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a b s t r a c t

An integral sequence d = (d1, d2, . . . , dn) is hypergraphic if there is a simple hypergraph
H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is
r-uniform hypergraphic if there is a simple r-uniform hypergraph with degree sequence d.
Similarly, a sequence d is r-uniformmulti-hypergraphic if there is an r-uniformhypergraph
(possibly with multiple edges) with degree sequence d. In this paper, it is proved that an
r-uniform hypergraphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization
if and only if both di ≥ k for i = 1, 2, . . . , n and

n
i=1 di ≥

r(n−1)
r−1 , which generalizes the

formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs. It is also
proved that a nonincreasing integral sequence d = (d1, d2, . . . , dn) is the degree sequence
of a k-edge-connected r-uniform hypergraph (possibly with multiple edges) if and only ifn

i=1 di is a multiple of r , dn ≥ k and
n

i=1 di ≥ max{ r(n−1)
r−1 , rd1}.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper focuses on the study of degree sequences in hypergraphs. Undefined terms can be found in [1] for hypergraphs
and [3] for graphs. A hypergraphH is a pair (V , E)where V is the vertex set ofH and E is a collection of not necessarily distinct
nonempty subsets of V . Note thatwe allow a hypergraph to have isolated vertices, which differs slightly from [1]. An element
in V is a vertex of H , and an element in E is a hyperedge or simply an edge of H . The degree of a vertex v in H , denoted by
dH(v) or d(v), is the number of edges in H containing v. Let E = {E1, E2, . . . , Em}. A hypergraph H is simple if Ei ⊆ Ej implies
that i = j for any i, j with 1 ≤ i, j ≤ m. Let r ≥ 2 be an integer. A hypergraph H is an r-uniform hypergraph if |Ei| = r for
each i with 1 ≤ i ≤ m. Thus a simple graph is a simple 2-uniform hypergraph, and vice versa. Let G and H be hypergraphs
with V (G) ∩ V (H) = ∅. Then G ∪ H is the hypergraph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). If X is a
collection of nonempty subsets of V (H) and X ∩ E(H) = ∅, then H + X is the hypergraph with vertex set V (H) and edge set
E(H) ∪ X .

If a hypergraph H has vertices v1, v2, . . . , vn, then the sequence (d(v1), d(v2), . . . , d(vn)) is a degree sequence of H . A se-
quence d = (d1, d2, . . . , dn) is hypergraphic if there is a simple hypergraphH with degree sequence d, and such a hypergraph
H is a realization of d, or a d-realization. A sequence d is r-uniform hypergraphic if there is a simple r-uniform hypergraph
H with degree sequence d. Similarly, a sequence d is multi-hypergraphic if there is a hypergraph (possibly with multiple
edges) with degree sequence d. A sequence d is r-uniform multi-hypergraphic if there is a r-uniform hypergraph (possibly
with multiple edges) with degree sequence d. A 2-uniform hypergraphic sequence is also referred to as a graphic sequence.
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Let H be a hypergraph and V1, V2, . . . , Vk be subsets of V (H). A hyperedge E ∈ E(H) is (V1, V2, . . . , Vk)-crossing if E ∩

Vi ≠ ∅ for 1 ≤ i ≤ k. If in addition, E ⊆ ∪
k
i=1 Vi, then E is exact-(V1, V2, . . . , Vk)-crossing. When k = 1, E is said to

be V1-crossing and exact-V1-crossing, respectively. The set of all exact-(V1, V2, . . . , Vk)-crossing edges of H is denoted by
EH
V1V2···Vk

. A walk in a hypergraph H is a finite alternating sequence W = (v0, E1, v1, E2, . . . , Ek, vk), where vi is a vertex
for i = 0, 1, . . . , k and Ej is an edge such that vj−1, vj ∈ Ej for j = 1, 2, . . . , k. A walk W is a path if all the vertices vi for
i = 0, 1, . . . , k and all the edges inW are distinct. A hypergraph is connected if for each pair of distinct vertices there exists a
path from one to the other. Let X be a nonempty proper subset of V and X = V −X . The set of all (X, X)-crossing hyperedges
of a hypergraph H is an edge-cut of H between X and X , denoted by [X, X]H , or [X, X]. The number of hyperedges in [X, X]H
is denoted by |[X, X]H | or dH(X). For a positive integer k, a hypergraph H = (V , E) is k-edge-connected if dH(X) ≥ k holds
for every nonempty proper subset X ⊂ V . The edge connectivity of H is the maximum k such that H is k-edge-connected.

Edmonds gave the following characterization for a graphic sequence to have a k-edge-connected realization.

Theorem 1.1 (Edmonds [8]). A graphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization if and only if

(i) di ≥ k for i = 1, 2, . . . , n;
(ii)

n
i=1 di ≥ 2(n − 1) if k = 1.

Characterizations of uniform hypergraphic sequences or uniform multi-hypergraphic sequences to have connected
realizations have been obtained by Boonyasombat [4] and Tusyadej, respectively.

Theorem 1.2 (Boonyasombat, Theorem 4.1 of [4]). An r-uniform hypergraphic sequence d = (d1, d2, . . . , dn) has a connected
realization if and only if

(i) di ≥ 1 for i = 1, 2, . . . , n;
(ii)

n
i=1 di ≥

r(n−1)
r−1 .

Theorem 1.3 (Tusyadej, Page 4 of Berge [1]). A nonincreasing integer sequence d = (d1, d2, . . . , dn) is the degree sequence of a
connected r-uniform hypergraph (possibly with multiple edges) if and only if each of the following holds

(i)
n

i=1 di is a multiple of r;
(ii) dn ≥ 1; and
(iii)

n
i=1 di ≥ max{ r(n−1)

r−1 , rd1}.

Degree sequence problems of hypergraphs are much harder than those of graphs. Actually the characterizations of hy-
pergraphic sequences is still open for r ≥ 3 (see [1,2,6,7,9]). The problem seems to be difficult even for r = 3. In [5], only
the necessary condition for a hypergraphic sequence was given for r = 3. In fact, in [6], the authors reported that they were
neither able to give a polynomial time algorithm nor able to prove that the problem is NP-complete even for r = 3.

In this paper, we investigate necessary and sufficient conditions for an r-uniform hypergraphic sequence to have a
k-edge-connected realization. Our main results, Theorems 1.4 and 1.5 below, generalize Theorems 1.1–1.3, respectively.

Theorem 1.4. An r-uniform hypergraphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization if and only if

(i) di ≥ k for i = 1, 2, . . . , n;
(ii)

n
i=1 di ≥

r(n−1)
r−1 if k = 1.

Theorem 1.5. A nonincreasing integer sequence d = (d1, d2, . . . , dn) is the degree sequence of a k-edge-connected r-uniform
hypergraph (possibly with multiple edges) if and only if each of the following holds

(i)
n

i=1 di is a multiple of r;
(ii) dn ≥ k; and
(iii)

n
i=1 di ≥ max{ r(n−1)

r−1 , rd1}.

In Sections 2 and 3, wewill present the proofs of Theorems 1.4 and 1.5 respectively. A further conjecturewill be proposed
in Section 4.

2. The proof of Theorem 1.4

The main effort will be the proof for the sufficiency. We will first show that d has an h-edge connected realization H for
some h ≥ 1. If h < k, then we will show that it is possible to perform some edge switching to find a d-realization with
higher edge connectivity.
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The following lemmas hold for any possibly nonsimple hypergraph.

Lemma 2.1. Let H be an r-uniform hypergraph on n vertices. If H is connected, then |E(H)| ≥
n−1
r−1 . Moreover, the equality holds

if and only if for any edge E ∈ E(H),H − E has r components.

Proof. We establish the inequality by induction on n. If n = r , then it has an edge containing all vertices and so |E(H)| ≥ 1
(|E(H)| = 1 for simple hypergraphs). Assume that n ≥ r+1 and that the inequality holds for smaller values of n. We remove
edges from H one by one until there are at least 2 components. Let H1,H2, . . . ,Ht be these components. Removing a single
edge can only create at most r components, thus 2 ≤ t ≤ r . Suppose that the number of vertices in Hi is ni for 1 ≤ i ≤ t .
Then

t
i=1 ni = n. By the inductive hypothesis, |E(Hi)| ≥

ni−1
r−1 . Thus |E(H)| ≥

t
i=1 |E(Hi)|+1 =

n−t
r−1 +1 ≥

n−r
r−1 +1 =

n−1
r−1 .

Now suppose that the equality holds. If there exists an edge E0 ∈ E(H) such that H − E0 has less than r components,
denoted by H1,H2, . . . ,Ht , where 1 ≤ t < r . Let ni be the number of vertices in Hi for 1 ≤ i ≤ t . Then

t
i=1 ni = n. Since

each Hi is a connected r-uniform hypergraph, |E(Hi)| =
ni−1
r−1 . Then |E(H)| =

t
i=1 |E(Hi)|+1 =

n−t
r−1 +1 > n−r

r−1 +1 =
n−1
r−1 ,

contrary to |E(H)| =
n−1
r−1 . Hence for any edge E ∈ E(H),H − E has r components.

To prove the sufficiency of the second part, we argue by induction on n. If n = r , then |E(H)| = 1 =
n−1
r−1 , and so we

assume that n > r and it holds for smaller values of n. Pick E ∈ E(H). Let H1,H2, . . . ,Hr be the components of H − E
and ni = |V (Hi)| for i = 1, 2, . . . , r . We claim that for each i and any edge E ′

∈ E(Hi),Hi − E ′ has r components. If
not, then there exist j with 1 ≤ j ≤ r and an edge E ′′

∈ E(Hj) such that Hj − E ′′ has less than r components. Then
H − E ′′

= (Hj − E ′′) ∪ (∪i≠j Hi) + {E} has less than r components, contrary to the assumption. Hence the claim holds and
by induction, |E(Hi)| =

ni−1
r−1 . Thus |E(H)| =

r
i=1 |E(Hi)| + 1 =

n−r
r−1 + 1 =

n−1
r−1 , completing the proof. �

Lemma 2.2. Let H be an r-uniform h-edge-connected hypergraph and [X, X] be an edge-cut of size h. Then for any vertex u ∈ X
with dH(u) > h and for any vertex v ∈ X, there exist vertices u2, u3, . . . , ur ∈ X such that {u, u2, . . . , ur} ∈ E(H) and
{v, u2, . . . , ur} ∉ E(H).

Proof. Let dH(u) = k and k′ be the number of (X, X)-crossing edges containing u. Then k′
≤ h < k, and there are k − k′

exact-X-crossing edges containing u. That is, there exist distinct (r − 1)-subsets U1,U2, . . . ,U(k−k′) of X such that for each
i = 1, 2, . . . , k − k′,Ui ∪ {u} ∈ E(H). Let v be any vertex in X . If for each i = 1, 2, . . . , k − k′,Ui ∪ {v} ∈ E(H), then
|[X, X]| ≥ k′

+(k−k′) > h, contrary to |[X, X]| = h. Thus there exists a setUj where 1 ≤ j ≤ k−k′ such thatUj∪{v} ∉ E(H).
Let Uj = {u2, u3, . . . , ur}. Then {u, u2, . . . , ur} ∈ E(H) but {v, u2, . . . , ur} ∉ E(H). �

Lemma 2.3. Let d be a sequence satisfying Theorem 1.4(i) and (ii). Then for any disconnected d-realization H with components
H1,H2, . . . ,Hl, there exists an edge E ∈ E(Hj) such that the number of components of Hj − E is at most r − 1, for some j with
1 ≤ j ≤ l.

Proof. Suppose that there is no such edge E ∈ E(Hi) for i = 1, 2, . . . , l. Let |V (H)| = n and |V (Hi)| = ni for each i = 1,
2, . . . , l. By Lemma 2.1, |E(Hi)| =

ni−1
r−1 . Thus |E(H)| =

l
i=1 |E(Hi)| =

n1+n2+···+nl−l
r−1 =

n−l
r−1 < n−1

r−1 , and so
n

i=1 di =

r|E(H)| < r(n−1)
r−1 , contrary to Theorem 1.4(ii). �

Lemma 2.4. Suppose that H is an r-uniform hypergraph with edges E0 = {u, x2, x3, . . . , xr} and F0 = {v, y2, y3, . . . , yr}. Let
H ′ be a hypergraph obtained from H by deleting edges E0 and F0, and adding edges {v, x2, x3, . . . , xr} and {u, y2, y3, . . . , yr}. Let
Z be a nonempty proper subset of V (H). If dH ′(Z) < dH(Z), then one of the following must hold.

(i) u, y2, y3, . . . , yr ∈ Z, v ∈ Z and at least one of x2, x3, . . . , xr is in Z;
(ii) u, y2, y3, . . . , yr ∈ Z, v ∈ Z and at least one of x2, x3, . . . , xr is in Z;
(iii) v, x2, x3, . . . , xr ∈ Z, u ∈ Z and at least one of y2, y3, . . . , yr is in Z;
(iv) v, x2, x3, . . . , xr ∈ Z, u ∈ Z and at least one of y2, y3, . . . , yr is in Z.

Proof. By symmetry, it suffices to show one of the cases. Since dH ′(Z) < dH(Z), at least one of the two new edges ofH ′ is not
(Z, Z)-crossing.Without loss of generality, wemay assume that u, y2, y3, . . . , yr ∈ Z . Then v ∈ Z , otherwise, F0 is not (Z, Z)-
crossing in H , and thus removing F0 will not decrease the number of (Z, Z)-crossing edges, contrary to dH ′(Z) < dH(Z).
Similarly, if x2, x3, . . . , xr ∈ Z , then E0 is not (Z, Z)-crossing in H and thus removing E0 will not decrease the number of
(Z, Z)-crossing edges, contrary to dH ′(Z) < dH(Z). Thus at least one of x2, x3, . . . , xr is in Z , completing the proof of (i). �

Let h be a positive integer, an h-minimal set of a hypergraph H is a nonempty proper subset X of V (H) with dH(X) = h
such that for any nonempty proper subset X ′ of X, dH(X ′) > h. By definition, if H is h-edge-connected, then any subset
S ⊆ V (H) with dH(S) = h contains an h-minimal set of H .

Lemma 2.5. Suppose that X is an h-minimal set of an r-uniform hypergraph H. Let X1 and X2 be nonempty proper subsets of X
with X1 ∪ X2 = X. Then each of the following statements holds.
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H

(a) H . (b) G.

Fig. 1. The construction of G from H .

(i) |EH
X1X2

| ≥ |EH
X1X

| + 1 and |EH
X1X2

| ≥ |EH
X2X

| + 1.

(ii) |EH
X1X2

| ≥
h
2 −

|EH
X1X2X

|

2 + 1.

Proof. (i) Since X is an h-minimal set ofH, dH(X) = |EH
X1X

|+|EH
X2X

|+|EH
X1X2X

| = h and dH(X1) = |EH
X1X

|+|EH
X1X2

|+|EH
X1X2X

| ≥

h + 1. Thus |EH
X1X2

| ≥ |EH
X2X

| + 1. By symmetry, |EH
X1X2

| ≥ |EH
X1X

| + 1.

(ii) By (i), 2|EH
X1X2

| + |EH
X1X2X

| ≥ |EH
X1X

| + 1 + |EH
X2X

| + 1 + |EH
X1X2X

| = h + 2. Thus |EH
X1X2

| ≥
h
2 −

|EH
X1X2X

|

2 + 1. �

Suppose that [Z, Z] is an edge-cut of a hypergraph H . Let X1, Y1 ⊆ Z with X1 ∩ Y1 = ∅ and X2, Y2 ⊆ Z with X2 ∩ Y2 = ∅.
Let EH

O be the set of all other edges of [Z, Z] which are not in EH
X1X2

and EH ′

Y1Y2
. Then

dH(Z) = |EH
X1X2 | + |EH

Y1Y2 | + |EH
O |. (1)

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that d has a k-edge-connected r-uniform realization H . For any vertex v ∈ V (H) whose
degree is di, di = |[{v}, V − {v}]| ≥ k, for i = 1, 2, . . . , n. When k = 1, by Lemma 2.1, |E(H)| ≥ ⌈

n−1
r−1 ⌉, and so

n
i=1 di

≥
r(n−1)
r−1 .

To prove the sufficiency, let h be the maximum edge connectivity among all d-realizations. By contradiction, we assume
that

h < k. (2)

First we prove that h ≥ 1 by showing that d has a simple connected r-uniform realization. Let H be a simple r-uniform
d-realization with l components such that

l is minimized. (3)

If l = 1, thenH is connected, andwe are done. Hencewemay assume that l ≥ 2 and letH1,H2, . . . ,Hl be the components
of H .

By Lemma 2.3, we may assume that H1 has an edge E = {u1, u2, . . . , ur} such that H1 − E has a component U with
u1, u2 ∈ V (U). Let E ′

= {v1, v2, . . . , vr} ∈ E(Hi) for some i with i > 1. Let G be a hypergraph obtained from H by deleting
edges E and E ′, and adding edges {v1, u2, u3, . . . , ur} and {u1, v2, v3, . . . , vr}, as shown in Fig. 1. Then V (Hi) and V (H1) are in
the same component of G, and for each jwith 1 ≤ j ≤ l, vertices in V (Hj) are in the same component of G. Thus the number
of components of G is at most l−1, contrary to (3). Therefore there exists a connected r-uniform d-realization, and so h ≥ 1.

Let H be an r-uniform d-realization with edge connectivity h and

with fewest number of edge-cuts of size h. (4)

Let X be an h-minimal set of H . Since dH(X) = h, X must contain an h-minimal set, denoted by Y . Since H is connected,
there exist u ∈ X, v ∈ Y and a path P = (u, F1, w1, F2, w2, . . . , Ft , v) such that

F1 is (X, X)-crossing and Ft is (Y , Y )-crossing. (5)

By Theorem 1.4(i), dH(u) ≥ k > h = |[X, X]|. Then by Lemma 2.2, there exist vertices x2, x3, . . . , xr ∈ X such that E1 =

{u, x2, x3, . . . , xr} ∈ E(H) but {v, x2, x3, . . . , xr} ∉ E(H). Similarly, there exist y2, y3, . . . , yr ∈ Y such that E2 =

{v, y2, y3, . . . , yr} ∈ E(H) but {u, y2, y3, . . . , yr} ∉ E(H). Let H ′ be the hypergraph obtained from H by deleting edges E1
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(a) H . (b) H ′ .

Fig. 2. The construction of H ′ from H .

and E2, and by adding edges E ′

1 = {v, x2, x3, . . . , xr} and E ′

2 = {u, y2, y3, . . . , yr}, as shown in Fig. 2. Then dH ′(X) = h+2 and
dH ′(Y ) = h+ 2. By the definition of H ′, E(H ′) = (E(H)−{E1, E2})∪ {E ′

1, E
′

2}. An edge-cut is new if it is not an edge-cut of H .

Claim 1. If H ′ has a new edge-cut [Z, Z] of size at most h, then each of the following holds.

(i) H has an (X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z)-crossing edge.
(ii) H has no edges crossing exactly three of X ∩ Z, X ∩ Z, Y ∩ Z and Y ∩ Z.

Proof of Claim 1. Suppose that H ′ introduces a new edge-cut [Z, Z]with size≤ h. Then dH ′(Z) ≤ h < dH(Z). By Lemma 2.4
and by symmetry, we may assume that u, y2 ∈ Z and v, x2 ∈ Z , as shown in Fig. 3.

LetX∩Z = X1, X∩Z = X2, Y∩Z = Y1 and Y∩Z = Y2. By Lemma2.5, |EH
X1X2

| ≥
h
2−

|EH
X1X2X

|

2 +1 and |EH
Y1Y2

| ≥
h
2−

|EH
Y1Y2Y

|

2 +1.
By the construction of H ′ from H , we have |EH ′

X1X2
| = |EH

X1X2
| − 1 and |EH ′

Y1Y2
| = |EH

Y1Y2
| − 1. By (1),

dH ′(Z) = |EH ′

X1X2 | + |EH ′

Y1Y2 | + |EH ′

O |

= |EH
X1X2 | + |EH

Y1Y2 | + |EH ′

O | − 2

≥ h + |EH ′

O | −

|EH
X1X2X

|

2
−

|EH
Y1Y2Y

|

2

= h +

|EH ′

O | − |EH
X1X2X

|

2
+

|EH ′

O | − |EH
Y1Y2Y

|

2
.

By (5), there must be an edge in EH ′

O contained in the path P and so EH ′

O ≠ ∅. Since EH
X1X2X

and EH
Y1Y2Y

are subsets of EH ′

O ,

if one of them is a proper subset of EH ′

O , then dH ′(Z) > h, contrary to dH ′(Z) ≤ h. Thus EH
X1X2X

= EH
Y1Y2Y

= EH ′

O ≠ ∅. By the

definitions of EH
X1X2X

and EH
Y1Y2Y

, there exists an (X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z)-crossing edge, and there are no edges crossing

exactly three of X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z . This completes the proof of Claim 1. �

Since [X, X]H ′ is no longer an edge-cut of size h in H ′, if there is not a new edge-cut with size at most h in H ′, then the
number of edge-cuts with size h of H ′ is less than that of H , contrary to (4). Thus, wemay assume that H ′ has a new edge-cut
[Z, Z]H ′ with size at most h. By Claim 1, there is an edge E0 = {a1, a2, . . . , ar} ∈ E(H) which is (X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z)-
crossing with minimized |E0 ∩ X |. (Notice that if r = 3, then H can never have such an edge, contrary to Claim 1. Hence we
may assume that, in the rest of the proof, r ≥ 4.)

Denote E0∩X = {a1, a2, . . . , as}, where 2 ≤ s ≤ r−2. As Y \E0 ≠ ∅, let b1 ∈ Y \E0. Since dH(b1) ≥ k > h, by Lemma 2.2,
there exist vertices b2, b3, . . . , br ∈ Y such that F0 = {b1, b2, . . . , br} ∈ E(H) but E ′

0 = {a1, b2, b3, . . . , br} ∉ E(H). See
Fig. 4(a).

If F ′

0 = {b1, a2, . . . , ar} ∈ E(H), then F ′

0 crosses at least three of X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z . By Claim 1(ii), F ′

0 is
(X ∩ Z, X ∩ Z, Y ∩ Z, Y ∩ Z)-crossing, contrary to the minimality of |E0 ∩ X |. Thus F ′

0 = {b1, a2, . . . , ar} ∉ E(H). Let
H ′′ be the hypergraph obtained from H by replacing E0 and F0 by E ′

0 and F ′

0, as shown in Fig. 4(b).

Claim 2. H ′′ does not have any new edge-cut of size at most h.

Proof of Claim 2. Suppose that there is a new edge-cut [D,D] of H ′′ with size at most h. Then dH ′′(D) ≤ h < dH(D). By
Lemma 2.4 and by symmetry, we may assume that a1 ∈ D and b1 ∈ D, as depicted in Fig. 5.
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(a) H . (b) H ′ .

Fig. 3. New edge-cut [Z, Z] in H ′ .

(a) H . (b) H ′′ .

Fig. 4. The construction of H ′′ from H .

(a) H . (b) H ′′ .

Fig. 5. New edge-cut [D,D] in H ′′ .

LetX∩D = X3, X∩D = X4, Y∩D = Y3 andY∩D = Y4. By Lemma2.5, |EH
X3X4

| ≥
h
2−

|EH
X3X4X

|

2 +1 and |EH
Y3Y4

| ≥
h
2−

|EH
Y3Y4Y

|

2 +1.
By the construction of H ′′ from H , we have |EH ′′

X3X4
| = |EH

X3X4
| and |EH ′′

Y3Y4
| = |EH

Y3Y4
| − 1. By (1),

dH ′′(D) = |EH ′′

X3X4 | + |EH ′′

Y3Y4 | + |EH ′′

O |

= |EH
X3X4 | + |EH

Y3Y4 | + |EH ′′

O | − 1

≥ h + 1 + |EH ′′

O | −

|EH
X3X4X

|

2
−

|EH
Y3Y4Y

|

2
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≥ h + |EH ′′

O ∪ {E0}| −

|EH
X3X4X

|

2
−

|EH
Y3Y4Y

|

2

= h +

|EH ′′

O ∪ {E0}| − |EH
X3X4X

|

2
+

|EH ′′

O ∪ {E0}| − |EH
Y3Y4Y

|

2
.

Since EH
X3X4X

and EH
Y3Y4Y

are subsets of EH ′′

O ∪{E0}, if one of them is a proper subset of EH ′′

O ∪{E0}, then dH ′′(D) > h, contrary

to dH ′′(D) ≤ h. Hence EH
X3X4X

= EH
Y3Y4Y

= EH ′′

O ∪ {E0}. Then E0 ∈ EH
X3X4X

∩ EH
Y3Y4Y

, which means E0 = {a1, a2, . . . , ar} must

be (X3, X4, Y3, Y4)-crossing. Thus the new edge F ′

0 = {b1, a2, . . . , ar} must be in EH ′′

O . But F ′

0 is not an edge in H , whence it is
not in EH

X3X4X
and EH

Y3Y4Y
, contrary to EH

X3X4X
= EH

Y3Y4Y
= EH ′′

O ∪ {E0}. This completes the proof of Claim 2. �

By Claim 2, the number of edge-cuts of size h of H ′′ is less than that of H , contrary to (4). Thus a contradiction will always
occur if (2) holds, and so we must have h = k. �

3. The proof of Theorem 1.5

The necessity of Theorem 1.5 is straightforward. We only need to prove the sufficiency. The argument to prove the
sufficiency of Theorem 1.5 is similar to that in the proof of Theorem 1.4. Theorem 1.5 can now be established by combining
the two lemmas below.

Lemma 3.1 (Gale [10], Ryser [11], See also Page 5 of Berge [1]). A nonincreasing integer sequence d = (d1, d2, . . . , dn) is the
degree sequence of an r-uniform hypergraph (possibly with multiple edges) if and only if

(i)
n

i=1 di is a multiple of r;
(ii)

n
i=1 di ≥ rd1.

Lemma 3.2. An r-uniform multi-hypergraphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization if and only if

(i) di ≥ k for i = 1, 2, . . . , n;
(ii)

n
i=1 di ≥

r(n−1)
r−1 if k = 1.

Proof. The proof is essentially identical to that of Theorem 1.4 (except that now we do not need to avoid multiple edges),
thus, it is omitted here. �

4. Concluding remark

A hypergraphH is linear if for any two distinct edges E and F inH, |E∩F | ≤ 1. A sequence d is linear hypergraphic if there
is a linear hypergraph with degree sequence d. Usually problems of linear hypergraphic sequences are more difficult than
those of hypergraphic sequences. The proof of Theorem 1.4 cannot be applied to linear uniform hypergraphic sequences
since the graphs constructed in the proof may not be linear. However, we believe that the following analog of Theorem 1.4
for linear r-uniform hypergraphs holds.

Conjecture 4.1. A linear r-uniform hypergraphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization if and only
if

(i) di ≥ k for i = 1, 2, . . . , n;
(ii)

n
i=1 di ≥

r(n−1)
r−1 if k = 1.
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