On \boldsymbol{s}-Hamiltonian Line Graphs

Hong-Jian Lai ${ }^{1}$ and Yehong Shao ${ }^{2}$

${ }^{1}$ DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, MORGANTOWN, WV 26506
E-mail: hjlai@math.wvu.edu

${ }^{2}$ ARTS AND SCIENCES,
OHIO UNIVERSITY SOUTHERN,
IRONTON, OH 45638
E-mail: shaoy@ohio.edu

Received August 16, 2011; Revised July 23, 2012
Published online 2 January 2013 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jgt. 21713

Abstract

For an integer $s \geq 0$, a graph G is s-hamiltonian if for any vertex subset $S^{\prime} \subseteq V(G)$ with $\left|S^{\prime}\right| \leq s, G-S^{\prime}$ is hamiltonian. It is well known that if a graph G is s-hamiltonian, then G must be $(s+2)$-connected. The converse is not true, as there exist arbitrarily highly connected nonhamiltonian graphs. But for line graphs, we prove that when $s \geq 5$, a line graph is s-hamiltonian if and only if it is $(s+2)$-connected. © 2013 Wiley Periodicals, Inc. J. Graph Theory 74: 344-358, 2013

Keywords: line graph; s-hamiltonian graph; collapsible graph; hamiltonian graph; spanning Eulerian subgraph; dominating Eulerian subgraph; essential edge-connectivity; c-reduction; τ-reduction

1. INTRODUCTION

Graphs considered in this article are finite graphs. Undefined notations and terminology will follow those in [1]. Let G be a graph. As in [1], $\kappa^{\prime}(G)$ and $\kappa(G)$ denote the edgeconnectivity and the connectivity of G, respectively. A graph is trivial if it contains no
edges. An edge cut X of G is essential if $G-X$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge cut X with $|X|<k$. For any $v \in V(G)$ and an integer $i \geq 0$, define

$$
\begin{aligned}
& E_{G}(v)=\{e \in E(G): e \text { is incident with } v \text { in } G\}, \\
& D_{i}(G)=\left\{u \in V(G): d_{G}(u)=i\right\} \text { and } d_{i}(G)=\left|D_{i}(G)\right| .
\end{aligned}
$$

The line graph of a graph G, written $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. The following conjecture is still open.

Conjecture 1.1 (Thomassen [12]). Every 4-connected line graph is hamiltonian.
Toward this conjecture, Zhan proved:
Theorem 1.2 (Zhan, Theorem 3 in [14]). If $\kappa(L(G)) \geq 7, L(G)$ is hamiltonianconnected.

A graph G of order $n \geq 3$ is called s-hamiltonian, $0 \leq s \leq n-3$, if the removal of any k vertices, $0 \leq k \leq s$, results in a hamiltonian graph. It is well known that if a graph G is s-hamiltonian, then G is $(s+2)$-connected. The converse, on the other hand, is not true, as $K_{m, m+1}$ is m-connected but nonhamiltonian. In this article, we investigate s-hamiltonian line graphs, and prove that this necessary condition is also sufficient among line graphs, when $s \geq 5$.

Theorem 1.3. Let G be a connected graph and $s \geq 5$ an integer. Then $L(G)$ is s hamiltonian if and only if $L(G)$ is $(s+2)$-connected.

Theorem 1.3 is motivated by the following question: what is the smallest positive integer k such that a line graph $L(G)$ is s-hamiltonian if and only if $L(G)$ is $(s+2)$ connected for all integers $s \geq k$? Theorem 1.3 suggests that $k \leq 5$. Let $G(t)$ denote the graph obtained from the Petersen graph by attaching $t>0$ pendant edges at each vertex of the Petersen graph. Then $L(G(t))$ is 3 -connected but not 1-hamiltonian. Therefore, $k \geq 2$. Hence, we know that $k \in\{2,3,4,5\}$ but the exact value of k remains to be determined. Note that if Theorem 1.3 holds for $k=2$, then it implies Thomassen's conjecture (Conjecture 1.1). If Thomassen's conjecture is true, then there are hamiltonian properties that are polynomial in line graphs (see [7]). As a corollary of Theorem 1.3, 5-hamiltonicity is the first "reasonable" hamiltonian property which is known to be polynomial in line graphs.

On the other hand, Broersma and Veldman proved the following.
Theorem 1.4 (Broersma and Veldman [2]). Let $k \geq s \geq 0$ be integers and let G be a k-triangular simple graph. Then $L(G)$ is s-hamiltonian if and only if $L(G)$ is $(s+2)$ connected.

In [2], Broersma and Veldman asked the question if the conclusion of Theorem 1.4 remains valid for other values of s when k is given. Theorem 1.3 settles this problem raised by Broersma and Veldman for larger values of s, without the restriction that G is k-triangular.

Though, it is not known whether Theorem 1.3 can be extended to claw-free graphs. We conjecture that there exists an integer k such that for any $s \geq k$, a claw-free graph G is s-hamiltonian if and only if G is $(s+2)$-connected.

Clearly, if $L(G)$ is a complete graph, then $L(G)$ is s-hamiltonian for any integer s with $0 \leq s \leq|V(L(G))|-3$. Throughout this article, we assume that $L(G)$ is not complete.

2. MECHANISM

The spanning tree packing number of G, written $\tau(G)$, is the maximum number of edge-disjoint spanning trees of G. The following two theorems are well known.

Theorem 2.1 (Nash-Williams [9], see also Theorem 3 and Corollary 18 of [4]). Let G be a connected graph. If $\frac{|E(G)|}{|V(G)|-1} \geq 2$, then there exists a nontrivial subgraph H with $\tau(H) \geq 2$.

Theorem 2.2 (Nash-Williams [10] and Tutte [13]). Let $k \geq 1$ be an integer and G be a connected graph. Then $\tau(G) \geq k$ if and only if for any partition of the vertices of G into c parts, there are at least $k(c-1)$ edges of G whose endpoints are in different parts of the partition.

Let $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying two ends of each edge of X and then deleting the resulting loops. When $X=\{e\}$, we use G / e for $G /\{e\}$. Given a graph G, one can repeatedly contract all nontrivial subgraphs H of G with $\tau(H) \geq 2$. The resulting graph is called the τ-reduction of G.

Theorem 2.3 (Theorem E and Corollary 5 of [8]). Let H be a subgraph of G with $\tau(H) \geq 2$. Then $\tau(G) \geq 2$ if and only if $\tau(G / H) \geq 2$. In particular, $\tau(G) \geq 2$ if and only if the τ-reduction of G is K_{1}.

Let $O(G)$ denote the set of odd degree vertices of a graph G. We say that G is Eulerian if G is a connected graph with $O(G)=\emptyset$. A subgraph H of G is a spanning Eulerian subgraph if H is an Eulerian graph with $V(H)=V(G)$. A subgraph H^{\prime} of G is a dominating Eulerian subgraph if H^{\prime} is Eulerian and $G-V\left(H^{\prime}\right)$ is edgeless. We use SES to denote a spanning Eulerian subgraph and DES to denote a dominating Eulerian subgraph. Clearly, an SES of G is also a DES of G.

A graph G is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a spanning connected subgraph H_{R} such that $O\left(H_{R}\right)=R$. Catlin ([3]) showed that any graph G has a unique subgraph H such that every component of H is a maximally collapsible subgraph of G and every nontrivial collapsible subgraph of G is contained in a component of H. The contraction G / H is called the c-reduction of G. A graph G is c-reduced if the c-reduction of G is itself. Note that, as K_{3} is collapsible [3], the c-reduction of K_{3} is K_{1}; but the τ-reduction of K_{3} is K_{3} itself. The following summarize some of the former results concerning collapsible graphs (the contraction below is the c-reduction).

Theorem 2.4. Let G be a connected graph and $F(G)$ denote the minimum number of edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. Each of the following holds.
(i) (Catlin [3]). If H is a collapsible subgraph of G, then G is collapsible if and only if G / H is collapsible; G has an SES if and only if G / H has an SES.
(ii) (Catlin, Han, and Lai, Theorem 1.5 of [5]). If $F(G) \leq 2$, either G is collapsible or the c-reduction of G is a K_{2} or $K_{2, t}$ for some integer $t \geq 1$.

FIGURE 1. The core graph.

Let G be a connected, essentially 3-edge-connected graph such that $L(G)$ is not a complete graph. The core of this graph G, written G_{0}, is obtained by the following two operations (see Fig. 1) repeatedly.
Operation 1. Delete each vertex of degree 1.
Operation 2. For each vertex y of degree 2 with $E_{G}(y)=\{x y, y z\}$, contract exactly one edge in $E_{G}(y)$. This amounts to deleting edges $x y, y z$ and vertex y for each path $x y z$ in G with $d_{G}(y)=2$ and replacing $x y, y z$ by a new edge $x z$.

Let $\mathcal{O}_{1}(G)$ denote the graph obtained from G by applying Operation 1 to each vertex of degree 1 , and $\mathcal{O}_{2}(G)$ the graph obtained from G by applying Operation 2 to each vertex of degree 2 . So $G_{0}=\mathcal{O}_{2}\left(\mathcal{O}_{1}(G)\right)$.

The main idea of the proof of Theorem 1.3 is to convert a DES of $G_{0}-S$ to a DES of $G-S$ for any $S \subseteq E(G)$. Note that some edges of S may not be in G_{0} after Operation 2, so we need to define $G_{0}-S$. Let $e \in S \subseteq E(G)$. By Operation 1, if e is a pendent edge (an edge incident with a vertex of degree 1), then $G_{0}-\{e\}=G_{0}$; if e is incident with a vertex y of degree 2 with $e \in E_{G}(y)=\{x y, y z\}$, then we define $G_{0}-\{e\}=G_{0}-\{x z\}$.

Lemma 2.5. Let G be an essentially 3-edge-connected graph and $N_{G}\left(D_{1}(G) \cup D_{2}(G)\right)$ be the set of neighbors of all the vertices of degree 1 or 2 in G.
(i) (Shao, Lemma 1.4.1 of [11]). The core graph G_{0} is uniquely defined and $\kappa^{\prime}\left(G_{0}\right) \geq$ 3.
(ii) Suppose $S \subseteq E(G)$, and all isolated vertices in $G-S$ and $G_{0}-S$ resulting from deleting S are deleted. If $G-S$ is connected and $G_{0}-S$ has a DES L' containing $N_{G}\left(D_{1}(G) \cup D_{2}(G)\right)$, then the graph L obtained by reversing Operation 2 on L^{\prime} is a DES of $G-S$.

Proof. (ii) Since L^{\prime} is an Eulerian subgraph of $G_{0}-S$, and reversing Operation 2 is simply replacing an edge with a path of length $2, L$ is an Eulerian subgraph of $G-S$ and $V\left(L^{\prime}\right) \subseteq V(L)$. It suffices to show that $G-S-V(L)$ is edgeless, or equivalently, for any vertex $v \in V(G-S)$, either $v \in V(L)$ or $N_{G-S}(v) \subseteq V(L)$.

Clearly, $v \in V(G)$. If $v \in D_{1}(G) \cup D_{2}(G)$, then $N_{G}(v) \subseteq N_{G}\left(D_{1}(G) \cup D_{2}(G)\right) \subseteq$ $V\left(L^{\prime}\right) \subseteq V(L)$, done.

Now we assume that $v \in \cup_{i \geq 3} D_{i}(G)$ and we first show that $v \in V\left(G_{0}-S\right)$. As G is essentially 3-edge-connected, $v \in V\left(G_{0}\right)$. If one of the neighbors of v is a vertex of degree 1 or 2 in G, then $v \in N_{G}\left(D_{1}(G) \cup D_{2}(G)\right) \subseteq V\left(L^{\prime}\right) \subseteq V(L)$, done. Then we may assume that every neighbor of v is a vertex of degree at least 3 in G. As G is essentially 3-edgeconnected, $\{v\} \cup N_{G}(v) \subseteq V\left(G_{0}\right)$ and $E_{G}(v)=E_{G_{0}}(v)$. Then $v \in V\left(G_{0}-S\right)$ otherwise $E_{G}(v)=E_{G_{0}}(v) \subseteq S$, which implies $v \notin V(G-S)$, a contradiction.

Since L^{\prime} is a DES of $G_{0}-S$ and $v \in V\left(G_{0}-S\right)$, either $v \in V\left(L^{\prime}\right)$ or $N_{G_{0}-S}(v) \subseteq V\left(L^{\prime}\right)$. Since $V\left(L^{\prime}\right) \subseteq V(L), v \in V(L)$ or $N_{G-S}(v)=N_{G_{0}-S}(v) \subseteq V(L)$. This proves that L is a DES of $G-S$.

Theorem 2.6 below reveals the relationship between Hamilton cycles in a line graph $L(G)$ and dominating Eulerian subgraphs in G.

Theorem 2.6 (Harary and Nash-Williams [6]). Let G be a connected graph with at least three edges. The line graph $L(G)$ is hamiltonian if and only if G has a dominating Eulerian subgraph.

Let $S \subseteq E(G)$ and S^{\prime} be the corresponding vertex set in the line graph $L(G)$. By the definition of line graphs, $L(G)-S^{\prime}=L(G-S)$. Note that deleting vertex set S^{\prime} in $L(G)$ corresponds to deleting edge set S in G. We may freely discard isolated vertices that arise in $G-S$ by edge deletion, because isolated vertices in a graph will not generate any vertex or edges in its line graph. For simplicity, we use $G-S$ in the discussions instead of $G-S-D_{0}(G-S)$. Throughout this article, isolated vertices arising from edge deletion will be deleted automatically unless otherwise specified. A relationship between Hamilton cycles in $L(G)-S^{\prime}$ and dominating Eulerian subgraphs in $G-S$ is stated in Theorem 2.7.

Theorem 2.7. Let G be a connected graph with at least three edges and $s \geq 0$ an integer. The line graph $L(G)$ is s-hamiltonian if and only if $G-S$ has a dominating Eulerian subgraph for any $S \subset E(G)$ with $|S| \leq s$.

In Sections 3 and 4, we study the spanning tree packing number of an essentially 7-edge-connected and 3-edge-connected graph G in two cases with respect to the fact whether G is isomorphic to $G_{3,6}$ or not. Using these results and Theorem 2.4(ii), we prove our main result Theorem 1.3 in Section 5.

3. THE CASE OF $\boldsymbol{G}_{3,6}$

Let $G=G_{3,6}$ denote a simple bipartite graph with a vertex bipartition (A, B) where $A=D_{3}(G)$ and $B=D_{6}(G)$. In this section, we prove that the core of the graph obtained from $G_{3,6}$ by deleting at most three edges has two edge disjoint spanning trees. In Lemma 3.1, $G-X$ refers to $G-X-D_{0}(G-X)$ as explained in Section 2. In the proof of Lemma 3.1, our approach is a refinement of the techniques that Zhan used to prove Theorem 1.2 in [14].

Lemma 3.1. If $G=G_{3,6}$ is an essentially 7-edge-connected graph, and if $X \subseteq E(G)$ with $|X| \leq 3$, then $\tau\left((G-X)_{0}\right) \geq 2$.

Proof. Let $G_{c}=(G-X)_{0}$. The operations involved are:

$$
G \rightarrow G-X \rightarrow_{\text {Operation } 1} \mathcal{O}_{1}(G-X) \rightarrow_{\text {operation } 2}(G-X)_{0}=G_{c}
$$

Since $|X| \leq 3$ and $\delta(G)=3$, the operation from G to $G-X$ generates at most one vertex of degree 1 in $G-X$ (the extreme case happens when two edges in X are incident with a vertex of degree 3 in G). Thus, at most four edges will be deleted by the operations from G to $\mathcal{O}_{1}(G-X)$. And by inspection, since $G=G_{3,6}$ and G is essentially 7 -edge-connected, we have that $2 d_{4}\left(\mathcal{O}_{1}(G-X)\right)+d_{5}\left(\mathcal{O}_{1}(G-X)\right) \leq 4$. Since

Operation 2 will not change the degree of vertices of degree 4 or 5 , we have $2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right) \leq 4$.

Recall that G is bipartite, and $D_{3}(G)$ is independent in G, but $D_{3}\left(G_{c}\right)$ may not be independent in G_{c}. For a vertex u of degree 6 in $G, d_{G-X}(u) \in\{3,4,5,6\}$. And the only possibility of generating a new vertex of degree 3 is that all three edges of X are incident with a vertex of degree 6 . In this situation, $d_{4}\left(G_{c}\right)=d_{5}\left(G_{c}\right)=0$. So we have the following claim.

Claim 1.

(i) Either $D_{3}\left(G_{c}\right)$ is independent in G_{c} with $\left|D_{3}(G) \cap D_{3}\left(G_{c}\right)\right|=d_{3}\left(G_{c}\right)$ or $D_{3}(G) \cap$ $D_{3}\left(G_{c}\right)$ is maximally independent in G_{c} with $\left|D_{3}(G) \cap D_{3}\left(G_{c}\right)\right|=d_{3}\left(G_{c}\right)-1$.
(ii) If $\left|D_{3}\left(G_{c}\right) \cap D_{3}(G)\right|=d_{3}\left(G_{c}\right)-1$, then $2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right)=0$.
(iii) If $\left|D_{3}\left(G_{c}\right) \cap D_{3}(G)\right|=d_{3}\left(G_{c}\right)$, then $2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right) \leq 4$.

For $S \subseteq E\left(G_{c}\right)$, let $L_{1}, L_{2}, \ldots, L_{r+m+t}$ be all the components of $G_{c}-S$, where $L_{1}, L_{2}, \ldots, L_{r}$ are the components, each of which is a single vertex of degree 3 in $G_{c}, L_{r+1}, \ldots, L_{r+m}$ are the nontrivial components of $G_{c}-S$, and $L_{r+m+1}, \ldots, L_{r+m+t}$ are the remaining components of $G_{c}-S$, i.e., each of them is a single vertex of degree at least 4 in G_{c}. Each set of above three categories is possibly an empty set.

By Theorem 2.2, to prove $\tau\left(G_{c}\right) \geq 2$ for any such S, it suffices to show that

$$
\begin{equation*}
|S| \geq 2(r+m+t-1), \quad \text { or equivalently, } \quad 2|S| \geq 4(r+m+t-1) \tag{1}
\end{equation*}
$$

For each i, let $\partial_{G_{c}}\left(L_{i}\right)$ be the set of edges with one end in L_{i}, another end not in L_{i} and let $d_{G_{c}}\left(L_{i}\right):=\left|\partial_{G_{c}}\left(L_{i}\right)\right|$. By the definitions of L_{i} and $d_{G_{c}}\left(L_{i}\right)$, we have

$$
\begin{equation*}
\text { for any } i \text { with } 1 \leq i \leq r, \quad d_{G_{c}}\left(L_{i}\right)=3, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } r+m+1 \leq j \leq r+m+t, \quad d_{G_{c}}\left(L_{j}\right) \geq 4 . \tag{3}
\end{equation*}
$$

Claim 2. If there exists a j with $r+1 \leq j \leq r+m$ such that $G_{c}-L_{j}$ is edgeless, then (1) holds.

Proof of Claim 2. If $G_{c}-L_{j}$ is edgeless, then each of $L_{1}, L_{2}, \ldots, L_{j-1}, L_{j+1}, \ldots$, L_{r+m+t} is a single vertex component and they are independent in G_{c}. By Lemma 2.5(i), $\delta\left(G_{c}\right) \geq 3$. So $|S| \geq \sum_{i=1}^{j-1} d_{G_{c}}\left(L_{i}\right)+\sum_{i=j+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq 3 d_{G_{c}}\left(L_{j}\right) \geq 3(r+m+t-1)$. Thus (1) holds.

By Claim 2, we assume that for each j with $r+1 \leq j \leq r+m, G_{c}-L_{j}$ is nontrivial. As L_{j} is also nontrivial, we have that

$$
\begin{equation*}
\text { for } r+1 \leq j \leq r+m, \quad \partial_{G_{c}}\left(L_{j}\right) \text { is an essential edge cut of } G_{c} \text {. } \tag{4}
\end{equation*}
$$

Since G_{c} is the core of $G-X$, by the definition of a core graph, if X is an essential edge cut of G_{c}, then X is also an essential edge cut of $G-X$ (see Corollary 5.2 and its proof in Section 5). Together with (4), for $r+1 \leq j \leq r+m, \partial_{G_{c}}\left(L_{j}\right)$ is also an essential edge cut of $G-X$ and so

$$
\begin{equation*}
\text { for } r+1 \leq j \leq r+m, \quad \text { a subset of } \partial_{G_{c}}\left(L_{j}\right) \cup X \text { is an essential edge cut of } G \text {. } \tag{5}
\end{equation*}
$$

Claim 3.

(i) If $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ is not independent in G_{c}, then $\sum_{i=r+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq 3 r-6$. Furthermore, if $r \geq 2 m+2 t+1$, then (1) holds.
(ii) If $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ is independent in G_{c}, then $\sum_{i=r+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq 3 r$. Furthermore, if $r \geq 2 m+2 t-2$, then (1) holds.

Proof of Claim 3.

(i) By Claim 1(i), the independence number of $G_{c}\left[D_{3}\left(G_{c}\right)\right]$ is $d_{3}\left(G_{c}\right)$ or $d_{3}\left(G_{c}\right)-1$. Without loss of generality, we may assume that $L_{1} \cup L_{2} \cup \cdots \cup L_{r-1}$ is independent in G_{c}. Together with (2), there are at most three cross-edges between $G_{c}\left[L_{1} \cup\right.$ $\left.L_{2} \cup \cdots \cup L_{r-1}\right]$ and $G_{c}\left[L_{r}\right]$. And as $L_{1} \cup L_{2} \cup \cdots \cup L_{r-1}$ is independent in G_{c}, by (2), we have $\sum_{i=r+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq \sum_{i=1}^{r-1} d_{G_{c}}\left(L_{i}\right)-3 \geq 3(r-1)-3=3 r-$ 6. Together with (2), $2|S|=\sum_{i=1}^{r} d_{G_{c}}\left(L_{i}\right)+\sum_{i=r+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq 3 r+3 r-6=$ $6 r-6$.
If $r \geq 2 m+2 t+1$, then $2|S| \geq 6 r-6=4 r+2 r-6 \geq 4 r+(4 m+4 t+2)-$ $6=4 r+4 m+4 t-4$. Hence (1) holds.
(ii) can be proved similarly.

By Claim 3, we can assume that
$r \leq 2 m+2 t-y, \quad$ where
$y=3$ if $L_{1} \cup L_{2} \cup \cdots \cup L_{r}$ is independent in G_{c}, and $y=0$ otherwise.

Claim 4.

(i) $\sum_{i=r+1}^{r+m} d_{G_{c}}\left(L_{i}\right) \geq 7 m-x$, where

$$
x \leq \begin{cases}6 & : \\ 3 & \text { if } m \geq 2 \\ 0 & : \\ \text { if } m=1 \\ 0 & \text { if } m=0\end{cases}
$$

(ii) $\sum_{i=r+m+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq 6 t-\left(2 \mid\left\{v \in V\left(L_{r+m+1}\right) \cup \cdots \cup V\left(L_{r+m+t}\right): d_{G_{c}}(v)=\right.\right.$ $4\}\left|+\left|\left\{v \in V\left(L_{r+m+1}\right) \cup \cdots \cup V\left(L_{r+m+t}\right): d_{G_{c}}(v)=5\right\}\right|\right) \geq 6 t-\left(2 d_{4}\left(G_{c}\right)+\right.$ $\left.d_{5}\left(G_{c}\right)\right)$.

Proof of Claim 4.

(i) It is trivial if $m=0$. Recall that $|X| \leq 3$. By (5), if $m=1, \sum_{i=r+1}^{r+m} d_{G_{c}}\left(L_{i}\right) \geq$ $7 m-3$ and the equality holds when each of X has exactly one end in L_{r+1}; if $m \geq 2, \sum_{i=r+1}^{r+m} d_{G_{c}}\left(L_{i}\right) \geq 7 m-6$ and the equality holds when all six ends of X are in $\cup_{i=r+1}^{r+m} L_{r+i}$ and the two ends of each edge of X lie in different components.
(ii) It follows from (3). So Claim 4 is established.

By (2) and Claim 4, 2|S| $=\sum_{i=1}^{r} d_{G_{c}}\left(L_{i}\right)+\sum_{i=r+1}^{r+m} d_{G_{c}}\left(L_{i}\right)+\sum_{i=r+m+1}^{r+m+t} d_{G_{c}}\left(L_{i}\right) \geq$ $3 r+7 m-x+6 t-\left(2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right)\right)=3 r+[2 m+2 t-y]+4 m+4 t+(m+y-$ $x)-\left(2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right)\right)$. Then by (6),

$$
\begin{equation*}
2|S| \geq 4 r+4 m+4 t+(m+y-x)-\left(2 d_{4}\left(G_{c}\right)+d_{5}\left(G_{c}\right)\right) . \tag{7}
\end{equation*}
$$

If $L_{1} \cup \cdots \cup L_{r}$ is not independent in G_{c}, then by (6), (7), Claim 1(ii) and Claim 4(i), $2|S| \geq 4 r+4 m+4 t+(m-x) \geq 4 r+4 m+4 t-4$, and (1) holds.

If $L_{1} \cup \cdots \cup L_{r}$ is independent in G_{c} and $m \neq 2$, then by (6), (7), Claim 1(iii) and Claim 4(i), $\quad 2|S| \geq 4 r+4 m+4 t+(m+3-x)-4=4 r+4 m+4 t+(m-1-x) \geq 4 r+$ $4 m+4 t-4$, and (1) holds. So we assume that $L_{1} \cup \cdots \cup L_{r}$ is independent in G_{c} and $m=2$. If $x \leq 5$, then by (6), (7) and Claim $4,2|S| \geq 4 r+4 m+4 t+(2+3-5)-4=$ $4 r+4 m+4 t-4$. So by Claim 4(i) that $x \leq 6$, we may assume that $x=6$. By the proof of Claim 4(i), $\sum_{i=r+1}^{r+m} d_{G_{c}}\left(L_{i}\right)=7 m-6$ if and only if all six ends of X are in $\cup_{i=r+1}^{r+m} L_{r+i}$ and the two ends of each edge of X lie in different components. So each vertex in $\cup_{i=r+m+1}^{r+m+t} L_{r+i}$ has degree equal to 6 in G_{c}. Thus, by (2), (6), and Claim 4, $2|S| \geq 3 r+7 m-x+6 t=3 r+[2 m+2 t-y]+4 m+4 t+(m+y-x) \geq$ $4 r+4 m+4 t+(2+3-6)=4 r+4 m+4 t-1$.

Hence (1) is established, and so is Lemma 3.1.

4. AN ASSOCIATE RESULT

Again as explained in Section 2, the graph $G_{1}=\mathcal{O}_{1}(G-S)$ in Theorem 4.1(ii) refers to $G_{1}=\mathcal{O}_{1}\left(G-S-D_{0}(G-S)\right)$ unless otherwise specified. Throughout this section, let $d_{i}=\left|D_{i}(G)\right|$.

Theorem 4.1. Let G be a 3-edge-connected and essentially 7-edge-connected graph such that G is not isomorphic to $G_{3,6}$.
(i) If

$$
\begin{equation*}
d_{5}+\sum_{i \geq 7}\left(\frac{2 i}{3}-4\right) d_{i}<2 \tag{8}
\end{equation*}
$$

then $2+d_{3}-\sum_{i \geq 5}(i-4) d_{i} \leq 0$.
(ii) Let $S \subseteq E(G)$. If $|S| \leq 3$, then $G_{1}=\mathcal{O}_{1}(G-S)$ has two edge disjoint spanning trees.

Proof. Claim 5 below follows from the assumption that G is essentially 7-edgeconnected.

Claim 5. For any edge $u v \in E(G), d_{G}(u)+d_{G}(v) \geq 9$. In particular,for any $v \in D_{3}(G)$, any neighbor u of v has degree at least 6 .

Claim 6. If $d_{3}=2 d_{6}$ and $\Delta(G) \leq 6$, then G is isomorphic to $G_{3,6}$.
Proof of Claim 6. Since $\Delta(G) \leq 6$, it follows by Claim 5 that every vertex in $D_{3}(G)$ must be and only be adjacent to vertices in $D_{6}(G)$. As $d_{3}=2 d_{6}$, by counting the incidences, every vertex in $D_{6}(G)$ must also be adjacent to vertices in $D_{3}(G)$. So G must be isomorphic to $G_{3,6}$ and this proves Claim 6.

Proof of Theorem 4.1(i). Since G is not isomorphic to $G_{3,6}$, by Claim 6, we may assume that

$$
\begin{equation*}
\text { if } \Delta(G) \leq 6, \quad \text { then } d_{3} \neq 2 d_{6} \tag{9}
\end{equation*}
$$

The condition (8) immediately implies that

$$
\begin{equation*}
d_{5} \leq 1, \quad \Delta(G) \leq 8, \quad d_{7} \leq 2, \quad \text { and } \quad d_{8} \leq 1 \tag{10}
\end{equation*}
$$

By Claim $5,3 d_{3} \leq \sum_{i \geq 6} i d_{i}$, or $d_{3} \leq \sum_{i \geq 6} \frac{i}{3} d_{i}$. Together with $\Delta(G) \leq 8$, we have that

$$
\begin{equation*}
d_{3} \leq 2 d_{6}+\frac{7}{3} d_{7}+\frac{8}{3} d_{8}, \quad \text { or } \quad 0 \leq 2 d_{6}+\frac{7}{3} d_{7}+\frac{8}{3} d_{8}-d_{3} \tag{11}
\end{equation*}
$$

We argue by way of contradiction, and assume that $\sum_{i \geq 5}(i-4) d_{i}-d_{3}<2$. By $\Delta(G) \leq$ 8 again,

$$
\begin{align*}
& \sum_{i \geq 5}(i-4) d_{i}-d_{3}=d_{5}+2 d_{6}+3 d_{7}+4 d_{8}-d_{3}<2, \quad \text { or } \\
& 2 d_{6}+\frac{7}{3} d_{7}+\frac{8}{3} d_{8}-d_{3}<2-\left(d_{5}+\frac{2}{3} d_{7}+\frac{4}{3} d_{8}\right) \tag{12}
\end{align*}
$$

Combining (11) and (12), we have

$$
\begin{equation*}
0 \leq 2 d_{6}-d_{3}+\frac{7}{3} d_{7}+\frac{8}{3} d_{8}<2-\left(d_{5}+\frac{2}{3} d_{7}+\frac{4}{3} d_{8}\right) \tag{13}
\end{equation*}
$$

Claim 7. $d_{8}=0$ and $\Delta(G) \leq 7$.
Proof of Claim 7. Assume that $d_{8} \neq 0$. By (10), $d_{8}=1$. Then by (13), $0<\frac{2}{3}-$ ($d_{5}+\frac{2}{3} d_{7}$), which implies that $d_{5}=d_{7}=0$. Plugging them into (13), we have $0 \leq$ $2 d_{6}-d_{3}+\frac{8}{3}<\frac{2}{3}$, or $-\frac{8}{3} \leq 2 d_{6}-d_{3}<-2$, contrary to the fact that $2 d_{6}-d_{3}$ is an integer. So we must have $d_{8}=0$. Together with (10), $\Delta(G) \leq 7$.

Plug $d_{8}=0$ into (13) to get

$$
\begin{equation*}
0 \leq 2 d_{6}-d_{3}+\frac{7}{3} d_{7}<2-\left(d_{5}+\frac{2}{3} d_{7}\right) \tag{14}
\end{equation*}
$$

Claim 8. $\quad d_{7}=1$.
Proof of Claim 8. First, we assume that $d_{7} \geq 2$. By (10), $d_{7}=2$. Together with (8) and $\Delta(G) \leq 7, d_{5}=0$. Together with Claim 7 and (14), $-14 / 3 \leq 2 d_{6}-d_{3}<-4$, a contradiction. So we may exclude the case $d_{7} \geq 2$. If $d_{7}=0$, then by (14), $0 \leq 2 d_{6}-$ $d_{3}<2-d_{5}$. By (9) that $2 d_{6}-d_{3} \neq 0$, we have $1 \leq 2 d_{6}-d_{3}<2-d_{5}$. So $d_{5}=0$ and $2 d_{6}-d_{3}=1$. It follows that $d_{3} \equiv 1(\bmod 2)$. Since $d_{5}=0$ and $d_{i}=0(i \geq 7)$, the total number of odd degree vertices of G is an odd number d_{3}, contrary to the fact that in every graph, the number of odd degree vertices must be even. Hence we must have $d_{7}=1$.

Claim 9. $d_{5}=0$ and $d_{3} \equiv 0(\bmod 2)$.
Proof of Claim 9. Plug $d_{7}=1$ into (14) to get

$$
\begin{equation*}
0 \leq 2 d_{6}-d_{3}+\frac{7}{3}<\frac{4}{3}-d_{5}, \quad \text { or } \quad-\frac{7}{3} \leq 2 d_{6}-d_{3}<-1-d_{5} . \tag{15}
\end{equation*}
$$

Since $2 d_{6}-d_{3}$ is an integer, (15) implies that $d_{5}=0$ and $2 d_{6}-d_{3}=-2$. Then Claim 9 is established.

It follows from Claims 7, 8, and 9 that the number of odd degree vertices of G is an odd number $d_{3}+d_{5}+d_{7}=d_{3}+1$, a contradiction. So we establish Theorem 4.1(i).

Proof of Theorem 4.1(ii). Since $\kappa^{\prime}(G) \geq 3,|S| \leq 3, G$ is essentially 7-edgeconnected, and isolated vertices of $G-S$ are deleted, we have that $G_{1}=\mathcal{O}_{1}(G-S)$ is connected and $\delta\left(G_{1}\right) \geq 2$. We argue by contradiction, and assume that
G is a counterexample of Theorem 4.1 (ii)
with

$$
\begin{equation*}
|E(G)| \text { minimized. } \tag{17}
\end{equation*}
$$

Next, we show that every nontrivial subgraph of G_{1} does not have two edge disjoint spanning trees. Suppose not. Then G_{1} has a nontrivial proper subgraph H with $\tau(H) \geq 2$. Note that H is also a subgraph of G. If $G / H \cong K_{1}$, then $G_{1} / H \cong K_{1}$, and so $\tau\left(G_{1}\right) \geq 2$, contrary to (16). So we can assume that $G / H \neq K_{1}$. As the contraction will not decrease the edge connectivity, G / H is 3 -edge-connected and essentially 7 -edgeconnected. If G / H is isomorphic to $G_{3,6}$, then by Lemma 3.1, $\tau(G / H)=\tau\left(G_{3,6}\right) \geq 2$. By Theorem 2.3, $\tau(G) \geq 2$ and so $\tau\left(G_{1}\right) \geq 2$, contrary to (16). So G / H is not isomorphic to $G_{3,6}$ and thus G / H satisfies the conditions of Theorem 4.1. By (16), (17), and $|E(G / H)|<|E(G)|, G_{1} / H=\mathcal{O}_{1}(G / H-S)$ has two edge disjoint spanning trees. This, together with Theorem 2.3, implies that $\tau\left(G_{1}\right) \geq 2$, contrary to (16). Hence,

$$
\begin{equation*}
\text { if } H \text { is a nontrivial proper subgraph of } G_{1} \text {, then } \tau(H)<2 \text {. } \tag{18}
\end{equation*}
$$

Note that by (18), G_{1} must be simple. Clearly, $\left|V\left(G_{1}\right)\right|>1$. By Theorem 2.1, if $\frac{\left|E\left(G_{1}\right)\right|}{\left|V\left(G_{1}\right)\right|-1} \geq$ 2 , then a violation to (18) will be found. Thus we may assume

$$
\begin{equation*}
\frac{\left|E\left(G_{1}\right)\right|}{\left|V\left(G_{1}\right)\right|-1}<2, \quad \text { or equivalently, } \quad 2\left|V\left(G_{1}\right)\right|-\left|E\left(G_{1}\right)\right|-2>0 . \tag{19}
\end{equation*}
$$

Since $\delta(G) \geq \kappa^{\prime}(G) \geq 3,|V(G)|=\sum_{i \geq 3} d_{i}$ and $2|E(G)|=\sum_{i \geq 3} i d_{i}$. Thus

$$
\begin{equation*}
4|V(G)|-2|E(G)|=d_{3}-\sum_{i \geq 5}(i-4) d_{i} \tag{20}
\end{equation*}
$$

By Claim 5, $d_{3} \leq \sum_{i \geq 6} \frac{i}{3} d_{i}$. Together with (20), we have that

$$
\begin{equation*}
4|V(G)|-2|E(G)| \leq-d_{5}-\sum_{i \geq 7}\left(\frac{2 i}{3}-4\right) d_{i} \tag{21}
\end{equation*}
$$

Claim 10. $4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4 \leq 2+4|V(G)|-2|E(G)|$.
Proof of Claim 10. We assume that $|S|=3$, and the case when $|S| \leq 2$ can be proved similarly. In the proof below, $G-S$ is the graph obtained by deleting all edges of S from G and keep all resulting isolated vertices.

If $D_{0}(G-S) \cup D_{1}(G-S)=\emptyset$, then $\left|V\left(G_{1}\right)\right|=|V(G)|$ and $\left|E\left(G_{1}\right)\right|=|E(G)|-3$. Hence $4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4=2+4|V(G)|-2|E(G)|$ and Claim 10 holds. Next we assume that $D_{0}(G-S) \cup D_{1}(G-S) \neq \emptyset$.

Case 1: If two edges in S are incident with a vertex of degree 3 or three in S are incident with a vertex of degree 4 , then $D_{0}(G-S)=0, D_{1}(G-S)=$

1 and $\left|V\left(G_{1}\right)\right|=|V(G)|-1,\left|E\left(G_{1}\right)\right|=|E(G)|-4$. So $4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4=$ $4|V(G)|-2|E(G)|$ and Claim 10 holds.
Case 2: If three edges in S are incident with a vertex of degree 3 in G, then $D_{0}(G-S)=1, D_{1}(G-S)=0$ and $\left|V\left(G_{1}\right)\right|=|V(G)|-1,\left|E\left(G_{1}\right)\right|=|E(G)|-3$. So $4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4=4|V(G)|-2|E(G)|-2$ and Claim 10 is holds.

By Claim 10, (20), and (21), we have

$$
\begin{equation*}
4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4 \leq 2+4|V(G)|-2|E(G)|=2+d_{3}-\sum_{i \geq 5}(i-4) d_{i}, \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4 \leq 2+4|V(G)|-2|E(G)| \leq 2-d_{5}-\sum_{i \geq 7}\left(\frac{2 i}{3}-4\right) d_{i} . \tag{23}
\end{equation*}
$$

By (19) and (23), $0<2-d_{5}-\sum_{i \geq 7}\left(\frac{2 i}{3}-4\right) d_{i}$, which is the condition (8) in Theorem 4.1(i). Then $2+d_{3}-\sum_{i \geq 5}(i-4) d_{i} \leq 0$ follows from Theorem 4.1(i). By (22), $4\left|V\left(G_{1}\right)\right|-2\left|E\left(G_{1}\right)\right|-4 \leq 0$, contrary to (19). Hence, Theorem 4.1(ii) is established.

5. THE PROOF OF THEOREM 1.3

In this section, we first show that Theorem 1.3 holds for $s=5$ by proving Theorem 5.3 below. The proof of Theorem 5.3 involves a lot of edge contractions. We will repeatedly use Proposition 5.1 below and Lemma 2.5(ii) in the proof.

Proposition 5.1. Let G be a graph and H a subgraph of G. If X is an edge cut (or essential edge cut, respectively) of G / H, then X is also an edge cut (or essential edge cut, respectively) of G.

Proof. Let $e \in E(H), X$ be an essential edge cut of $G / e, G_{1}^{\prime}$ and G_{2}^{\prime} be the two sides of $(G / e)-X$, and let v_{e} denote the vertex of G / e onto which e is contracted. We may assume that $v_{e} \in V\left(G_{1}^{\prime}\right)$. Then $G_{1}=G\left[E\left(G_{1}^{\prime}\right) \cup e\right]$ and $G_{2}=G_{2}^{\prime}$ are the two sides of $G-X$, and so X is an edge-cut of G. Both G_{1}^{\prime} and G_{2}^{\prime} have edges, so do G_{1} and G_{2}. Thus we proved that if X is an essential edge cut of G / e, then X is an essential edge cut of G. Thus, Proposition 5.1 can be proved by applying induction on $E(H)$.

Corollary 5.2. Let G be an essentially 3-edge-connected graph and G_{0} the core of G. If X is an edge cut (or essential edge cut, respectively) of G_{0}, then X is also an edge cut (or essential edge cut, respectively) of G.

Proof. It follows from Proposition 5.1 as the core of an essentially 3-edge-connected graph G can be viewed as a contraction of G (contracting all the pendent edges and one from the two edges of degree 2 vertices).

Theorem 5.3. Let G be a connected graph. Then $L(G)$ is 5-hamiltonian if and only if $L(G)$ is 7-connected.

Proof. By Theorem 2.7, it suffices to show that for any $S \subseteq E(G)$ with $|S| \leq 5, G-$ S has a DES.

Let $X \subseteq S$ be a subset with $|X|=\min \{|S|, 3\}$ and $Y=S-X$. Then $|X| \leq 3$ and $|Y| \leq 2$. In order to show that $G-X-Y$ has a DES, we use Lemma 3.1 and Theorem 4.1 to prove Lemma $5.5(\mathrm{i})$-(iii), showing that $\left(G_{0}-X\right)_{0}-Y$ has a DES, which can be extended to a DES of $G-X-Y$.

Lemma 5.4. Let G be an essentially 7 -edge-connected graph and G_{0} be its core. If $X \subseteq S \subseteq E(G)$ is a subset with $|S| \leq 5,|X|=\min \{|S|, 3\}$ and $Y=S-X$, then $F\left(\left(G_{0}-\right.\right.$ $\left.X)_{0}-Y\right) \leq 2$.

Proof of Lemma 5.4. Since G is essentially 7-edge-connected, by Lemma 2.5(i) and Corollary 5.2 , the core graph G_{0} is 3-edge-connected and essentially 7-edge-connected.

If G_{0} is not $G_{3,6}$, by Theorem 4.1(ii), $F\left(\mathcal{O}_{1}\left(G_{0}-X\right)\right)=0$. As each incident edge of a degree 2 vertex belongs to exactly one spanning tree of $\mathcal{O}_{1}\left(G_{0}-X\right)$), simply deleting such edges in each spanning tree generates two edge disjoint spanning trees of $\left(G_{0}-X\right)_{0}$. Since $|Y| \leq 2, F\left(\left(G_{0}-X\right)_{0}-Y\right) \leq 2$.

If G_{0} is $G_{3,6}$, then $G=G_{3,6}$ otherwise G has essential edge cuts of size 3 or 6 , a contradiction. By Lemma 3.1, $F\left((G-X)_{0}\right)=0$. Since $|Y| \leq 2, F\left((G-X)_{0}-Y\right) \leq 2$. As $G_{0}=G=G_{3,6}, F\left(\left(G_{0}-X\right)_{0}-Y\right) \leq 2$. This completes the proof of Lemma 5.4.

Lemma 5.5. Let G be an essentially 7 -edge-connected graph and G_{0} be its core. Let $X \subseteq S \subseteq E(G)$ be a subset with $|S| \leq 5,|X|=\min \{|S|, 3\}$ and $Y=S-X$. Each of the following holds
(i) Let $H=G_{0}-X$ and H_{0} be the core of H. Then $H_{0}-Y$ has a DES, written $L^{\prime \prime}$.
(ii) Let L^{\prime} be the graph obtained by reversing Operation 2 on $L^{\prime \prime}$ in H. Then L^{\prime} is a DES of $H-Y=G_{0}-X-Y=G_{0}-S$.
(iii) Let L be the graph obtained by reversing Operation 2 on L^{\prime} in G. Then L is a DES of $G-S$.

Proof of Lemma 5.5. Let R_{1} be the c-reduction of $H_{0}-Y$. By Lemma 5.4 and Theorem 2.4(ii), $R_{1} \in\left\{K_{1}, K_{2}, K_{2, l}\right\}$. We prove Lemma 5.5(i)-(iii) by considering each case, respectively, and repeatedly using Lemma 2.5(ii).
Case 1: $R_{1} \cong K_{1}$ or $K_{2, l}$ where l is an even integer.
Since R_{1} has an SES, by Theorem 2.4(i), $H_{0}-Y$ has an SES, written $L^{\prime \prime}$. So (i) is established.

And since $\kappa^{\prime}\left(H_{0}\right) \geq 3$ and $|Y| \leq 2$, we have that

$$
\begin{equation*}
V\left(L^{\prime \prime}\right)=V\left(H_{0}-Y\right)=V\left(H_{0}\right) . \tag{24}
\end{equation*}
$$

Since H is essentially 4-edge-connected, $N_{H}\left(D_{1}(H) \cup D_{2}(H)\right) \subseteq V\left(H_{0}\right)=V\left(L^{\prime \prime}\right)$. By Lemma 2.5(ii), L^{\prime} is a DES of $H-Y$ and so Lemma 5.5(ii) is established. By the definition of L^{\prime}, we also have

$$
\begin{equation*}
V\left(L^{\prime \prime}\right) \subseteq V\left(L^{\prime}\right) \tag{25}
\end{equation*}
$$

Let $w \in D_{1}(G) \cup D_{2}(G)$. Then $d_{G}(w) \leq 2$. Let $w t \in E(G)$. Since G is essentially 7-edgeconnected, $d_{G}(t) \geq 7$. So $t \in V\left(G_{0}\right)$ and $d_{G_{0}}(t) \geq 7$, which implies $d_{G_{0}-X}(t) \geq 4$. By the
definition of core graphs, (24), and (25), $t \in V\left(\left(G_{0}-X\right)_{0}\right)=V\left(H_{0}\right)=V\left(L^{\prime \prime}\right) \subseteq V\left(L^{\prime}\right)$. This proves that $N_{G}\left(D_{1}(G) \cup D_{2}(G)\right) \subseteq V\left(L^{\prime}\right)$. By Lemma 5.5(ii) and Lemma 2.5(ii), Lemma 5.5(iii) is established.

Case 2: $R_{1} \cong K_{2}$ or $K_{2,1}$.
Then let $D_{1}\left(R_{1}\right)=\{a, b\}$. Notice the operations involved are the following:
$G \Rightarrow G_{0} \Rightarrow G_{0}-X=H \Rightarrow \mathcal{O}_{2}\left(\mathcal{O}_{1}(H)\right)=H_{0} \Rightarrow H_{0}-Y \Rightarrow\left(H_{0}-Y\right)_{c}=R_{1}$.

Claim 11.

(i) If $R_{1} \cong K_{2}$, then at most one of $\{a, b\}$ is contracted from a nontrivial subgraph of $H_{0}-Y$.
(ii) If $R_{1} \cong K_{2,1}$, then neither a nor b is a vertex contracted from a nontrivial subgraph of $H_{0}-Y$.

Proof of Claim 11.

(i) By way of contradiction, we assume that both a and b are contracted from a nontrivial subgraph of $H_{0}-Y$. Then $\{a b\}$ is an essential edge cut of $H_{0}-Y$, and so $\{a b\} \cup Y$ contains an essential edge cut of size at most 3 in H_{0}, which by Corollary 5.2, corresponds to an essential edge cut of size at most 3 in H_{0}, contrary to the fact that H_{0} is essentially 4-edge-connected.
(ii) Let $D_{2}\left(K_{2,1}\right)=\{c\}$. By way of contradiction, we assume that either a or b is a vertex contracted from a nontrivial subgraph in H_{0}. Then $\{a c\} \cup Y$ or $\{b c\} \cup Y$ contains an essential edge cut of size at most 3 in H_{0}, which by Corollary 5.2, corresponds to an essential edge cut of size at most 3 in H_{0}, contrary to the fact that H is essentially 4-edge-connected. Hence Claim 11 is established.

By Claim 11, we may assume that
b (neither a nor b) is not contracted from a subgraph of $H_{0}-Y$ if $R_{1} \cong K_{2}\left(R_{1} \cong K_{2,1}\right)$.

So b is a vertex of $H_{0}-Y$ if $R_{1} \cong K_{2}$, and a and b are vertices of $H_{0}-Y$ if $R_{1} \cong K_{2,1}$. By Theorem 2.4(i),
$H_{0}-Y$ has a DES, written $L^{\prime \prime}$, containing all vertices of $H_{0}-Y-\{b\}$ if $R_{1} \cong K_{2}$,
and
$H_{0}-Y$ has a DES, written $L^{\prime \prime}$, containing all vertices of $H_{0}-Y-\{a, b\}$ if $R_{1} \cong K_{2,1}$.

Thus Lemma 5.5(i) is established.
Let $h \in D_{1}(H) \cup D_{2}(H)$. Then $d_{H}(h) \leq 2$. Let $h g \in E(H)$. Since H is essentially 4-edge-connected, $d_{H}(g) \geq 4$. So $g \in V\left(H_{0}\right)$ and $d_{H_{0}}(g) \geq 4$, which implies $d_{H_{0}-Y}(g) \geq 2$. By $(26), d_{H_{0}-Y}(b)=1$ when $R_{1} \cong K_{2}\left(d_{H_{0}-Y}(a)=d_{H_{0}-Y}(b)=1\right.$ when $R_{1} \cong K_{2,1}$ respectively). Thus $g \neq b$ when $R_{1} \cong K_{2}\left(g \neq a, b\right.$ when $R_{1} \cong K_{2,1}$ respectively). Together with (27) and (28), we have that $g \in V\left(L^{\prime \prime}\right)$. This proves that $N_{H}\left(D_{1}(H) \cup D_{2}(H)\right) \subseteq V\left(L^{\prime \prime}\right)$. By Lemma 5.5(i) and Lemma 2.5(ii), Lemma 5.5(ii) is established.

Let $w \in D_{1}(G) \cup D_{2}(G)$ and $w t \in E(G)$. By the same argument as in Case 1 , $d_{H_{0}-Y}(t) \geq 2$. Since $d_{H_{0}-Y}(b)=1$ when $R_{1} \cong K_{2} \quad\left(d_{H_{0}-Y}(a)=d_{H_{0}-Y}(b)=1\right.$ when $R_{1} \cong K_{2,1}$ respectively), $t \notin\{a, b\}$. By (27) and (28), $t \in V\left(L^{\prime \prime}\right) \subseteq V\left(L^{\prime}\right)$. This proves that
$N_{G}\left(D_{1}(G) \cup D_{2}(G)\right) \subseteq V\left(L^{\prime}\right)$. By Lemma 5.5(ii) and Lemma 2.5(ii), Lemma 5.5(iii) is established.

Case 3: $R_{1} \cong K_{2, l}$ where l is odd and $t \geq 3$.
Let $D_{2}\left(K_{2, l}\right)=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}$ and $D_{t}\left(K_{2, l}\right)=\left\{v_{1}, v_{2}\right\}$. If $w_{i}(1 \leq i \leq l)$ is a vertex contracted from a nontrivial subgraph T of $H_{0}-Y$, then $\left\{w_{i} v_{1}, w_{i} v_{2}\right\}$ is an essential 2-edge-cut of $H_{0}-Y$. Since H_{0} is essentially 4-edge-connected, $|Y| \leq 2$ and $l \geq 3$, by counting the incidence, we have the following claim.

Claim 12. At least one vertex in $D_{2}\left(K_{2, l}\right)$, say w_{k}, is not a vertex contracted from a nontrivial subgraph of $H_{0}-Y$, and w_{k} is incident with at most one edge of Y.

Since l is odd, $K_{2, l}-w_{k}$ is a DES of $K_{2, l}$. By Theorem 2.4(i),

$$
\begin{equation*}
H_{0}-Y \text { has a DES, written } L^{\prime \prime} \text {, containing all vertices of } H_{0}-Y-\left\{w_{k}\right\} . \tag{29}
\end{equation*}
$$

This completes the proof of Lemma 5.5(i).
Let $h \in D_{1}(H) \cup D_{2}(H)$. Then $d_{H}(h) \leq 2$. Let $h g \in E(H)$. Since H is essentially 4-edge-connected, $d_{H}(g) \geq 4$. Then $g \in V\left(H_{0}\right)$ and $d_{H_{0}}(g) \geq 4$. It implies that $d_{H_{0}-Y}(g) \geq$ 2 and the equality holds only if all edges of Y are incident with g. By Claim 12, $g \neq w_{k}$. Together with (29), we have that $g \in V\left(L^{\prime \prime}\right)$. This proves that $N_{H}\left(D_{1}(H) \cup D_{2}(H)\right) \subseteq$ $V\left(L^{\prime \prime}\right)$. By Lemma 5.5(i) and Lemma 2.5(ii), Lemma 5.5(ii) is established.

Let $w \in D_{1}(G) \cup D_{2}(G)$ and $w t \in E(G)$. Since G is essentially 7-edge-connected, $d_{G}(t) \geq 7$. Then $t \in V\left(G_{0}\right)$ and $d_{G_{0}-X}(t) \geq 4$ and the equality holds only if all edges of X are incident with g. It follows that $t \in V\left(\left(G_{0}-X\right)_{0}\right)=V\left(H_{0}\right)$ and so $d_{H_{0}-Y}(t) \geq 2$ and the equality holds only if all edges of $X \cup Y$ are incident with g. By Claim $12, t \neq w_{k}$ and thus by (29), $t \in V\left(L^{\prime \prime}\right) \subseteq V\left(L^{\prime}\right)$. This proves that $N_{G}\left(D_{1}(G) \cup D_{2}(G)\right) \subseteq V\left(L^{\prime}\right)$. By Lemma 5.5(ii) and Lemma 2.5(ii), Lemma 5.5(iii) is established.

Proof of Theorem 1.3. By Theorem 5.3, we may assume that $s \geq 6$. Let $S \subseteq V(L(G))$ with $|S| \leq s$.

Pick a subset $S_{1} \subseteq S$ such that $\left|S_{1}\right|=5$ and let $S_{2}=S-S_{1}$. Then $S_{2} \in V(L(G))$. Since $\kappa(L(G)) \geq s+2, \kappa\left(L(G)-S_{2}\right) \geq s+2-\left|S_{2}\right|=\left(s-\left|S_{2}\right|\right)+2=5+2 \geq 7$. Let $S_{2}^{\prime} \subseteq E(G)$ be the corresponding edge set of $S_{2} \subseteq V(L(G))$. Since $L(G)-S_{2}=$ $L\left(G-S_{2}^{\prime}\right)$, we have $\kappa\left(L\left(G-S_{2}^{\prime}\right)\right) \geq 7$ and so by Theorem 5.3, $L(G)-\left(S_{1} \cup S_{2}\right)=$ $\left(L(G)-S_{2}\right)-S_{1}=L\left(G-S_{2}^{\prime}\right)-S_{1}$ is hamiltonian. Thus $L(G)$ is s-hamiltonian.

ACKNOWLEDGMENT

The authors would like to thank the referees for the valuable comments on our submitted manuscript.

REFERENCES

[1] A. J. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] H. J. Broersma and H. J. Veldman, 3-connected line graphs of triangular graphs are panconnected and 1-hamiltonian, J Graph Theory 11 (1987), 399407.
[3] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs, J Graph Theory 12 (1988), 29-45.
[4] P. A. Catlin, J. W. Grossman, A. M. Hobbs, and H.-J. Lai, Fractional arboricity, strength, and principal partitions in graphs and matroids, Discrete Applied Math 40 (1992), 285-302.
[5] P. A. Catlin, Z. Han, and H.-J. Lai, Graphs without spanning Eulerian subgraphs, Discrete Math 160 (1996), 81-91.
[6] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and hamiltonian graphs and line graphs, Canad Math Bull 8 (1965), 701-709.
[7] R. Kužel, Z. Ryjáček, and P. Vrána, Thomassen's conjecture implies polynomiality of 1-Hamilton-connectedness in line graphs, J Graph Theory 69(3) (2012), 241-250.
[8] H.-J. Lai and H. Y. Lai, Duality of graph families, Discrete Math 110 (1992), 165-177.
[9] C. St. J. A. Nash-Williams, Decomposition of finite graphs into forests, J London Math Soc 39 (1964), 12.
[10] C. St. J. A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J London Math Soc 36 (1961), 445-450.
[11] Y. Shao, Claw-Free Graphs, and Line Graphs, PhD Dissertation, West Virginia University, Morgantown, West Virginia, USA, 2005.
[12] C. Thomassen, Reflections on graph theory, J Graph Theory 10 (1986), 309324.
[13] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J London Math Soc 36 (1961), 221-230.
[14] S. M. Zhan, On hamiltonian line graphs and connectivity, Discrete Math 89 (1991), 89-95.

