended in H1
after tracing through the three edges in X and vertex v. Hence, there is no spanning (e′, e′′)-trail T in G such that X ⊆ E(T )
and V (T ) = V (G). Thus, an essentially 4-edge-connected graph G with D3(G) = ∅ may not be 3-edge-Eulerian connected.
It remains a problem to completely characterize the structures of 3-edge-Eulerian connected graphs.

Let G0 = G − {v} + v1v2. Then G0 is 4-edge-connected and X0 = {e1, e2, e3, v1v2} is an edge-cut of G0. And G0 has no
spanning (e′, e′′)-trails containing X0. This shows that Theorem 4.1 is best possible in the sense that 4-edge-connected graph
G cannot be 4-edge-Eulerian connected.
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Fig. 5. Gwhich is not 3-edge-Eulerian connected.
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