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a b s t r a c t

A graph G is called k-supereulerian if it has a spanning even subgraph with at most k
components. In this paper, we prove that any 2-edge-connected loopless graph of order
n is ⌈(n − 2)/3⌉-supereulerian, with only one exception. This result solves a conjecture in
[Z. Niu, L. Xiong, Even factor of a graphwith a bounded number of components, Australas. J.
Combin. 48 (2010) 269–279]. As applications, we give a best possible size lower bound for
a 2-edge-connected simple graph Gwith n > 5k + 2 vertices to be k-supereulerian, a best
possible minimum degree lower bound for a 2-edge-connected simple graph G such that
its line graph L(G) has a 2-factor with at most k components, for any given integer k > 0,
and a sufficient condition for k-supereulerian graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite, undirected, and loopless. Undefined notation and terminology will follow [2]. Let G be
a graph, and let O(G) denote the set of all vertices in G with odd degrees. If O(G) = ∅, then G is called an even graph. An
Eulerian graph is a connected graph G with O(G) = ∅. If a graph contains a spanning Eulerian subgraph, then it is called
supereulerian. In particular, K1 is supereulerian.

Boesch, Suffel, and Tindell [1] proposed the supereulerian graph problem: determine when a graph is supereulerian.
They indicated that this might be a difficult problem. Pulleyblank [21] showed that such a decision problem, even when
restricted to planar graphs, is NP-complete. Jaeger [14] and Catlin [5] independently showed that every 4-edge-connected
graph is supereulerian.

Let G be a graph, and let X ⊆ E(G). The contraction G/X is the graph obtained from G by contracting each edge of X and
deleting the resulting loops. For H ⊂ G, we write G/H for G/E(H). If H is a connected subgraph of G, and if vH denotes the
vertex in G/H to which H is contracted, then H is called the preimage of vH . A vertex v in a contraction of G is nontrivial if v
has a nontrivial preimage.

On extremal supereulerian graph problems, Cai [4] proved the following result.

Theorem 1 (Cai, [4]). Let G be a 2-edge-connected simple graph of order n. If

|E(G)| ≥


n − 4
2


+ 6, (1)
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Fig. 1. K2,3(k1, k2, k3).

then exactly one of the following holds.

(a) G is supereulerian.
(b) Equality holds in (1), and G has a complete subgraph H of order n − 4 such that G/H = K2,3.
(c) G is either K2,5 or the cube minus a vertex.

For 3-edge-connected graphs, Catlin and Chen proved a similar result, which was conjectured by Cai [4].

Theorem 2 (Catlin and Chen, [8]). Let G be a 3-edge-connected simple graph of order n. If |E(G)| ≥


n−9
2


+ 16, then G is

supereulerian.

AgraphG is called k-supereulerian ifGhas a spanning even subgraphwith atmost k components. Hence, a k-supereulerian
graph is also (k + 1)-supereulerian, but not vice versa. Let k1, k2, k3 be three positive integers, u, v the vertices of K2,3 with
degree 3, and K2,3(k1, k2, k3) the graph obtained from K2,3 by replacing each u−v path by a path of length ki+1, as shown in
Fig. 1. By definition, K2,3(1, 1, 1) = K2,3, and K2,3(k1, k2, k3) is (min{k1, k2, k3}+1)-supereulerian, but not (min{k1, k2, k3})-
supereulerian.

Motivated by the two results above, we investigate the extremal size of k-supereulerian graphs, and obtain the following
result.

Theorem 3. Let k > 1 be an integer, and G a 2-edge-connected simple graph of order n > 5k + 2. If

|E(G)| ≥


n − 3k − 1

2


+ 3k + 3, (2)

then exactly one of the following holds.

(a) G is k-supereulerian.
(b) Equality holds in (2), and G has a complete subgraph H of order n−3k−1 such that G/H = K2,3(k, k, k), where K2,3(k, k, k)

is depicted in Fig. 1 when k1 = k2 = k3 = k.

A graph H is collapsible if, for every subset X ⊆ V (H) with |X | ≡ 0 (mod 2), H has a spanning connected subgraph
HX with O(HX ) = X . In [5], Catlin showed that any graph G has a unique collection of pairwise vertex-disjoint maximal
collapsible subgraphs H1,H2, . . . ,Hc such that

c
i=1 V (Hi) = V (G). The reduction of G, denoted by G′, is the graph obtained

from G by contracting each Hi (1 ≤ i ≤ c) to a single vertex. A graph G is reduced if G = G′. The following result is key in the
proof of Theorem 3.

Theorem 4. Let G be a 2-edge-connected reduced graph of order n, and k a positive integer such that n ≤ 3k+2. Then G is either
k-supereulerian or isomorphic to the graph K2,3(k, k, k).

Theorem 4 is indeed a conjecture in [19], which is equivalent to saying that every 2-edge-connected loopless graph G
of order n is either ⌈(n − 2)/3⌉-supereulerian or n − 2 ≡ 0 (mod 3), and G ∼= K2,3(

n−2
3 , n−2

3 , n−2
3 ); see Theorem 20

and Proposition 21 for details. In [19], Niu and Xiong proved a similar result, stating that every 2-edge-connected reduced
graph G of order n ≤ 3k + 1 ≤ 10 is k-supereulerian, which was proved by analyzing the structure of G according to
the different values of the circumference of G, and then by showing that G has a spanning even subgraph with at most k
components. This proof technique fails when n is large, as the number of possible cases grows very quickly, and the structure
of G becomes much more complicated. In this paper, we use a completely different approach, which utilizes the splitting
lemma of Fleischner [12] and a result on perfect matchings in cubic graphs of Edmonds [11], to prove Theorem 4.

By a smallest graph in some collection of graphs we mean a graph with the least order, and with the least size amongst
all graphs of that order in the collection. As an example, K2,3 is the smallest 2-edge-connected non-supereulerian graph. As
an extension, our result above implies that K2,3(k, k, k) is the smallest 2-edge-connected non-k-supereulerian graph.

In Section 2, we will assume the validity of Theorem 4 to prove Theorem 3, and present some other applications of
Theorem 4, whose proof will be postponed to Section 3.
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2. Applications of Theorem 4

2.1. Proof of Theorem 3

In this subsection, we use Theorem 4 to prove Theorem 3. First, we present some necessary results.

Theorem 5 (Catlin, [5]). If G is reduced, then G is simple and triangle free, and with either G ∈ {K1, K2} or |E(G)| ≤ 2|V (G)|−4.

Catlin [5] proved that a connected graph G is supereulerian if and only if its reduction G′ is supereulerian. Niu et al.
extended this result to k-supereulerian graphs.

Theorem 6 (Niu, Lai and Xiong, [18]). Let G be a connected graph, and G′ the reduction of G. Then G is k-supereulerian if and
only if G′ is k-supereulerian.

Let F(G) denote the minimum number of edges that must be added to G in order to obtain a supergraph that has two
edge-disjoint spanning trees. Catlin [6] showed that, if G is reduced, then

F(G) = 2|V (G)| − |E(G)| − 2. (3)

Corollary 7 (Niu, Lai and Xiong, [18]). Let G be a 2-edge-connected graph. If F(G) ≤ k, then G is k-supereulerian.

Theorem 8 (Catlin and Chen, [8]). Let G be a 2-edge-connected simple graph of order n, and let p > 1 be an integer. If

|E(G)| ≥


n − p + 1

2


+ 2p − 4, (4)

then one of the following holds.

(a) The reduction of G has order less then p.
(b) Equality holds in (4), G has a complete subgraph H of order n − p + 1, and the reduction of G is G′

= G/H, a graph of order
p and size 2p − 4.

(c) G is a reduced graph such that either |E(G)| ∈ {2n− 4, 2n− 5} and n ∈ {p+ 1, p+ 2}, or |E(G)| = 2n− 4 and n = p+ 3.

Now, we prove Theorem 3.

Proof of Theorem 3. We need to discuss the following two cases by considering the size of G. Let G′ be the reduction of G.
Case 1. |E(G)| ≥


n−3k−1

2


+ 6k.

Let p = 3k + 2. Then n − p + 1 = n − 3k − 1 and 2p − 4 = 6k. Hence, (4) holds. In the following, we check the three
cases of Theorem 8, and show that G is k-supereulerian in each case.

If (a) of Theorem 8 holds, then |V (G′)| < 3k+2. Note that |V (K2,3(k, k, k))| = 3k+2. By Theorem 4, G′ is k-supereulerian.
Then G is k-supereulerian by Theorem 6.

If (b) of Theorem8 holds, then |E(G)| =


n−3k−1

2


+6k. There exists a complete subgraphH ofGwith |V (H)| = n−3k−1,

and G′
= G/H . That is to say, |V (G′)| = 3k + 2, and |E(G′)| = 6k. Note that |E(K2,3(k, k, k))| = 3k + 3 < 6k. By Theorem 4,

G′ is k-supereulerian. Then G is k-supereulerian by Theorem 6.
If (c) of Theorem 8 holds, then G = G′, |E(G)| ∈ {2n−4, 2n−5}, and n ∈ {p+1, p+2, p+3}. Hence, by (3), F(G) ∈ {2, 3}.

If F(G) ≤ k, then, by Corollary 7, G is k-supereulerian. So we need to consider the remaining case when k = 2 and F(G) = 3.
Hence, p = 8, and then n ∈ {9, 10, 11}, contrary to n > 5k + 2 = 12.
Case 2.


n−3k−1

2


+ 3k + 3 ≤ |E(G)| ≤


n−3k−1

2


+ 6k − 1.

As K1 is supereulerian, we may assume that G′ is 2-edge-connected and that |V (G′)| ≥ 2.
By (3), F(G′) = 2|V (G′)|−|E(G′)|−2. If F(G′) ≤ k, then, by Corollary 7,G′ is k-supereulerian, and thenG is k-supereulerian

by Theorem 6. Hence, it suffices to consider F(G′) ≥ k + 1 in the following.
Let e = |E(G)|, n′

= |V (G′)|, and e′
= |E(G′)|. Then


n−3k−1

2


+ 3k + 3 ≤ e ≤


n−3k−1

2


+ 6k − 1. For any graph H ,

we use e(H) to denote |E(H)|. Suppose that H1,H2, . . . ,Hm are all the maximal collapsible subgraphs of G such that G′ is
obtained from G by contracting H1,H2, . . . ,Hm. Assume that ni = |V (Hi)| for each i ∈ {1, 2, . . . ,m}. Since contracting an
induced subgraph H does not affected the validity of e = e(H) + e(G/H), and since all maximal collapsible subgraphs are
induced, we can contract H1,H2, . . . ,Hm in succession, and then

e = e′
+ e(H1) + e(H2) + · · · + e(Hm)

≤ e′
+

n1

2


+

n2

2


+ · · · +

nm

2


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and

n = n′
+ (n1 − 1) + (n2 − 1) + · · · + (nm − 1),

i.e.,

n + m − n′
= n1 + n2 + · · · + nm.

Since F(G′) ≥ k + 1, by (3), we have 2n′
− e′

− 2 ≥ k + 1, i.e., e′
≤ 2n′

− k − 3. So

e ≤ e′
+

n1

2


+

n2

2


+ · · · +

nm

2


≤ 2n′

− k − 3 +

n1

2


+

n2

2


+ · · · +

nm

2


.

Now, we define a function

f (n1, n2, . . . , nm) = 2n′
− k − 3 +

n1

2


+

n2

2


+ · · · +

nm

2


= 2n′

− k − 3 +
1
2
(n2

1 − n1) +
1
2
(n2

2 − n2) + · · · +
1
2
(n2

m − nm)

subject to n1 + n2 + · · · + nm = n + m − n′. By convexity, f (n1, n2, . . . , nm) reaches its maximum value when m = 1, i.e.,
n1 = n + 1 − n′ and n2 = n3 = · · · = nm = 0. So e ≤ 2n′

− k − 3 +


n+1−n′

2


.

If G is reduced, then e = e′ and n = n′. Since e′
≤ 2n′

− k − 3 and k > 1, we have e ≤ 2n − 5, contrary to (2) when
n > 5k+ 2. Hence, G has at least one nontrivial collapsible subgraph. Note that K3 is the nontrivial collapsible simple graph
with the smallest order. We have n′

≤ n − 2. Define a new function

g(n′) = 2n′
− k − 3 +


n + 1 − n′

2


=

1
2
n′2

+


3
2

− n

n′

+


1
2
n2

+
1
2
n − k − 3


.

The symmetric axis of this parabolic function g(n′) is n′
= n − 3/2. Then g(n′) is decreasing when n′

≤ n − 3/2.
By the definitions of functions f and g , g(n′) is always an upper bound of e. If n′

= 3k + 3, then

g(3k + 3) =
1
2
n2

−
6k + 5

2
n +

9k2 + 25k + 12
2

=
1
2
n2

−
6k + 3

2
n +

9k2 + 15k + 8
2

− n + 5k + 2

=


n − 3k − 1

2


+ 3k + 3 − (n − 5k − 2)

< e,

when n > 5k + 2, contrary to e ≤ g(n′).
As n′

≤ n − 2, g(n′) is decreasing. Hence, we have n′
≤ 3k + 2. By Theorem 4, G′ is either k-supereulerian or the graph

K2,3(k, k, k). In the former case, G is k-supereulerian by Theorem 6, so (a) of Theorem 3 holds. In the latter case, n′
= 3k+ 2,

e′
= 3k+ 3, and then e ≤ e′

+


n−n′

+1
2


= 3k+ 3+


n−3k−1

2


. By (2), we have e = 3k+ 3+


n−3k−1

2


, which implies that

G has a complete subgraph H of order n − 3k − 1 such that G/H = K2,3(k, k, k). Hence, (b) of Theorem 3 holds.
This completes the proof of Theorem 3. �

2.2. The number of components of an even factor

An even factor of G is a spanning subgraph of G in which every vertex has a positive even degree. A 2-factor of G is
a spanning subgraph in which every vertex has degree 2. In this subsection, we use Theorem 4 to prove some sufficient
conditions for even factors of a graph and 2-factors of its line graph.

Note that a graph is k-supereulerian if it has a spanning even subgraphwith atmost k components. If G has an even factor
with at most k components, then G is k-supereulerian, whereas the converse is not true in general; see [18].

There exist many minimum degree conditions guaranteeing the existence of certain factors of a graph, such as
Hamiltonian cycles and spanning Eulerian subgraphs; see, e.g., [5,7,10]. In [19], Niu and Xiong obtained several minimum
degree conditions for a graph to have an even factor with a bounded number of components, one of which is the following.
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Theorem 9 (Niu and Xiong, [19]). Let G be a 2-edge-connected simple graph of order n, and k ∈ {1, 2, 3} such that
δ(G) ≥ ⌊

n
3k+1⌋ − 1. If n is sufficiently large relative to k, then G has an even factor with at most k components.

We extend this result to general cases, and give a bit weaker minimum degree condition, with only one exception.

Theorem 10. Let G be a 2-edge-connected simple graph of order n, and k a positive integer such that δ(G) ≥ ⌊
n

3k+2⌋ − 1. If n is
sufficiently large relative to k, then exactly one of the following holds.

(a) G has an even factor with at most k components.
(b) G′, the reduction of G, is K2,3(k, k, k), and G has an even factor with exactly k + 1 components.

We first present a necessary result for our proof.

Theorem 11 (Niu and Xiong, [19]). Let p be a positive integer, and G a connected simple graph of order n such that

δ(G) ≥ ⌊n/p⌋ − 1. (5)

If n is sufficiently large relative to p, then the reduction G′ of G satisfies |V (G′)| ≤ p, and each vertex of G′ is nontrivial.

Now, we prove Theorem 10.

Proof of Theorem 10. By Theorem 11, |V (G′)| ≤ 3k+ 2, and each vertex of G′ is nontrivial. Then, by Theorem 4, G′ is either
k-supereulerian or the graph K2,3(k, k, k). In the former case, G′ has a spanning even subgraph with at most k components
L1, L2, . . . , Ll, where l ≤ k. For each Li, let L∗

i = G[∪v∈V (Li) V (Hv)], where Hv is the preimage of v ∈ V (Li). Since each vertex
of G′ is nontrivial, then, by Theorem 6, each L∗

i is supereulerian and nontrivial. By the definitions of collapsible graphs and
contraction,


1≤i≤l V (L∗

i ) = V (G) and V (L∗

i ) ∩ V (L∗

j ) = ∅ for i ≠ j. Hence, G has an even factor with l (≤k) components, so
(a) of Theorem 10 holds. In the latter case, G′ is (k+ 1)-supereulerian. Then, by arguing similarly as the above case, G has an
even factor with exactly k + 1 components, so (b) holds. �

By Theorem 10, we obtain the following corollary immediately, which extends a theorem (Theorem 9 in [5]) of Catlin
and improves a theorem (Theorem 8 in [18]) of Niu et al.

Corollary 12. Let G be a 2-edge-connected simple graph of order n, and k a positive integer such that δ(G) ≥ ⌊
n

3k+2⌋ − 1. If n
is sufficiently large relative to k, then exactly one of the following holds.

(a) G is k-supereulerian.
(b) G′, the reduction of G, is K2,3(k, k, k).

Let G = (V (G), E(G)) be a graph. The line graph L(G) of G is the graph with V (L(G)) = E(G), and x, y ∈ V (L(G)) are
adjacent as vertices if and only if they are adjacent as edges in G. Let G be a simple graph with δ(G) ≥ 3, and let S be a set
of mutually edge-disjoint connected even nontrivial subgraphs and stars (K1,s, where s ≥ 3 is an integer). If each star has
at least three edges, and every edge in E(G) \ ∪L∈S E(L) is incident to an even subgraph in S, then S is called a system that
dominates G.

Theorem 13 (Gould and Hynds, [13]). Let G be a simple graph. Then L(G) has a 2-factor with c components if and only if there is
a system that dominates G with c elements.

Theorem 13 shows a close relationship between a system that dominates G with c elements and a 2-factor of L(G) with
the same number of components. From Theorems 10 and 13, one can easily obtain the following result.

Corollary 14. Let G be a 2-edge-connected simple graph of order n, L(G) the line graph of G, and k a positive integer such that
δ(G) ≥ ⌊

n
3k+2⌋ − 1. If n is sufficiently large relative to k, then exactly one of the following holds.

(a) L(G) has a 2-factor with at most k components.
(b) G′, the reduction of G, is K2,3(k, k, k), and L(G) has a 2-factor with exactly k + 1 components.

2.3. A sufficient condition for k-supereulerian graphs

A bond of G is a minimal nonempty edge cut. Let l > 0,m ≥ 0 be integers, and let C2(l,m) denote the graph family such
that a graph G of order n is in C2(l,m) if and only if G is 2-edge-connected and such that, for every bond S ⊂ E(G) with
|S| ≤ 3, each component of G − S has order at least (n − m)/l.

Catlin and Li [9] were the first to investigate characterizations of supereulerian graphs in C2(m, l). They proved that
a graph G ∈ C2(5, 0) is supereulerian if and only if G is not contractible to K2,3. Since then, a series of characterizations
of supereulerian graphs in C2(m, l) has been done; see [3,15–17]. In [20], Niu and Xiong considered a similar problem on
k-supereulerian graphs, and proved the following theorem.
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Theorem 15 (Niu and Xiong, [20]). Let 6 ≤ l ≤ 10 be an integer, and G ∈ C2(l, 0) be a graph of order n. Then G is (l − 4)-
supereulerian.

In this subsection, we extend this result to general cases.

Theorem 16. Let l ≥ 6 be an integer, and G ∈ C2(l, 0) be a graph of order n. Then G is (l − 4)-supereulerian.

Let Di(G) = {v ∈ V (G) | d(v) = i} and di(G) = |Di(G)|.

Theorem 17 (Catlin, [5]). If G is a nontrivial 2-edge-connected reduced graph, then d2(G) + d3(G) ≥ 4. If d2(G) + d3(G) = 4,
then G is Eulerian, and G has four vertices of degree 2.

Lemma 18 (Niu and Xiong, [20]). Let G ∈ C2(l,m) be a graph with n = |V (G)| > (l + 1)m. Then either G′
= K1 or

d2(G′) + d3(G′) ≤ l, where G′ is the reduction of G.

Lemma 19 (Niu and Xiong, [20]). Let G be a 2-edge-connected reduced graph, and di = di(G). Then

2F(G) + 4 +


j≥5

(j − 4)dj = 2d2 + d3.

Now, we prove Theorem 16.

Proof of Theorem 16. By Theorem 15, we may assume that l ≥ 11. Let G′ be the reduction of G. By Theorem 6, it suffices to
show that G′ is (l − 4)-supereulerian. Since K1 is supereulerian, if G′

= K1, then we are done. So we may assume that G′ is
2-edge-connected and nontrivial. Let di = |Di(G′)|.

By Theorem 17, if d2 + d3 = 4, then G′ is Eulerian. By Lemma 18, d2 + d3 ≤ l. Therefore, we only consider the case when
5 ≤ d2 + d3 ≤ l. We shall assume that

G′ is not (l − 4)-supereulerian, (6)

to find a contradiction.
Case 1. 5 ≤ d2 + d3 ≤ l − 1.

If F(G′) ≤ l − 4, by Corollary 7, G′ is (l − 4)-supereulerian, contrary to (6). So we may assume that F(G′) ≥ l − 3. From
Lemma 19, and since d2 + d3 ≤ l − 1, we have

2(l − 1) +


j≥5

(j − 4)dj ≤ 2F(G′) + 4 +


j≥5

(j − 4)dj = 2d2 + d3 ≤ 2(d2 + d3) ≤ 2(l − 1).

Hence, equalities must hold everywhere, implying that d2 = l − 1, d3 = 0, and dj = 0 (j ≥ 5). Thus G′ is Eulerian,
contrary to (6).
Case 2. d2 + d3 = l.

Let H1,H2, . . . ,Hl denote the subgraphs of G whose contraction images in G′ are the vertices of degree at most 3 in G′.
Since G ∈ C2(l, 0), for each i with 1 ≤ i ≤ l, |V (Hi)| ≥ n/l. It follows that

n = |V (G)| ≥

l
i=1

|V (Hi)| ≥
ln
l

= n,

and hence |V (G′)| = l. Denote l = 3k + j, where j ∈ {0, 1, 2}. By Theorem 4, G′ is either k-supereulerian or the graph
K2,3(k, k, k), which is (k + 1)-supereulerian. Since l ≥ 11, we have k < k + 1 ≤ l − 4, and then G′ is (l − 4)-supereulerian,
contrary to (6).

This completes the proof of Theorem 16. �

3. Proof of Theorem 4

In this section, for presentational convenience, we shall show the validity of Theorem 4 by proving the following
equivalence form.

Theorem 20. Let G be a 2-edge-connected graph of order n ≥ 3. Then exactly one of the following holds.

(a) G is ⌈
n−2
3 ⌉-supereulerian.

(b) n − 2 ≡ 0 (mod 3), and G ∼= K2,3(
n−2
3 , n−2

3 , n−2
3 ).

Proposition 21. Theorem 4 is equivalent to Theorem 20.
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Fig. 2. Splitting off the edges e1 and e2 from v.

Proof. First, we show that Theorem20 implies Theorem4. LetG be a graph of order n satisfying the hypotheses of Theorem4.
If n < 3, then, since G is a 2-edge-connected reduced graph, we have G ∼= K1, which is supereulerian. Hence, wemay assume
that n ≥ 3. By Theorem 20, G is either ⌈

n−2
3 ⌉-supereulerian or the graph K2,3(

n−2
3 , n−2

3 , n−2
3 ). Note that n ≤ 3k + 2. In the

former case, G is k-supereulerian since ⌈
n−2
3 ⌉ ≤ k and by the definition of k-supereulerian graphs. In the latter case, we have

n − 2 ≡ 0 (mod 3). If n−2
3 < k, then G is k-supereulerian; else n−2

3 = k, i.e., G ∼= K2,3(k, k, k). So Theorem 4 holds.
Conversely, let G be a graph satisfying the hypotheses of Theorem 20, let n = 3k + j, where k is a positive integer and

j ∈ {0, 1, 2}, and let G′ be the reduction of G. Then n(G′) ≤ n = 3k + j ≤ 3k + 2. By Theorem 4, G′ is either k-supereulerian
or the graph K2,3(k, k, k). In the former case, G is ⌈

n−2
3 ⌉-supereulerian by the fact that ⌈

n−2
3 ⌉ = k and by Theorem 6. In the

latter case, we have n(G′) = n = 3k + 2, and then n−2
3 = k. Theorem 20 holds. �

Before proving Theorem 20, we present several auxiliary results.
Let v be a vertex of a graph G, and let e1 = vv1 and e2 = vv2 be two edges of G incident to v. The operation of splitting off

the edges e1 and e2 from v consists of deleting e1 and e2 and then adding a new edge e joining v1 and v2, depicted in Fig. 2.
The following theorem, due to Fleischner, shows that under certain conditions this operation can be performed without
creating cut edges.

Theorem 22 (Fleischner, [12]). Let G be a 2-connected graph, and v a vertex of G of degree at least four with at least two distinct
neighbors. Then some two non-multiple edges incident to v can be split off so that the resulting graph is connected and has no cut
edges.

For S ⊆ V (G) and E ⊆ E(G), let G − S and G − E denote the subgraph obtained from G by deleting all the vertices in S
and the subgraph obtained from G by deleting all the edges in E, respectively. For H ⊆ G, we denote G − V (H) by G − H ,
for abbreviation. For e = uv ∉ E(G) with u, v ∈ V (G), let G + e denote the graph obtained by adding e to G. We present a
lemma and a theorem of Edmonds, which are used in the proof of Theorem 20.

Lemma 23. Let G be a 2-edge-connected graph, v a vertex of G, and e an edge of G.

(a) If G∗ is a graph obtained from G by splitting off two edges incident to v, and G∗ ∼= K2,3(k, k, k), then G is k-supereulerian.
(b) If G∗

= G − e and G∗ ∼= K2,3(k, k, k), then G is k-supereulerian.

Proof. (a) Note that G∗(∼= K2,3(k, k, k)) is (k + 1)-supereulerian. It is easy to check that the number of supereulerian
components of all the graphs obtained from G∗ by deleting any edge u1u2 and adding two edges u1u and u2u, where
u ∈ V (G∗) \ {u1, u2} (this procedure can be looked upon as the reverse of splitting off two adjacent edges), will reduce
by at least 1. Hence, G is k-supereulerian.

(b) Note that adding a new edge to G∗ will reduce at least one supereulerian component. G is k-supereulerian. �

A graph is called k-regular if all vertices have degree k. A perfect matching in a graph is a spanning 1-regular subgraph.

Theorem 24 (Edmonds, [11]). For every 2-edge-connected 3-regular graph, there exists a constant p and 3p perfect matchings
such that each edge is in p of them.

For a path P = x0x1 . . . xk−1xk, the vertices x1, . . . , xk−1 are called the internal vertices of P . Let P̊ = x1 . . . xk−1 be the
subpath of P induced by its internal vertices. In the following, let nc(G) denote the number of components of G.

Now, we prove Theorem 20.

Proof of Theorem 20. We shall assume that Theorem 20 does not hold, to find a contradiction. Let G be a counterexample
of Theorem 20 with |E(G)| minimized.

First, we prove the following two claims.

Claim 1. G is 2-connected.
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Fig. 3. The subgraphs G1 and G2 of G.

Proof of Claim 1. Suppose, to the contrary, that G has a cut vertex u. Let H be a component of G − u, G1 = G[V (H) ∪ {u}],
n1 = |V (G1)|and G2 = G − V (H), n2 = |V (G2)|, depicted in Fig. 3. Then G1 ∪ G2 = G, G1 ∩ G2 = {u}, n = n1 + n2 − 1, both
G1 and G2 are 2-edge-connected.

For i = 1, 2, by the 2-edge-connectivity of G, we have ni ≥ 3. Since |E(Gi)| < |E(G)| and by the minimality of G, either
Gi is ⌈

ni−2
3 ⌉-supereulerian or ni − 2 ≡ 0 (mod 3), and Gi ∼= K2,3(

ni−2
3 ,

ni−2
3 ,

ni−2
3 ). Now, we distinguish the following three

cases.
Case 1. For i = 1, 2, Gi is ⌈

ni−2
3 ⌉-supereulerian.

Denote ni = 3ki + ji, where ji ∈ {0, 1, 2}. Then ⌈
ni−2
3 ⌉ = ki, and hence Gi is ki-supereulerian. Note that G1 ∪ G2 = G,

G1 ∩ G2 = {u}. G is (k1 + k2 − 1)-supereulerian. Since

k1 + k2 − 1 =
3k1 + 3k2 − 1 − 2

3
≤

3k1 + j1 + 3k2 + j2 − 1 − 2
3

=
n − 2
3

≤


n − 2
3


,

G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

Case 2. Exactly one of Gi (i = 1, 2) (G1, say) is ⌈
ni−2
3 ⌉-supereulerian.

Denote n1 = 3k1 + j, where j ∈ {0, 1, 2}, and n2 = 3k2 + 2. Then ⌈
n1−2

3 ⌉ = k1 and n2−2
3 = k2, and hence G1 is

k1-supereulerian, and G2 is (k2 + 1)-supereulerian. Thus, G is (k1 + k2)-supereulerian. Since

k1 + k2 =


3k1 + 3k2 + 2 − 1 − 2

3


≤


3k1 + j + 3k2 + 2 − 1 − 2

3


=


n − 2
3


,

G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

Case 3. For i = 1, 2, ni − 2 ≡ 0 (mod 3), and Gi ∼= K2,3(
ni−2
3 ,

ni−2
3 ,

ni−2
3 ).

Denote ni = 3ki + 2. Then ni−2
3 = ki, and hence Gi is (ki + 1)-supereulerian. Thus, G is (k1 + k2 + 1)-supereulerian. Since

k1 + k2 + 1 =


3k1 + 2 + 3k2 + 2 − 1 − 2

3


=


n − 2
3


,

G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

This completes the proof of Claim 1. �

Claim 2. ∆(G) ≤ 3.

Proof of Claim 2. Suppose, to the contrary, that ∆(G) ≥ 4. Let v be a vertex of G with degree at least 4. By Claim 1, G is
2-connected. Hence, by Theorem 22, G contains two edges vv1 and vv2 incident to v that can be split off such that the
resulting graph, denoted by G∗ (i.e., G∗

= G − {vv1, vv2} + {v1v2}), is connected and has no cut edges. Then |V (G∗)| =

|V (G)| = n and |E(G∗)| = |E(G)| − 1 < |E(G)|. By the minimality of G, we can obtain that G∗ is either ⌈
n−2
3 ⌉-supereulerian

or the graph K2,3(
n−2
3 , n−2

3 , n−2
3 ).

First, suppose that G∗ is ⌈
n−2
3 ⌉-supereulerian, i.e., G∗ has a spanning even subgraph L∗ with nc(L∗) ≤ ⌈

n−2
3 ⌉. Then

v1v2 ∈ E(L∗); otherwise, L∗ is also a spanning even subgraph of G, and then G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

Let L∗

1 ⊂ L∗ be the component containing v1v2, L∗

2 ⊂ L∗ the component containing v, and let

L =


(L∗

− L∗

1 − L∗

2) ∪ ((L∗

1 − {v1v2}) ∪ L∗

2 ∪ {vv1, vv2}), if L∗

1 ≠ L∗

2;

(L∗
− L∗

1) ∪ ((L∗

1 − {v1v2}) ∪ {vv1, vv2}), if L∗

1 = L∗

2.

Then nc(L) ≤ nc(L∗). Hence,Ghas a spanning even subgraph Lwith atmost ⌈ n−2
3 ⌉ components, i.e.,G is ⌈

n−2
3 ⌉-supereulerian,

a contradiction.
Next, suppose that G∗ ∼= K2,3(

n−2
3 , n−2

3 , n−2
3 ). Then, by (a) of Lemma 23, G is ⌈

n−2
3 ⌉-supereulerian, a contradiction.

This completes the proof of Claim 2. �
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Fig. 4. G3 has a loop.

Fig. 5. Local structure of u and its neighbors in G3 and the preimage in G.

Note that G is 2-edge-connected. By Claim 2, 2 ≤ δ(G) ≤ ∆(G) ≤ 3. If∆(G) = 2, then G is a cycle, which is supereulerian,
a contradiction. Hence, ∆(G) = 3. For i = 2, 3, let Di(G) denote the set of all vertices of degree i in G, and di(G) = |Di(G)|. In
the following, we construct a 3-regular weighted graph G3 from G.

Let G3 be the graph obtained from G by replacing each maximal path whose internal vertices have degree 2 in G by an
edge, and, for e ∈ E(G3), let q(e), the weight of e, be the number of internal vertices in the corresponding maximal path in
G. Then G3 is 3-regular, and d2(G) =


e∈E(G3) q(e), d3(G) = |V (G3)|, and n = d2(G) + d3(G) =


e∈E(G3) q(e) + |V (G3)|. By

the hypotheses of Theorem 20, and by the definition of G3, G3 is 2-edge-connected.
Now, we present the following claim.

Claim 3. G3 is simple.

Proof of Claim 3. Suppose, to the contrary, that G3 contains loops or multiple edges.
First, suppose that G3 has a loop l. Let v be the vertex incident with l. Note that G3 is 3-regular. The other edge incident

with v is a cut edge of G3 (see Fig. 4), contrary to the fact that G3 is 2-edge-connected.
Next, suppose that G3 has multiple edges. If G3 has three multiple edges between one pair of vertices, then, since G3 is

3-regular, and by the construction of G3, we have G ∼= K2,3(k1, k2, k3). Note that G is a counterexample. We may assume
that k1 < k2 ≤ k3. Then G is (k1 + 1)-supereulerian. Since k1 + 1 ≤ ⌈

k1+k2+k3
3 ⌉ = ⌈

n−2
3 ⌉, G is ⌈

n−2
3 ⌉-supereulerian, a

contradiction. So G3 has at most two multiple edges between any pair of vertices. Hence, we can find a pair of vertices u, v
in G3 with multiple edges e1 = uv, e2 = uv, by the assumption that G3 has multiple edges.

In the following, let NG3(u) \ {v} = w, and let P1, P2, and P3 be the maximal paths in G corresponding to e1, e2, and
e3 = uw, respectively, depicted in Fig. 5 (the number of internal vertices of Pi may not be accurate).

Claim 3.1. Both P1 and P2 have internal vertices in G.

Proof of Claim 3.1. Suppose, to the contrary, that P1 has no internal vertex. Denote P1 = e = uv and G1 = G − e. Then, we
claim that G1 is 2-edge-connected. By way of contradiction, suppose that G1 contains a cut edge e′. If u and v belong to the
same component of G1 − e′, then e′ is also a cut edge of G, a contradiction; if u and v belong to two distinct components of
G1 − e′, then u is a cut vertex of G, contrary to Claim 1.

Hence, G1 is 2-edge-connected. Note that |V (G1)| = |V (G)| = n and |E(G1)| = |E(G)| − 1 < |E(G)|. By the minimality of
G, either G1 is ⌈

n−2
3 ⌉-supereulerian, and hence G is ⌈

n−2
3 ⌉-supereulerian, a contradiction; or G1 ∼= K2,3(

n−2
3 , n−2

3 , n−2
3 ), and

hence G is ⌈
n−2
3 ⌉-supereulerian by (b) of Lemma 23, a contradiction. �

By Claim 3.1, for i = 1, 2, we may assume that xi ∈ V (P̊i) such that uxi ∈ E(G), i.e., xi is the neighbor of u in Pi. To finish
the proof of Claim 3, it suffices to consider the following two cases.
Case 1. P3 has internal vertices.

Let x3 ∈ V (P̊3) such that ux3 ∈ E(G), G∗
= G/{ux1, ux2, ux3}, P∗

i = Pi/{uxi} the path in G∗ (i = 1, 2, 3), and u∗ the
resulting vertex (of degree 3) obtained by contracting {ux1, ux2, ux3}, depicted in Fig. 6. Then n∗

= |V (G∗)| = n − 3
and |E(G∗)| = |E(G)| − 3. By the minimality of G, we can obtain that G∗ is either ⌈

n∗
−2
3 ⌉-supereulerian or the graph

K2,3(
n∗

−2
3 , n∗

−2
3 , n∗

−2
3 ). The latter case does not hold; otherwise, G ∼= K2,3(

n−2
3 , n−2

3 , n−2
3 ), a contradiction. So we need to

consider the former case.
Let L∗ be a spanning even subgraph of G∗ with the least number of components. Then nc(L∗) ≤ ⌈

n∗
−2
3 ⌉. Let L∗

1 be the
component of L∗ containing u∗. Then, we may assume that L∗

1 is nontrivial; otherwise, the vertices in V (P∗

1 ) ∪ V (P∗

2 ) are all
trivial in L∗, and then we can replace these trivial components by u∗P∗

1 vP∗

2u
∗ to obtain a spanning even subgraph of G∗ with

fewer components than L∗, contrary to the choice of L∗.
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Fig. 6. The demonstration of contraction when P3 has internal vertices.

Fig. 7. The demonstration of contraction when P3 is an edge.

Since L∗

1 is nontrivial and dG∗(u∗) = 3, we may assume that P∗

i , P∗

j ⊆ L∗

1 , and that the internal vertices of P∗

k are
trivial components in L∗, where {i, j, k} = {1, 2, 3}. Then, let L1 be the even subgraph of G obtained from L∗

1 by replacing
P∗

i and P∗

j by Pi and Pj, respectively, and let L = (L∗
− L∗

1) ∪ L1 ∪ {xk}. Then L is a spanning even subgraph of G with
nc(L) = nc(L∗) + 1 ≤ ⌈

n∗
−2
3 ⌉ + 1 = ⌈

n−2
3 ⌉ since n∗

= n − 3. Hence, G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

Case 2. P3 has no internal vertex.
Then, we can denote P3 = e3 = uw. Let e4, e5 be the two edges incident with w excepting e3, and P4, P5 the maximal

paths in G corresponding to e4, e5, respectively. Let G∗
= G/{ux1, ux2, e3}, P∗

i = Pi/{uxi} the path in G∗ (i = 1, 2), P∗

j the
path in G∗ corresponding to Pj in G (j = 4, 5), and u∗ the resulting vertex (of degree 4) obtained by contracting {ux1, ux2, e3},
depicted in Fig. 7. Then n∗

= n(G∗) = n − 3 and |E(G∗)| = |E(G)| − 3. Since dG∗(u∗) = 4 and ∆(K2,3(k, k, k)) = 3, and by
the minimality of G, G∗ is ⌈

n∗
−2
3 ⌉-supereulerian.

Let L∗ be a spanning even subgraph of G∗ with the least number of components. Then nc(L∗) ≤ ⌈
n∗

−2
3 ⌉. Let L∗

1 be
the component of L∗ containing u∗. Then, by arguing similarly as Case 1, we may assume that L∗

1 is nontrivial. Hence,
dL∗1 (u

∗) = 2, 4.
Subcase 2.1. dL∗1 (u

∗) = 2.
Then, exactly two of {P∗

1 , P∗

2 , P∗

4 , P∗

5 } belong to L∗

1 . By symmetry, we may assume that P∗

1 , P∗

2 ⊆ L∗

1 , or P
∗

1 , P∗

4 ⊆ L∗

1 , or
P∗

4 , P∗

5 ⊆ L∗

1 .
Subcase 2.1.1. P∗

1 , P∗

2 ⊆ L∗

1 .
In this case, the internal vertices of P∗

4 and P∗

5 are trivial components in L∗, and L∗

1 = u∗P∗

1 vP∗

2u
∗. Let L1 = uP1vP2u, and

L = (L∗
− L∗

1) ∪ L1 ∪ {w}. Then L is a spanning even subgraph of G with nc(L) ≤ ⌈
n−2
3 ⌉. Hence, G is ⌈

n−2
3 ⌉-supereulerian, a

contradiction.
Subcase 2.1.2. P∗

1 , P∗

4 ⊆ L∗

1 .
In this case, the internal vertices of P∗

2 and P∗

5 are trivial components in L∗. Let L1 be the graph obtained from L∗

1 by
replacing vP∗

1u
∗P∗

4 by vP1uwP4, and L = (L∗
− L∗

1) ∪ L1 ∪ {x2}. Then L is a spanning even subgraph of Gwith nc(L) ≤ ⌈
n−2
3 ⌉.

Hence, G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

Subcase 2.1.3. P∗

4 , P∗

5 ⊆ L∗

1 .
In this case, the internal vertices of P∗

1 , P∗

2 and v are trivial components in L∗. Let L̃∗

1 = L∗

1 ∪ u∗P∗

1 vP∗

2u
∗. Then, we can

replace L∗

1 and the corresponding trivial components by L̃∗

1 in L∗, to reduce its number of components, contrary to the choice
of L∗.
Subcase 2.2. dL∗1 (u

∗) = 4.
In this case, we can construct two even subgraphs L′

1 and L′′

1 of G from L∗

1: L
′

1 = uP1vP2u, and L′′

1 is obtained from L∗

1 by
deleting the vertices in V (P̊∗

1 ) ∪ V (P̊∗

2 ) ∪ {v}, and then replacing P∗

4 , P∗

5 by P4, P5, respectively. Let L = (L∗
− L∗

1) ∪ L′

1 ∪ L′′

1 .
Then L is a spanning even subgraph of Gwith nc(L) ≤ ⌈

n−2
3 ⌉. Hence, G is ⌈

n−2
3 ⌉-supereulerian, a contradiction.

This completes the proof of Claim 3. �

Now, we continue to prove Theorem 20. Note that G3 is 2-edge-connected. By Theorem 24, there exists a constant p and
3p perfect matchings M1,M2, . . . ,M3p such that each edge of G3 is in p of them. For 1 ≤ i ≤ 3p, let q(Mi) =


e∈Mi

q(e)
be the weight of Mi. Without loss of generality, we can assume that q(M1) ≤ q(M2) ≤ · · · ≤ q(M3p). By Theorem 24,3p

i=1 q(Mi) = p


e∈E(G3) q(e) = pd2(G). Hence, q(M1) ≤ ⌊d2(G)/3⌋.
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Since M1 is a perfect matching, G3
− M1 is a 2-factor of G3. By Claim 3, each component (i.e., cycle) of G3

− M1 contains
at least three vertices. So nc(G3

− M1) ≤ ⌊n(G3)/3⌋ = ⌊d3(G)/3⌋.
Now, we come back to consider the graph G. Let L1 be the set of cycles (in G) which are the preimages of the cycles in

G3
− M1, L2 the set of vertices (in G) which are the internal vertices of the preimages of the edges inM1, and let L = L1 ∪ L2.

Then L is a spanning even subgraph of G with

nc(L) = nc(L1) + nc(L2) = nc(G3
− M1) + q(M1) ≤


d3(G)

3


+


d2(G)

3


.

Note that
d3(G)

3


+


d2(G)

3


≤


d2(G) + d3(G) − 2

3


=


n − 2
3


.

This implies that G is ⌈
n−2
3 ⌉-supereulerian, a contradiction.

This completes the proof of Theorem 20. �
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