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Abstract: For an integer s ≥ 0, a graph G is s-hamiltonian if for any ver-
tex subset S′ ⊆ V (G) with |S′| ≤ s, G − S′ is hamiltonian. It is well known
that if a graph G is s-hamiltonian, then G must be (s + 2)-connected. The
converse is not true, as there exist arbitrarily highly connected nonhamil-
tonian graphs. But for line graphs, we prove that when s ≥ 5, a line graph
is s-hamiltonian if and only if it is (s + 2)-connected. C© 2013 Wiley Periodicals, Inc. J.
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1. INTRODUCTION

Graphs considered in this article are finite graphs. Undefined notations and terminology
will follow those in [1]. Let G be a graph. As in [1], κ ′(G) and κ(G) denote the edge-
connectivity and the connectivity of G, respectively. A graph is trivial if it contains no
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s-HAMILTONIAN LINE GRAPHS 345

edges. An edge cut X of G is essential if G − X has at least two nontrivial components.
For an integer k > 0, a graph G is essentially k-edge-connected if G does not have an
essential edge cut X with |X | < k. For any v ∈ V (G) and an integer i ≥ 0, define

EG(v) = {e ∈ E(G) : e is incident with v in G},
Di(G) = {u ∈ V (G) : dG(u) = i} and di(G) = |Di(G)|.

The line graph of a graph G, written L(G), has E(G) as its vertex set, where two
vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent.
The following conjecture is still open.

Conjecture 1.1 (Thomassen [12]). Every 4-connected line graph is hamiltonian.

Toward this conjecture, Zhan proved:

Theorem 1.2 (Zhan, Theorem 3 in [14]). If κ(L(G)) ≥ 7, L(G) is hamiltonian-
connected.

A graph G of order n ≥ 3 is called s-hamiltonian, 0 ≤ s ≤ n − 3, if the removal of any
k vertices, 0 ≤ k ≤ s, results in a hamiltonian graph. It is well known that if a graph G is
s-hamiltonian, then G is (s + 2)-connected. The converse, on the other hand, is not true,
as Km,m+1 is m-connected but nonhamiltonian. In this article, we investigate s-hamiltonian
line graphs, and prove that this necessary condition is also sufficient among line graphs,
when s ≥ 5.

Theorem 1.3. Let G be a connected graph and s ≥ 5 an integer. Then L(G) is s-
hamiltonian if and only if L(G) is (s + 2)-connected.

Theorem 1.3 is motivated by the following question: what is the smallest positive
integer k such that a line graph L(G) is s-hamiltonian if and only if L(G) is (s + 2)-
connected for all integers s ≥ k? Theorem 1.3 suggests that k ≤ 5. Let G(t) denote the
graph obtained from the Petersen graph by attaching t > 0 pendant edges at each vertex
of the Petersen graph. Then L(G(t)) is 3-connected but not 1-hamiltonian. Therefore,
k ≥ 2. Hence, we know that k ∈ {2, 3, 4, 5} but the exact value of k remains to be
determined. Note that if Theorem 1.3 holds for k = 2, then it implies Thomassen’s
conjecture (Conjecture 1.1). If Thomassen’s conjecture is true, then there are hamiltonian
properties that are polynomial in line graphs (see [7]). As a corollary of Theorem 1.3,
5-hamiltonicity is the first “reasonable” hamiltonian property which is known to be
polynomial in line graphs.

On the other hand, Broersma and Veldman proved the following.

Theorem 1.4 (Broersma and Veldman [2]). Let k ≥ s ≥ 0 be integers and let G be a
k-triangular simple graph. Then L(G) is s-hamiltonian if and only if L(G) is (s + 2)-
connected.

In [2], Broersma and Veldman asked the question if the conclusion of Theorem 1.4
remains valid for other values of s when k is given. Theorem 1.3 settles this problem
raised by Broersma and Veldman for larger values of s, without the restriction that G is
k-triangular.

Though, it is not known whether Theorem 1.3 can be extended to claw-free graphs.
We conjecture that there exists an integer k such that for any s ≥ k, a claw-free graph G
is s-hamiltonian if and only if G is (s + 2)-connected.
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Clearly, if L(G) is a complete graph, then L(G) is s-hamiltonian for any integer s with
0 ≤ s ≤ |V (L(G))| − 3. Throughout this article, we assume that L(G) is not complete.

2. MECHANISM

The spanning tree packing number of G, written τ (G), is the maximum number of
edge-disjoint spanning trees of G. The following two theorems are well known.

Theorem 2.1 (Nash-Williams [9], see also Theorem 3 and Corollary 18 of [4]). Let
G be a connected graph. If |E(G)|

|V (G)|−1 ≥ 2, then there exists a nontrivial subgraph H with
τ (H) ≥ 2.

Theorem 2.2 (Nash-Williams [10] and Tutte [13]). Let k ≥ 1 be an integer and G be a
connected graph. Then τ (G) ≥ k if and only if for any partition of the vertices of G into
c parts, there are at least k(c − 1) edges of G whose endpoints are in different parts of
the partition.

Let X ⊆ E(G) be an edge subset. The contractionG/X is the graph obtained from G
by identifying two ends of each edge of X and then deleting the resulting loops. When
X = {e}, we use G/e for G/{e}. Given a graph G, one can repeatedly contract all nontrivial
subgraphs H of G with τ (H) ≥ 2. The resulting graph is called the τ -reduction of G.

Theorem 2.3 (Theorem E and Corollary 5 of [8]). Let H be a subgraph of G with
τ (H) ≥ 2. Then τ (G) ≥ 2 if and only if τ (G/H) ≥ 2. In particular, τ (G) ≥ 2 if and
only if the τ -reduction of G is K1.

Let O(G) denote the set of odd degree vertices of a graph G. We say that G is
Eulerian if G is a connected graph with O(G) = ∅. A subgraph H of G is a spanning
Eulerian subgraph if H is an Eulerian graph with V (H) = V (G). A subgraph H ′ of G
is a dominating Eulerian subgraph if H ′ is Eulerian and G − V (H ′) is edgeless. We use
SES to denote a spanning Eulerian subgraph and DES to denote a dominating Eulerian
subgraph. Clearly, an SES of G is also a DES of G.

A graph G is collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has
a spanning connected subgraph HR such that O(HR) = R. Catlin ([3]) showed that any
graph G has a unique subgraph H such that every component of H is a maximally
collapsible subgraph of G and every nontrivial collapsible subgraph of G is contained
in a component of H. The contraction G/H is called the c-reduction of G. A graph
G is c-reduced if the c-reduction of G is itself. Note that, as K3 is collapsible [3], the
c-reduction of K3 is K1; but the τ -reduction of K3 is K3 itself. The following summarize
some of the former results concerning collapsible graphs (the contraction below is the
c-reduction).

Theorem 2.4. Let G be a connected graph and F(G) denote the minimum number of
edges that must be added to G so that the resulting graph has two edge-disjoint spanning
trees. Each of the following holds.

(i) (Catlin [3]). If H is a collapsible subgraph of G, then G is collapsible if and only
if G/H is collapsible; G has an SES if and only if G/H has an SES.

(ii) (Catlin, Han, and Lai, Theorem 1.5 of [5]). If F(G) ≤ 2, either G is collapsible
or the c-reduction of G is a K2 or K2,t for some integer t ≥ 1.

Journal of Graph Theory DOI 10.1002/jgt



s-HAMILTONIAN LINE GRAPHS 347

FIGURE 1. The core graph.

Let G be a connected, essentially 3-edge-connected graph such that L(G) is not a
complete graph. The core of this graph G, written G0, is obtained by the following two
operations (see Fig. 1) repeatedly.

Operation 1. Delete each vertex of degree 1.
Operation 2. For each vertex y of degree 2 with EG(y) = {xy, yz}, contract exactly one
edge in EG(y). This amounts to deleting edges xy, yz and vertex y for each path xyz in G
with dG(y) = 2 and replacing xy, yz by a new edge xz.

Let O1(G) denote the graph obtained from G by applying Operation 1 to each vertex
of degree 1, and O2(G) the graph obtained from G by applying Operation 2 to each
vertex of degree 2. So G0 = O2(O1(G)).

The main idea of the proof of Theorem 1.3 is to convert a DES of G0 − S to a DES of
G − S for any S ⊆ E(G). Note that some edges of S may not be in G0 after Operation 2,
so we need to define G0 − S. Let e ∈ S ⊆ E(G). By Operation 1, if e is a pendent edge
(an edge incident with a vertex of degree 1), then G0 − {e} = G0; if e is incident with a
vertex y of degree 2 with e ∈ EG(y) = {xy, yz}, then we define G0 − {e} = G0 − {xz}.
Lemma 2.5. Let G be an essentially 3-edge-connected graph and NG(D1(G) ∪ D2(G))

be the set of neighbors of all the vertices of degree 1 or 2 in G.

(i) (Shao, Lemma 1.4.1 of [11]). The core graph G0 is uniquely defined and κ ′(G0) ≥
3.

(ii) Suppose S ⊆ E(G), and all isolated vertices in G − S and G0 − S resulting from
deleting S are deleted. If G − S is connected and G0 − S has a DES L′ containing
NG(D1(G) ∪ D2(G)), then the graph L obtained by reversing Operation 2 on L′ is
a DES of G − S.

Proof. (ii) Since L′ is an Eulerian subgraph of G0 − S, and reversing Operation 2 is
simply replacing an edge with a path of length 2, L is an Eulerian subgraph of G − S and
V (L′) ⊆ V (L). It suffices to show that G − S − V (L) is edgeless, or equivalently, for any
vertex v ∈ V (G − S), either v ∈ V (L) or NG−S(v) ⊆ V (L).

Clearly, v ∈ V (G). If v ∈ D1(G) ∪ D2(G), then NG(v) ⊆ NG(D1(G) ∪ D2(G)) ⊆
V (L′) ⊆ V (L), done.

Now we assume that v ∈ ∪i≥3Di(G) and we first show that v ∈ V (G0 − S). As G is
essentially 3-edge-connected, v ∈ V (G0). If one of the neighbors of v is a vertex of degree
1 or 2 in G, then v ∈ NG(D1(G) ∪ D2(G)) ⊆ V (L′) ⊆ V (L), done. Then we may assume
that every neighbor of v is a vertex of degree at least 3 in G. As G is essentially 3-edge-
connected, {v} ∪ NG(v) ⊆ V (G0) and EG(v) = EG0 (v). Then v ∈ V (G0 − S) otherwise
EG(v) = EG0 (v) ⊆ S, which implies v /∈ V (G − S), a contradiction.
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Since L′ is a DES of G0 − S and v ∈ V (G0 − S), either v ∈ V (L′) or NG0−S(v) ⊆ V (L′).
Since V (L′) ⊆ V (L), v ∈ V (L) or NG−S(v) = NG0−S(v) ⊆ V (L). This proves that L is a
DES of G − S. �

Theorem 2.6 below reveals the relationship between Hamilton cycles in a line graph
L(G) and dominating Eulerian subgraphs in G.

Theorem 2.6 (Harary and Nash-Williams [6]). Let G be a connected graph with at
least three edges. The line graph L(G) is hamiltonian if and only if G has a dominating
Eulerian subgraph.

Let S ⊆ E(G) and S′ be the corresponding vertex set in the line graph L(G). By the
definition of line graphs, L(G) − S′ = L(G − S). Note that deleting vertex set S′ in L(G)

corresponds to deleting edge set S in G. We may freely discard isolated vertices that
arise in G − S by edge deletion, because isolated vertices in a graph will not generate
any vertex or edges in its line graph. For simplicity, we use G − S in the discussions
instead of G − S − D0(G − S). Throughout this article, isolated vertices arising from
edge deletion will be deleted automatically unless otherwise specified. A relationship
between Hamilton cycles in L(G) − S′ and dominating Eulerian subgraphs in G − S is
stated in Theorem 2.7.

Theorem 2.7. Let G be a connected graph with at least three edges and s ≥ 0 an integer.
The line graph L(G) is s-hamiltonian if and only if G − S has a dominating Eulerian
subgraph for any S ⊂ E(G) with |S| ≤ s.

In Sections 3 and 4, we study the spanning tree packing number of an essentially
7-edge-connected and 3-edge-connected graph G in two cases with respect to the fact
whether G is isomorphic to G3,6 or not. Using these results and Theorem 2.4(ii), we prove
our main result Theorem 1.3 in Section 5.

3. THE CASE OF G3,6

Let G = G3,6 denote a simple bipartite graph with a vertex bipartition (A, B) where
A = D3(G) and B = D6(G). In this section, we prove that the core of the graph obtained
from G3,6 by deleting at most three edges has two edge disjoint spanning trees. In
Lemma 3.1, G − X refers to G − X − D0(G − X ) as explained in Section 2. In the proof
of Lemma 3.1, our approach is a refinement of the techniques that Zhan used to prove
Theorem 1.2 in [14].

Lemma 3.1. If G = G3,6 is an essentially 7-edge-connected graph, and if X ⊆ E(G)

with |X | ≤ 3, then τ ((G − X )0) ≥ 2.

Proof. Let Gc = (G − X )0. The operations involved are:

G → G − X →Operation1 O1(G − X ) →Operation2 (G − X )0 = Gc.

Since |X | ≤ 3 and δ(G) = 3, the operation from G to G − X generates at most one
vertex of degree 1 in G − X (the extreme case happens when two edges in X are incident
with a vertex of degree 3 in G). Thus, at most four edges will be deleted by the opera-
tions from G to O1(G − X ). And by inspection, since G = G3,6 and G is essentially
7-edge-connected, we have that 2d4(O1(G − X )) + d5(O1(G − X )) ≤ 4. Since
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Operation 2 will not change the degree of vertices of degree 4 or 5, we have
2d4(Gc) + d5(Gc) ≤ 4.

Recall that G is bipartite, and D3(G) is independent in G, but D3(Gc) may not be
independent in Gc. For a vertex u of degree 6 in G, dG−X (u) ∈ {3, 4, 5, 6}. And the
only possibility of generating a new vertex of degree 3 is that all three edges of X are
incident with a vertex of degree 6. In this situation, d4(Gc) = d5(Gc) = 0. So we have
the following claim.

Claim 1.

(i) Either D3(Gc) is independent in Gc with |D3(G) ∩ D3(Gc)| = d3(Gc) or D3(G) ∩
D3(Gc) is maximally independent in Gc with |D3(G) ∩ D3(Gc)| = d3(Gc) − 1.

(ii) If |D3(Gc) ∩ D3(G)| = d3(Gc) − 1, then 2d4(Gc) + d5(Gc) = 0.
(iii) If |D3(Gc) ∩ D3(G)| = d3(Gc), then 2d4(Gc) + d5(Gc) ≤ 4. �
For S ⊆ E(Gc), let L1, L2, . . . , Lr+m+t be all the components of Gc − S, where

L1, L2, . . . , Lr are the components, each of which is a single vertex of degree 3 in
Gc, Lr+1, . . . , Lr+m are the nontrivial components of Gc − S, and Lr+m+1, . . . , Lr+m+t are
the remaining components of Gc − S, i.e., each of them is a single vertex of degree at
least 4 in Gc. Each set of above three categories is possibly an empty set.

By Theorem 2.2, to prove τ (Gc) ≥ 2 for any such S, it suffices to show that

|S| ≥ 2(r + m + t − 1), or equivalently, 2|S| ≥ 4(r + m + t − 1). (1)

For each i, let ∂Gc (Li) be the set of edges with one end in Li, another end not in Li and let
dGc (Li) := |∂Gc (Li)|. By the definitions of Li and dGc (Li), we have

for any i with 1 ≤ i ≤ r, dGc (Li) = 3, (2)

and

for r + m + 1 ≤ j ≤ r + m + t, dGc (Lj) ≥ 4. (3)

Claim 2. If there exists a j with r + 1 ≤ j ≤ r + m such that Gc − Lj is edgeless, then
(1) holds.

Proof of Claim 2. If Gc − Lj is edgeless, then each of L1, L2, . . . , Lj−1, Lj+1, . . . ,

Lr+m+t is a single vertex component and they are independent in Gc. By Lemma 2.5(i),
δ(Gc) ≥ 3. So |S| ≥ ∑ j−1

i=1 dGc (Li) + ∑r+m+t
i= j+1 dGc (Li) ≥ 3dGc (Lj) ≥ 3(r + m + t − 1).

Thus (1) holds. �
By Claim 2, we assume that for each j with r + 1 ≤ j ≤ r + m, Gc − Lj is nontrivial.

As Lj is also nontrivial, we have that

for r + 1 ≤ j ≤ r + m, ∂Gc (Lj) is an essential edge cut of Gc. (4)

Since Gc is the core of G − X , by the definition of a core graph, if X is an essential edge
cut of Gc, then X is also an essential edge cut of G − X (see Corollary 5.2 and its proof
in Section 5). Together with (4), for r + 1 ≤ j ≤ r + m, ∂Gc (Lj) is also an essential edge
cut of G − X and so

for r + 1 ≤ j ≤ r + m, a subset of ∂Gc (Lj) ∪ X is an essential edge cut of G. (5)
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Claim 3.

(i) If L1 ∪ L2 ∪ · · · ∪ Lr is not independent in Gc, then
∑r+m+t

i=r+1 dGc (Li) ≥ 3r − 6.
Furthermore, if r ≥ 2m + 2t + 1, then (1) holds.

(ii) If L1 ∪ L2 ∪ · · · ∪ Lr is independent in Gc, then
∑r+m+t

i=r+1 dGc (Li) ≥ 3r. Further-
more, if r ≥ 2m + 2t − 2, then (1) holds.

Proof of Claim 3.

(i) By Claim 1(i), the independence number of Gc[D3(Gc)] is d3(Gc) or d3(Gc) − 1.
Without loss of generality, we may assume that L1 ∪ L2 ∪ · · · ∪ Lr−1 is indepen-
dent in Gc. Together with (2), there are at most three cross-edges between Gc[L1 ∪
L2 ∪ · · · ∪ Lr−1] and Gc[Lr]. And as L1 ∪ L2 ∪ · · · ∪ Lr−1 is independent in
Gc, by (2), we have

∑r+m+t
i=r+1 dGc (Li) ≥ ∑r−1

i=1 dGc (Li) − 3 ≥ 3(r − 1) − 3 = 3r −
6. Together with (2), 2|S| = ∑r

i=1 dGc (Li) + ∑r+m+t
i=r+1 dGc (Li) ≥ 3r + 3r − 6 =

6r − 6.
If r ≥ 2m + 2t + 1, then 2|S| ≥ 6r − 6 = 4r + 2r − 6 ≥ 4r + (4m + 4t + 2) −
6 = 4r + 4m + 4t − 4. Hence (1) holds.

(ii) can be proved similarly. �
By Claim 3, we can assume that

r ≤ 2m + 2t − y, where

y = 3 if L1 ∪ L2 ∪ · · · ∪ Lr is independent in Gc, and y = 0 otherwise. (6)

Claim 4.

(i)
∑r+m

i=r+1 dGc (Li) ≥ 7m − x, where

x ≤
⎧⎨
⎩

6 : if m ≥ 2
3 : if m = 1
0 : if m = 0

(ii)
∑r+m+t

i=r+m+1 dGc (Li) ≥ 6t − (2|{v ∈ V (Lr+m+1) ∪ · · · ∪ V (Lr+m+t ) : dGc (v) =
4}| + |{v ∈ V (Lr+m+1) ∪ · · · ∪ V (Lr+m+t ) : dGc (v) = 5}|) ≥ 6t − (2d4(Gc) +
d5(Gc)).

Proof of Claim 4.

(i) It is trivial if m = 0. Recall that |X | ≤ 3. By (5), if m = 1,
∑r+m

i=r+1 dGc (Li) ≥
7m − 3 and the equality holds when each of X has exactly one end in Lr+1; if
m ≥ 2,

∑r+m
i=r+1 dGc (Li) ≥ 7m − 6 and the equality holds when all six ends of X

are in ∪r+m
i=r+1Lr+i and the two ends of each edge of X lie in different components.

(ii) It follows from (3). So Claim 4 is established. �
By (2) and Claim 4, 2|S| = ∑r

i=1 dGc (Li) + ∑r+m
i=r+1 dGc (Li) + ∑r+m+t

i=r+m+1 dGc (Li) ≥
3r + 7m − x + 6t − (2d4(Gc) + d5(Gc)) = 3r + [2m + 2t − y] + 4m + 4t + (m + y −
x) − (2d4(Gc) + d5(Gc)). Then by (6),

2|S| ≥ 4r + 4m + 4t + (m + y − x) − (2d4(Gc) + d5(Gc)). (7)
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If L1 ∪ · · · ∪ Lr is not independent in Gc, then by (6), (7), Claim 1(ii) and Claim 4(i),
2|S| ≥ 4r + 4m + 4t + (m − x) ≥ 4r + 4m + 4t − 4, and (1) holds.

If L1 ∪ · · · ∪ Lr is independent in Gc and m �= 2, then by (6), (7), Claim 1(iii) and Claim
4(i), 2|S| ≥ 4r + 4m + 4t + (m + 3 − x) − 4 = 4r + 4m + 4t + (m − 1 − x) ≥ 4r +
4m + 4t − 4, and (1) holds. So we assume that L1 ∪ · · · ∪ Lr is independent in Gc and
m = 2. If x ≤ 5, then by (6), (7) and Claim 4, 2|S| ≥ 4r + 4m + 4t + (2 + 3 − 5) − 4 =
4r + 4m + 4t − 4. So by Claim 4(i) that x ≤ 6, we may assume that x = 6. By the
proof of Claim 4(i),

∑r+m
i=r+1 dGc (Li) = 7m − 6 if and only if all six ends of X are

in ∪r+m
i=r+1Lr+i and the two ends of each edge of X lie in different components. So

each vertex in ∪r+m+t
i=r+m+1Lr+i has degree equal to 6 in Gc. Thus, by (2), (6), and

Claim 4, 2|S| ≥ 3r + 7m − x + 6t = 3r + [2m + 2t − y] + 4m + 4t + (m + y − x) ≥
4r + 4m + 4t + (2 + 3 − 6) = 4r + 4m + 4t − 1.

Hence (1) is established, and so is Lemma 3.1.

4. AN ASSOCIATE RESULT

Again as explained in Section 2, the graph G1 = O1(G − S) in Theorem 4.1(ii) refers to
G1 = O1(G − S − D0(G − S)) unless otherwise specified. Throughout this section, let
di = |Di(G)|.
Theorem 4.1. Let G be a 3-edge-connected and essentially 7-edge-connected graph
such that G is not isomorphic to G3,6.

(i) If

d5 +
∑
i≥7

(
2i

3
− 4

)
di < 2, (8)

then 2 + d3 − ∑
i≥5(i − 4)di ≤ 0.

(ii) Let S ⊆ E(G). If |S| ≤ 3, then G1 = O1(G − S) has two edge disjoint spanning
trees.

Proof. Claim 5 below follows from the assumption that G is essentially 7-edge-
connected.

Claim 5. For any edge uv ∈ E(G), dG(u) + dG(v) ≥ 9. In particular, for any v ∈ D3(G),
any neighbor u of v has degree at least 6. �

Claim 6. If d3 = 2d6 and �(G) ≤ 6, then G is isomorphic to G3,6.

Proof of Claim 6. Since �(G) ≤ 6, it follows by Claim 5 that every vertex in
D3(G) must be and only be adjacent to vertices in D6(G). As d3 = 2d6, by counting the
incidences, every vertex in D6(G) must also be adjacent to vertices in D3(G). So G must
be isomorphic to G3,6 and this proves Claim 6. �

Proof of Theorem 4.1(i). Since G is not isomorphic to G3,6, by Claim 6, we may
assume that

if �(G) ≤ 6, then d3 �= 2d6. (9)
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The condition (8) immediately implies that

d5 ≤ 1, �(G) ≤ 8, d7 ≤ 2, and d8 ≤ 1. (10)

By Claim 5, 3d3 ≤ ∑
i≥6 idi, or d3 ≤ ∑

i≥6
i
3 di. Together with �(G) ≤ 8, we have that

d3 ≤ 2d6 + 7

3
d7 + 8

3
d8, or 0 ≤ 2d6 + 7

3
d7 + 8

3
d8 − d3. (11)

We argue by way of contradiction, and assume that
∑

i≥5(i − 4)di − d3 < 2. By �(G) ≤
8 again, ∑

i≥5

(i − 4)di − d3 = d5 + 2d6 + 3d7 + 4d8 − d3 < 2, or

2d6 + 7

3
d7 + 8

3
d8 − d3 < 2 −

(
d5 + 2

3
d7 + 4

3
d8

)
. (12)

Combining (11) and (12), we have

0 ≤ 2d6 − d3 + 7

3
d7 + 8

3
d8 < 2 −

(
d5 + 2

3
d7 + 4

3
d8

)
. (13)

�

Claim 7. d8 = 0 and �(G) ≤ 7.

Proof of Claim 7. Assume that d8 �= 0. By (10), d8 = 1. Then by (13), 0 < 2
3 −

(d5 + 2
3 d7), which implies that d5 = d7 = 0. Plugging them into (13), we have 0 ≤

2d6 − d3 + 8
3 < 2

3 , or − 8
3 ≤ 2d6 − d3 < −2, contrary to the fact that 2d6 − d3 is an

integer. So we must have d8 = 0. Together with (10), �(G) ≤ 7.
Plug d8 = 0 into (13) to get

0 ≤ 2d6 − d3 + 7

3
d7 < 2 −

(
d5 + 2

3
d7

)
. (14)

�

Claim 8. d7 = 1.

Proof of Claim 8. First, we assume that d7 ≥ 2. By (10), d7 = 2. Together with (8)
and �(G) ≤ 7, d5 = 0. Together with Claim 7 and (14), −14/3 ≤ 2d6 − d3 < −4, a
contradiction. So we may exclude the case d7 ≥ 2. If d7 = 0, then by (14), 0 ≤ 2d6 −
d3 < 2 − d5. By (9) that 2d6 − d3 �= 0, we have 1 ≤ 2d6 − d3 < 2 − d5. So d5 = 0 and
2d6 − d3 = 1. It follows that d3 ≡ 1 (mod 2). Since d5 = 0 and di = 0(i ≥ 7), the total
number of odd degree vertices of G is an odd number d3, contrary to the fact that in every
graph, the number of odd degree vertices must be even. Hence we must have d7 = 1. �

Claim 9. d5 = 0 and d3 ≡ 0 (mod 2).

Proof of Claim 9. Plug d7 = 1 into (14) to get

0 ≤ 2d6 − d3 + 7

3
<

4

3
− d5, or − 7

3
≤ 2d6 − d3 < −1 − d5. (15)

Since 2d6 − d3 is an integer, (15) implies that d5 = 0 and 2d6 − d3 = −2. Then Claim 9
is established. �
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It follows from Claims 7, 8, and 9 that the number of odd degree vertices of G is an
odd number d3 + d5 + d7 = d3 + 1, a contradiction. So we establish Theorem 4.1(i).

Proof of Theorem 4.1(ii). Since κ ′(G) ≥ 3, |S| ≤ 3, G is essentially 7-edge-
connected, and isolated vertices of G − S are deleted, we have that G1 = O1(G − S)

is connected and δ(G1) ≥ 2. We argue by contradiction, and assume that

G is a counterexample of Theorem 4.1(ii) (16)

with

|E(G)| minimized. (17)

Next, we show that every nontrivial subgraph of G1 does not have two edge dis-
joint spanning trees. Suppose not. Then G1 has a nontrivial proper subgraph H with
τ (H) ≥ 2. Note that H is also a subgraph of G. If G/H ∼= K1, then G1/H ∼= K1, and
so τ (G1) ≥ 2, contrary to (16). So we can assume that G/H �= K1. As the contraction
will not decrease the edge connectivity, G/H is 3-edge-connected and essentially 7-edge-
connected. If G/H is isomorphic to G3,6, then by Lemma 3.1, τ (G/H) = τ (G3,6) ≥ 2. By
Theorem 2.3, τ (G) ≥ 2 and so τ (G1) ≥ 2, contrary to (16). So G/H is not isomor-
phic to G3,6 and thus G/H satisfies the conditions of Theorem 4.1. By (16), (17), and
|E(G/H)| < |E(G)|, G1/H = O1(G/H − S) has two edge disjoint spanning trees. This,
together with Theorem 2.3, implies that τ (G1) ≥ 2, contrary to (16). Hence,

if H is a nontrivial proper subgraph of G1, then τ (H) < 2. (18)

Note that by (18), G1 must be simple. Clearly, |V (G1)| > 1. By Theorem 2.1, if |E(G1)|
|V (G1)|−1 ≥

2, then a violation to (18) will be found. Thus we may assume

|E(G1)|
|V (G1)| − 1

< 2, or equivalently, 2|V (G1)| − |E(G1)| − 2 > 0. (19)

Since δ(G) ≥ κ ′(G) ≥ 3, |V (G)| = ∑
i≥3 di and 2|E(G)| = ∑

i≥3 idi. Thus

4|V (G)| − 2|E(G)| = d3 −
∑
i≥5

(i − 4)di. (20)

By Claim 5, d3 ≤ ∑
i≥6

i
3 di. Together with (20), we have that

4|V (G)| − 2|E(G)| ≤ −d5 −
∑
i≥7

(
2i

3
− 4

)
di. (21)

�

Claim 10. 4|V (G1)| − 2|E(G1)| − 4 ≤ 2 + 4|V (G)| − 2|E(G)|.

Proof of Claim 10. We assume that |S| = 3, and the case when |S| ≤ 2 can be proved
similarly. In the proof below, G − S is the graph obtained by deleting all edges of S from
G and keep all resulting isolated vertices.

If D0(G − S) ∪ D1(G − S) = ∅, then |V (G1)| = |V (G)| and |E(G1)| = |E(G)| − 3.
Hence 4|V (G1)| − 2|E(G1)| − 4 = 2 + 4|V (G)| − 2|E(G)| and Claim 10 holds. Next
we assume that D0(G − S) ∪ D1(G − S) �= ∅.

Case 1: If two edges in S are incident with a vertex of degree 3 or three
in S are incident with a vertex of degree 4, then D0(G − S) = 0, D1(G − S) =
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1 and |V (G1)| = |V (G)| − 1, |E(G1)| = |E(G)| − 4. So 4|V (G1)| − 2|E(G1)| − 4 =
4|V (G)| − 2|E(G)| and Claim 10 holds.
Case 2: If three edges in S are incident with a vertex of degree 3 in G, then
D0(G − S) = 1, D1(G − S) = 0 and |V (G1)| = |V (G)| − 1, |E(G1)| = |E(G)| − 3. So
4|V (G1)| − 2|E(G1)| − 4 = 4|V (G)| − 2|E(G)| − 2 and Claim 10 is holds. �

By Claim 10, (20), and (21), we have

4|V (G1)| − 2|E(G1)| − 4 ≤ 2 + 4|V (G)| − 2|E(G)| = 2 + d3 −
∑
i≥5

(i − 4)di,

(22)
and

4|V (G1)| − 2|E(G1)| − 4 ≤ 2 + 4|V (G)| − 2|E(G)| ≤ 2 − d5 −
∑
i≥7

(
2i

3
− 4

)
di.

(23)
By (19) and (23), 0 < 2 − d5 − ∑

i≥7(
2i
3 − 4)di, which is the condition (8) in Theo-

rem 4.1(i). Then 2 + d3 − ∑
i≥5(i − 4)di ≤ 0 follows from Theorem 4.1(i). By (22),

4|V (G1)| − 2|E(G1)| − 4 ≤ 0, contrary to (19). Hence, Theorem 4.1(ii) is established.

5. THE PROOF OF THEOREM 1.3

In this section, we first show that Theorem 1.3 holds for s = 5 by proving Theorem 5.3
below. The proof of Theorem 5.3 involves a lot of edge contractions. We will repeatedly
use Proposition 5.1 below and Lemma 2.5(ii) in the proof.

Proposition 5.1. Let G be a graph and H a subgraph of G. If X is an edge cut (or
essential edge cut, respectively) of G/H, then X is also an edge cut (or essential edge
cut, respectively) of G.

Proof. Let e ∈ E(H), X be an essential edge cut of G/e, G′
1 and G′

2 be the two sides
of (G/e) − X , and let ve denote the vertex of G/e onto which e is contracted. We may
assume that ve ∈ V (G′

1). Then G1 = G[E(G′
1) ∪ e] and G2 = G′

2 are the two sides of
G − X , and so X is an edge-cut of G. Both G′

1 and G′
2 have edges, so do G1 and G2. Thus

we proved that if X is an essential edge cut of G/e, then X is an essential edge cut of G.
Thus, Proposition 5.1 can be proved by applying induction on E(H). �

Corollary 5.2. Let G be an essentially 3-edge-connected graph and G0 the core of G.
If X is an edge cut (or essential edge cut, respectively) of G0, then X is also an edge cut
(or essential edge cut, respectively) of G.

Proof. It follows from Proposition 5.1 as the core of an essentially 3-edge-connected
graph G can be viewed as a contraction of G (contracting all the pendent edges and one
from the two edges of degree 2 vertices). �

Theorem 5.3. Let G be a connected graph. Then L(G) is 5-hamiltonian if and only if
L(G) is 7-connected.
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Proof. By Theorem 2.7, it suffices to show that for any S ⊆ E(G) with |S| ≤ 5, G −
S has a DES. �

Let X ⊆ S be a subset with |X | = min{|S|, 3} and Y = S − X . Then |X | ≤ 3 and
|Y | ≤ 2. In order to show that G − X − Y has a DES, we use Lemma 3.1 and Theorem
4.1 to prove Lemma 5.5(i)-(iii), showing that (G0 − X )0 − Y has a DES, which can be
extended to a DES of G − X − Y .

Lemma 5.4. Let G be an essentially 7-edge-connected graph and G0 be its core. If
X ⊆ S ⊆ E(G) is a subset with |S| ≤ 5, |X | = min{|S|, 3} and Y = S − X, then F((G0 −
X )0 − Y ) ≤ 2.

Proof of Lemma 5.4. Since G is essentially 7-edge-connected, by Lemma 2.5(i) and
Corollary 5.2, the core graph G0 is 3-edge-connected and essentially 7-edge-connected.

If G0 is not G3,6, by Theorem 4.1(ii), F(O1(G0 − X )) = 0. As each incident edge of
a degree 2 vertex belongs to exactly one spanning tree of O1(G0 − X )), simply deleting
such edges in each spanning tree generates two edge disjoint spanning trees of (G0 − X )0.
Since |Y | ≤ 2, F((G0 − X )0 − Y ) ≤ 2.

If G0 is G3,6, then G = G3,6 otherwise G has essential edge cuts of size 3 or 6, a
contradiction. By Lemma 3.1, F((G − X )0) = 0. Since |Y | ≤ 2, F((G − X )0 − Y ) ≤ 2.
As G0 = G = G3,6, F((G0 − X )0 − Y ) ≤ 2. This completes the proof of Lemma 5.4. �

Lemma 5.5. Let G be an essentially 7-edge-connected graph and G0 be its core. Let
X ⊆ S ⊆ E(G) be a subset with |S| ≤ 5, |X | = min{|S|, 3} and Y = S − X. Each of the
following holds

(i) Let H = G0 − X and H0 be the core of H. Then H0 − Y has a DES, written L′′.
(ii) Let L′ be the graph obtained by reversing Operation 2 on L′′ in H. Then L′ is a

DES of H − Y = G0 − X − Y = G0 − S.
(iii) Let L be the graph obtained by reversing Operation 2 on L′ in G. Then L is a DES

of G − S.

Proof of Lemma 5.5. Let R1 be the c-reduction of H0 − Y . By Lemma 5.4 and
Theorem 2.4(ii), R1 ∈ {K1, K2, K2,l}. We prove Lemma 5.5(i)–(iii) by considering each
case, respectively, and repeatedly using Lemma 2.5(ii).

Case 1: R1
∼= K1 or K2,l where l is an even integer.

Since R1 has an SES, by Theorem 2.4(i), H0 − Y has an SES, written L′′. So (i) is
established.

And since κ ′(H0) ≥ 3 and |Y | ≤ 2, we have that

V (L′′) = V (H0 − Y ) = V (H0). (24)

Since H is essentially 4-edge-connected, NH (D1(H) ∪ D2(H)) ⊆ V (H0) = V (L′′). By
Lemma 2.5(ii), L′ is a DES of H − Y and so Lemma 5.5(ii) is established. By the definition
of L′, we also have

V (L′′) ⊆ V (L′). (25)

Let w ∈ D1(G) ∪ D2(G). Then dG(w) ≤ 2. Let wt ∈ E(G). Since G is essentially 7-edge-
connected, dG(t) ≥ 7. So t ∈ V (G0) and dG0 (t) ≥ 7, which implies dG0−X (t) ≥ 4. By the
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definition of core graphs, (24), and (25), t ∈ V ((G0 − X )0) = V (H0) = V (L′′) ⊆ V (L′).
This proves that NG(D1(G) ∪ D2(G)) ⊆ V (L′). By Lemma 5.5(ii) and Lemma 2.5(ii),
Lemma 5.5(iii) is established.

Case 2: R1
∼= K2 or K2,1.

Then let D1(R1) = {a, b}. Notice the operations involved are the following:
G ⇒ G0 ⇒ G0 − X = H ⇒ O2(O1(H)) = H0 ⇒ H0 − Y ⇒ (H0 − Y )c = R1.

Claim 11.

(i) If R1
∼= K2, then at most one of {a, b} is contracted from a nontrivial subgraph of

H0 − Y .
(ii) If R1

∼= K2,1, then neither a nor b is a vertex contracted from a nontrivial subgraph
of H0 − Y .

Proof of Claim 11.

(i) By way of contradiction, we assume that both a and b are contracted from a
nontrivial subgraph of H0 − Y . Then {ab} is an essential edge cut of H0 − Y ,
and so {ab} ∪ Y contains an essential edge cut of size at most 3 in H0, which by
Corollary 5.2, corresponds to an essential edge cut of size at most 3 in H0, contrary
to the fact that H0 is essentially 4-edge-connected.

(ii) Let D2(K2,1) = {c}. By way of contradiction, we assume that either a or b is a
vertex contracted from a nontrivial subgraph in H0. Then {ac} ∪ Y or {bc} ∪ Y
contains an essential edge cut of size at most 3 in H0, which by Corollary 5.2,
corresponds to an essential edge cut of size at most 3 in H0, contrary to the fact
that H is essentially 4-edge-connected. Hence Claim 11 is established. �

By Claim 11, we may assume that

b (neither a nor b) is not contracted from a subgraph of H0 − Y if R1
∼= K2 (R1

∼= K2,1).
(26)

So b is a vertex of H0 − Y if R1
∼= K2, and a and b are vertices of H0 − Y if R1

∼= K2,1.
By Theorem 2.4(i),

H0 − Y has a DES, written L′′, containing all vertices of H0 − Y − {b} if R1
∼= K2,

(27)
and

H0 − Y has a DES, written L′′, containing all vertices of H0 − Y − {a, b} if R1
∼= K2,1.

(28)
Thus Lemma 5.5(i) is established.

Let h ∈ D1(H) ∪ D2(H). Then dH (h) ≤ 2. Let hg ∈ E(H). Since H is essentially 4-
edge-connected, dH (g) ≥ 4. So g ∈ V (H0) and dH0 (g) ≥ 4, which implies dH0−Y (g) ≥ 2.
By (26), dH0−Y (b) = 1 when R1

∼= K2 (dH0−Y (a) = dH0−Y (b) = 1 when R1
∼= K2,1 respec-

tively). Thus g �= b when R1
∼= K2 (g �= a, b when R1

∼= K2,1 respectively). Together with
(27) and (28), we have that g ∈ V (L′′). This proves that NH (D1(H) ∪ D2(H)) ⊆ V (L′′).
By Lemma 5.5(i) and Lemma 2.5(ii), Lemma 5.5(ii) is established.

Let w ∈ D1(G) ∪ D2(G) and wt ∈ E(G). By the same argument as in Case 1,
dH0−Y (t) ≥ 2. Since dH0−Y (b) = 1 when R1

∼= K2 (dH0−Y (a) = dH0−Y (b) = 1 when
R1

∼= K2,1 respectively), t /∈ {a, b}. By (27) and (28), t ∈ V (L′′) ⊆ V (L′). This proves that
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NG(D1(G) ∪ D2(G)) ⊆ V (L′). By Lemma 5.5(ii) and Lemma 2.5(ii), Lemma 5.5(iii) is
established.

Case 3: R1
∼= K2,l where l is odd and t ≥ 3.

Let D2(K2,l ) = {w1, w2, . . . , wl} and Dt (K2,l ) = {v1, v2}. If wi (1 ≤ i ≤ l) is a vertex
contracted from a nontrivial subgraph T of H0 − Y , then {wiv1, wiv2} is an essential
2-edge-cut of H0 − Y . Since H0 is essentially 4-edge-connected, |Y | ≤ 2 and l ≥ 3, by
counting the incidence, we have the following claim.

Claim 12. At least one vertex in D2(K2,l ), say wk, is not a vertex contracted from a
nontrivial subgraph of H0 − Y , and wk is incident with at most one edge of Y .

Since l is odd, K2,l − wk is a DES of K2,l . By Theorem 2.4(i),

H0 − Y has a DES, written L′′, containing all vertices of H0 − Y − {wk}. (29)

This completes the proof of Lemma 5.5(i).
Let h ∈ D1(H) ∪ D2(H). Then dH (h) ≤ 2. Let hg ∈ E(H). Since H is essentially 4-

edge-connected, dH (g) ≥ 4. Then g ∈ V (H0) and dH0 (g) ≥ 4. It implies that dH0−Y (g) ≥
2 and the equality holds only if all edges of Y are incident with g. By Claim 12, g �= wk.
Together with (29), we have that g ∈ V (L′′). This proves that NH (D1(H) ∪ D2(H)) ⊆
V (L′′). By Lemma 5.5(i) and Lemma 2.5(ii), Lemma 5.5(ii) is established.

Let w ∈ D1(G) ∪ D2(G) and wt ∈ E(G). Since G is essentially 7-edge-connected,
dG(t) ≥ 7. Then t ∈ V (G0) and dG0−X (t) ≥ 4 and the equality holds only if all edges of
X are incident with g. It follows that t ∈ V ((G0 − X )0) = V (H0) and so dH0−Y (t) ≥ 2
and the equality holds only if all edges of X ∪ Y are incident with g. By Claim 12, t �= wk

and thus by (29), t ∈ V (L′′) ⊆ V (L′). This proves that NG(D1(G) ∪ D2(G)) ⊆ V (L′). By
Lemma 5.5(ii) and Lemma 2.5(ii), Lemma 5.5(iii) is established.

Proof of Theorem 1.3. By Theorem 5.3, we may assume that s ≥ 6. Let S ⊆ V (L(G))

with |S| ≤ s.

Pick a subset S1 ⊆ S such that |S1| = 5 and let S2 = S − S1. Then S2 ∈ V (L(G)).
Since κ(L(G)) ≥ s + 2, κ(L(G) − S2) ≥ s + 2 − |S2| = (s − |S2|) + 2 = 5 + 2 ≥ 7.
Let S′

2 ⊆ E(G) be the corresponding edge set of S2 ⊆ V (L(G)). Since L(G) − S2 =
L(G − S′

2), we have κ(L(G − S′
2)) ≥ 7 and so by Theorem 5.3, L(G) − (S1 ∪ S2) =

(L(G) − S2) − S1 = L(G − S′
2) − S1 is hamiltonian. Thus L(G) is s-hamiltonian. �
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