Spanning trails in essentially 4-edge-connected graphs

Jinquan $\mathrm{Xu}^{\text {a }}$, Zhi-Hong Chen ${ }^{\mathrm{b}, 1}$, Hong-Jian Lai ${ }^{\mathrm{c}, \mathrm{d}}$, Meng Zhang ${ }^{\mathrm{d}, *}$
${ }^{\text {a }}$ Department of Mathematics, Huizhou University, Huizhou, 561007 Guangdong, PR China
${ }^{\text {b }}$ Butler University, Indianapolis, IN 46208, USA
${ }^{\text {c }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\text {d }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history:

Received 1 March 2013
Received in revised form 22 August 2013
Accepted 28 August 2013
Available online 19 September 2013

Keywords:

Collapsible
Essentially 4-edge-connected r-edge-Eulerian-connected Spanning trail

Abstract

A connected graph G is essentially 4-edge-connected if for any edge cut X of G with $|X|<4$, either $G-X$ is connected or at most one component of $G-X$ has edges. In this paper, we introduce a reduction method and investigate the existence of spanning trails in essentially 4-edge-connected graphs. As an application, we prove that if G is 4-edge-connected, then for any edge subset $X_{0} \subseteq E(G)$ with $\left|X_{0}\right| \leq 3$ and any distinct edges $e, e^{\prime} \in E(G)$, G has a spanning (e, e^{\prime})-trail containing all edges in X_{0}, which solves a conjecture posed in [W. Luo, Z.-H. Chen, W.-G. Chen, Spanning trails containing given edges, Discrete Math. 306 (2006) 87-98].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. Undefined terms will follow [2]. A trail is a finite sequence $T=u_{0} e_{1} u_{1} e_{2} u_{2} \cdots e_{r} u_{r}$, whose terms are alternately vertices and edges, with $e_{i}=u_{i-1} u_{i}(1 \leq i \leq r)$, where the edges are distinct. A trail T is a closed trail if $u_{0}=u_{r}$ and is called a (u, v)-trail if $u_{0}=u$ and $u_{r}=v$, and is called a $\left(e, e^{\prime}\right)$-trail if $e=e_{1}$ and $e^{\prime}=e_{r}$. A closed trail is also called an Eulerian subgraph. A trail T is called a spanning trail if $V(T)=V(G)$. A graph is called supereulerian if it has a spanning closed trail.

A graph G is nontrivial if $E(G) \neq \emptyset$. An edge cut X of a graph G is essential if both components of $G-X$ are nontrivial; and G is essentially k-edge-connected if G is connected and does not have an essential edge cut of size less than k. It follows from the definition, we have the following proposition:

Proposition 1.1. Let G be an essentially k-edge-connected graph with the minimum degree $\delta(G)$ and the edge-connectivity $\kappa^{\prime}(G)$. Then $\kappa^{\prime}(G)=\min \{\delta(G), k\}$.

For a graph G, the line graph of G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent in $L(G)$. It follows from the definitions that a line graph $L(G)$ is k-connected if and only if G is essentially k-edge-connected. For line graphs, Thomassen has a well known conjecture [12]: "every 4-connected line graph is Hamiltonian". By a theorem of Harary and Nash-Williams [6], to prove Thomassen's conjecture, one can prove the equivalent version: every essentially 4-edge-connected graph has a closed trail that contains at least one vertex of every edge in G.

[^0]On the other hand, motivated by the Chinese postman problem, Boesch et al. [1] introduced the supereulerian problem, that is to determine if a graph G has a spanning closed trail. Pulleyblank [11] showed that this is an NP-complete problem. Catlin [3] and Jaeger [7] proved the following:

Theorem 1.2 (Catlin [3] and Jaeger [7]). A 4-edge-connected graph has a spanning closed trail.
As shown in [10], Theorem 1.2 can be improved in the sense that a 4-edge-connected graph can have spanning closed trail containing some fixed edges. In [10], Luo et al. defined a graph G to be r-edge-Eulerian-connected if for any edge subset $X \subseteq E(G)$ with $|X| \leq r$ and any distinct edges $e, e^{\prime} \in E(G), G$ has a spanning ($\left.e, e^{\prime}\right)$-trail containing all edges in X. Define $\xi(r)$ to be the smallest integer k such that every k-edge-connected graph is r-edge-Eulerian-connected. They proved the following:

Theorem 1.3 (Luo, Chen and Chen [10]). Let $r \geq 0$ be an integer. Then

$$
\xi(r)= \begin{cases}4, & 0 \leq r \leq 2 \\ r+1, & r \geq 4\end{cases}
$$

For $r=3$, Luo et al. [10] indicated that $4 \leq \xi(3) \leq 5$, and conjectured $\xi(3)=4$.
In this paper, we introduce a reduction method on essentially 4-edge-connected graphs and investigate spanning trails in essentially 4-edge-connected graphs. As an application, we prove the following:

Theorem 1.4. If G is a 4-edge-connected graph, then for any $X_{0} \subseteq E(G)$ with $\left|X_{0}\right| \leq 3$ and any distinct edges $e, e^{\prime} \in E(G)$, G has a spanning (e, e^{\prime})-trail T such that $X_{0} \subseteq E(T)$. Thus, G is 3-edge-Eulerian-connected and so $\xi(3)=4$.

Theorem 1.4 confirmed the conjecture above, and so all the values of $\xi(r)$ are determined for all integer $r \geq 0$.
In the rest of the paper, we provide the theory of Catlin's reduction method which is an important tool to solve problems related to spanning trails, and introduce a new reduction method on essentially 4 -edge-connected graphs in Section 2 . The results of spanning trails in essentially 4-edge-connected graphs are given in Section 3. We will discuss 3-edge-Eulerianconnected graphs and give the proof of the conjecture $\xi(3)=4$ in Section 4.

2. Reductions of essentially 4-edge-connected graphs

In this section, we shall develop a reduction method for essentially 4-edge-connected graphs and prove some associate results on spanning trails that will be needed in the proof of Theorem 1.4.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For vertex disjoint subsets $V_{1}, V_{2} \subseteq V(G)$, let $\left[V_{1}, V_{2}\right]_{G}$ denotes the set of all edges in G with one end in V_{1} and the other in V_{2}. For vertex disjoint subgraphs H, L of G, we write $[H, L]=$ $[V(H), V(L)]_{G}$, and define $\partial_{G}(H)=[V(H), V(G)-V(H)]_{G}$, called the boundary of H in G. When $H=K_{1}$ is a single vertex v, we denote $\partial_{G}(v)$ as $\partial_{G}(H)$ and $\left|\partial_{G}(v)\right|=d_{G}(v)$.

For a graph G and $X \subseteq E(G)$, the contraction G / X is obtained from G by identifying the two ends of each edge in X and then by deleting the resulting loops. If H is a subgraph of G, then we write G / H for $G / E(H)$. When H is connected, we use v_{H} to denote the vertex in G / H onto which H is contracted. Note that $E(G / H)=E(G)-E(H)$ and $V(G / H)=(V(G)-V(H)) \cup\left\{v_{H}\right\}$. For an edge $x y$ in $E(G)$, we let $\theta(x y)$ be the vertex in $G / x y$ onto which the edge $x y$ is contracted.

A graph G is collapsible [3] if for any subset $S \subseteq V(G)$ with $|S| \equiv 0(\bmod 2), G$ has a spanning connected subgraph L_{S} such that the set of odd degree vertices in L_{S} is precisely S. As shown in [3], if G is a simple graph and H is a maximal collapsible subgraph of G, then G / H is also a simple graph. Furthermore, Catlin [3] showed that any graph G has a unique collection of vertex disjoint maximally collapsible subgraphs $H_{1}, H_{2}, \ldots, H_{c}$, and $G /\left(H_{1} \cup H_{2} \cup \ldots \cup H_{c}\right)$ obtained by contracting each H_{i} into a single vertex $v_{H_{i}}$, is called the reduction of G. As always, K_{1} is considered both supereulerian and collapsible, and has infinity edge-connectivity. It was shown in [3] if G^{\prime} is the reduction of G, then G^{\prime} is simple and K_{3}-free and $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G)$. A graph G is reduced if its reduction is G itself. The theory on collapsible graphs is useful for both simple graphs and multigraphs. Let $F(G)$ be the minimum number of additional edges that must be added to G to result in a graph G^{*} with at least two edge-disjoint spanning trees. The following are some useful theorems which will be needed.

Theorem 2.1. Let G be a graph and let H be a collapsible subgraph of G. Let v_{H} be the vertex in G / H onto which H is contracted.
(i) [3] Suppose that $u \neq v_{H}$ and G / H has $a(u, v)$-trail T^{\prime} containing v_{H}. If $v \neq v_{H}$, then G has $a(u, v)$-trail T with $E\left(T^{\prime}\right) \subseteq E(T)$ and $V(T)=\left(V\left(T^{\prime}\right)-\left\{v_{H}\right\}\right) \cup V(H)$. If $v=v_{H}$, then for any $v^{\prime} \in V(H), G$ has $a\left(u, v^{\prime}\right)$-trail T with $E\left(T^{\prime}\right) \subseteq E(T)$ and $V(T)=\left(V\left(T^{\prime}\right)-\left\{v_{H}\right\}\right) \cup V(H)$.
(ii) (Theorem 1.3 of [4]) If $\kappa^{\prime}(G) \geq 2$ and $F(G) \leq 2$, then the reduction of G is in $\left\{K_{1}, K_{2, t}\right.$ for some integer $\left.t \geq 2\right\}$.
(iii) [3] If G is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.
(iv) (Theorem 2.3(iii) of [9]) If G is collapsible, then for any $u, v \in V(G)$, G has a spanning (u, v)-trail.
(v) [3] G is supereulerian if and only if G / H is supereulerian. In particular, G is supereulerian if and only if the reduction of G is supereulerian.

Next, we introduce a new reduction method for preserving essentially 4-edge-connected property of graphs, which develops the ideas deployed in the proof of Theorem 3.1 in [8].

Fig. 1. The graphs G_{1} and G_{2} from G in Theorem 2.2.
For a graph G and for each integer $i>0$, define

$$
D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\} .
$$

Let $z \in D_{2}(G)$ with $N_{G}(z)=\left\{z_{1}, z_{2}\right\}$ such that $z_{1} \in D_{4}(G)$ and $N_{G}\left(z_{1}\right)=\left\{z, w_{1}, w_{2}, w_{3}\right\}$. For $i \in\{1,2,3\}$, if $w_{i} \in D_{2}(G)$, then let $N_{G}\left(w_{i}\right)=\left\{z_{1}, w_{i}^{\prime}\right\}$. For $j \in\{1,2\}$, let $G_{j}^{-}=\left(G-\left\{z_{1}\right\}\right)+\left\{z w_{j}, w_{3-j} w_{3}\right\}$, and $W\left(G_{j}^{-}\right)=\left\{e=x y \in E\left(G_{j}^{-}\right): x, y \in\right.$ $\left.D_{2}\left(G_{j}^{-}\right)\right\}$. Define

$$
\begin{equation*}
G_{j}=G_{j}^{-} / W\left(G_{j}^{-}\right) \tag{1}
\end{equation*}
$$

For an essentially 4-edge-connected graph G, if $w_{i} \in D_{2}(G)$, then $N_{G}\left(w_{i}\right)=\left\{z_{1}, w_{i}^{\prime}\right\} \cap D_{2}(G)=\emptyset$. Thus, if an edge $e \in W\left(G_{j}^{-}\right)$, then $e \in\left\{z w_{j}, w_{3-j} w_{3}\right\}$ (see Fig. 1).

Theorem 2.2. Let G be an essentially 4-edge-connected graph with $\delta(G) \geq 2$ and $D_{3}(G)=\emptyset$. Let $z \in D_{2}(G)$ with $N_{G}(z)=$ $\left\{z_{1}, z_{2}\right\}$ such that $z_{1} \in D_{4}(G)$ and $N_{G}\left(z_{1}\right)=\left\{z, w_{1}, w_{2}, w_{3}\right\}$. For $i \in\{1,2,3\}$, if $w_{i} \in D_{2}(G)$, then let $N_{G}\left(w_{i}\right)=\left\{z_{1}, w_{i}^{\prime}\right\}$. Let G_{1} and G_{2} be the graphs defined by (1) above. Then either G_{1} or G_{2} is also essentially 4-edge-connected and $\delta\left(G_{j}\right) \geq 2$ and $D_{3}\left(G_{j}\right)=\emptyset(j=1,2)$.

Proof. Since G is essentially 4-edge-connected with $\delta(G) \geq 2$, by Proposition 1.1, G is 2-edge-connected. Then by the definition of $G_{j}(j=1,2), G_{j}$ is connected with $\delta\left(G_{j}\right) \geq 2$ and $\bar{D}_{3}\left(G_{j}\right)=\emptyset$. It suffices to show that either G_{1} or G_{2} is essentially 4-edge-connected. For $j \in\{1,2\}$, by (1), when $w_{3-j} w_{3} \in W\left(G_{j}^{-}\right)$, we shall use w_{3-j} to denote the vertex $\theta\left(w_{3-j} w_{3}\right)$ in G_{j}; and when $w_{j} \in D_{2}(G)$, use z to denote the vertex $\theta\left(z w_{j}\right)$ in G_{j}. Let x_{1}, x_{2} and x_{3} denote the vertices in G_{1} and G_{2} such that

$$
x_{1}=\left\{\begin{array}{ll}
w_{1} & \text { if } w_{1} \notin D_{2}(G) \tag{2}\\
w_{1}^{\prime} & \text { if } w_{1} \in D_{2}(G),
\end{array} \quad x_{2}= \begin{cases}w_{2} & \text { if } w_{2} \notin D_{2}(G) \\
w_{2}^{\prime} & \text { if } w_{2} \in D_{2}(G)\end{cases}\right.
$$

and

$$
x_{3}= \begin{cases}w_{3} & \text { if } w_{3-j} \notin D_{2}(G) \text { in } G_{j}, j \in\{1,2\} \tag{3}\\ w_{2} & \text { if } w_{2} \in D_{2}(G) \text { in } G_{1} \\ w_{1} & \text { if } w_{1} \in D_{2}(G) \text { in } G_{2}\end{cases}
$$

The notation x_{3} in (3) is for the convenience in our discussion below for G_{1} and G_{2}, respectively. In G_{1}, if $w_{2} \in D_{2}(G)$, then (3) defines $x_{3}=w_{2}$ in G_{1}; if $w_{2} \notin D_{2}(G)$, then (3) defines $x_{3}=w_{3}$ (see Fig. 2 for G_{1}). Similarly, one can find what x_{3} is in G_{2} from (3).

Since G is essentially 4-edge-connected, by $D_{3}(G)=\emptyset$ and by (2),

$$
\begin{equation*}
d_{G}\left(x_{i}\right) \geq 4, \quad \text { if } 1 \leq i \leq 2 \tag{4}
\end{equation*}
$$

By way of contradiction, suppose both G_{1} and G_{2} are not essentially 4-edge-connected. Then G_{1} and G_{2} have minimum essential edge cuts X and Y, respectively, such that $2 \leq|X| \leq 3$ and $2 \leq|Y| \leq 3$.
Claim 1. For any essential edge cuts X in G_{1} and Y in G_{2} with $2 \leq|X| \leq 3$ and $2 \leq|Y| \leq 3, X \cap\left\{z x_{1}, x_{2} x_{3}\right\}=\emptyset$, and $Y \cap$ $\left\{z x_{2}, x_{1} x_{3}\right\}=\emptyset$.

We will prove the case for X only. The proof for Y is similar and hence omitted. By way of contradiction, suppose X contains either $z x_{1}$ or $x_{2} x_{3}$, (we may, without lose of generality, assume that z and x_{2} are in the same component of $G_{1}-X$), then define

$$
X^{\prime}= \begin{cases}\left(X-z x_{1}\right) \cup\left\{z_{1} w_{1}\right\} & \text { if } z x_{1} \in X \text { and } x_{2} x_{3} \notin X \\ \left(X-x_{2} x_{3}\right) \cup\left\{z_{1} w_{3}\right\} & \text { if } x_{2} x_{3} \in X \text { and } z x_{1} \notin X \\ \left(X-\left\{z x_{1}, x_{2} x_{3}\right\}\right) \cup\left\{z_{1} w_{1}, z_{1} w_{3}\right\} & \text { if } x_{2} x_{3} \in X \text { and } z x_{1} \in X\end{cases}
$$

Thus, X^{\prime} is an essential edge cut of G with $\left|X^{\prime}\right|=|X|$, contrary to the assumption that G is essentially 4-edge-connected. Claim 1 is proved.

Since $X \cap\left\{z x_{1}, x_{2} x_{3}\right\}=\emptyset, z x_{1}$ and $x_{2} x_{3}$ must be in distinct components of $G_{1}-X$. Let A_{1} and A_{2} be the two components of $G_{1}-X$ with $z x_{1} \in E\left(A_{1}\right)$ and $x_{2} x_{3} \in E\left(A_{2}\right)$.
(I) $\quad W\left(G_{1}^{-}\right)=\left\{z w_{1}\right\}$

(II)

$G_{1}^{-}: w_{2} \in D_{2}(G)$
$W\left(G_{1}^{-}\right)=\left\{z w_{1}\right\}$

$$
\text { (IV) } \quad W\left(G_{1}^{-}\right)=\left\{z w_{1}, w_{2} w_{3}\right\}
$$

Fig. 2. All the cases of G_{1} with labels x_{1}, x_{2}, and x_{3} from G_{1}^{-}with $W\left(G_{1}^{-}\right) \neq \emptyset$.

Similarly, since $\left\{z x_{2}, x_{1} x_{3}\right\} \cap Y=\emptyset, z x_{2}, x_{1} x_{3}$ are in distinct components of $G_{2}-Y$. Let B_{1} and B_{2} be the two components of $G_{2}-Y$ such that $z x_{2} \in E\left(B_{1}\right)$ and $x_{1} x_{3} \in E\left(B_{2}\right)$. Hence

$$
\begin{equation*}
\left|\partial_{G_{1}}\left(A_{1}\right)\right|=\left|\partial_{G_{1}}\left(A_{2}\right)\right|=|X| \leq 3, \quad \text { and } \quad\left|\partial_{G_{2}}\left(B_{1}\right)\right|=\left|\partial_{G_{2}}\left(B_{2}\right)\right|=|Y| \leq 3 \tag{5}
\end{equation*}
$$

By the definition of G_{1} and $G_{2}, A_{1} \cap B_{1}, A_{1} \cap B_{2}, A_{2} \cap B_{1}$ and $A_{2} \cap B_{2}$ are subgraphs of G. Furthermore, we may assume that $z \in V\left(A_{1} \cap B_{1}\right), x_{1} \in V\left(A_{1} \cap B_{2}\right)$, and $x_{2} \in V\left(A_{2} \cap B_{1}\right)$.
Claim 2. $\left|\partial_{G}\left(A_{1} \cap B_{2}\right)\right| \geq 4$ and $\left|\partial_{G}\left(A_{2} \cap B_{1}\right)\right| \geq 4$.
By symmetry, we prove $\left|\partial_{G}\left(A_{1} \cap B_{2}\right)\right| \geq 4$ only. By contradiction, suppose $\left|\partial_{G}\left(A_{1} \cap B_{2}\right)\right| \leq 3$. Since G is 2-edge-connected and essentially 4-edge-connected with $D_{3}(G)=\emptyset$, we must have $\left|\partial_{G}\left(A_{1} \cap B_{2}\right)\right|=2$ and so $\left|V\left(A_{1} \cap B_{2}\right)\right|=1$. Hence $V\left(A_{1} \cap B_{2}\right)=\left\{x_{1}\right\}$, contrary to (4). This proves Claim 2.

In the following, we define $\alpha_{1}=\left|\left[A_{1} \cap B_{2}, A_{2} \cap B_{2}\right]\right|, \alpha_{2}=\left|\left[A_{1} \cap B_{2}, A_{2} \cap B_{1}\right]\right|, \alpha_{3}=\left|\left[A_{1} \cap B_{1}, A_{2} \cap B_{1}\right]\right|$, $\beta_{1}=\left|\left[A_{1} \cap B_{1}, A_{1} \cap B_{2}\right]\right|, \beta_{2}=\left|\left[A_{1} \cap B_{1}, A_{2} \cap B_{2}\right]\right|, \beta_{3}=\left|\left[A_{2} \cap B_{1}, A_{2} \cap B_{2}\right]\right|$. Thus by (5),

$$
\sum_{i=1}^{3} \alpha_{i}+\beta_{2}=|X| \leq 3 \quad \text { and } \quad \sum_{i=1}^{3} \beta_{i}+\alpha_{2}=|Y| \leq 3
$$

and so

$$
\begin{equation*}
\alpha_{1}+\alpha_{2}+\alpha_{3} \leq 3-\beta_{2} \quad \text { and } \quad \beta_{1}+\beta_{3}+\alpha_{2} \leq 3-\beta_{2} \tag{6}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \partial_{G}\left(A_{1} \cap B_{2}\right) \subseteq\left[A_{1} \cap B_{2}, A_{1} \cap B_{1}\right] \cup\left[A_{1} \cap B_{2}, A_{2} \cap B_{1}\right] \cup\left[A_{1} \cap B_{2}, A_{2} \cap B_{2}\right], \\
& \partial_{G}\left(A_{2} \cap B_{1}\right) \subseteq\left[A_{2} \cap B_{1}, A_{2} \cap B_{2}\right] \cup\left[A_{2} \cap B_{1}, A_{1} \cap B_{1}\right] \cup\left[A_{2} \cap B_{1}, A_{1} \cap B_{2}\right] .
\end{aligned}
$$

By Claim 2, we have

$$
\begin{equation*}
4 \leq\left|\partial_{G}\left(A_{1} \cap B_{2}\right)\right| \leq \beta_{1}+\alpha_{2}+\alpha_{1}, \quad \text { and } \quad 4 \leq\left|\partial_{G}\left(A_{2} \cap B_{1}\right)\right| \leq \beta_{3}+\alpha_{3}+\alpha_{2} \tag{7}
\end{equation*}
$$

By (7) and (6),

$$
8 \leq \beta_{1}+\beta_{3}+\alpha_{2}+\alpha_{1}+\alpha_{2}+\alpha_{3} \leq 3-\beta_{2}+3-\beta_{2}=6-2 \beta_{2} \leq 6
$$

This contradiction establishes the theorem.

3. Spanning trails in essentially 4-edge-connected graphs

For a reduced graph G with $\delta(G) \geq 2$, let $d_{i}=\left|D_{i}(G)\right|$. Then $|V(G)|=\sum_{i \geq 2} d_{i}$ and $2|E(G)|=\sum_{i \geq 2} i d_{i}$, by Theorem 2.1(iii),

$$
\begin{equation*}
2 F(G)=4 \sum_{i \geq 2} d_{i}-\sum_{i \geq 2} i d_{i}-4 \tag{8}
\end{equation*}
$$

Fig. 3. $M(z)$ and $M^{*}(z)$ in G.
Hence, if $F(G) \geq 3$, then (8) implies

$$
\begin{equation*}
\sum_{i \geq 5}(i-4) d_{i}+10 \leq 2 d_{2}+d_{3} \tag{9}
\end{equation*}
$$

We are now ready to prove the main result of this section, which will be needed to prove the conjecture $\xi(3)=4$ in next section.

Theorem 3.1. Let G be an essentially 4-edge-connected graph with $\delta(G) \geq 2$ and $\left|D_{2}(G) \cup D_{3}(G)\right| \leq 5$. Then each of the following holds.
(i) If $\left|D_{2}(G)\right| \leq 3$, then G is collapsible.
(ii) Either G is supereulerian or the reduction of G is $K_{2,5}$ such that all the vertices of degree 2 in the reduction are trivial.
(iii) If $\left|D_{2}(G)\right| \geq 2$, then for any pair of distinct vertices $u, v \in D_{2}(G)$, G has a spanning (u, v)-trail.

Proof. Since G is an essentially 4-edge-connected graph with $\delta(G) \geq 2$, by Proposition $1.1, \kappa^{\prime}(G) \geq 2$. We argue by contradiction and assume that
G is a counterexample with $|V(G)|$ minimized.
If G is collapsible, then Theorem 3.1(i) holds. Hence we may assume that G is not collapsible. Let G^{\prime} be the reduction of G. Then $G^{\prime} \neq K_{1}$ and $\kappa^{\prime}\left(G^{\prime}\right) \geq 2$. If $F\left(G^{\prime}\right) \leq 2$, then by Theorem 2.1(ii) G^{\prime} is a $K_{2, t}$ for some $t \geq 2$. Since G is essentially 4 -edgeconnected, we must have $t \in\{4,5\}$ and any vertex in $D_{2}\left(G^{\prime}\right)$ must be a trivial contraction, and so we can view $D_{2}\left(G^{\prime}\right) \subseteq$ $D_{2}(G)$. Thus, $\left|D_{2}(G)\right| \geq\left|D_{2}\left(G^{\prime}\right)\right|=t \geq 4$. If $t=4$, then $K_{2, t}=K_{2,4}$ is Eulerian and so by Theorem $2.1(\mathrm{v}) G$ is supereulerian. If G is not supereulerian, then the reduction of G must be $K_{2,5}$, and so Theorem 3.1(ii) must holds. Moreover, by inspection, if $u \in D_{2}\left(K_{2, t}\right)$ and $v \in V\left(K_{2, t}-u\right)$, then $K_{2, t}$ always has a spanning (u, v)-trail, and so by Theorem 2.1(i), Theorem 3.1(iii) must hold. Hence we may assume that
the reduction of G is not a $K_{2, t}$ for any integer $t \geq 2$.
Thus by Theorem 2.1(ii), $F\left(G^{\prime}\right) \geq 3$. By (10), we may assume that G is reduced. Thus, $G=G^{\prime}$. By (9), $d_{2}+d_{3} \leq 5$. It follows from (9) that we must have $d_{2}=5, d_{3}=0$ and

$$
\begin{equation*}
V(G)=D_{2}(G) \cup D_{4}(G) \tag{12}
\end{equation*}
$$

Hence, G must be Eulerian, and we are done for the proof of Theorem 3.1(i) and (ii). It remains to prove Theorem 3.1(iii).
We introduce the following notations in our argument. For each vertex $z \in D_{2}(G)$, let $N_{G}(z)=\left\{z_{1}, z_{2}\right\}$. As G is essentially 4-edge-connected, $z_{1}, z_{2} \in D_{4}(G)$. Let $N_{G}\left(z_{1}\right)=\left\{w_{1}, w_{2}, w_{3}, z\right\}$ and $N_{G}\left(z_{2}\right)=\left\{w_{1}^{*}, w_{2}^{*}, w_{3}^{*}, z\right\}$. Define (see Fig. 3)

$$
M(z)=\left\{w_{1}, w_{2}, w_{3}\right\} \quad \text { and } \quad M^{*}(z)=\left\{w_{1}^{*}, w_{2}^{*}, w_{3}^{*}\right\}
$$

By (10), there exist a pair of distinct vertices $u, v \in D_{2}(G)$ such that
G has not spanning (u, v)-trails.
We proceed our proof by verifying the following claims and let $D_{2}(G)=\{a, b, c, u, v\}$.
Claim 1. For any $z \in\{a, b, c\}=D_{2}(G)-\{u, v\}$,
(a) $\left|M(z) \cap D_{2}(G)\right| \geq 2$ and $\left|M^{*}(z) \cap D_{2}(G)\right| \geq 2$;
(b) $|M(z) \cap\{u, v\}| \geq 1$ and $\left|M^{*}(z) \cap\{u, v\}\right| \geq 1$.

Proof of Claim 1(a). By symmetry, it suffices to show that $\left|M(z) \cap D_{2}(G)\right| \geq 2$. By contradiction, suppose $\left|M(z) \cap D_{2}(G)\right| \leq 1$. Then we may assume $M(z) \cap D_{2}(G) \subseteq\left\{w_{3}\right\}$.

Using the reduction method and the same notations in Theorem 2.2, we obtain two graphs G_{1} and G_{2} from G with $\delta\left(G_{i}\right) \geq$ 2 and $D_{3}\left(G_{i}\right)=\emptyset(i=1,2)$. By Theorem 2.2, we may assume that G_{1} is essentially 4-edge-connected. Since $M(z) \cap D_{2}(G) \subseteq$ $\left\{w_{3}\right\}, w_{1}, w_{2} \notin D_{2}(G)$, and by (1), we have $G_{1}=\left(G-\left\{z_{1}\right\}\right)+\left\{z w_{1}, w_{2} w_{3}\right\}, x_{1}=w_{1}, x_{2}=w_{2}$ and $x_{3}=w_{3}$. Thus we may view $D_{2}\left(G_{1}\right)=D_{2}(G)$. By (10), G_{1} has a spanning (u, v)-trail H_{1}^{\prime}. Since z has degree 2 in G_{1} and $z \notin\{u, v\}, z x_{1} \in E\left(H_{1}^{\prime}\right)$. Define

$$
H_{1}= \begin{cases}G\left[E\left(H_{1}^{\prime}-z x_{1}\right) \cup\left\{z z_{1}, z_{1} w_{1}\right\}\right] & \text { if } x_{2} x_{3} \notin E\left(H_{1}^{\prime}\right) \\ G\left[E\left(H_{1}^{\prime}-\left\{z x_{1}, x_{2} x_{3}\right\}\right) \cup\left\{z z_{1}, z_{1} w_{1}, w_{2} z_{1}, z_{1} w_{3}\right\}\right] & \text { if } x_{2} x_{3} \in E\left(H_{1}^{\prime}\right)\end{cases}
$$

Then H_{1} is a spanning (u, v)-trial of G, contrary to (13). This proves Claim 1(a).

Fig. 4. Graphs in the proof of Claim 3 of Theorem 3.1.
Proof of Claim 1(b). By way of contradiction, suppose Claim 1(b) is not true. Let z be a vertex in $\{a, b, c\}$ such that $M(z) \cap\{u, v\}=\emptyset$. We may assume that $z=a$. By Claim $1(\mathrm{a}),\left|M(z) \cap D_{2}(G)\right| \geq 2$. Since $z=a \notin M(z)$ and $M(z) \cap\{u, v\}=\emptyset$, $M(z) \cap D_{2}(G)=D_{2}(G)-\{a, u, v\}=\{b, c\}$. We may assume that $w_{1}=b$, and $w_{2}=c$, and so $d_{G}\left(w_{1}\right)=d_{G}\left(w_{2}\right)=2$ and $d_{G}\left(w_{3}\right)=4$. Let $N_{G}\left(w_{i}\right)=\left\{z, w_{i}^{\prime}\right\}(i=1,2)$. Again using the reduction method on G as in Theorem 2.2, we obtained two graphs G_{1} and G_{2} with $\delta\left(G_{i}\right) \geq 2$ and $D_{3}\left(G_{i}\right)=\emptyset(i=1,2)$. By Theorem 2.2, we may assume that G_{1} is essentially 4-edgeconnected. Then since $d_{G}(z)=d_{G}\left(w_{1}\right)=2$, and $d_{G}\left(w_{3}\right)=4, G_{1}^{-}=\left(G-\left\{z_{1}\right\}\right)+\left\{z w_{1}, w_{2} w_{3}\right\}$ with $W\left(G_{1}^{-}\right)=\left\{z w_{1}\right\}=\{z b\}$, and so $G_{1}=G_{1}^{-} / z w_{1}$ with $z=\theta\left(z w_{1}\right)$ and $z w_{1}^{\prime} \in E\left(G_{1}\right)$, and with $x_{1}=w_{1}^{\prime}, x_{2}=w_{2}^{\prime}$ and $x_{3}=w_{2}=c$ (see Fig. 2(II) for $\left.G_{1}\right)$. Thus, by (10), G_{1} has a spanning (u, v)-trail H_{0}.

Since $\left\{z, x_{3}\right\}=\{a, c\} \subseteq D_{2}\left(G_{1}\right)-\{u, v\}, z x_{1}=z w_{1}^{\prime}$ and $x_{2} x_{3}=w_{2}^{\prime} w_{2}$ are both in $E\left(H_{0}\right)$. Since $d_{G_{1}}\left(w_{2}\right)=d_{G_{1}}(c)=$ $d_{G}(c)=2$ and $c \notin\{u, v\}, w_{2} w_{3}$ is also in $E\left(H_{0}\right)$. Define

$$
H_{1}=\left(H_{0}-\left\{z x_{1}, w_{2} w_{3}\right\}\right)+\left\{z z_{1}, z_{1} w_{1}, w_{1} w_{1}^{\prime}, z_{1} w_{2}, z_{1} w_{3}\right\}
$$

Then H_{1} is a spanning (u, v)-trail in G, a contradiction. Thus, Claim 1(b) is proved.
Claim 2. For any $z \in D_{2}(G),\left|D_{2}(G) \cap M(z) \cap M^{*}(z)\right| \leq 1$.
By the definition of $M(z)$ and $M^{*}(z),\left|D_{2}(G) \cap M(z) \cap M^{*}(z)\right| \leq 3$, where equality holds if and only if $G=K_{2,4}$. Since $\left|D_{2}(G)\right|=d_{2}=5, G \neq K_{2,4}$, and so $\left|D_{2}(G) \cap M(z) \cap M^{*}(z)\right| \leq 2$. If $\left|D_{2}(G) \cap M(z) \cap M^{*}(z)\right|=2$, then we may assume that $w_{1}=w_{1}^{*}$ and $w_{2}=w_{2}^{*}$ in $D_{2}(G)$. Then $\left\{z_{1} w_{3}, z_{2} w_{3}^{*}\right\}$ is an essential edge cut of G, contrary to that G is essentially 4 -edge-connected. This proves Claim 2.

Claim 3. For all $y \in\{u, v\}, M(y) \cap M^{*}(y) \cap\{a, b, c\}=\emptyset$.
Without loss of generality, we may assume $y=u$. By way of contradiction, suppose there is a vertex z in $\{a, b, c\}$ such that $z \in M(u) \cap M^{*}(u)$. Let $N_{G}(u)=\left\{u_{1}, u_{2}\right\}$. Then $z u_{1}$ and $z u_{2}$ are the two edges incident with z. Let $G_{0}=G / z u_{2}$ with $u_{2}=\theta\left(z u_{2}\right)$. Then $u_{1} u_{2} \in E\left(G_{0}\right)$. Note G_{0} has the same essentially edge-connectivity as G and $\delta\left(G_{0}\right) \geq 2$ with $\left|V\left(G_{0}\right)\right|<|V(G)|$. Therefore, by (10), G_{0} has a spanning (u, v)-trail H_{0}.

If $u_{1} u_{2} \in E\left(H_{0}\right)$, then $H=H_{0}-u_{1} u_{2}+\left\{u_{1} z, z u_{2}\right\}$ is a spanning (u, v)-trail in G, contrary to (13). If $u_{1} u_{2} \notin E\left(H_{0}\right)$, then since H_{0} is a spanning $\left(u, v\right.$)-trail in G_{0}, one and only one of $u u_{1}$ or $u u_{2}$ (say $u u_{1}$) is in H_{0}, then $H=H_{0}-u u_{1}+\left\{u u_{2}, u_{2} z, z u_{1}\right\}$ is a spanning (u, v)-trail in G, a contradiction again. Claim 3 is proved.

For $\{a, b, c\}=D_{2}(G)-\{u, v\}$, let $N_{G}(a)=\left\{a_{1}, a_{2}\right\}, N_{G}(b)=\left\{b_{1}, b_{2}\right\}$, and $N_{G}(c)=\left\{c_{1}, c_{2}\right\}$. Then since G is essentially 4-edge-connected and by (12), $d\left(a_{i}\right)=d\left(b_{i}\right)=d\left(c_{i}\right)=4$ where $i=1$, 2. Let $S=N_{G}(a) \cup N_{G}(b) \cup N_{G}(c)$. If $|S|=2$, then $S=N_{G}(a)=N_{G}(b)=N_{G}(c)$, contrary to Claim 2. Thus, $|S| \geq 3$. In the following, we assume $N_{G}(a)=\left\{a_{1}, a_{2}\right\} \subseteq S$ and let $x \in S-\left\{a_{1}, a_{2}\right\}$. Thus,

$$
S=\left\{a_{1}, a_{2}, x, \ldots\right\}
$$

By Claim 1(a) and (b), $\left|M(a) \cap D_{2}(G)\right| \geq 2,\left|M^{*}(a) \cap D_{2}(G)\right| \geq 2,|M(a) \cap\{u, v\}| \geq 1$ and $\left|M^{*}(a) \cap\{u, v\}\right| \geq 1$. We may assume that $b \in M(a)=N_{G}\left(a_{1}\right)-\{a\}, u \in M(a)=N_{G}\left(a_{1}\right)-\{a\}$, and by Claim $3 v \in M^{*}(a)=N_{G}\left(a_{2}\right)-\{a\}$ and so $u \notin M^{*}(a)$ and $v \notin M(a)$ (see the Fig. 4(A)).
Case 1. $b \in M^{*}(a)$ (see Fig. $4(B)$).
Then $N_{G}(b)=\left\{a_{1}, a_{2}\right\}=N_{G}(a)$. Since $N_{G}(c) \subseteq S, c$ must be adjacent to x, and so $x \in N_{G}(c)$. We may assume that $x=c_{1}$ and $M(c)=N_{G}\left(c_{1}\right)-\{c\}$. By Claim 1(a), $\left|M(c) \cap D_{2}(G)\right| \geq 2, c_{1}$ must be adjacent to another two degree 2 vertices in addition to c. Hence, since $N_{G}(a)=N_{G}(b), u$ and v must be the two vertices adjacent to c_{1} and so $N_{G}(u)=\left\{a_{1}, c_{1}\right\}$ and $N_{G}(v)=\left\{a_{2}, c_{1}\right\}$. Therefore, the another vertex c_{2} in $N_{G}(c)$ is not in $\left\{a_{1}, a_{2}\right\}$. Otherwise, $c \in M(u) \cap M^{*}(u)$ or $c \in M(v) \cap M^{*}(v)$, contrary to Claim 3. Note $M^{*}(c)=N_{G}\left(c_{2}\right)-\{c\}$. Thus,

$$
D_{2}(G) \cap M^{*}(c)=\{a, b, u, v, c\} \cap M^{*}(c)=\emptyset
$$

contrary to Claim 1(a) that $\left|M^{*}(c) \cap D_{2}(G)\right| \geq 2$.
Case 2. $b \notin M^{*}(a)$ (see Fig. 4(C)).
Then by Claim 1(a), $M^{*}(a)=N_{G}\left(a_{2}\right)-\{a\}$ must have at least two degree 2 vertices, and so $c \in M^{*}(a)=N_{G}\left(a_{2}\right)-\{a\}$. Since $b \notin M^{*}(a), N_{G}(b) \cap S \neq \emptyset$, and so we may assume $x \in N_{G}(b)-\left\{a_{1}\right\}$ (see Fig. $4(C)$). Then since both u and b are adjacent to a_{1}, by Claim $3 u$ is not adjacent to x. By Claim 1(a), $M^{*}(b)=N_{G}(x)-\{b\}$ must have at least two degree 2 vertices other than b and u. Thus, v and c must be in $M^{*}(b)=N_{G}(x)-\{b\}$. Therefore, $N_{G}(v)=\left\{a_{2}, x\right\}=N_{G}(c)$, contrary to Claim 3 .

We have a contradiction for each case above, and so the statement (13) is false. The theorem is proved.

In Theorem 3.12 of [5], Catlin and Lai proved that if a 3-edge-connected graph G has at most 9 edge cuts of size 3, then G is supereulerian. For an essentially 4-edge-connected graph G with $\delta(G) \geq 3$, we have the following:

Theorem 3.2. If G is an essentially 4-edge-connected graph with $\delta(G) \geq 3$ and $\left|D_{3}(G)\right|<10$, then G is collapsible and has a spanning (u, v)-trail for any $u, v \in V(G)$.
Proof. Since G is essentially 4-edge-connected with $\delta(G) \geq 3$, by Proposition $1.1, \kappa^{\prime}(G) \geq 3$. Let G^{\prime} be the reduction of G. By way of contradiction, suppose G is not collapsible. Then $G^{\prime} \neq K_{1}$ and $\kappa^{\prime}\left(G^{\prime}\right) \geq 3$. Let $d_{i}=\left|D_{i}\left(G^{\prime}\right)\right|$. Then since $\kappa^{\prime}\left(G^{\prime}\right) \geq 3$, $d_{1}=d_{2}=0$. Since G is essentially 4-edge-connected, G does not have an essential edge cut of size 3 , and so $d_{3}=\left|D_{3}\left(G^{\prime}\right)\right| \leq$ $\left|D_{3}(G)\right|<10$. If $F\left(G^{\prime}\right) \leq 2$, then by Theorem 2.1(ii), $G^{\prime} \in\left\{K_{1}, K_{2, t}\right\}(t \geq 2)$, contrary to $G^{\prime} \neq K_{1}$ and $\kappa^{\prime}\left(G^{\prime}\right) \geq 3$. Hence, $F\left(G^{\prime}\right) \geq 3$, then by (9) and $d_{2}=0$,

$$
\sum_{i \geq 5}(i-4) d_{i}+10 \leq 2 d_{2}+d_{3}
$$

$$
10 \leq d_{3}<10
$$

a contradiction. Thus, G must be collapsible. By Theorem 2.1(iv), for any $u, v \in V(G), G$ has a spanning (u, v)-trail. The theorem is proved.

Remark. The Petersen Graph shows that Theorem 3.2 is best possible in the sense that $\left|D_{3}(G)\right|<10$ is necessary.

4. Graphs that are 3-edge-Eulerian-connected

In this section, we shall investigate what graphs are 3-edge-Eulerian-connected. First, we prove the following theorem, as stated in Theorem 1.4, which proves the conjecture posed in [10].

Theorem 4.1. If G is a 4-edge-connected graph, then G is 3-edge-Eulerian-connected and so $\xi(3)=4$.
Proof. Let G be a graph with $\kappa^{\prime}(G) \geq 4$, and let $X \subseteq E(G)$ be an edge set with $|X|=3$. Pick any pair of edges $e^{\prime}, e^{\prime \prime} \in E(G)-X$. Let L be the graph obtained from G by subdividing each edge $e \in X \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$ exactly once. (That is, for each edge $e=a_{e} b_{e} \in X \cup\left\{e^{\prime}, e^{\prime \prime}\right\}$, we replace e by a path $a_{e} v_{e} b_{e}$ by inserting a new vertex $\left.v_{e}\right)$. Then $D_{2}(L)$ is the set of the five degree 2 vertices generated by the subdivision, and L is 2 -edge-connected and essentially 4 -edge-connected. By Theorem 3.1(iii), L has a spanning $\left(v_{e^{\prime}}, v_{e^{\prime \prime}}\right)$-trail. This implies that G has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail containing X, and so by definition, G is 3-edge-Eulerian-connected.

As we know many 3-edge-connected graphs such as the Petersen graph have no spanning closed trail, the edgeconnectivity in Theorem 4.1 cannot be lowered to 3-edge-connected. However, a 3-edge-Eulerian-connected graph is not necessarily 4-edge-connected. For example, let G be a graph obtained from $K_{n}(n \geq 8)$ and a vertex v by joining v to v_{1} and v_{2} with two edges $v v_{1}$ and $v v_{2}$, where $v_{1}, v_{2} \in V\left(K_{n}\right)$ and $v \notin V\left(K_{n}\right)$. Then G is a 3-edge-Eulerian connected graph with $d(v)=2$. We have the following necessary conditions for 3-edge-Eulerian-connected graphs.

Proposition 4.2. Let G be a 3-edge-Eulerian-connected graph with $|E(G)| \geq 6$. Then G must be essentially 4-edge-connected with $D_{3}(G)=\emptyset$.
Proof. We shall first show that G does not have an edge cut of size 3. By contradiction, assume that G an edge cut of G with $|X|=3$. Let H_{1} and H_{2} be the two components of $G-X$ with $\left|E\left(H_{1}\right)\right| \leq\left|E\left(H_{2}\right)\right|$. Since G is 3-edge-Eulerian-connected with $|E(G)| \geq 6$ and $|X|=3$, we may assume that $\left|E\left(H_{2}\right)\right| \geq 2$. Let e_{1} and e_{2} be two distinct edges in $E\left(H_{2}\right)$. Then G has a spanning (e_{1}, e_{2})-trail T with $X \subseteq E(T)$. Since both $e_{1}, e_{2} \in E\left(H_{2}\right), T^{\prime}=T /\left(H_{2} \cap T\right)$ is a spanning closed trail of G / H_{2} that contains X. Since T^{\prime} is a spanning closed trail and X is an edge cut, $|X|=\left|E\left(T^{\prime}\right) \cap X\right| \equiv 0(\bmod 2)$, contrary to that $|X|=3$. Hence G does not have an edge cut of size 3 and so $D_{3}(G)=\emptyset$.

To show G is essentially 4-edge-connected, it suffices to show that G does not have an essential edge cut X^{\prime} with $\left|X^{\prime}\right|=2$. By way of contradiction, suppose that such an edge cut X^{\prime} exists and $G-X^{\prime}$ has two components H_{1}^{\prime} and H_{2}^{\prime}. Since X^{\prime} is an essential edge cut, we can pick an edge $e_{i}^{\prime} \in E\left(H_{i}^{\prime}\right)$, ($1 \leq i \leq 2$). Since $\left|X^{\prime}\right|=2<3$ and G is 3-edge-Eulerian-connected, G has a spanning $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$-trail T^{\prime} such that $X^{\prime} \subseteq E\left(T^{\prime}\right)$. Let $e^{\prime \prime}$ be an edge not in G joining the two end vertices of T^{\prime}. Then $T^{\prime}+e^{\prime \prime}$ is a spanning closed trail of $G+e^{\prime \prime}$, which contains a 3-edge-cut $X^{\prime} \cup\left\{e^{\prime \prime}\right\}$ of $G+e^{\prime \prime}$. This yields a contradiction as the intersection of any close trail and any edge cut must have an even number of edges.

Let G be the graph shown in Fig. 5 with $s \geq 6$, where v is a vertex of degree 2 , and $e^{\prime} \in E\left(H_{1}\right)$ and $e^{\prime \prime} \in E\left(H_{2}\right)$. Let $X=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the set of the three edges shown in Fig. 5. As we can see that a trail started from e_{1} in H_{1} must ended in H_{1} after tracing through the three edges in X and vertex v. Hence, there is no spanning ($e^{\prime}, e^{\prime \prime}$)-trail T in G such that $X \subseteq E(T)$ and $V(T)=V(G)$. Thus, an essentially 4-edge-connected graph G with $D_{3}(G)=\emptyset$ may not be 3-edge-Eulerian connected. It remains a problem to completely characterize the structures of 3-edge-Eulerian connected graphs.

Let $G_{0}=G-\{v\}+v_{1} v_{2}$. Then G_{0} is 4-edge-connected and $X_{0}=\left\{e_{1}, e_{2}, e_{3}, v_{1} v_{2}\right\}$ is an edge-cut of G_{0}. And G_{0} has no spanning ($e^{\prime}, e^{\prime \prime}$)-trails containing X_{0}. This shows that Theorem 4.1 is best possible in the sense that 4-edge-connected graph G cannot be 4-edge-Eulerian connected.

Fig. 5. G which is not 3-edge-Eulerian connected.

References

[1] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79-84.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 1976.
[3] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[4] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning Eulerian subgraphs, Discrete Math. 160 (1996) 81-91.
[5] P.A. Catlin, H.-J. Lai, Supereulerian grpah and the Petersen graph, J. Combin. Theory Ser. B 66 (1996) 123-139.
[6] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
[7] F. Jaeger, A note on subeulerian graphs, J. Graph Theory 3 (1979) 91-93.
[8] H.-J. Lai, Yanting Liang, Supereulerian graphs in the graph family $C_{2}(6, k)$, Discrete Appl. Math. 159 (2011) 467-477.
[9] H.-J. Lai, Y. Shao, G. Yu, M. Zhan, Hamiltonian connectedness in 3-connected line graphs, Discrete Appl. Math. 157 (2009) 982-990.
[10] W. Luo, Z.-H. Chen, W.-G. Chen, Spanning trails containing given edges, Discrete Math. 306 (2006) 87-98.
[11] W.R. Pulleyblank, A note on graphs spanned by Eulerian graphs, J. Graph Theory 3 (1979) 309-310.
[12] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.

[^0]: * Corresponding author. Tel.: +1 3047779323 ; fax: +1 3042933982.

 E-mail addresses: xjq@hzu.edu.cn (J. Xu), chen@butler.edu (Z.-H. Chen), hjlai@math.wvu.edu (H.-J. Lai), mzhang@math.wvu.edu (M. Zhang).
 1 Tel.: +1 317-940-6540; fax: +1 317-940-9014.

