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Abstract Spanning connectivity of graphs has been intensively investigated in the
study of interconnection networks (Hsu and Lin, Graph Theory and Interconnection
Networks, 2009). For a graph G and an integer s > 0 and for u, v ∈ V (G) with u �= v,
an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u, v)-
paths. A graph G is spanning s-connected if for any u, v ∈ V (G) with u �= v, G has
a spanning (s; u, v)-path-system. The spanning connectivity κ∗(G) of a graph G is
the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k
with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u �= v. An edge counter-part of κ∗(G),
defined as the supereulerian width of a graph G, has been investigated in Chen et al.
(Supereulerian graphs with width s and s-collapsible graphs, 2012). In Catlin and Lai
(Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, 1991) proved
that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of
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G, then κ∗(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3. In this paper, we extend this result
and prove that for any integer k ≥ 2, if G0, the core of G, has k edge-disjoint spanning
trees, then κ∗(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}.

Keywords Connectivity · Spanning connectivity · Hamiltonian linegraph ·
Hamiltonian-connected line graph · Supereulerian graphs · Collapsible graphs

1 Introduction

Graphs in this paper are finite and may have multiple edges but no loops. Termi-
nology and notations not defined here are referred to [1]. In particular, for a graph
G, δ(G), κ(G) and κ ′(G) represent the minimum degree, the connectivity and the
edge connectivity of the graph G, respectively. A path with initial vertex u and termi-
nal vertex v will be referred as a (u, v)-path. We use O(G) to denote the set of all odd
degree vertices in G, and Di (G) the set of all vertices of degree i in G. A graph G is
Eulerian if O(G) = ∅ and G is connected, and is supereulerian if G has a Eulerian
subgraph H with V (H) = V (G). The maximum number of edge-disjoint spanning
trees in a graph G is denoted by τ(G).

For an integer s > 0 and for u, v ∈ V (G) with u �= v, an (s; u, v)-path-system of
G is a subgraph H consisting of s internally disjoint (u, v)-paths, and such an H is
called a spanning (s, u, v)-path-system if V (H) = V (G). A graph G is spanning s-
connected if for any u, v ∈ V (G) with u �= v, G has a spanning (s; u, v)-path-system.
The spanning connectivity κ∗(G) of a graph G is the largest integer s such that for
any integer k with 1 ≤ k ≤ s and for any u, v ∈ V (G) with u �= v, G has a spanning
(k; u, v)-path-system. A graph G is hamiltonian connected if for any u, v ∈ V (G)

with u �= v G has a path P from u to v such that V (P) = V (G). Thus κ∗(G) ≥ 1
if and only if G is hamiltonian-connected. The hamiltonian connectedness of graphs
has been intensively studied, as shown in [8]. The spanning connectivity of a graph
has also been studied, as can be seen in Chapters 14 and 15 of [11].

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where
two vertices in L(G) are adjacent if and only if the corresponding edges in G are
adjacent in L(G). Many interesting structure properties of a graph are closely related
to the same properties of its line graph. Cai and Corneil [2] proved that the cycle
double conjecture [18,20] holds for all 2-edge-connected graphs if and only if it holds
for all 2-edge-connected line graphs. Chen et al. [6] proved that to solve Tutte’s flow
conjectures [13,22] in graphs, one only needs to prove the truth of these conjectures in
line graphs. Thomassen’s conjecture [21] that “every 4-connected line graph is ham-
iltonian” had attracted many researchers working on properties of line graphs. Catlin
and Lai in [5] characterized line graphs L(G) with κ∗(L(G)) ≥ 2 for graphs G with
τ(G) ≥ 2.

Theorem 1.1 (Catlin and Lai [5]) Let G be a graph with τ(G) ≥ 2. Then κ∗(L(G)) ≥
2 if and only if κ(L(G)) ≥ 3.
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By the well known spanning tree packing theorem of Nash-Williams [17] and
Tutte [23], every 2k-edge-connected graph must have k edge-disjoint spanning trees.
Therefore, Theorem 1.1 implies the next theorem.

Theorem 1.2 (Zhan [24]) If κ ′(G) ≥ 4, then κ∗(L(G)) ≥ 2.

Huang and Hsu [12] proved the following theorem, which extends Theorem 1.2
from k = 2 to all integers k ≥ 2.

Theorem 1.3 (Huang and Hsu [12]) For any integer k ≥ 2, if κ ′(G) ≥ 2k ≥ 4, then
κ∗(L(G)) ≥ k.

In this paper, using a modified Catlin’s reduction technique [3], we prove a new
theorem which includes the theorems mentioned above as special cases.

Let G be a graph such that κ(L(G)) ≥ 3. The core of G, denoted by G0, is defined
as follows (see [19]). For each v ∈ V (G), let EG(v) denote the set of edges incident
with v in G. For any u, v ∈ D2(G), EG(u) ∩ EG(v) = ∅. For each v ∈ D2(G),
denote EG(v) = {e′

v, e′′
v }. Let

X2(G) = {e′′
v : v ∈ D2(G)}.

We define the core of G by

G0 = (G − D1(G))/X2(G).

Here is our main theorem:

Theorem 1.4 Let k ≥ 2 be an integer, and G be a connected graph with a core G0
such that τ(G0) ≥ k. Then κ∗(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}.
Remark When k = 2, Theorem 1.4 implies Theorem 1.1. Noting that κ ′(G0) ≥ κ ′(G)

and applying the spanning tree packing theorem of Nash-Williams [17] and Tutte [23],
Theorem 1.3 follows from Theorem 1.4 immediately. In [9], infinitely many graphs G
satisfying κ ′(G) = τ(G) with minimum possible edges have been constructed, and
all such graphs are characterized. For any of such graph G, we have κ∗(L(G)) ≥ k
by Theorem 1.4; but we cannot make the same conclusion by Theorem 1.3. Hence,
Theorem 1.4 is stronger than Theorem 1.3. The following examples give additional
evidences that even edge-connectivity condition in Theorem 1.3 can be relaxed.

Let k ≥ 2 and H be any graph with k edge-disjoint spanning trees. Obtain G from
H by

(i) subdividing every edge of H exactly once, and
(ii) attaching a pendent edge at every vertex of H (not including the new vertices

resulting from the subdivision operation).

Since the core of G is H , by Theorem 1.4, κ∗(L(G)) ≥ k. But since κ ′(G) < 2,
such a conclusion cannot be made by using Theorem 1.3.
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In the next section, we will prove a characterization of a graph G whose line graph
L(G) satisfying κ∗(L(G)) ≥ k, analogous to the characterization of Harary and Nash-
Williams on hamiltonian line graphs [10]. A reduction method involving s-collapsible
graphs will be presented in Sect. 3. In Sect. 4, we review some properties of the core
of a graph. The results in Sects. 2, 3, and 4 will be applied to prove the main result in
Sect. 5.

2 Spanning Connectivity in Line Graphs

In this section, we shall follow the idea of Harary and Nash-Williams in [10] to deter-
mine a relationship between dominating (k; e′, e′′)-trail systems in G and spanning
(k; e′, e′′)-path-systems in L(G). We view a trail of G as a vertex-edge alternating
sequence

v0, e1, v1, e2, . . . , ek, vk (1)

such that all the ei are distinct and for each i = 1, 2, . . . , kei is incident with both
vi−1 and vi . When the edge-vertex incidence is understood from the context for such
a trail, we often use an edge sequence e1e2 . . . ek to denote the same trail in (1). All
the vertices in {v1, v2, . . . , vk−1} are internal vertices of the trail in (1). For edges
e′, e′′ ∈ E(G), an (e′, e′′)-trail of G is a trail of G whose first edge is e′ and whose
last edge is e′′. As an example, the trail in (1) is an (e1, ek)-trail. An (e′, e′′)-trail T
of G is dominating in G if every edge of G is incident with an internal vertex of
T ; and a spanning (e′, e′′)-trail T of G is a dominating (e′, e′′)-trail T of G such
that V (T ) = V (G). A dominating (k; e′, e′′)-trail systems in G is a subgraph H
consisting of k edge-disjoint (e′, e′′)-trail (T1, T2, . . . , Tk) such that every edge of G
is incident with an internal vertex of Ti for some i(1 ≤ i ≤ k).

Theorem 2.1 Let s ≥ 1 be an integer, and G a graph with |E(G)| ≥ 3. The following
are equivalent.

(i) κ∗(L(G)) ≥ s;
(ii) For any edge e′, e′′ ∈ E(G), G has a dominating (k; e′, e′′)-trail-system, for

all 1 ≤ k ≤ s.

Proof Assume that κ∗(L(G)) ≥ s. By the definition of κ∗, for any positive integer
k ≤ s, and for any e′ and e′′ in E(G), L(G) has a spanning (k; e′, e′′)-path-system
(P1, P2, . . . , Pk).

Denote Pi = ei
1ei

2 . . . ei
ni

, where each ei
j ∈ E(G) = V (L(G)), and where ei

1 = e′

and ei
ni

= e′′, for i = 1, 2, . . . , k. By the definition of a line graph, G has a longest
(e′, e′′)-trail Ti = ei

i1
ei

i2
. . . ein(i) such that ei

i1
= e′, ein(i) = e′′ and i1, i2, . . . , in(i) is a

subsequence of 1, 2, . . . , ni . Since Pi = ei
1ei

2 . . . ei
ni

is a path in L(G), by the defini-
tion of a line graph and by the maximality of |V (Ti )|, for any j with 1 ≤ j < n(i), if
i j+1 > i j + 1 and if v j ∈ V (G) is the vertex in the trail ei

i1
ei

i2
. . . ein(i) incident with

both ei j and ei j+1 , then any edge ei
t with i j < t < i j+1 must be incident with v j in G.

It follows that (T1, T2, . . . , Tk) is a dominating (k; e′, e′′)-trail-system of G.
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Conversely, we assume that (ii) holds to prove (i). Suppose {T1, T2, . . . , Tk} is a
dominating (k; e′, e′′)-trail-system of G for any k with 1 ≤ k ≤ s. By the definition
of dominating (k; e′, e′′)-trail-systems, for any edge e ∈ E(G) − ⋃k

i=1 E(Ti ), there
exists an i such that e is incident with an internal vertex of Ti . Therefore, we can
partition E(G) − ⋃k

i=1 E(Ti ) into a disjoint union of subsets X1, X2, . . . , Xk such
that edges in Xi are incident with internal vertices of Ti . It follows by the definition
of line graphs that in L(G), the vertex subset E(Ti ) ∪ Xi induces a subgraph in L(G)

which contains an (e′, e′′)-path Pi of L(G). Since every edge of G must be in an
E(Ti ) ∪ Xi , (P1, P2, . . . , Pk) is a spanning (e′, e′′)-path system of L(G). ��

3 Reductions and s-Collapsible Graphs

Throughout this paper, we shall adopt the convention that any graph G is 0-edge-con-
nected, and always assume that s ≥ 1 is an integer.

Definition 3.1 A graph G is s-collapsible if for any subset R ⊆ V (G) with |R| ≡ 0
(mod 2), G has a spanning subgraph �R such that

(i) both O(�R) = R and κ ′(�R) ≥ s − 1, and
(ii) G − E(�R) is connected.

Thus a collapsible graph defined in [3] is a 1-collapsible graph in Definition 3.1. A
spanning subgraph �R of G with both properties in Definition 3.1 is an (s, R)-sub-
graph of G. Let Cs denote the collection of all s-collapsible graphs. Then C1 is the
collection of all collapsible graphs [3]. By definition, for s ≥ 1, any (s + 1, R)-sub-
graph of G is also an (s, R)-subgraph of G. This implies that

Cs+1 ⊆ Cs, for any positive integer s. (2)

For a graph G, and for X ⊆ E(G), the contraction G/X is obtained from G by
identifying the two ends of each edge in X and then by deleting the resulting loops. If
H is a subgraph of G, then we write G/H for G/E(H), and we use vH to denote the
vertex in G/H onto which H is contracted.

Proposition 3.2 ([7,15]) Let s ≥ 1 be an integer. Then Cs satisfies the following.

(C1) K1 ∈ Cs

(C2) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs .
(C3) If H is a subgraph of G and if H, G/H ∈ Cs , then G ∈ Cs .

Let G be a graph, and s > 0 be an integer. For any distinct u, v ∈ V (G), an (s; u, v)-
trail-system of G is a subgraph H consisting of s edge-disjoint (u, v)-trails. A graph
is supereulerian with width s if for any u, v ∈ V (G) with u �= v, G has a spanning
(s; u, v)-trail-system. The supereulerian width μ′(G) of a graph G is the largest
integer s such that G is supereulerian with width k for any integer k with 1 ≤ k ≤ s. A
reduction method on applying s-collapsible graphs to study μ′(G) has been developed
in [7,15].
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Lemma 3.3 ([7,15]) Let s ≥ 1 be an integer. If a graph G ∈ Cs , then μ′(G) ≥ s + 1.

A graph is Cs-reduced if it contains no nontrivial subgraph in Cs . It is shown in
[7] that every graph G has a unique collection of maximally s-collapsible subgraphs
H1, H2, . . . , Hc, and the graph G ′

s = G/(∪c
i=1 E(Hi )) is Cs-reduced, which is called

the Cs-reduction of G.

Lemma 3.4 ([7,15]) Let s ≥ 1 be an integer, G be a graph and H be a subgraph of
G such that H ∈ Cs . Each of the following holds.

(i) G ∈ Cs if and only if G/H ∈ Cs .
(ii) μ′(G) ≥ s + 1 if and only if μ′(G/H) ≥ s + 1.

Let F(G, s) denote the minimum number of additional edges that must be added to
G to result in a graph � with τ(�) ≥ s. The quantity of F(G, s) has been determined
in [16], whose matroidal versions are proved in [14,15].

Theorem 3.5 ([7,15]) Let s ≥ 1 be an integer. If F(G, s + 1) ≤ 1, then G ∈ Cs if
and only if κ ′(G) ≥ s + 1.

Theorem 3.6 (Catlin et al. Theorem 1.3 of [4]) Let G be a connected graph and t
an integer. If F(G, 2) ≤ 2, then G ∈ C1 if and only if the C1-reduction of G is not a
member in {K2} ∪ {K2,t : t ≥ 1}.

4 Facts on the Core of a Graph

Throughout this section, we assume that G is a connected graph satisfying κ(L(G)) ≥
3. For any e′, e′′ ∈ E(G), let G(e′, e′′) be the graph obtained from G by replacing
e′ = u′v′ by a path u′ve′v′ and by replacing e′′ = u′′v′′ by a path u′′ve′′v′′, where ve′
and ve′′ are new vertices added to the graph when subdividing e′ and e′′, respectively.

Proposition 4.1 (Shao, Lemma 1.4.1 and Proposition 1.4.2 of [19]) Let G be a con-
nected graph with κ(L(G)) ≥ 3, and let G0 denote the core of G. Each of the following
holds.

(i) G0 is uniquely defined.
(ii) δ(G0) ≥ κ ′(G0) ≥ 3.

(iii) If G0 is supereulerian, then L(G) is hamiltonian.
(iv) If for any e′, e′′ ∈ E(G0), G0(e′, e′′) has a spanning (ve′ , ve′′)-trail, then L(G)

is hamiltonian-connected.

In this section, we extend some of Shao’s results above for later applications in
our proofs. For any integer k > 0, and for any e′, e′′ ∈ E(G0), define Gk

0(e
′, e′′)

be the graph obtained from G0(e′, e′′) by, for any v ∈ {ve′, ve′′ }, replacing each
edge incident with v in G0(e′, e′′) by a set of �k/2� parallel edges. As examples,
G1

0(e
′, e′′) = G2

0(e
′, e′′) = G0(e′, e′′).
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Lemma 4.2 Let k, l and s be integers such that s ≥ 1l ≥ 2 and k ≥ 2.

(i) ([7,15]) Let l K2 is the loopless connected graph with two vertices and l edges.
Then l K2 ∈ Cs if and only if l ≥ s + 1. More generally, if T is a tree with
|E(T )| ≥ 2 and if lT is the graph obtained from T by replacing every edge of
T by a set of l parallel edges. Then lT ∈ Cs if and only if l ≥ s + 1.

(ii) If G0 − {e′, e′′} ∈ Ck−1, then Gk
0(e

′, e′′) ∈ Ck−1.

Proof (ii). Let G ′ = G0 − {e′, e′′}. By the definition of Gk
0(e

′, e′′), Gk
0(e

′, e′′)/G ′ =
l K1,2 with l ≥ k. By Lemma 4.2(i), Gk

0(e
′, e′′)/G ′ = l K1,2 ∈ Ck−1. Since G ′ ∈ Ck−1,

it follows by Proposition 3.2 (C3) that Gk
0(e

′, e′′) ∈ Ck−1. ��
Theorem 4.3 Let G be a graph with core G0, and let k ≥ 3 be an integer. Each of
the following holds.

(i) If for any e′, e′′ ∈ E(G0) with e′ �= e′′, G0(e′, e′′) ∈ C1, then κ∗(L(G)) ≥ 2.
(ii) If for any e′, e′′ ∈ E(G0) with e′ �= e′′, Gk

0(e
′, e′′) has a spanning (k; ve′ , ve′′)-

trail system, then G0 has a spanning (k; e′, e′′)-trail system.
(iii) If for any distinct edges e′ = u′v′ and e′′ = u′′v′′ in E(G0), G0 has a spanning

(k; e′, e′′)-trail system (T1, T2, . . . , Tk) such that for any v ∈ {u′, v′, u′′, v′′},
there exists an i with 1 ≤ i ≤ k, and such that Ti contains v as an internal
vertex, then κ∗(L(G)) ≥ k.

(iv) If for any e′, e′′ ∈ E(G0) with e′ �= e′′, G0 −{e′, e′′} ∈ Ck−1, then κ∗(L(G)) ≥
k.

Proof (i) Since G0(e′, e′′) ∈ C1, by Lemma 3.3, G0(e′, e′′) has a spanning
(ve′ , ve′′)-trail. Thus by Proposition 4.1(iv), κ∗(L(G)) ≥ 2.

(ii) Let H ′′ be a spanning (k; ve′ , ve′′)-trail system of Gk
0(e

′, e′′). Then H ′′ is an edge
disjoint union of (ve′ , ve′′)-trails T ′

1, T ′
2, . . . , T ′

k . For each i = 1, 2, . . . , k, let

Ti = G0[E(T ′
i − {ve′, ve′′ }) ∪ {e′, e′′}].

Then each Ti is an (e′, e′′)-trail, and (T1, T2, . . . , Tk) is a spanning (k; e′, e′′)-
trail system of G0.

(iii) By Theorem 2.1, it suffices to show that for any e′, e′′ ∈ E(G) with e′ �= e′′G
has a dominating (k; e′, e′′)-trail system. By the assumption of (iii),

for any e′, e′′ ∈ E(G0) (e′ �= e′′), G0 has a spanning (k; e′, e′′) − trail system

with the property stated in (i i i). (3)

Let e′, e′′ ∈ E(G) be two distinct edges. Let e ∈ {e′, e′′}. If e ∈ E(G − D1(G))

and e is not incident with a vertex z ∈ D2(G), then let f (e) = e, which is an edge
in E(G0). If e ∈ E(G − D1(G)) and e is incident with a vertex z ∈ D2(G),
then we may assume that e ∈ E(G0) and that the edge in EG(z) − {e} has
been contracted in obtaining G0, and define f (e) = e, which is again an edge
in E(G0). If e is incident with a vertex z ∈ D1(G), then denote e = zw,
where w /∈ D1(G). Define f (e) ∈ EG(w) − {e} so that f (e′) �= f (e′′). This
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can be done as κ(L(G)) ≥ 3, when z ∈ D1(G), w must be incident with at
least 4 edges in G. In any case, f (e) ∈ E(G0). Since f (e′), f (e′′) ∈ E(G0)

and f (e′) �= f (e′′), by (3), G0 has a spanning (k; f (e′), f (e′′))-trail system
(T ′

1, T ′′
2 , . . . , T ′

k) satisfying the assumption of (iii).
For each i ∈ {1, 2, . . . , k}, let X2(T ′

i ) be the set of all edges e ∈ E(T ′
i ) such

that for some vertex z ∈ D2(G), Xe := EG(z) = {e, f }. Define

Ti = G[(E(T ′
i ) − X2(T

′
i ))

⋃
⎛

⎝
⋃

e∈X2(T ′
i )

Xe

⎞

⎠
⋃

{e′, e′′}].

In other words, Ti is obtained from T ′
i by replacing each e ∈ E(T ′

i ) that is inci-
dent with a vertex z ∈ D2(G) by the path consisting with both edges incident
with z in G, and then extending the resulting trail to an (e′, e′′)-trail. It fol-
lows that (T1, T2, . . . , Tk) is a (k; e′, e′′)-trail system that contains all vertices
of degree at least 3 in G, such that for any v ∈ {u′, v′, u′′, v′′}, there exists an
i , (1 ≤ i ≤ k), such that Ti contains v as an internal vertex. Thus every edge
not in

⋃k
i=1 E(Ti ) must be incident with an internal vertex of some Ti , and so

(T1, T2, . . . , Tk) is a dominating (k; e′, e′′)-trail system.
(iv) By Theorem 4.3(iii), it suffices to show that the hypothesis of Theorem 4.3(iii)

will hold.
Suppose that for any e′, e′′ ∈ E(G0) with e′ �= e′′, G0 − {e′, e′′} ∈ Ck−1.
By Lemma 4.2, Gk

0(e
′, e′′) ∈ Ck−1. It follows by Lemma 3.3 that Gk

0(e
′, e′′)

has a (k; ve′ , ve′′)-trail system (T ′
1, T ′

2, . . . , T ′
k). Denote e′ = u′v′, e′′ = u′′v′′

in E(G0). By the definition of Gk
0(e

′, e′′), there are at most �k/2� of these
(ve′ , ve′′)-trails that contain the one of the �k/2� edges parallel to ve′v′. This
implies that for any v ∈ {u′, v′}, at least one T ′

i will use v as an internal vertex.
Similarly, for any v ∈ {u′′, v′′}, at least one T ′

i will use v as an internal vertex.
Define

Ti = G0[E(T ′
i − {ve′, ve′′ }) ∪ {e′, e′′}], (1 ≤ i ≤ k).

Then (T1, T2, . . . , Tk) is a spanning (k; e′, e′′)-trail system satisfying the
hypothesis of Theorem 4.3(iii), and so κ∗(L(G)) ≥ k. This completes the
proof of the theorem. ��

5 Proof of Theorem 1.4

In this section, we shall prove the following slightly stronger result, which implies
Theorem 1.4.

Proof By the Menger’s theorem (Theorem 9.1 of [1]), for any graph G, we always
have

κ(G) ≥ κ∗(G). (4)
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By the definition of hamiltonian-connectivity, we know that every hamiltonian-con-
nected graph G with at least 4 vertices must have connectivity at least 3. This, together
with (4), implies that if κ∗(L(G)) ≥ k ≥ 2, then κ(L(G)) ≥ max{3, k}.

It remains to prove that for k ≥ 2, if τ(G) ≥ k and if κ(L(G)) ≥ max{3, k}, then
κ∗(L(G)) ≥ k.

First assume that k = 2. By Theorem 4.3, it suffices to show that for any pair
of distinct edges e′, e′′ ∈ E(G0), G0(e′, e′′) ∈ C1. We argue by contradiction and
assume that G0(e′, e′′) /∈ C1. Let G ′

0 denote the C1-reduction of G0(e′, e′′). Since
τ(G0) ≥ 2, it follows that F(G0(e′, e′′), 2) ≤ 2, and so F(G ′

0, 2) ≤ 2. By Theorem
3.6, G ′

0 ∈ {K2, K2,t , (t ≥ 1)}. Since G0(e′, e′′) has no cut edges, neither does G ′
0.

Hence G ′
0 = K2,t for some t ≥ 2. By Proposition 4.1, κ ′(G0) ≥ 3, and so we must

have t = 2, and ve′ and ve′′ , the two vertices newly added when subdividing e′ and e′′,
are two nonadjacent vertices of G ′

0. By the definition of a core, the other two vertices
in V (G ′

0) − {ve′, ve′′ } must be nontrivial vertices, and so {e′, e′′} must be an essential
edge cut of G, contrary to the assumption that κ(L(G)) ≥ 3. This settles the case
when k = 2.

Now we assume that k ≥ 3. By Theorem 4.3, it suffices to show that the hypothesis
of Theorem 4.3(ii) or (iii) holds. We shall assume that

G0 − {e′, e′′} /∈ Ck−1, (5)

to prove Theorem 4.3(ii) holds.
Let e′, e′′ ∈ E(G0) be two distinct edges such that e′ = u′v′ and e′′ = u′′v′′. Let G ′

denote the Ck−1-reduction of G0−{e′, e′′}. Since τ(G0) ≥ k, F(G0−{e′, e′′}, 2) ≤ 2.

Case 1 F(G0 − {e′, e′′}, k) ≤ 1.

Since G ′ is a contraction of G0 − {e′, e′′}, F(G ′, k) ≤ F(G0 − {e′, e′′}, k) ≤ 1.
By (5) and by Lemma 3.4, G ′ /∈ Ck−1. By Theorem 3.5, G ′ ∈ Ck−1 if and only if
κ ′(G ′) ≥ k. As G ′ /∈ Ck−1κ

′(G ′) ≤ k − 1. Since F(G ′, k) ≤ 1, there must be an edge
f /∈ E(G ′) such that τ(G ′ + f ) ≥ k, and so κ ′(G ′ + f ) ≥ τ(G ′ + f ) ≥ k. This
implies that G ′ must have an edge-cut X consisting of k − 1 edges {e1, e2, . . . , ek−1},
which is also an edge cut of G0 − {e′, e′′}.

Since τ(G0) ≥ k, G0 has k spanning trees, denoted as T1, T2, . . . , Tk . Since F(G0−
{e′, e′′}, k) ≤ 1 and G0 −{e′, e′′} has an edge cut X with |X | = k −1, we may assume
that e′ ∈ E(Tk), and e′′ /∈ ⋃k−1

i=2 E(Ti ). Hence we may assume that ei ∈ E(Ti ), for
1 ≤ i ≤ k − 1. Since Tk is a spanning tree of G0, we may assume that Tk − e′ has a
(u′, u′′)-path Pk . Since G0[⋃k−1

i=1 E(Ti )] is a spanning subgraph of G0 − {e, e′′} that
has k −1 edge-disjoint spanning trees, it follows by Theorem 3.5 and Lemma 3.3 with
s = k − 2 that G0 − ({e′, e′′} ∪ E(Pk)) has a spanning (k − 1; u′, u′′)-trail system
(P1, P2, . . . , Pk−1). Let P ′

i = G0[E(Pi )∪{e′, e′′}], 1 ≤ i ≤ k. Then (P ′
1, P ′

2, . . . , P ′
k)

is a spanning (k; e′, e′′)-trail system of G0. Hence Theorem 4.3(ii) holds.

Case 2 F(G0 − {e′, e′′}, k) = 2.
Let T1, T2, . . . , Tk denote k edge-disjoint spanning trees of G0. Since F(G0 −

{e′, e′′}, 2) = 2, we must have e′, e′′ ∈ ⋃k
i=1 E(Ti ). Choose (T1, T2, . . . , Tk), among
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all such choices of edge-disjoint spanning trees, such that

|{Ti : E(Ti ) ∩ {e′, e′′} �= ∅}| is minimized. (6)

Subcase 2.1 For some i, e′, e′′ ∈ E(Ti ).
We may assume that e′, e′′ ∈ E(Tk). Since Tk is a spanning tree of G0, we may

assume (renaming the end vertices of e′ and e′′ if needed) that Tk − {e′, e′′} has a
(u′, u′′)-path Pk . Since G0[⋃k−1

i=1 E(Ti )] is a spanning subgraph of G0 − {e, e′′} that
has k −1 edge-disjoint spanning trees, by Theorem 3.5 and Lemma 3.3 with s = k −2
that G0[⋃k−1

i=1 E(Ti )] has a spanning (k − 1; u′, u′′)-trail system (P1, P2, . . . , Pk−1).
Let P ′

i = G0[E(Pi ) ∪ {e′, e′′}]1 ≤ i ≤ k. Then (P ′
1, P ′

2, . . . , P ′
k) is a spanning

(k; e′, e′′)-trail system of G0. Hence Theorem 4.3(ii) holds.

Subcase 2.2 For any i, |{e′, e′′} ∩ E(Ti )| ≤ 1.
We may assume that e′ ∈ E(Tk−1) and e′′ ∈ E(Tk). Let T ′

k−1 and T ′′
k−1 be the two

components of Tk−1 − e′, and let T ′
k and T ′′

k be the two components of Tk − e′′. We
may further assume that V (T ′

k−1) ∩ V (T ′′
k ) �= ∅.

We shall show first that V (T ′
k−1) = V (T ′

k) and so V (T ′′
k−1) = V (T ′′

k ). Since T ′
k−1

and T ′′
k−1 are the two components of Tk−1 −e′, we may assume that u′ ∈ V (T ′

k−1) and
v′ ∈ V (T ′′

k−1). Similarly, we may assume that u′′ ∈ V (T ′
k) and v′′ ∈ V (T ′′

k ). Since
Tk−1 and Tk are spanning trees of G0, if V (T ′

k−1) �= V (T ′
k), then either v′′ ∈ V (T ′

k−1)

or u′′ ∈ V (T ′′
k−1). Arguing by contradiction, we assume that V (T ′

k−1) �= V (T ′
k), and

by symmetry, we assume further that v′′ ∈ V (T ′
k−1). It then follows that T ′

k−1 + e′′
has a unique cycle C ′′ which contains at least one edge e′′′ ∈ E(T ′

k−1). Redefine
Lk−1 = Tk−1 + e′′ − e′′′ and Lk = Tk − e′′ + e′′′. Then (T1, . . . , Tk−2, Lk−1, Lk) is
a set of k edge-disjoint spanning trees violating (6). Hence we must have

V (T ′
k−1) = V (T ′

k) and V (T ′′
k−1) = V (T ′′

k ). (7)

By (7), both (Tk−1 ∪ Tk)[V (T ′
k−1)] and (Tk−1 ∪ Tk)[V (T ′′

k−1)] are graphs with 2 edge-
disjoint spanning trees. By Theorem 3.5 with s = 1, both are in C1, and so by Lemma
3.3, (Tk−1∪Tk)[V (T ′

k−1)] has a spanning (u′, u′′)-trail Pk−1 and (Tk−1∪Tk)[V (T ′′
k−1)]

has a spanning (v′, v′′)-trail Pk . Since T1, T2, . . . , Tk−2 are spanning trees of G0, each
Ti has a (u′, u′′)-path Pi (1 ≤ i ≤ k − 2). Let P ′

i = G0[E(Pi ) ∪ {e′, e′′}], 1 ≤ i ≤ k.
Then (P ′

1, P ′
2, . . . , P ′

k) is a spanning (k; e′, e′′)-trail system of G0. Hence Theorem
4.3(ii) holds.

Since in all the cases, either Theorem 4.3(ii) or Theorem 4.3(iii) must hold, and so
by Theorem 4.3, κ∗(L(G)) ≥ k. This completes the proof. ��
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