## Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.


(This is a sample cover image for this issue. The actual cover is not yet available at this time.)
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are
encouraged to visit:

# Hamilton cycles in 3-connected claw-free and net-free graphs* 

Wei Xiong ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {a,b,* }}$, Xiaoling Ma ${ }^{\text {a }}$, Keke Wang ${ }^{\text {b }}$, Meng Zhang ${ }^{\text {b }}$<br>a College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China<br>${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

## A R TICLE INFO

## Article history:

Received 16 March 2012
Received in revised form 20 December 2012
Accepted 21 December 2012

## Keywords:

Hamiltonian graphs
Forbidden subgraphs
Claw-free graphs
Net-free graphs
$P_{k}$-free graphs
Supereulerian graphs


#### Abstract

For an integer $s_{1}, s_{2}, s_{3}>0$, let $N_{s_{1}, s_{2}, s_{3}}$ denote the graph obtained by identifying each vertex of a $K_{3}$ with an end vertex of three disjoint paths $P_{s_{1}+1}, P_{s_{2}+1}$, and $P_{s_{3}+1}$ of length $s_{1}, s_{2}$, and $s_{3}$, respectively. We determine a family $\mathcal{F}$ of graphs such that, every 3 -connected ( $K_{1,3}, N_{s_{1}, s_{2}, 1}$ )-free graph $\Gamma$ with $s_{1}+s_{2}+1 \leq 10$ is hamiltonian if and only if the closure of $\Gamma$ is $L(G)$ for some graph $G \notin \mathcal{F}$. We also obtain the following results. (i) Every 3-connected ( $K_{1,3}, N_{s_{1}, s_{2}, s_{3}}$ )-free graph with $s_{1}+s_{2}+s_{3} \leq 9$ is hamiltonian. (ii) If $G$ is a 3 -connected ( $K_{1,3}, N_{s_{1}, s_{2}, 0}$ )-free graph with $s_{1}+s_{2} \leq 9$, then $G$ is hamiltonian if and only if the closure of $G$ is not the line graph of a member in $\mathcal{F}$. (iii) Every 3-connected ( $K_{1,3}, N_{s_{1}, s_{2}, 0}$ )-free graph with $s_{1}+s_{2} \leq 8$ is hamiltonian.


© 2012 Elsevier B.V. All rights reserved.

## 1. Introduction

We consider finite loopless graphs. Undefined terms and notation will follow [2]. For a graph $G$ which contains at least one cycle, the circumference of $G$, denoted by $c(G)$, is the length of a longest cycle contained in $G$; and the girth of $G$, denoted by $g(G)$, is the length of a shortest cycle contained in $G$. By $H \subseteq G$ we mean that $H$ is a subgraph of $G$. If $H \subseteq G$, then the set of vertices of attachments of $H$ in $G$ is defined as

$$
A_{G}(H)=\left\{v \in V(H): N_{G}(v)-V(H) \neq \emptyset\right\} .
$$

For an integer $i \geq 0$ and $v \in V(G)$, define

$$
D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}, \quad \text { and } \quad E_{G}(v)=\{e \in E(G): e \text { is incident with } v \text { in } G\} .
$$

For a vertex $v \in V(G)$, define $N_{G}(v)=\{u \in V(G) \mid v u \in E(G)\}$. The subscript $G$ in the notations above might be omitted if $G$ is understood from the context.

Let $G$ be a graph and $X \subseteq E(G)$ be an edge subset. The contraction $G / X$ is the graph obtained from $G$ by identifying the two ends of each edge in $X$ and then deleting the resulting loops. We define $G / \emptyset=G$. If $H \subseteq G$, then we write $G / H$ for $G / E(H)$. If $H$ is a connected subgraph of $G$, and if $v_{H}$ is the vertex in $G / H$ onto which $H$ is contracted, then $H$ is the preimage of $v_{H}$, and is denoted by $P I_{G}\left(v_{H}\right)$. If $H$ is the preimage of $v_{H}$ in $G / H$, then we also say that $v_{H}$ is lifted to $H$ in $G$. When the graph $G$ is understood from the context, we often use $\operatorname{PI}(v)$ for $P I_{G}(v)$. A vertex $v$ in a contraction of $G$ is nontrivial if $P I(v)$ has at least

[^0]one edge. If $P^{\prime}$ is a path (or cycle, respectively) in $G^{\prime}$, then since for any $v \in V\left(P^{\prime}\right)$, by the definition of contractions, $P I(v)$ is a connected subgraph of $G$, then $P^{\prime}$ can be extended to a path (or a cycle, respectively) of $G$ by adding (possibly empty) paths in each $P I(v)$ to $P^{\prime}$, viewed as the induced subgraph $G\left[E\left(P^{\prime}\right)\right]$. In this case, we say that $P^{\prime}$ is lifted to $P$, or $P$ is a lifting of $P^{\prime}$.

For integer $s_{1}, s_{2}, s_{3}, k \geq 0$, let $P_{k}$ denote a path of $k$ vertices and $N_{s_{1}, s_{2}, s_{3}}$ be the graph obtained by identifying each vertex of a $K_{3}$ with an end vertex of three disjoint paths $P_{s_{1}+1}, P_{s_{2}+1}, P_{s_{3}+1}$, respectively. The graph $N_{0,0, k}$ is also known as $Z_{k}$. For graphs $H_{1}, H_{2}, \ldots, H_{s}$, a graph $G$ is $\left\{H_{1}, H_{2}, \cdots H_{s}\right\}$-free if it contains no induced subgraph isomorphic to a copy of $H_{i}$ for any $i$. A graph $G$ is called claw-free if it is $K_{1,3}$-free.

The line graph of a graph $G$, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in $G$ have at least one vertex in common. Beineke [1] and Robertson [9] showed that line graphs are $K_{1,3}$-free graphs.

Two fascinating conjectures on hamiltonian line graphs and hamiltonian claw-free graphs have attracted the attention of many researchers.

Conjecture 1.1. (i) (Thomassen, [17]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [14]) Every 4-connected $K_{1,3}-$ free graph is hamiltonian.

Ryjáček [15] introduced the line graph closure $\operatorname{cl}(G)$ of a claw-free graph $G$ and used it to show that Conjecture 1.1(i) and (ii) are equivalent. Motivated by Conjecture 1.1, many have investigated forbidden induced subgraph conditions for hamiltonicity. In 1999, Brousek, Ryjáček and Favaron proved the following theorem.

Theorem 1.2 (Brousek, Ryjáček and Favaron [3]). Every 3-connected $\left\{K_{1,3}, N_{0,0,4}\right\}$-free graph is hamiltonian.
In 2010, Lai et al. extended Theorem 1.2 by showing a best possible result stated below.
Theorem 1.3 (Lai, Xiong, Yan, and Yan [11]). Every 3-connected $\left\{K_{1,3}, N_{0,0,8}\right\}$-free graph is hamiltonian.
A recent research by Ma et al. [13] determined two well characterized families of graphs $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ such that both conclusions in the following hold.

Theorem 1.4 (Ma et al. [13]). (i) A 3-connected $\left\{K_{1,3}, N_{0,0,9}\right\}$-free graph $G$ is hamiltonian if and only if the closure of $G$ is not the line graph of a graph in $\mathcal{F}_{1}$.
(ii) A 3-connected $\left\{K_{1,3}, P_{12}\right\}$-free graph $G$ is hamiltonian if and only if the closure of $G$ is not the line graph of a graph in $\mathcal{F}_{2}$.

The main purpose of this paper is to extend the theorems above.
Throughout this paper, we use $P(10)$ to denote the Petersen graph. Let $s \geq 1$ be an integer. When $s>1$, the vertex of degree $s$ in $K_{1, s}$ is the center of $K_{1, s}$. When $s=1$, any vertex of $K_{1,1}$ is a center of it. A graph is a star if it is isomorphic to a $K_{1, s}$. Let $\mathcal{F}$ denote the family of graphs such that $L \in \mathcal{F}$ if and only if $F$ is obtained from $P(10)$ by identifying every vertex $v \in V(P(10))$ with the center of a star $K_{1, s(v)}$, where $s(v) \geq 1$.

Theorem 1.5. Let $s_{1}, s_{2}, s_{3}>0$ be integers such that $s_{1}+s_{2}+s_{3} \leq 10$.
(i) If $s_{1}+s_{2}+1 \leq 10$, every 3 -connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, 1}\right\}$-free graph $\Gamma$ is hamiltonian if and only if the closure of $\Gamma$ is the line $\operatorname{graph} L(G)$ for some graph $G \notin \mathcal{F}$.
(ii) If $s_{1}+s_{2}+s_{3} \leq 9$, every 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, s_{3}}\right\}$-free graph is hamiltonian.
(iii) If $s_{1}+s_{2} \leq 9$, every 3 -connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, 0}\right\}$-free graph $\Gamma$ is hamiltonian if and only the closure of $\Gamma$ is the line graph $L(G)$ for some graph $G \notin \mathcal{F}$.
(iv) If $s_{1}+s_{2} \leq 8$, every 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, 0}\right\}$-free graph is hamiltonian.

This result motivates the following conjecture. If $s_{1}+s_{2}+s_{3} \leq 10$, every 3-connected $\left\{K_{1,3}, N_{s_{1}, s_{2}, s_{3}}\right\}$-free graph $\Gamma$ is hamiltonian if and only if the closure of $\Gamma$ is the line graph $L(G)$ for some graph $G \notin \mathcal{F}$. Our strategy in this paper is to apply Ryjáček's line graph closure to convert the problem to a line graph problem. Therefore, we want to prove that if a 3connected line graph $L(G)$ does not have the indicated $N_{s_{1}, s_{2}, s_{3}}$ as an induced subgraph, then either $L(G)$ has a Hamilton cycle or $G \in \mathcal{F}$. Using a recent theorem of Ma et al. in [13], we approach the problem via two routes: when $G$ can be contracted to the Petersen graph, we show that $G \in \mathcal{F}$; and when $G$ cannot be contracted to the Petersen graph, we show that $L(G)$ will have an induced $N_{s_{1}, s_{2}, s_{3}}$ to obtain a contradiction. Our arguments will apply Catlin's reduction method. In Section 2 , we display the basics of Catlin's reduction method and other related tools we have developed to be used in the arguments. The proof of the main result is in the last section.

## 2. Catlin's reduction and Ryjáček's line graph closure

Following [2], $\kappa(G)$ and $\kappa^{\prime}(G)$ denote connectivity and edge connectivity of $G$, respectively. Given vertices $u, v \in V(G)$, a path $P$ in $G$ from $u$ to $v$ is referred to as a $(u, v)$-path, and is often denoted by $P(u, v)$ to emphasize the end vertices. A subpath of a path $P$ is defined to be a path that is a subgraph of $P$. For convenience of discussion, cycles are often given with an orientation. For a cycle $C=u_{1} u_{2} \cdots u_{l} u_{1}, C\left[u_{i}, u_{j}\right]$ denotes the consecutive vertices on $C$ from $u_{i}$ to $u_{j}$ in the chosen direction of $C$, and $C\left(u_{i}, u_{j}\right]=C\left[u_{i}, u_{j}\right]-\left\{u_{i}\right\}, C\left[u_{i}, u_{j}\right)=C\left[u_{i}, u_{j}\right]-\left\{u_{j}\right\}$ and $C\left(u_{i}, u_{j}\right)=C\left[u_{i}, u_{j}\right]-\left\{u_{i}, u_{j}\right\}$.

### 2.1. Catlin's reduction method

We shall apply Catlin's reduction using collapsible graphs. For a graph $G$, let $O(G)$ denote the set of odd degree vertices in $G$. In [4], Catlin discovered collapsible graphs. A graph $G$ is collapsible if for any $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2)$, $G$ has a spanning connected subgraph $T_{R}$ with $O\left(T_{R}\right)=R$. Catlin showed in [4] that for any graph $G$, every vertex of $G$ lies in a unique maximal collapsible subgraph of $G$. The reduction of $G$, denoted by $G^{\prime}$, is obtained from $G$ by contracting all maximal collapsible subgraphs of $G$. A graph is reduced if it is the reduction of some graph. The next theorem summarizes the most frequently applied properties.

Theorem 2.1 (Catlin, [4]). Let $G$ be a connected graph, $H$ be a collapsible subgraph of $G, v_{H}$ the vertex in $G / H$ with $P I_{G}\left(v_{H}\right)=H$, and $G^{\prime}$ the reduction graph of $G$. Then each of the following holds.
(i) (Theorem 3 of [4]) $G$ is collapsible if and only if $G / H$ is collapsible. In particular, $G$ is collapsible if and only if the reduction $G^{\prime}=K_{1}$.
(ii) (Theorem 5 of [4]) $G$ is reduced if and only if $G$ has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [4]) $G^{\prime}$ is simple, $g\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(iv) (Theorem 8 of [4]) $G$ is supereulerian if and only if $G^{\prime}$ is supereulerian.
(v) (Theorem 8 of [4]) If $L^{\prime}$ is an open (or closed, respectively) trail of $G / H$ such that $v_{H} \in V\left(L^{\prime}\right)$, then $G$ has an open (or closed, respectively) trail $L$ with $E\left(L^{\prime}\right) \subseteq E(L)$ and $V(H) \subseteq V(L)$.
(vi) (Lemma 1 of [5]) $K_{3,3}-e$ is collapsible.
(vii) (Theorem 1.3 of [6]) If a connected graph $G$ is at most two edges short of having two edge-disjoint spanning trees, then the reduction of $G$ must be in $\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, t}: t \geq 1\right\}$.

Chen [7] showed that every 3-edge-connected graph with at most 11 vertices is either supereulerian or contractible to the Petersen graph. It has also been observed [8] that Petersen graph is the smallest obstacle in searching for spanning eulerian subgraphs. Ma et al. proved something more general.

Theorem 2.2 (Ma et al., [13]). Let $G$ be a 3-edge-connected simple graph. If $c(G) \leq 11$, then $G$ is supereulerian if and only if $G$ is not contractible to the Petersen graph.

We need a few more lemmas in the arguments of our proofs. Lemma 2.3 can be routinely verified.
Lemma 2.3. Let $P(10)$ denote the Petersen graph. For any vertices $u_{1}, u_{2} \in V(P(10))$ such that $u_{1} u_{2} \in E(P(10))$, both $P(10)-u_{1}$ and $P(10)-\left\{u_{1}, u_{2}\right\}$ are hamiltonian.

Lemma 2.4. Let $G$ be a graph with $\kappa^{\prime}(G) \geq 3, H \subset G$ be an induced connected subgraph of $G$, and let $v_{H}$ be the vertex in $G / H$ with $\operatorname{PI}\left(v_{H}\right)=H$. If $v_{H}$ has degree at most $3 \mathrm{in} G / H$, each of the following holds.
(i) If $|V(H)| \leq 5$, then $H$ is collapsible unless $H \cong K_{2,3}$ with $A_{G}(H)=D_{2}(H)$.
(ii) If $H$ is not collapsible, then for any $u \in A_{G}(H), H$ has a path of length at least 4 with $u$ being an end vertex.

Proof. We argue by induction on $|V(H)|$. Since $\kappa^{\prime}(G) \geq 3$ and $d_{G / H}\left(v_{H}\right) \leq 3, \kappa^{\prime}(H) \geq 2$. By Theorem 2.1(iii), any 2-edge-connected graph with at most 3 vertices must be collapsible. Hence the lemma holds when $|V(H)| \leq 3$. Assume that $|V(H)| \geq 4$ and the lemma holds for smaller values of $|V(H)|$. Suppose that $H$ has a nontrivial collapsible subgraph $L$. Let $G^{\prime}=\bar{G} / L$ and $H^{\prime}=H / L$. By the definition of contraction, $\kappa\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq 3, H^{\prime} \subseteq G^{\prime}$ is an induced subgraph, and $G / H \cong G^{\prime} / H^{\prime}$ such that $v_{H}$ has degree 3 in both $G / H \cong G^{\prime} / H^{\prime}$. Since $L$ is nontrivial, $\left|V\left(H^{\prime}\right)\right|<|V(H)|$. By induction, either $H^{\prime}$ is collapsible, whence by Theorem 2.1(i), $H$ is collapsible; or $H^{\prime} \cong K_{2,3}$, whence $5=\left|V\left(H^{\prime}\right)\right|<|V(H)| \leq 5$, a contradiction. If $H$ has a cut vertex $z$, then $H$ has two connected subgraphs $H_{1}$ and $H_{2}$ with $\min \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} \geq 2$ such that $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{z\}$ and $H=H_{1} \cup H_{2}$. By induction, either both $H_{i}$ 's are collapsible, whence by Theorem 2.1(i), $H$ is collapsible; or one of the $H_{i}$ ' is isomorphic to $K_{2,3}$, whence $5=\left|V\left(H^{\prime}\right)\right|<|V(H)| \leq 5$, a contradiction. Thus, we may assume that
$H$ is reduced and $\kappa(H) \geq 2$.
Let $C$ be a longest cycle of $H$ that contains $u$. If $|V(H)|=4$, then $|V(C)|=4$ and so $V(C)=V(H)$. Since $\left|A_{G}(H)\right| \leq 3$, and since $\delta(G) \geq \kappa^{\prime}(G) \geq 3$, $H$ must have a cycle of length at most 3 , whence $H$ must be collapsible, contrary to (2.1). Hence we assume that $|V(H)| \geq 5$.

If $|V(H)|=|V(C)|=5$, then by $\delta(G) \geq \kappa^{\prime}(G) \geq 3, C$ has two chords, whence $H$ must be collapsible, contrary to (2.1). Hence $|V(C)|=4$. As $\kappa^{\prime}(G) \geq 3$ and $|V(H)|=5, H \cong K_{2,3}$ and $A_{G}(H)=D_{2}(H)$, and so (i) holds.

Now assume that $H$ is not collapsible. If $H \cong K_{2,3}$ or if $|V(C)| \geq 5$, then (ii) holds trivially. Hence we assume that $|V(H)| \geq 6$ and $|V(C)|=4$. Choose a maximum $t \geq 2$ such that $K_{2, t} \subset H$ and $u \in V\left(K_{2, t}\right)$. If $V\left(K_{2, t}\right)=V(H)$, then since $|V(H)| \geq 6, t \geq 6-2=4$. Since $\left|A_{G}(H)\right| \leq 3$, there must be a vertex $u^{\prime} \in D_{2}(H)-A_{G}(H)$. By $\kappa^{\prime}(G) \geq 3,\left|E_{H}\left(u^{\prime}\right)\right| \geq 3$, implying that $H$ contains a cycle of length at most 3, contrary to (2.1) and Theorem 2.1(iii).

Thus there must be a vertex $u^{\prime \prime} \in V(H)-V\left(K_{2, t}\right)$. Since $\kappa(H) \geq 2, H$ has two paths $P_{1}^{\prime}, P_{2}^{\prime}$ from $u^{\prime \prime}$ to two distinct vertices of $K_{2, t}$. It follows that $H$ has a cycle of length at least 5 , contrary to the assumption that $C$ is a longest cycle of $H$ containing $u$. This proves Lemma 2.4.


Fig. 1. Examples of $Y_{s_{1}, s_{2}, s_{3}}$ and $N_{s_{1}, s_{2}, s_{3}}$.


Fig. 2. Non-collapsible graphs in Lemma 2.7.


Fig. 3. Some collapsible graphs: $W_{3}^{\prime}, L_{2}$ and $L_{3}$.

Lemma 2.5. Let G be a 2-connected graph, then every 3 vertices are on a path.
Proof. Let $u_{1}, u_{2}, u_{3} \in V(G)$. Since $\kappa(G) \geq 2, u_{1}$ and $u_{2}$ are in a cycle $C$. Since $G$ is connected, $G$ has a path from $u_{3}$ to $V(C)$, and so $G$ has a path containing $u_{1}, u_{2}$ and $u_{3}$.

For integers $s_{1} \geq s_{2} \geq s_{3} \geq 1$, let $Y_{s_{1}, s_{2}, s_{3}}$ be the graph obtained from disjoint paths $P_{s_{1}+2}, P_{s_{2}+2}$ and $P_{s_{3}+2}$ by identifying an end vertex of each of these three paths. (An example is depicted in Fig. 1.) For integers $h, k>0$, let $L(h, k)$ be the graph obtained by identifying an end vertex of a path $P_{k+1}$ and a vertex in a cycle $C_{h}$ which was disjoint from $P_{k+1}$. The following lemma follows from straightforward observations and definitions.

Lemma 2.6. Let $s_{1}, s_{2}, s_{3} \geq 1$ and $h, k$ be integers, and let $G$ be a graph.
(i) If $k \geq s_{3}+1$ and $h \geq s_{1}+s_{2}+3$, then $Y_{s_{1}, s_{2}, s_{3}} \subseteq L(h, k)$.
(ii) If $Y_{s_{1}, s_{2}, s_{3}} \subseteq G$, then for any $s_{1}^{\prime} \leq s_{1}, s_{2}^{\prime} \leq s_{2}, s_{3}^{\prime} \leq s_{3}, Y_{s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}} \subseteq G$.
(iii) If $Y_{8,1,1}, Y_{7,2,1}, Y_{6,3,1}, Y_{6,2,2}, Y_{5,4,1}, Y_{5,3,2}, Y_{4,4,2}, Y_{4,3,3} \subseteq G$, then for any $s_{1}, s_{2}, s_{3} \geq 1$ with $s_{1}+s_{2}+s_{3} \leq 10, Y_{s_{1}, s_{2}, s_{3}} \subseteq G$.
(iv) If $Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G$, then for any $s_{1}, s_{2}, s_{3} \geq 2$ with $s_{1}+s_{2}+s_{3} \leq 9, Y_{s_{1}, s_{2}, s_{3}} \subseteq G$.
(v) If $Y_{8,1,0}, Y_{7,2,0}, Y_{6,3,0}, Y_{5,4,0} \subseteq G$, then for any $s_{1}, s_{2} \geq 1$ with $s_{1}+s_{2} \leq 9, Y_{s_{1}, s_{2}, 0} \subseteq G$. In particular, if $G$ has an $L(h, 1)$ as a subgraph with $h \geq 12$, then for any $s_{1}, s_{2} \geq 1$ with $s_{1}+s_{2} \leq 9, Y_{s_{1}, s_{2}, 0} \subseteq G$.

Lemma 2.7 (Li, Lai, and Zhan, Lemma 2.1 of [12]). Let $G$ be a connected simple graph with $n \leq 8$ vertices and with $D_{1}(G)=\emptyset$, $\left|D_{2}(G)\right| \leq 2$. Then either $G$ is one of three graphs depicted in Fig. 2, or the reduction of $G$ is $K_{1}$ or $K_{2}$.

Let $C_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ denote a 6-cycle, and $u_{0}, v_{0}$ be vertices not in $V\left(C_{6}\right)$. Define $W_{3}^{\prime} \cong C_{6}+\left\{v_{0} v_{1}, v_{0} v_{3}, v_{0} v_{5}\right\}$, $L_{1} \cong C_{6}+\left\{u_{0} v_{1}, u_{0} v_{3}, u_{0} v_{5}, v_{0} v_{1}, v_{0} v_{3}, v_{0} v_{5}\right\}, L_{2} \cong W_{3}^{\prime}+v_{1} v_{4}$, and $L_{3} \cong C_{6}+\left\{v_{0} v_{1}, v_{0} v_{4}, v_{2} v_{5}\right\}$ (see Fig. 3).

An edge cut $X$ of a graph $G$ is an essential edge cut if both sides of $G-X$ are nontrivial. A graph $G$ is essentially $k$-edgeconnected if $G$ does not have an essential edge cut of size less than $k$.

Lemma 2.8. Each of the following holds.
(i) $L_{1}, L_{2}$, and $L_{3}$ are collapsible.
(ii) Let $G$ be an essentially 3-edge-connected graph with $\kappa^{\prime}(G) \geq 2,\left|D_{2}(G)\right| \leq 3$ and $c(G) \leq 6$. Then either $G$ is collapsible or the reduction of $G$ is in $\left\{K_{2,3}, W_{3}^{\prime}\right\}$.

Proof. Part (i) can be proved using the same method in the proof of Lemma 1 in [5]. It suffices to prove (ii). By contradiction, assume that
$G$ is a counterexample to Lemma $2.8($ ii $)$ with $|V(G)|$ the smallest.
Since contraction does not decrease edge-connectivity and essential edge-connectivity, and does not increase circumference, by Theorem 2.1 (iii) and (2.2), $G$ must be reduced with $g(G) \geq 4$. If $G$ has a cut vertex, then each block of $G$ satisfies the hypothesis of the lemma, and so by (2.2), and by the fact that $G$ is reduced, every block of $G$ is in $\left\{K_{2,3}, W_{3}^{\prime}\right\}$. If $G$ has at least two end blocks, then $\left|D_{2}(G)\right| \geq 4$, contrary to the assumption that $\left|D_{2}(G)\right| \leq 3$. Hence $\kappa(G) \geq 2$. Let $c=c(G) \leq 6$ and $C=v_{1} v_{2} v_{3} v_{4} \ldots v_{c} v_{1}$ be a longest cycle of $G$.

If $C$ has a chord, then since $G$ is reduced, we may assume that $v_{2} v_{5} \in E(G)$. Since $\left|D_{2}(G)\right| \leq 3$, we may assume $V(G)-V(C)$ has a vertex $z$ with $z v_{1} \in E(G)$. Ву $\kappa(G) \geq 2, G$ has a path $Q^{\prime}$ with $z v_{1} \in E\left(Q^{\prime}\right)$ and $\left|V\left(Q^{\prime}\right) \cap V(C)\right|=2$. Since $c(G) \leq 6$ and $G$ has no 3 -cycle, $Q^{\prime}=v_{1} z v_{5}$ or $Q^{\prime}=v_{1} z v_{3}$. By $\left|D_{2}(G)\right| \leq 3$ and $\kappa(G) \geq 2$ again, we may assume that $z$ (or by symmetry, $v_{6}$ ) is adjacent to a vertex in $V(G)-(V(C) \cup\{z\})$, and so a $\left(z, v_{i}\right)$-path $Q^{\prime \prime}$ for some $v_{i} \in V(C)$ such that $V\left(Q^{\prime \prime}\right) \cap V(C)=\left\{v_{i}\right\}$. Hence $G$ has a cycle of length at least 7, contrary to $c(G) \leq 6$. Therefore, we conclude that $C$ does not have a chord.

If $V(G)=V(C)$, then as $G$ is essentially 3-edge-connected with $\kappa^{\prime}(G) \geq 2,\left|D_{2}(G)\right| \leq 2$, and by Lemma $2.7, G$ must be collapsible, contrary to (2.2). Hence $V(G)-V(C) \neq \emptyset$.

Since $\kappa(G) \geq 2, V(G)-V(C)$ has a vertex $u$ such that, without loss of generality, $u v_{1} \in E(G)$. As $\kappa(G) \geq 2, u v_{1}, v_{1} v_{2}$ must be contained in a cycle of $G$, and so $G$ has a $\left(v_{1}, v_{i}\right)$-path $Q_{1}$, such that $V\left(Q_{1}\right) \cap V(C)=\left\{v_{1}, v_{i}\right\}$ with $i \neq 1$. Since $C$ is longest in $G, i \notin\{2, c\}$ and $i \in\{3, c-1\}$ only if $Q_{1}=v_{1} u v_{i}$. A path $Q$ of $G$ satisfying $|V(Q) \cap V(C)|=2$ and $|E(Q)| \geq 2$ will be referred to as a long chord of $C$. As $c(G) \leq 6$ and as $G$ is reduced, every long chord of $C$ has length at most 3 .
Case $1 c=6$.
Since $V(G)-V(C) \neq \emptyset, C$ must have a long chord with length 2 or 3 .
Case 1.1 C has a long chord of length 3 . We may assume that $Q_{1}=v_{1} u u^{\prime} v_{4}$ is a long chord of $C$.
Subcase 1.1.1 $v_{2}, v_{3} \notin D_{2}(G)$ or $v_{5}, v_{6} \notin D_{2}(G)$.
We may assume that $v_{2}, v_{3} \notin D_{2}(G)$. Then for some $w_{2}, w_{3} \in V(C) \cup\left\{u, u^{\prime}\right\}, G$ has a $\left(v_{2}, w_{2}\right)$-path $Q_{2}$ and a $\left(v_{3}, w_{3}\right)$-path $Q_{3}$ such that $V\left(Q_{2}\right) \cap\left(V(C) \cup\left\{u, u^{\prime}\right\}\right)=\left\{v_{2}, w_{2}\right\}$ and $V\left(Q_{3}\right) \cap\left(V(C) \cup\left\{u, u^{\prime}\right\}\right)=\left\{v_{3}, w_{3}\right\}$, and such that $v_{2} \neq w_{2}$ and $v_{3} \neq w_{3}$. If $\left\{w_{2}, w_{3}\right\} \cap\left\{u, u^{\prime}, v_{5}, v_{6}\right\} \neq \emptyset$, or if $w_{2} \in\left\{v_{1}, v_{3}\right\}$, or $w_{3} \in\left\{v_{2}, v_{4}\right\}$, then $G$ has a cycle of length at least 7 , contrary to the assumption that $c(G)=6$. Hence we must have $w_{2}=v_{4}$ and $w_{3}=v_{1}$. As $G$ is reduced and by $c(G)=6$, $\left|E\left(Q_{2}\right)\right|=\left|E\left(Q_{3}\right)\right|=2$. But then, $G\left[E\left(Q_{1}\right) \cup E\left(Q_{2}\right) \cup E\left(Q_{3}\right)\right]$ is a cycle of length 8 , contrary to $c(G)=6$.
Subcase 1.1.2 $\left\{v_{2}, v_{3}\right\} \cap D_{2}(G) \neq \emptyset$ and $\left\{v_{5}, v_{6}\right\} \cap D_{2}(G) \neq \emptyset$.
Since $\left|D_{2}(G)\right| \leq 3$, we assume that $u \notin D_{2}(G)$. Then by $\kappa(G) \geq 2$, $G$ has a $(u, w)$-path $Q_{u}$ with $V\left(Q_{u}\right) \cap(V(C) \cup$ $\left.\left\{u, u^{\prime}\right\}\right)=\{u, w\}$. Since $c(G)=6$ and since $G$ is reduced, we must have $w=v_{4}$ and $\left|E\left(Q_{u}\right)\right|=2$. By symmetry, if $u^{\prime} \notin D_{2}(G)$, then $G$ has a ( $u^{\prime}, v_{1}$ )-path $Q_{u^{\prime}}$ with $V\left(Q_{u^{\prime}}\right) \cap\left(V(C) \cup\left\{u^{\prime}\right\}\right)=\left\{u, v_{1}\right\}$ and with $\left|E\left(Q_{u^{\prime}}\right)\right|=2$. It follows that $G\left[E\left(Q_{u}\right) \cup E\left(Q_{u^{\prime}}\right) \cup\left\{u u^{\prime}, v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}\right\}\right]$ is a cycle of length at least 7 , contrary to the assumption of $c(G)=6$. Therefore, we must have $u^{\prime} \in D_{2}(G)$, and for some $w^{\prime} \in V(G)-V(C) . Q_{u}=u w^{\prime} v_{4}$. By the assumption of Subcase 1.1.2, $w^{\prime} \notin D_{2}(G)$, and so by $\kappa(G) \geq 2, G$ has a $\left(w^{\prime}, w^{\prime \prime}\right)$-path $Q_{w^{\prime}}$ such that $V\left(Q_{w^{\prime}}\right) \cap(V(C) \cup\{u\})=\left\{w^{\prime}, w^{\prime \prime}\right\}$ with $w^{\prime} \neq w^{\prime \prime}$. But then, $G$ always has a cycle of length at least 7 , contrary to the assumption of $c(G)=6$.
Case 1.2 C does not have a long chord of length 3 .
We may assume that $Q_{1}=v_{1} u v_{3}$. If $u \notin D_{2}(G)$, then by the assumption of Case 1.2 , and by the fact that $G$ is reduced, we must have $u v_{5} \in E(G)$, and so $W_{3}^{\prime} \subseteq G$. If $W_{3}^{\prime}$ spans $G$, then $G=W_{3}^{\prime}$ as adding any edge to $W_{3}^{\prime}$ will create a cycle of length at most 3, or a collapsible $L_{2}$ (Lemma 2.8(i)). Hence we conclude that $G$ does not contain a $W_{3}^{\prime}$ and $u \in D_{2}(G)$.

If $v_{2} \notin D_{2}(G)$, then by $\kappa(G) \geq 2$, $G$ has a $\left(v_{2}, z_{2}\right)$-path $Z_{2}$ with $V\left(Z_{2}\right) \cap(V(C) \cup\{u\})=\left\{v_{2}, z_{2}\right\}$ and with $v_{2} \neq z_{2}$. If $z_{2}=v_{5}$, then either $G$ has a cycle of length at least 7 , or $W_{3}^{\prime} \subseteq G$, contrary to the assumption that $c=6$ and $W_{3}^{\prime} \nsubseteq G$. If $z_{2} \in\left\{v_{4}, v_{6}\right\}$, then $G$ has a cycle of length at least 7 , contrary to the assumption of $c(G)=6$. Hence $v_{2} \in D_{2}(G)$.

Since $u, v_{2} \in D_{2}(G)$ and since $\left|D_{2}(G)\right| \leq 3,\left\{v_{4}, v_{5}, v_{6}\right\}-D_{2}(G) \neq \emptyset$. If $v_{5} \notin D_{2}(G)$, then $G$ has a $\left(v_{5}, z_{5}\right)$-path $Z_{5}$ with $V\left(Z_{5}\right) \cap V(C)=\left\{v_{5}, z_{5}\right\}$ and with $v_{5} \neq z_{5}$. Since $v_{2}, u \in D_{2}(G)$, and since $c=6, z_{5} \in\left\{v_{1}, v_{3}\right\}$. By symmetry and by the fact that $G$ is reduced, assume that $z_{5}=v_{1}$, and $Z_{5}=v_{1} u^{\prime} v_{5}$. Since $\left|D_{2}(G)\right| \leq 3$, we may assume that $v_{6} \notin D_{2}(G)$ and so $G$ has a $\left(v_{6}, z_{6}\right)$-path $Z_{6}$ with $V\left(Z_{6}\right) \cap\left(V(C) \cup\left\{u^{\prime}\right\}\right)=\left\{v_{6}, z_{6}\right\}$ and with $v_{6} \neq z_{6}$. But then, $z_{6} \in\left\{v_{1}, v_{3}, v_{4}, v_{5}, u^{\prime}\right\}$, and in any case, $G$ has a cycle of length at least 7 , contrary to $c=6$.

Hence we assume that $z_{5} \in D_{2}(G)$ and so $v_{4}, v_{6} \notin D_{2}(G)$. As $\kappa(G) \geq 2$, for $i \in\{4,6\}, G$ has a $\left(v_{i}, z_{i}\right)$-path $Z_{i}$ with $V\left(Z_{i}\right) \cap V(C)=\left\{v_{i}, z_{i}\right\}$ and with $v_{i} \neq z_{i}$. If $z_{4}=v_{6}$ (or $v_{4}=z_{6}$ ), then by $c=6$ and by the fact that $G$ is reduced, we assume that $Z_{4}=v_{4} u^{\prime \prime} z_{6}$. But then, by symmetry, since $v_{5} \in D_{2}(G)$, we must have $u^{\prime \prime} \in D_{2}(G)$, and so $v_{2}, u . v-5, u^{\prime \prime} \in D_{2}(G)$, contrary to $\left|D_{2}(G)\right| \leq 3$. Hence $z_{6}=v_{3}$. By symmetry, $z_{4}=v_{1}$. Thus $v_{1} v_{4}, v_{3} v_{6} \in E(G)$, and so $G\left[V\left(C_{6}\right) \cup\{u\}\right]$ is a 2-connected graph with 7 vertices and 3 vertices of degree 2 . By Lemma 2.7, this is a collapsible graph, contrary to the assumption that $G$ is reduced. This proves Case 1.
Case $2 c=5$.
Since $V(G)-V(C) \neq \emptyset$ and since $c(G)=5, C$ must have a long chord with length 2 . By symmetry, suppose that $Q_{1}=v_{1} u v_{3}$ is a long chord of $C$. Since $\left|D_{2}(G)\right| \leq 3,\left\{u, v_{2}, v_{4}, v_{5}\right\}-D_{2}(G) \neq \emptyset$. Suppose first that $u \notin D_{2}$ (G) (or by symmetry, $v_{2} \notin D_{2}(G)$ ), then by $\kappa(G) \geq 2$, $G$ has a $\left(u, w_{2}\right)$-path $Q_{2}$ with $u \neq w_{2}$ and $V\left(Q_{2}\right) \cap(V(C) \cup\{u\})=\left\{u, w_{2}\right\}$. But then, in any case, $G$ has a cycle of length at least 6 , contrary to the assumption of $c(G)=5$.

Hence we may assume that $u, v_{2} \in D_{2}(G)$ and so, by symmetry, $v_{4} \notin D_{2}(G)$. By $\kappa(G) \geq 2$, $G$ has a $\left(v_{4}, w_{4}\right)$-path $Q_{4}$ with $v_{4} \neq w_{4}$ and $V\left(Q_{4}\right) \cap V(C)=\left\{v_{4}, w_{4}\right\}$. By the assumptions that $c=5$ and $G$ is reduced, we must have $Q_{4}=v_{4} u^{\prime} v_{1}$. By $\left|D_{2}(G)\right| \leq 3$, we may assume that $v_{5} \notin D_{2}(G)$ and so $G$ has a ( $v_{5}, w_{5}$ )-path $Q_{5}$ with $v_{5} \neq w_{5}$ and $V\left(Q_{5}\right) \cap\left(V(C) \cup\left\{u^{\prime}\right\}\right)=\left\{v_{5}, w_{5}\right\}$. As $G$ is reduced and as $c=5, w_{5} \in\left\{u^{\prime}, v_{1}, v_{3}, v_{4}\right\}$. In any case, $G$ has a cycle of length at least 6 , contrary to $c=5$.
Case $3 c=4$.
Again by $V(G)-V(C) \neq \emptyset$ and $c(G)=4, C$ must have a long chord with length 2 . By symmetry, suppose that $Q_{1}=v_{1} u v_{3}$ is a long chord of $C$. Then $G$ contains subgraph isomorphic to $K_{2,3}$. Let $H \cong K_{2, t}$ be a subgraph of $G$ with $t \geq 3$ maximized.

If $V(G)=V(H)$, then since adding any edge to join two vertices of $K_{2, t}$ will result in a collapsible graph (by Theorem 2.1(vii)), it follows by $D_{2}(G) \leq 3$ that $G=K_{2,3}$. If $V(G)-V(H)$ has a vertex $u$, then by $\kappa(G) \geq 2$, $G$ has a ( $w, w^{\prime}$ )-path $Q$ with $w \neq w^{\prime}$ such that $V(Q) \cap V(H)=\left\{w, w^{\prime}\right\}$. If $\left\{w, w^{\prime}\right\}-D_{t}(H) \neq \emptyset$, then $G$ has a cycle of length at least 5 , contrary to the assumption that $c(G)=4$. If $w, w^{\prime} \in D_{t}(H)$, then $H$ is contained in a subgraph isomorphic to $K_{2, t+1}$ of $G$, contrary to the choice of $H$. This proves Case 3 , as well as the lemma.

Lemma 2.9. Let $G$ be a graph with $\kappa^{\prime}(G) \geq 3$ such that $G$ is contracted to $P(10)$. If for some vertex $u \in V(P(10))$, $P I(u)$ is not collapsible, then both of the following hold.
(i) for any integer $s_{1}, s_{2}, s_{3} \geq 1$ with $s_{1}+s_{2}+s_{3} \leq 10, Y_{s_{1}, s_{2}, s_{3}} \subseteq G$.
(ii) for any integer $s_{1}, s_{2} \geq 1$ with $s_{1}+s_{2} \leq 9, Y_{s_{1}, s_{2}, 0} \subseteq G$.

Proof. It suffices to prove (i). We argue by contradiction and assume that $G$ is a counterexample with $|V(G)|$ minimized. Since $P(10)$ is reduced, if $L$ is a collapsible subgraph of $G$, then $G / L$ is also contractible to $P(10)$. Thus by the minimality of $G$, we assume that

## $G$ is reduced.

Let $H=P I(u)$. Suppose that $c(H) \geq 7$. Let $C^{\prime}$ be a longest cycle of $H$. By Lemma $2.3, P(10)-u$ has a cycle of length 9 , which can be left to a cycle $C$ of length $c \geq 9$ in $G$. Let $e \in E_{P(10)}(u)$. Lift $e$ to a path in $G$ joining a vertex in $C^{\prime}$ and a vertex in $C$. Then $C^{\prime} \cup C \cup P$ contains an $L\left(c^{\prime}, 9\right)$ and an $L(c, 7)$ with $c^{\prime} \geq 7$ and $c \geq 9$. By Lemma 2.6(i), $Y_{8,1,1}, Y_{7,2,1}, Y_{6,3,1}, Y_{6,2,2}, Y_{5,4,1}, Y_{5,3,2}, Y_{4,4,2}, Y_{4,3,3} \subseteq G$, and so the lemma follows from Lemma 2.6(iii).

Therefore, we assume that $c(H) \leq 6$. By Lemma $2.8(\mathrm{ii}), H \in\left\{K_{2,3}, W_{3}^{\prime}\right\}$ with $A_{G}(H)=D_{2}(H)$. In this case, for any integer $s_{1}, s_{2}, s_{3} \geq 1$ with $s_{1}+s_{2}+s_{3} \leq 10, \bar{Y}_{s_{1}, s_{2}, s_{3}} \subseteq G$. (Detailed verifications can be found in Tables 1 and 2 of the Appendix.)

The core of a graph is formally introduced by Shao [16]. Let $G$ be a graph such that $\kappa(L(G)) \geq 3$ and such that $L(G)$ is not complete. For each $v \in D_{2}(G)$, let $E_{G}(v)=\left\{e_{1}^{v}, e_{2}^{v}\right\}$ and define

$$
\begin{equation*}
X_{1}(G)=\cup_{v \in D_{1}(G)} E_{G}(v), \quad \text { and } \quad X_{2}(G)=\left\{e_{2}^{v}: v \in D_{2}(G)\right\} \tag{2.4}
\end{equation*}
$$

Since $\kappa(L(G)) \geq 3, D_{2}(G)$ is an independent set of $G$ and for any $v \in D_{2}(G),\left|X_{2}(G) \cap E_{G}(v)\right|=1$. Define the core of the graph $G$ as

$$
\begin{equation*}
G_{0}=G /\left(X_{1}(G) \cup X_{2}(G)\right)=\left(G-D_{1}(G)\right) / X_{2}(G) \tag{2.5}
\end{equation*}
$$

Edges in $\cup_{v \in D_{2}(G)} E_{G}(v)-X_{2}(G)$ are referred to as nontrivial edges in $G_{0}$. Vertices of $G$ adjacent to a vertex in $D_{1}(G)$ are viewed as the contraction image of edges in $\cup_{v \in D_{1}(G)} E_{G}(v)$. An eulerian graph $H \subseteq G$ is dominating in $G$ if $E(G-V(H))=\emptyset$. Harary and Nash-Williams found a close relationship between dominating eulerian subgraphs and hamiltonian line graphs.

Theorem 2.10 (Harary and Nash-Williams, [10]). Let $G$ be a connected graph with at least 3 edges. The line graph $L(G)$ is hamiltonian if and only if $G$ has a dominating eulerian graph.

Utilizing Theorem 2.10 and Catlin's collapsible graphs [4], Shao proves the following useful theorem. A justification for Theorem 2.11(iii) can be found in [13].

Theorem 2.11 (Shao, Section 1.4 of [16]). Let $G_{0}$ be the core of graph $G$, then each of the following holds.
(i) $G_{0}$ is nontrivial and $\delta\left(G_{0}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) $G_{0}$ is well defined.
(iii) $L(G)$ is hamiltonian if and only if $G_{0}$ has a dominating eulerian subgraph containing all nontrivial vertices and both end vertices of each nontrivial edge.

By (2.4), the edge set

$$
\begin{equation*}
E_{1}^{\prime}(G)=\bigcup_{v \in D_{2}(G)} E_{G}(v)-X_{2}(G) \tag{2.6}
\end{equation*}
$$

is the set of nontrivial edges in $G_{0}$. Let $G_{0}^{\prime}$ be the reduction of $G_{0}$. Then $G_{0}^{\prime}$ is a contraction of both $G_{0}$ and $G$, and so we can view $E\left(G_{0}^{\prime}\right) \subseteq E\left(G_{0}\right) \subseteq E(G)$. Define

$$
\begin{align*}
& \Lambda\left(G_{0}\right)=\left\{v \in V\left(G_{0}\right): P I_{G_{0}}(v) \text { is nontrivial or } v \text { is an end of a nontrivial edge of } G_{0}\right\} \text {, and }  \tag{2.7}\\
& \Lambda^{\prime}\left(G_{0}\right)=\left\{v \in V\left(G_{0}^{\prime}\right): P I_{G}(v) \text { is nontrivial or contains an end of a nontrivial edge of } G_{0}\right\} . \tag{2.8}
\end{align*}
$$

Lemma 2.12. Let $G$ be a connected simple graph satisfying $\kappa(L(G)) \geq 3, G_{0}$ be the core of $G$ and $G_{0}^{\prime}$ be the reduction of $G_{0}$. Suppose that $G_{0}^{\prime}=P(10)$, and $L(G)$ is not hamiltonian. Then each of the following holds.
(i) $V\left(G_{0}^{\prime}\right)=\Lambda^{\prime}\left(G_{0}\right)$.
(ii) If $G_{0}^{\prime}$ contains at least one nontrivial edge, then for any integers $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2}+1 \leq 10, Y_{s_{1}, s_{2}, 1} \subseteq G$.
(iii) If $G_{0}^{\prime}$ contains at least one nontrivial edge, then for any integers $s_{1} \geq s_{2}>0, s_{3} \geq 0$ with $s_{1}+s_{2}+s_{3} \leq 9, Y_{s_{1}, s_{2}, s_{3}} \subseteq G$.
(iv) If $G_{0}^{\prime}$ has a nontrivial vertex $v$ such that $P_{G}(v)$ is not a star, then the conclusions of Lemma 2.12(ii) and (iii) must hold.
(v) Either $G \in \mathcal{F}$ or the conclusions of Lemma 2.12(ii) and (iii) must hold.

Proof. (i) If for some $v^{\prime} \in V\left(G_{0}^{\prime}\right)-\Lambda^{\prime}\left(G_{0}\right)$, then as $G_{0}^{\prime}=P(10), G_{0}^{\prime}$ has a cycle $C^{\prime}$ containing $\Lambda^{\prime}\left(G_{0}\right)$. Hence $C^{\prime}$ can be lifted to an eulerian subgraph $H^{\prime}$ of $G_{0}$, containing all vertices in $\Lambda\left(G_{0}\right)$. By Theorem 2.11, $L(G)$ is hamiltonian, contrary to the assumption that $L(G)$ is not hamiltonian.
(ii) Let $e^{\prime}$ be a nontrivial edge of $G_{0}^{\prime}$, and if $G_{0}^{\prime}$ has at least two nontrivial edges, then let $e^{\prime \prime}$ denote another. Since $G_{0}^{\prime}=P(10)$, $G_{0}^{\prime}$ has vertex $w$ such that $G_{0}^{\prime}-w$ has a spanning cycle $C^{\prime}$ with $e^{\prime}, e^{\prime \prime} \in E\left(C^{\prime}\right)$. Since $w \notin V\left(C^{\prime}\right), C^{\prime}$ has a vertex $w^{\prime} \in V\left(C^{\prime}\right)$ such that $w w^{\prime} \in E(P(10))$. (In fact, as $P(10)$ is a 3-regular graph, there are three choices for such $w^{\prime}$ in $C^{\prime}$.) By Lemma 2.12(i), either $w w^{\prime}$ is a nontrivial edge or both $w$ and $w^{\prime}$ are nontrivial vertices. It follows that the edge $w w^{\prime}$ in $G_{0}^{\prime}$ can be lifted to a path $Q$ of length 2 in $G$. Since $C^{\prime}$ contains at least one nontrivial edge, $C^{\prime}$ can be lifted to a cycle $C$ of length at least 10 in $G$. It follows that $C \cup Q$ is an $L(h, 2)$ with $h \geq 10$. If $h \geq 12$, then by Lemma 2.6 , for any integers $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2}+1 \leq 10$, $Y_{s_{1}, s_{2}, 1} \subseteq G$.

Hence we may assume that $h \in\{10,11\}$. By Lemma 2.6, for any integers $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2}+1 \leq 10, Y_{l_{1}, l_{2}, 1} \subseteq G$, where $\left(l_{1}, l_{2}\right) \in\left\{\left(s_{1}, s_{2}-1\right),\left(s_{1}-1, s_{2}\right)\right\}$ if $h=11$, or $\left(l_{1}, l_{2}\right)=\left(s_{1}-1, s_{2}-1\right)$ if $h=10$. Let $z_{0}$ be the only vertex of degree 3 in $Y_{l_{1}, l_{2}, 1}$, and let $Q_{1}^{\prime}, Q_{2}, Q_{3}$ be the three internally disjoint paths from $z_{0}$ in $Y_{l_{1}, l_{2}, 1}$, of length $l_{1}+1, l_{2}+1$, 2, respectively. Let $z_{i}^{\prime}$ denote the other end vertex of $Q_{i}^{\prime}, 1 \leq i \leq 2$. By Lemma 2.12(i), $z_{i}^{\prime}$ is either a nontrivial vertex, or an end of a nontrivial edge not in $C^{\prime}$. Since $w^{\prime}$ has more than one choices, we can choose $w^{\prime}$ so that $z_{i}^{\prime \prime}$ s are independent in $G_{0}^{\prime}$. If follows that $Q_{i}^{\prime}$ can be lifted to a path of length $s_{1}+1$, and so $Y_{s_{1}, s_{2}, 1} \subseteq G$.
(iii) The proof is similar to that for (ii). We outline the idea here. Since $s_{1}+s_{2}+s_{3} \leq 9$ and $s_{1} \geq s_{2} \geq s_{3}, s_{3} \leq 3$. If $s_{3}=3$, then by inspection, $G_{0}^{\prime}=P(10)$ contains a $Y_{2,2,2}$ such that $D_{1}\left(Y_{2,2,2}\right)=\left\{w_{1}, w_{2}, w_{3}\right\}$ is independent in $G_{0}^{\prime}$. By Lemma 2.12(i), each $w_{i}$ is either nontrivial or an end of a nontrivial edge. Thus this $Y_{2,2,2}$ of $G_{0}^{\prime}$ can be lifted to a $Y_{3,3,3}$ in $G$.

If $s_{3}=2$, then $P(10)$ has an $L(8,2)$ and so by Lemma 2.6, for any integers $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2}+2 \leq 9, Y_{s_{1}-1, s_{2}-1,1} \subseteq G_{0}^{\prime}$ such that $D_{1}\left(Y_{2,2,2}\right)$ is independent in $G_{0}^{\prime}$. By Lemma 2.12(i), This $Y_{s_{1}-1, s_{2}-1,1}$ of $G_{0}^{\prime}$ can be lifted to a $Y_{s_{1}, s_{2}, 2}$ in $G$.

If $s_{3}=1$, then by Lemma 2.12(ii), for any integers $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2}+1 \leq 9, Y_{s_{1}, s_{2}, 1}$ in $G$.
(iv) Suppose $G_{0}^{\prime}$ has a vertex $z_{0}$ such that $P I_{G}\left(z_{0}\right)$ is not a star. Since $P I_{G}\left(z_{0}\right)$ is connected, for any $z^{\prime} \in A_{G}\left(P I_{G}\left(z_{0}\right)\right), P I_{G}\left(z_{0}\right)$ has a path of length at least 2 from $z^{\prime}$. Since $G_{0}^{\prime}=P(10)$, for any $v \in V\left(G_{0}^{\prime}\right), G_{0}^{\prime}$ has an $L(9,1)$ and an $L(8,2)$ such that $v$ is the only vertex of degree 3 in $L \in\{L(9,1), L(8,2)\}$. Using this property, it follows that for any $s_{1} \geq s_{2}>0$ and $s_{3} \geq 0$ with either $s_{1}+s_{2}+1 \leq 10$ or $s_{1}+s_{2}+s_{3} \leq 9, G_{0}^{\prime}$ has a $Y=Y_{s_{1}-2, s_{2}-1,0}$ (if $s_{1}+s_{2}+1 \leq 10$ ) or a $Y=Y_{s_{1}-2, s_{2}-1, l_{3}}$, (where $l_{3}=\max \left\{s_{3}-1,0\right\}$ if $\left.s_{1}+s_{2}+s_{3} \leq 9\right)$, such that the path $Q$ of length $s_{1}-1$ in $Y$ ends at $z_{0}$. By Lemma 2.12(i) and by the choice of $z_{0}, Y_{s_{1}, s_{2}, 1}$ (if $s_{1}+s_{2}+1 \leq 10$ ) and $Y_{s_{1}, s_{2}, s_{3}}$ (if $s_{1}+s_{2}+s_{3} \leq 9$ ) are subgraphs of $G$, whence the conclusions in Lemma 2.12(ii) and (iii) must hold.
(v) By Lemma 2.12(i)-(iv), we may assume that $G_{0}^{\prime}$ has no nontrivial edges and for every vertex $v \in V\left(G_{0}^{\prime}\right), P I_{G}(v)$ is a star. Therefore, $G \in \mathcal{F}$.

### 2.2. Closure of claw-free graphs

Ryjáček [15] introduced the line graph closure $\operatorname{cl}(G)$ of a claw-free graph $G$, which becomes a useful tool in investigating hamiltonian claw-free graphs. We refer the reader to [15] for the definition of $\operatorname{cl}(G)$.

Theorem 2.13 (Ryjáček, [15]). Let G be a claw-free graph. Then
(i) $\operatorname{cl}(G)$ is uniquely determined;
(i) $\operatorname{cl}(G)$ is the line graph of a triangle-free graph;
(iii) $G$ is hamiltonian if and only if $\mathrm{cl}(G)$ is hamiltonian.

Theorem 2.14 (Brousek, Ryjáček and Favaron [3]). Let $G$ be a claw-free graph, and let $s_{1}, s_{2}, s_{3} \geq 0$ be integers. If $G$ is $N_{s_{1}, s_{2}, s_{3}}$ free, then $\operatorname{cl}(G)$ is also $N_{s_{1}, s_{2}, s_{3}}$-free.

## 3. Proof of the main result

We will prove Theorem 1.5 in this section. Let $s_{1} \geq s_{2} \geq s_{3} \geq 0$ be integers and $N=N_{s_{1}, s_{2}, s_{3}}$ such that either $s_{3}=1$ and $s_{1}+s_{2}+1 \leq 10$, or $s_{3}>0$ and $s_{1}+s_{2}+s_{3} \leq 9$, or $s_{3}=0$ and $s_{1}+s_{2} \leq 9$. By Theorems 2.13 and 2.14 , it suffices to prove Theorem 1.5 for 3 -connected $N$-free line graphs of simple graphs.

Throughout this section, we assume that $G$ is a connected simple graph such that $L(G)$ is a 3-connected $\left\{K_{1,3}, N\right\}$ free graph. Let $G_{0}$ be the core of $G$, and $G_{0}^{\prime}$ be the reduction of $G_{0}$. Let $\Lambda\left(G_{0}\right)$ and $\Lambda^{\prime}\left(G_{0}\right)$ be given by (2.7), and (2.8). By Theorem 2.11, $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$. By Theorem 2.1, if $G_{0}^{\prime}$ has a dominating eulerian subgraph containing all vertices in $\Lambda^{\prime}\left(G_{0}\right)$, then $G_{0}$ has a dominating eulerian subgraph containing all vertices in $\Lambda\left(G_{0}\right)$, and so by Theorem 2.11, $L(G)$ is hamiltonian.

We argue by contradiction to prove Theorem 1.5, and assume that
$G$ is a counterexample to Theorem 1.5 with $\left|V\left(G_{0}\right)\right|$ minimized.
By the discussion above, by (3.1) and by Theorem 2.1, we may assume that
$\kappa\left(G_{0}^{\prime}\right) \geq 2, G_{0}^{\prime}$ is reduced and does not have an eulerian subgraph containing $\Lambda^{\prime}\left(G_{0}\right)$.
For the given values $s_{1}, s_{2}, s_{3}$, since $L(G)$ is $N_{s_{1}, s_{2}, s_{3}}$ free, we conclude that
$G$ does not contain $Y_{s_{1}, s_{2}, s_{3}}$ as a subgraph.

Lemma 3.1. If $G_{0}$ is contractible to the Petersen graph, then $G \in \mathcal{F}$.
Proof. If for some $v \in V(P(10)), P I_{G_{0}}(v)$ is not collapsible, then by Lemma 2.9, (3.3) is violated. Hence we may assume that $G_{0}^{\prime}=P(10)$, and so Lemma 3.1 follows from Lemma 2.12.

If $c\left(G_{0}^{\prime}\right) \leq 11$, then by Theorem 2.2, either $G_{0}^{\prime}$ is supereulerian, contrary to (3.2), or is contractible to the Petersen graph, whence by Lemma 3.1, $G \in \mathcal{F}$, contrary to (3.1). Therefore, we may assume that $c\left(G_{0}^{\prime}\right) \geq 12$.

Lemma 3.2. Theorem 1.5 (iii) and (iv) must hold.
Proof. If $c\left(G_{0}^{\prime}\right) \leq 11$, then by Theorem 2.2 and by (3.2), $G_{0}^{\prime}$ is contractible to the Petersen graph. By Lemma 3.1, Theorem 1.5(iii) and (iv) must hold. Now assume that $G_{0}^{\prime}$ has a cycle $C$ of length $h \geq 12$. By (3.2), $C$ is not spanning, and so $G$ has an $L(h, 1)$ as a subgraph. By Lemma 2.6 , for any $s_{1} \geq s_{2}>0$ with $s_{1}+s_{2} \leq 9, G$ has a $Y_{s_{1}, s_{2}, 0}$ as a subgraph, and so Theorem 1.5(iii) and (iv) hold also.

It remains to prove Theorem 1.5(i) and (ii). By Theorem 2.2 and by Lemma 3.1, we assume that $h=c\left(G_{0}^{\prime}\right) \geq 12$ and $C^{\prime}=v_{1} v_{2} \ldots v_{h} v_{1}$ is a longest cycle of $G_{0}^{\prime}$ such that
$\left|V\left(C^{\prime}\right) \cap \Lambda\left(G_{0}^{\prime}\right)\right|$ is maximized.
The cycle $C^{\prime}$ can be lifted to a cycle $C$ of $G$ with length $|V(C)| \geq h \geq 12$. By (3.2), $\Lambda\left(G_{0}\right)-V\left(C^{\prime}\right) \neq \emptyset$. Since $G_{0}^{\prime}$ is connected, $G_{0}^{\prime}$ has a path $P^{\prime}$ with $\left|E\left(P^{\prime}\right)\right| \geq 1$ such that $\left|V\left(P^{\prime}\right) \cap V\left(C^{\prime}\right)\right|=1$. We call any such path a $C^{\prime}$-path of $G_{0}^{\prime}$. Let $l=\max \left\{\left|E\left(P^{\prime}\right)\right|: P^{\prime}\right.$ is a $C^{\prime}$-path $P^{\prime}$ in $\left.G_{0}^{\prime}\right\}$. Note that $h \geq 12$. If $l \geq 4$, then $G_{0}^{\prime}$ has an $L(h, 4)$ as a subgraph. By Lemma 2.6 , we have a violation to (3.3). Thus $l \leq 3$.

Lemma 3.3. If $l=3$, then for any $s_{1}, s_{2}, s_{3}>0$ with $s_{1}+s_{2}+s_{3} \leq 10, Y_{s_{1}, s_{2}, s_{3}} \subseteq G$.
Proof. Suppose $l=3$. Then $G$ has an $L(h, 3)$ as a subgraph. By Lemma 2.6, $Y_{s_{1}, s_{2}, s_{3}}$ is in $G$ for any $s_{1} \geq s_{2} \geq s_{3} \geq 1$ with $s_{3} \leq 2$. It remains to show that $Y_{4,3,3} \subseteq G$. Without loss of generality, we may assume that $P^{\prime}=v_{1} u_{1} u_{2} u_{3}$. Since $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$, $u_{3}$ must be adjacent to two different vertices in $V\left(C^{\prime}\right)$, and so one such vertex $v_{i}$ satisfies $i \neq 1$. If $i \in\{2,3,4, h-2, h-1, h\}$, then $G_{0}^{\prime}$ would have a cycle longer than $C^{\prime}$, contrary to $c\left(G_{0}^{\prime}\right)=\left|V\left(C^{\prime}\right)\right|$. If $6 \leq i \leq h-4$, then $C^{\prime} \cup P^{\prime}-v_{i} v_{i+1}$ or $C^{\prime} \cup P^{\prime}-v_{i-1} v_{i}$ can be lifted to an $L\left(h^{\prime}, k^{\prime}\right)$ in $G$ with $h^{\prime} \geq 9$ and $k^{\prime} \geq 5$, and so $Y_{4,3,3} \subseteq G$. Hence $i \in\{5, h-3\}$. By symmetry, we assume that $u_{3} v_{5} \in E\left(G_{0}^{\prime}\right)$, and either $u_{3} v_{1}$ or $u_{3} v_{h-3} \in E\left(G_{0}^{\prime}\right)$.

Since $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3, u_{2}$ is adjacent to a vertex $u^{\prime} \notin V\left(P^{\prime}\right)$. If $u^{\prime} \notin V\left(C^{\prime}\right)$, then the discussion on the neighbors of $u_{3}$ indicates that $N_{G_{0}^{\prime}}\left(u^{\prime}\right) \subseteq\left\{u_{2}, v_{1}, v_{5}, v_{h-3}\right\}$. If $u^{\prime} v_{h-3} \in E\left(G_{0}^{\prime}\right)$, then the union of the paths $u_{2} u^{\prime} v_{h-3} v_{h-2} v_{h-1} v_{h}, u_{2} u_{1} v_{1} v_{2} v_{3}$ and $u_{2} u_{3} v_{5} v_{6} v_{7}$ is a $Y_{4,3,3}$ of $G_{0}^{\prime}$, whence $Y_{4,3,3} \subseteq G$. Hence we must have $u^{\prime} v_{1}, u^{\prime} v_{5}, u_{3} v_{1}, u_{3} v_{5} \in E\left(G_{0}^{\prime}\right)$. But then $G_{0}^{\prime}\left[\left\{u^{\prime} v_{1}, u^{\prime} v_{5}, u_{3} v_{1}, u_{3} v_{5}, u_{2} u^{\prime}\right\} \cup E\left(P^{\prime}\right)\right] \cong K_{3,3}-e$. By Theorem 2.1(vi), it is collapsible, contrary to (3.2).

Therefore, $u^{\prime} \in V\left(C^{\prime}\right)$. Arguing similarly to the discussion on the neighbors of $u_{3}$ above, we conclude that $u^{\prime}=v_{j} \in V\left(C^{\prime}\right)$ with $4 \leq j \leq 6$ or $h-4 \leq j \leq h-2$. Since $u_{3} v_{5} \in E\left(G_{0}^{\prime}\right)$, if $4 \leq j \leq 6$, then $G_{0}^{\prime}$ has a cycle longer than $C^{\prime}$, contrary to the choice of $c$. Thus $h-4 \leq j \leq h-2$, and so as $c\left(G_{0}^{\prime}\right)=\left|V\left(C_{0}^{\prime}\right)\right|$ and as $G_{0}^{\prime}$ has no 3 cycles, $u_{3} v_{h-3} \notin E\left(G_{0}^{\prime}\right)$. Hence $v_{1} u_{3} \in E\left(G_{0}^{\prime}\right)$.

If $j=h-2$, then $C_{0}^{\prime} \cup\left\{u_{3} v_{5}, u_{2} v_{h-2}, u_{2} u_{3}\right\}-v_{h-3} v_{h-2}$ can be lifted to an $L\left(h^{\prime \prime}, 4\right)$ with $h^{\prime \prime} \geq 10$. By Lemma 2.6, $G_{0}^{\prime}$ has a $Y_{4,3,3}$ whence $Y_{4,3,3} \subseteq G$. If $j=h-3$, then the union of the paths $u_{3} u_{2} v_{h-3} v_{h-2} v_{h-1} v_{h}, u_{3} v_{1} v_{2} v_{3} v_{4}$ and $u_{3} v_{5} v_{6} v_{7} v_{8}$ is a $Y_{4,3,3}$ in $G_{0}^{\prime}$. If $j=h-4$, then $C_{0}^{\prime} \cup\left\{u_{3} v_{1}, u_{2} v_{h-4}, u_{2} u_{3}\right\}-v_{h-3} v_{h-4}$ can be lifted to an $L\left(h^{\prime \prime}, 4\right)$ with $h^{\prime \prime} \geq 10$, and so by Lemma 2.6, $G_{0}^{\prime}$ has a $Y_{4,3,3}$. Therefore in any case, $Y_{4,3,3} \subseteq G$, and so the lemma follows.

Lemma 3.4. If $l=2$, then for any $s_{1}, s_{2}, s_{3}>0, Y_{s_{1}, s_{2}, 1} \subseteq G$ if $s_{1}+s_{2}+1 \leq 10$ and $Y_{s_{1}, s_{2}, s_{3}} \subseteq G$ if $s_{1}+s_{2}+s_{3} \leq 9$.
Proof. Suppose $l=2$. Then $L(h, 2) \subseteq G$ with $h \geq 12$. By Lemma 2.6, $Y_{s_{1}, s_{2}, 1} \subseteq G$ for any $s_{1} \geq s_{2} \geq 1$ with $s_{1}+s_{2}+1 \leq 10$. Thus by Lemma 2.6(iv), it suffices to show $Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G$.

Without loss of generality, we may assume that $P^{\prime}=v_{1} u_{1} \bar{u}_{2}$. Since $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$ and since $G_{0}^{\prime}$ has no 3-cycles, there exist $i$ and $j$ with $2<i<j<h$ such that $u_{2} v_{i}, u_{2} v_{j} \in E\left(G_{0}^{\prime}\right)$. By symmetry, we may assume that $h+1-j \geq i-1$. Since $C^{\prime}$ is longest in $G_{0}^{\prime}, 4 \leq i<j \leq h-2$. If $\{i, j\} \cap\{6, h-4\} \neq \emptyset$, then, assuming $i=6, C_{0}^{\prime} \cup P^{\prime} \cup\left\{u_{2} v_{6}\right\}-v_{1} v_{2}$ is a $L\left(h^{\prime}, k^{\prime}\right)$ with $h^{\prime} \geq 10$ and $k^{\prime} \geq 4$, whence by Lemma 2.6, $Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G$. The same conclusion can be made if $h \geq 13$, and $v_{7}, v_{h-5} \in N_{G_{0}^{\prime}}\left(u_{2}\right)$. Thus we assume that if $h=12$, then $v_{6}, v_{8} \notin N_{G_{0}^{\prime}}\left(u_{2}\right)$, and if $h \geq 13$, then $v_{6}, v_{7}, \ldots, v_{h-4} \notin N_{G_{0}^{\prime}}\left(u_{2}\right)$.

Suppose that $h \geq 13$. Then as $C_{0}^{\prime}$ is longest and $G_{0}^{\prime}$ is reduced, we must have $i \in\{4,5\}$ and $j \in\{h-3, h-2\}$. If $(i, j)=(4, h-2)$, then $C_{0}^{\prime} \cup\left\{u_{2} v_{i}, u_{2} v_{j}\right\}-v_{3} v_{4}$ is an $L\left(h^{\prime}, 5\right)$ with $h^{\prime} \geq 9$; and if $(i, j)=(5, h-3)$, then $C_{0}^{\prime} \cup\left\{u_{2} v_{i}, u_{2} v_{j}\right\}-v_{5} v_{6}$ contains an $L\left(h^{\prime \prime}, 4\right)$ with $h^{\prime \prime} \geq 10$. Thus by Lemma 2.6, in either case, $Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G$. If $(i, j)=(4, h-3)$ (or by symmetry, $(i, j)=(5, h-2)$ ), then $C_{0}^{\prime} \cup P^{\prime} \cup\left\{u_{2} v_{h-3}\right\}-v_{1} v_{h}$ is an $L\left(h^{\prime \prime \prime}, 3\right)$ with $h^{\prime \prime \prime} \geq 12$, whence by Lemma 2.6 , $Y_{5,2,2}, Y_{4,3,2} \subseteq G$; and the union of $u_{2} u_{1} v_{1} v_{2} v_{3}, u_{2} v_{h-3} v_{h-2} v_{h-1} v_{h}$, and $u_{2} v_{4} v_{5} \cdots v_{8} v_{9}$ contains a $Y_{3,3,3}$. Therefore, if $h \geq 13$, then Lemma 3.4 holds.

Hence we assume that $h=12$. By symmetry, we assume that $i \leq 6$ and $12-j+1 \geq i-1$. As $G_{0}^{\prime}$ is reduced, $4 \leq i \leq 6$. It is shown above that if $v_{6}$ or $v_{8}$ is in $N_{G_{0}^{\prime}}\left(u_{2}\right)$, then $Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G$. Hence we assume that $v_{6}, v_{8} \notin N_{G_{0}^{\prime}}\left(u_{2}\right)$, and so $i \in\{4,5\}$.

If $i=5$, then $j \in\{7,9\}$, and $C_{0}^{\prime} \cup P^{\prime} \cup\left\{u_{2} v_{5}\right\}-v_{1} v_{2}$ is an $L(11,3)$. By Lemma 2.6, $Y_{5,2,2}, Y_{4,3,2}, \subseteq G$. If $j=9$, then the union of $u_{2} u_{1} v_{1} v_{2} v_{3}, u_{2} v_{5} v_{6} v_{7} v_{8}$ and $u_{2} v_{9} v_{10} v_{11} v_{12}$ is a $Y_{3,3,3}$. If $j=7$, then the union of $v_{7} v_{6} v_{5} v_{4} v_{3}, v_{7} u_{2} u_{1} v_{1} v_{2}$ and $v_{7} v_{8} v_{9} v_{10} v_{11}$ is a $Y_{3,3,3}$. Hence we assume that $v_{5} \notin N_{G_{0}^{\prime}}\left(u_{2}\right)$.

Suppose that $i=4$. Then $j \in\{7,9,10\}$. If $j=7$, then $\left(C^{\prime}-v_{1} v_{2}\right) \cup P^{\prime} \cup\left\{u_{2} v_{7}\right\}$ is an $L(9,5)$ and so by Lemma 2.6, $Y_{4,3,2}, Y_{3,3,3} \subseteq G$. The union of $u_{2} v_{4} v_{5} v_{6}, u_{2} u_{1} v_{1} v_{2}$ and $u_{2} v_{7} v_{8} v_{9} v_{10} v_{11} v_{12}$ is a $Y_{5,2,2}$, and so the lemma holds if $j=7$. If $j=9$, $\left(C^{\prime}-v_{4} v_{5}\right) \cup P^{\prime} \cup\left\{u_{2} v_{4}, u_{2} v_{9}\right\}$ is an $L(9,4)$. By Lemma 2.6, $Y_{3,3,3}, Y_{4,3,2}, \subseteq G$. The union of $v_{9} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3}, v_{9} u_{2} u_{1} v_{1}$ and $v_{9} v_{10} v_{11} v_{12}$ is a $Y_{5,2,2}$, and so the lemma holds if $j=9$.

Assume that $j=10$. Then $\left(C^{\prime}-v_{3} v_{4}\right) \cup P^{\prime} \cup\left\{u_{2} v_{4}, u_{2} v_{10}\right\}$ is an $L(8,5)$ and so by Lemma $2.6, Y_{4,3,2} \subseteq G$. The union of $u_{2} v_{4} v_{3} v_{2}, u_{2} u_{1} v_{1} v_{12}$ and $u_{2} v_{10} v_{9} v_{8} v_{7} v_{6} v_{5}$ is a $Y_{5,2,2}$. It remains to show that $Y_{3,3,3} \subseteq G$.

By $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$ and by $\kappa\left(G_{0}^{\prime}\right) \geq 2, N_{G_{0}^{\prime}}\left(u_{1}\right)-\left\{v_{1}, u_{2}\right\}$ has a vertex $u_{1}^{\prime}$ and $G_{0}^{\prime}$ has a $\left(u_{1}, v\right)$-path $Q$ such that $\left(V\left(C^{\prime}\right)\right.$ $\left.\cup V\left(P^{\prime}\right)\right) \cap V(Q)=\left\{u_{1}, v\right\}$ (with $u_{1}^{\prime}=v$ possible). If $u_{1}^{\prime} \neq v$, then replacing $u_{2}$ by $u_{1}^{\prime}$ in the arguments above, we conclude that $v_{4}, v_{10} \in N_{G_{0}^{\prime}}\left(u_{1}^{\prime}\right)$, and so $\left(C_{0}^{\prime}-v_{3} v_{4}\right) \cup\left\{u_{2} v_{10}, u_{1} u_{2}, u_{1} u_{1}^{\prime}, u_{1}^{\prime} v_{4}\right\}$ is an $L(10,5)$, and so by Lemma $2.6, Y_{3,3,3} \subseteq G$. Hence we assume that $u_{1}^{\prime}=v \in V\left(C_{0}^{\prime}\right)$. Since $c$ is longest and since $G_{0}^{\prime}$ is reduced, we must have $u_{1}^{\prime}=v_{7}$. In this case, $v_{10} v_{9} v_{8} v_{7} u_{1}$, $v_{10} u_{2} v_{4} v_{5} v_{6}$ and $v_{10} v_{11} v_{12} v_{1} v_{2}$ form a $Y_{3,3,3}$. This completes the proof of the lemma.

Lemma 3.5. If $l=1$, then for any $s_{1}, s_{2}, s_{3}>0, Y_{s_{1}, s_{2}, 1} \subseteq G$ if $s_{1}+s_{2}+1 \leq 10$, and $Y_{s_{1}, s_{2}, s_{3}} \subseteq G$ if $s_{1}+s_{2}+s_{3} \leq 9$.
Proof. By (3.2), $\Lambda\left(G_{0}^{\prime}\right)-V\left(C^{\prime}\right) \neq \emptyset$. Since $l=1$, every vertex $u \in \Lambda\left(G_{0}^{\prime}\right)-V\left(C^{\prime}\right)$ is adjacent to a vertex in $C^{\prime}$. Choose $u \in \Lambda\left(G_{0}^{\prime}\right)-V\left(C^{\prime}\right)$ such that

$$
\begin{equation*}
\left|V\left(P_{G_{0}}(u)\right)\right| \text { is maximized. } \tag{3.5}
\end{equation*}
$$

If $u$ is an end of a nontrivial edge of $G_{0}$, then we view that $P I(u)$ is the contraction image of an edge incident with a vertex of degree 2 in $G$. With this convention, $\left|V\left(P I_{G_{0}}(u)\right)\right| \geq 2$. We assume that $u v_{1} \in E\left(G_{0}^{\prime}\right)$.

## Claim 1. Each of the following holds.

(i) $Y_{8,1,1}, Y_{7,2,1}, Y_{6,3,1}, Y_{5,4,1} \subseteq G$.
(ii) If $\left|V\left(P I_{G_{0}}(u)\right)\right| \geq 3$, then $Y_{6,2,2}, Y_{5,3,2}, Y_{4,4,2}, Y_{4,3,3} \subseteq G$.
(iii) For any $u \in V\left(\overline{G_{0}^{\prime}}\right)-V\left(C^{\prime}\right), P I_{G_{0}}(u)$ is not a nontrivial collapsible subgraph of $G_{0}$.

Proof of Claim 1. Since $u \in \Lambda\left(G_{0}^{\prime}\right),\left|V\left(P I_{G_{0}}(u)\right)\right| \geq 2$, and so $G\left[V(C) \cup V\left(P I_{G}(u)\right)\right]$ contains a $L\left(h_{0}, 2\right)$ for some $h_{0}=|V(C)| \geq$ $h \geq 12$. By Lemma 2.6, Claim 1(i) follows.

To prove (ii), we assume that $\left|V\left(P_{G_{0}}(u)\right)\right| \geq 3$. Since $P I_{G_{0}}(u)$ is collapsible, $G_{0}\left[V\left(P I_{G_{0}}(u)\right) \cup\left\{v_{1}\right\}\right]$ contains a $L\left(h^{\prime}, 3\right)$ with $h^{\prime} \geq h \geq 12$. By Lemma 2.6, $Y_{6,2,2}, Y_{5,3,2}, Y_{4,4,2} \subseteq G$. If $\left|V\left(P I_{G_{0}}(u)\right)\right| \geq 4$, then a similar argument implies $Y_{4,3,3} \subseteq G$. Hence we assume that $\left|V\left(P I_{G_{0}}(u)\right)\right|=3$, and so $P I_{G_{0}}(u)$ is spanned by a $K_{3}$. Since $d_{G_{0}^{\prime}}(u) \geq \kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$, and since $G_{0}^{\prime}$ is reduced, $\left|N_{G_{0}^{\prime}}(u)\right| \geq 3$. We proceed with the proof by examining the distribution of the vertices of $N_{G_{0}^{\prime}}(u)$ in $C_{0}^{\prime}$.
Case 1. Suppose that $N_{G_{0}^{\prime}}(u)$ has distinct vertices $x, y$ with distance $d$ on $C^{\prime}$, such that $5 \leq d \leq \frac{h}{2}$. Since $P_{G_{0}}(u)$ is spanned by a $K_{3}, G_{0}\left[P I_{G_{0}}(u) \cup\{x, y\}\right]$ has an $(x, y)$-path $Q_{1}$ of length 4. The two paths from $x$ in $C^{\prime}-y$ can be lifted to two paths $Q_{2}$ and $Q_{3}$ from $x$ in $G_{0}$ of length at least 4 and 5, respectively. Hence $G_{0}\left[E\left(Q_{1}\right) \cup E\left(Q_{2}\right) \cup E\left(Q_{3}\right)\right]$ contains a $Y_{4,3,3}$.
Case 2. Suppose that $N_{G_{0}^{\prime}}(u)$ has distinct vertices $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}$ with $1 \leq i_{1}<i_{2}<i_{3} \leq h$ and with $i_{2} \equiv i_{1}+2(\bmod h)$ such that
either $i_{3} \equiv i_{2}+2(\bmod h) \quad$ or $\quad i_{3} \equiv i_{2}+3(\bmod h)$.

Since $i_{2} \equiv i_{1}+2(\bmod h)$, if $i_{3} \equiv i_{2}+3(\bmod h)$, then the distance between $v_{i_{1}}$ and $v_{i_{3}}$ on $C^{\prime}$ is 5 . Thus by Case 1 , we only consider that case when $i_{3} \equiv i_{2}+2(\bmod h)$.

Relabeling if needed, we assume that $i_{1}=1$, and so $v_{1}, v_{3} \in N_{G_{0}^{\prime}}(u)$, and $v_{5} \in N_{G_{0}^{\prime}}(u) \cup N_{G_{0}^{\prime}}(u)$. If $v_{5} \in N_{G_{0}^{\prime}}(u)$, then by (3.4), $\left|P I_{G}\left(v_{4}\right)\right| \geq 2$ (if $v_{4}$ is an end of a nontrivial edge, then view that $P I_{G}\left(v_{4}\right)$ is the contraction image of an edge incident with a vertex of degree 2 in $G$ ), as otherwise, $G_{0}^{\prime}\left[E\left(C^{\prime}-v_{4}\right) \cup\left\{u v_{3}, u v_{5}\right\}\right]$ is a cycle violating (3.4). Denote the vertex in $P I_{G}\left(v_{4}\right)$ incident with the edge $v_{3} v_{4}$ in $G_{0}$ by $v_{4}^{\prime}$. Then $P I_{G}\left(v_{4}\right)$ contains an edge $v_{4}^{\prime} v_{4}^{\prime \prime}$. Since $P I_{G_{0}}(u)$ is spanned by a $K_{3}$, $G_{0}\left[P_{G_{0}}(u) \cup\left\{v_{1}, v_{5}\right\}\right]$ has an $\left(v_{1}, v_{5}\right)$-path which can be lifted to a path $Q_{1}$ in $G$ of length at least 4. Furthermore, $C^{\prime}-v_{5}$ has a path from $v_{1}$ to $v_{4}$ which can be lifted to a path $Q_{2}$ in $G$ of length at least 4 from $v_{1}$ to $v_{4}^{\prime \prime}$, using the edge $v_{4}^{\prime} v_{4}^{\prime \prime}$; and a path from $v_{1}$ to $v_{6}$ which can be lifted to a path $Q_{3}$ in $G$ of length at least $k-5 \geq 7$. It follows that $G\left[E\left(Q_{1}\right) \cup E\left(Q_{2}\right) \cup E\left(Q_{3}\right)\right]$ contains a $Y_{4,3,3}$.
Case 3. Case 1 and Case 2 do not occur.
Without loss of generality, we assume that $v_{1}, v_{i}, v_{j} \in N_{G_{0}^{\prime}}(u)$ with $1<i<j$ and with $i \leq \frac{h}{2}$. Since $G_{0}^{\prime}$ has no 3-cycles, and since Case A and Case B do not occur, $i \in\{3,4,5\}$ and $j \in\{h-3, h-2, h-1\}$. By Case 1 , the distance between any two of the these three vertices $v_{1}, v_{i}, v_{j}$ must be at most 4. It follows by Case 2 that $h=12, i=5$ and $j=9$. Since $P_{G_{0}}(u)$ is spanned by a $K_{3}$, denote $V\left(P I_{G_{0}}(u)\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$. By $\kappa(L(G)) \geq 3$, we may assume that $u_{1} v_{5}, u_{2} v_{9} \in E(G)$. It follows that the cycle $C$ lifted from $u_{1} v_{5} v_{6} v_{7} v_{8} v_{9} u_{2} u_{1} u_{3}$ and the path lifted from $v_{10} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5}$ will form an $L(h, k)$ in $G$ with $h \geq 8$ and $k \geq 7$. It follows by Lemma $2.6, Y_{6,2,2}, Y_{5,3,2}$ and $Y_{4,2,2}$ are subgraphs of $G$. This proves (ii).

If for some $u \in V\left(G_{0}^{\prime}\right)-V\left(C^{\prime}\right), P I_{G_{0}}(u)$ is a nontrivial collapsible subgraph, then as $G_{0}$ is simple, $\left|P I_{G_{0}}(u)\right| \geq 3$. By Claim 1(i) and (ii), and by Lemma 2.6, $G$ has $Y_{s_{1}, s_{2}, s_{3}}$ as a subgraph, contrary to (3.3). This proves (iii), and completes the proof for Claim 1.

By Claim 1(i) and by Lemma 2.6, it remains to prove

$$
\begin{equation*}
Y_{5,2,2}, Y_{4,3,2}, Y_{3,3,3} \subseteq G \tag{3.6}
\end{equation*}
$$

In the rest of the proof, we always assume that $u$ is a vertex that satisfies $u \in \Lambda\left(G_{0}\right)-V\left(C^{\prime}\right)$. By Claim 1(iii), either $P I_{G}(u)$ consists of an edge incident with a vertex in $D_{2}(G)$, or for some $u^{\prime} \in V(G)$, every edge in $P I_{G}(u)$ is in $E_{G}\left(u^{\prime}\right)$ and is incident with a vertex in $D_{1}(G)$. To simplify notations, throughout the rest of the proof of this lemma, we assume that $u$, $u^{\prime}$ are vertices in $P I_{G}(u)$ such that $u^{\prime} u \in E\left(P I_{G}(u)\right)$ and $u$ is the vertex in $G$ incident with the edge $u v_{1}$ in $G_{0}^{\prime}$.

As $\left|N_{G_{0}^{\prime}}(u) \cap V\left(C^{\prime}\right)\right| \geq \kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$, relabeling if needed, we may assume that $v_{1}, v_{i}, v_{j} \in N_{G_{0}^{\prime}}(u)$, such that if $n_{1}=i-1$, $n_{2}=j-i$, and $n_{3}=h-j+1$, then $n_{3} \geq n_{2} \geq n_{1}$. Note that $n_{1}+n_{2}+n_{3}=h$, and so

$$
\begin{equation*}
n_{3} \geq \frac{h}{3} \geq n_{1}, \quad \text { and so } G_{0}^{\prime} \text { has an } L\left(n_{2}+n_{3}+2, n_{1}-1\right) \tag{3.7}
\end{equation*}
$$

Since $G_{0}^{\prime}$ is reduced, $n_{1} \geq 2$. Suppose $n_{1} \geq 4$. By (3.7), $n_{2}+n_{3}+2 \geq 10$ and $n_{1}-1 \geq 4$, by (3.7) and by Lemma 2.6, (3.6) holds. Hence $2 \leq n_{1} \leq 3$.

Claim 2. If $n_{1}=3$, then (3.6) holds.
Proof of Claim 2. Suppose that $n_{1}=3$. If $n_{2} \geq 5$, then $G_{0}^{\prime}$ has an $L\left(n_{1}+n_{3}+2, n_{2}-1\right)$. Since $n_{2}-1 \geq 4$ and $n_{1}+n_{3}+2 \geq 3+5+2=10, G_{0}^{\prime}$ has an $L(10,4)$. By Lemma 2.6, (3.6) holds.

Assume that $n_{2}=4$. Then $G_{0}^{\prime}$ has an $L\left(n_{1}+n_{3}+2,3\right)$. As $n_{1}+n_{3}+2 \geq k-4+2=10, G_{0}^{\prime}$ has an $L(10,3)$. By Lemma 2.6, $Y_{4,3,2}, Y_{5,2,2} \subseteq G$. Since $n_{1}=3$ and $n_{2}=4, u v_{8} \in E\left(G_{0}^{\prime}\right)$. The union of $v_{1} v_{2} v_{3} v_{4} v_{5}, v_{1} u v_{8} v_{7} v_{6}$ and $v_{1} v_{h} v_{h-1} v_{h-2} v_{h-3}$ is a $Y_{3,3,3}$, and so (3.6) holds.

Hence $n_{2}=n_{1}=3$ and so $v_{4}, v_{7} \in N_{G_{0}^{\prime}}(u)$. It follows that $\left(C^{\prime}-v_{1} v_{h}\right) \cup\left\{u v_{1}, u v_{7}\right\}$ contains an $L(8,5)$, and so by Lemma 2.6, $Y_{4,3,2} \subseteq G$. It remains to show that $Y_{5,2,2}, Y_{3,3,3} \subseteq G$.

Since $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$ and $\kappa\left(G_{0}^{\prime}\right) \geq 2$, for $l \in\{2,3\}, G_{0}^{\prime}$ has a path $Q_{l}$ such that $V\left(Q_{l}\right) \cap V\left(C^{\prime}\right)=\left\{v_{l}, v_{i l}\right\}$ with $i_{l} \neq l$. As $C^{\prime}$ is longest and as $G_{0}^{\prime}$ is reduced, $i_{2}, i_{3} \notin\{1,2,3,4\}$ unless $Q_{2}=v_{2} w_{2} v_{4}$ and $Q_{3}=v_{1} w_{3} v_{3}$ for some $w_{2} \neq w_{3}$ and $w_{2}, w_{3} \in V\left(G_{0}^{\prime}\right)-V\left(C^{\prime}\right)$. But if $Q_{2}=v_{2} w_{2} v_{4}$ and $Q_{3}=v_{1} w_{3} v_{3}$, then $\left(C^{\prime} \cup Q_{2} \cup Q_{3}\right)-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$ is a cycle of length at least $h+2$, contrary to the assumption that $C^{\prime}$ is longest. Hence we assume that $i_{2}, i_{3} \notin\{1,2,3,4\}$.

Since $C^{\prime}$ is longest, $u \notin V\left(Q_{2}\right) \cup V\left(Q_{3}\right)$ and $i_{3} \notin\{5,6,12\}$. (If $i_{3}=5$, then as $G_{0}^{\prime}$ is reduced, $\left|E\left(Q_{3}\right)\right| \geq 2$, and $C^{\prime}\left[v_{7}, v_{3}\right] Q_{3}\left(v_{3}, v_{5}\right] v_{4} u v_{7}$ is longer than $C^{\prime}$. If $i_{3}=6$, then $C^{\prime}\left[v_{7}, v_{3}\right] Q_{3}\left(v_{3}, v_{6}\right] v_{5} v_{4} u v_{7}$ is longer than $C^{\prime}$. If $i_{3}=12$, then $C^{\prime}\left[v_{4}, v_{12}\right] Q_{3}\left(v_{12}, v_{3}\right] v_{2} v_{1} u v_{4}$ is longer than $\left.C^{\prime}.\right)$

If $i_{3}=7$, then $\left(C^{\prime}-v_{3} v_{4}\right) \cup Q_{3} \cup\left\{u v_{4}\right\}$ is an $L\left(h-4+\left|E\left(Q_{3}\right)\right|, 4\right)$. As $h-4+\left|E\left(Q_{3}\right)\right| \geq 9$, by Lemma $2.6, Y_{3,3,3} \subset G$. The union of $v_{3} v_{4} u u^{\prime}, Q_{3}\left[v_{3}, v_{7}\right] v_{6} v_{5}$ and $v_{3} v_{2} v_{1} v_{h} v_{h-1} v_{h-2} v_{h-3}$ contains a $Y_{5,2,2}$. Hence (3.6) holds.

If $i_{3}=8$, then $\left(C^{\prime}-v_{3} v_{4}\right) \cup\left\{u u^{\prime}, u v_{4}\right\}$ is an $L(h-5,6)$. As $h-5 \geq 7$, by Lemma 2.6, $Y_{5,2,2} \subset G$. The union of $Q_{3}\left[v_{8}, v_{3}\right] v_{2} v_{1} u$, $v_{8} v_{7} v_{6} v_{5} v_{4}$ and $v_{8} v_{9} v_{10} v_{11} v_{12}$ contains a $Y_{3,3,3}$. Hence (3.6) holds.

If $i_{3}=9$, then $\left(C^{\prime}-\left\{v_{1} v_{h}, v_{3} v_{4}\right\}\right) \cup E\left(Q_{3}\right) \cup\left\{u v_{1}, u v_{4}\right\}$ is an $L\left(9+\left|E\left(Q_{3}\right)\right|, h-9\right)$. As $9+\left|E\left(Q_{3}\right)\right| \geq 10$ and $h-9 \geq 3$, by Lemma 2.6, $Y_{5,2,2} \subset G$. The union of $v_{9} v_{10} v_{11} v_{12} v_{1}, Q_{3}\left[v_{9}, v_{3}\right] v_{4} u u^{\prime}$ and $v_{9} v_{8} v_{7} v_{6} v_{5}$ contains a $Y_{3,3,3}$. Hence (3.6) holds.

If $i_{3}=10$, then the union of $v_{10} v_{11} v_{12} v_{1} v_{2}, Q_{2}\left[v_{10}, v_{3}\right] v_{4} u u^{\prime}$ and $v_{10} v_{9} v_{8} v_{7} v_{6}$ contains a $Y_{3,3,3}$; and the union of $Q_{3}$ [ $\left.v_{3}, v_{10}\right] v_{11} v_{12}, v_{3} v_{2} v_{1} u$ and $v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9}$ has a $Y_{5,2,2}$. Hence (3.6) holds.

Table 1
Existence of $Y_{s_{1}, s_{2}, s_{3}}$ when $\operatorname{PI}(v)=K_{2,3}$ in the proof of Lemma 2.9.

| Cases |  |  | $\underline{Y_{S_{1}, s_{2}, s_{3}}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{1}$ | $S_{2}$ | $S_{3}$ | $P_{S_{1}+1}$ | $P_{S_{2}+1}$ | $P_{S_{3}+1}$ |
| 8 | 1 | 1 | $v v_{1} v_{4} v_{2} v_{9} v_{8} v_{7} v_{6} v_{5} v_{3}$ | $v w_{1} u_{2}$ | $v w_{2} u_{1}$ |
| 7 | 2 | 1 | $v v_{1} v_{4} v_{2} v_{5} v_{3} v_{8} v_{7} v_{6}$ | $v w_{1} u_{2} v_{9}$ | $v w_{2} u_{1}$ |
| 6 | 3 | 1 | $v v_{1} v_{3} v_{5} v_{2} v_{4} v_{7} v_{6}$ | $v w_{1} u_{2} v_{9} v_{8}$ | $v w_{2} u_{1}$ |
| 6 | 2 | 2 | $v v_{1} v_{4} v_{2} v_{5} v_{3} v_{8} v_{7}$ | $v w_{2} u_{1} v_{6}$ | $v w_{1} u_{2} v_{9}$ |
| 5 | 4 | 1 | $v v_{1} v_{4} v_{2} v_{5} v_{6} v_{7}$ | $v w_{1} u_{2} v_{9} v_{8} v_{3}$ | $v w_{2} u_{1}$ |
| 5 | 3 | 2 | $v v_{1} v_{3} v_{5} v_{2} v_{4} v_{7}$ | $v w_{1} u_{2} v_{9} v_{8} v_{7}$ | $v w_{2} u_{1} v_{6}$ |
| 4 | 4 | 2 | $v v_{1} v_{3} v_{5} v_{2} v_{4}$ | $v w_{1} u_{2} v_{9} v_{8} v_{7}$ | $v w_{2} u_{1} v_{6}$ |
| 4 | 3 | 3 | $v v_{1} v_{3} v_{5} v_{2} v_{4}$ | $v w_{1} u_{2} v_{9} v_{8}$ | $v w_{2} u_{1} v_{6} v_{7}$ |

Table 2
Existence of $Y_{s_{1}, s_{2}, s_{3}}$ when PI $(v)=K_{1,3}^{\prime}$ in the proof of Lemma 2.9.

| Cases |  |  | $\underline{Y_{s_{1}, s_{2}, s_{3}}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $s_{1}$ | $S_{2}$ | $S_{3}$ | $P_{S_{1}+1}$ | $P_{S_{2}+1}$ | $P_{S_{3}+1}$ |
| 8 | 1 | 1 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5} v_{3} v_{8} v_{7}$ | $u w_{1} w_{6}$ | $u w_{3} w_{2}$ |
| 7 | 2 | 1 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5} v_{3} v_{8}$ | $u w_{3} w_{2} v_{9}$ | $u w_{1} w_{6}$ |
| 6 | 3 | 1 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5} v_{3}$ | $u w_{3} w_{2} v_{9} v_{8}$ | $u w_{1} w_{6}$ |
| 6 | 2 | 2 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5} v_{3}$ | $u w_{3} w_{2} v_{9}$ | $u w_{1} w_{6} v_{6}$ |
| 5 | 4 | 1 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5}$ | $u w_{3} w_{2} v_{9} v_{8} v_{7}$ | $u w_{1} w_{6}$ |
| 5 | 3 | 2 | $u w_{5} w_{4} v_{1} v_{4} v_{2} v_{5}$ | $u w_{3} w_{2} v_{9} v_{8}$ | $u w_{1} w_{6} v_{6}$ |
| 4 | 4 | 2 | $u w_{5} w_{4} v_{1} v_{4} v_{2}$ | $u w_{3} w_{2} v_{9} v_{8} v_{7}$ | $u w_{1} w_{6} v_{6}$ |
| 4 | 3 | 3 | $u w_{5} w_{4} v_{1} v_{4} v_{2}$ | $u w_{3} w_{2} v_{9} v_{8}$ | $u w_{1} w_{6} v_{6} v_{7}$ |



Fig. 4. Graphs in Tables 1 and 2.
If $i_{3}=11$, then $\left(C^{\prime}-\left\{v_{1} v_{2}, v_{2} v_{3}\right\}\right) \cup E\left(Q_{3}\right) \cup\left\{u v_{1}, u u^{\prime}\right\}$ has an $L\left(8+\left|E\left(Q_{3}\right)\right|, h-10+2\right)$. As $8+\left|E\left(Q_{3}\right)\right| \geq 9$ and $h-10+2 \geq 4$, by Lemma 2.6, $Y_{3,3,3} \subset G$. The union of $v_{3} v_{4} u u^{\prime}, v_{3} v_{2} v_{1} v_{12}$, and $Q_{3}\left[v_{v_{3}}, v_{11}\right] v_{10} v_{9} v_{8} v_{7} v_{6}$ and has a $Y_{5,2,2}$. Hence (3.6) holds. This proves Claim 2.

By Claim $2, n_{1}=2$, and so $v_{3} \in N_{G_{0}^{\prime}}(u)$. By (3.4), $v_{2} \in \Lambda\left(G_{0}^{\prime}\right)$. For notational convenience, let $v_{2}, v_{2}^{\prime}$ be vertices in $P I_{G}\left(v_{2}\right)$ such that $v_{2} v_{2}^{\prime} \in E(G)$ and such that $v_{2}$ is the vertex in $P_{G}\left(v_{2}\right)$ incident with the edge $u v_{2}$ in $G_{0}^{\prime}$. If $n_{2} \geq 6$, or $n_{2}=5$ and $n_{3} \geq 6$, then $h=n_{3}+n_{2}+n_{1} \geq 13$. Thus $G_{0}^{\prime}$ has an $L\left(h-n_{2}+2, n_{2}-1\right)$ as a subgraph. Since $h-n_{2}+2=n_{1}+n_{3}+2 \geq 10$ and $n_{2}-1 \geq 4$, by Lemma 2.6, (3.6) holds. Hence either $n_{3}=n_{2}=5$, or $n_{2} \leq 4$.
Case 1. $n_{3}=n_{2}=5$ and $n_{1}=2$.
Therefore, $h=12$, and $v_{1}, v_{3}, v_{8} \in N_{G_{0}^{\prime}}(u)$. Hence $\left(C^{\prime}-v_{8} v_{9}\right) \cup\left\{u v_{1}, u v_{8}\right\}$ is an $L(9,4)$, and so by Lemma 2.6, $Y_{4,3,2}, Y_{3,3,3} \subseteq G$. It suffices to show that $Y_{5,2,2} \subseteq G$. By $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3, G_{0}^{\prime}$ has a path $P$ such that $V\left(C^{\prime}\right) \cap V(P)=\left\{v_{2}, v_{i}\right\}$ for some $i \neq 2$. Since $C^{\prime}$ is longest, $i \notin\{1,3\}$. By symmetry, we may only examine the cases when $i \in\{4,5,6,7,8\}$. Table 3 in the Appendix shows that $Y_{5,2,2} \subseteq G$ in any of these cases.
Case $2.2 \leq n_{2} \leq 3$ and $n_{1}=2$.
If $n_{2}=2$, then $v_{5} \in N_{G_{0}^{\prime}}(u)$, and so $\left(C^{\prime}-v_{1} v_{2}\right) \cup\left\{v_{2} v_{2}^{\prime}, u v_{1}, u v_{5}\right\}$ is an $L(h-4+2,4)$. As $h-2 \geq 10$, by Lemma 2.6, (3.6) holds.

If $n_{2}=3$, then $v_{6} \in N_{G_{0}^{\prime}}(u)$, and so $\left(C^{\prime}-v_{1} v_{2}\right) \cup\left\{u v_{1}, u v_{6}, v_{2} v_{2}^{\prime}\right\}$ is an $L(h-5+2,5)$. As $h-3 \geq 9$, by Lemma 2.6, $Y_{4,3,2}, Y_{3,3,3} \subset G$. The union of $u v_{1} v_{2} v_{2}^{\prime}, u v_{3} v_{4} v_{5}$ and $u v_{6} v_{7} v_{8} v_{9} v_{10} v_{11}$ is a $Y_{5,2,2}$. Hence (3.6) holds. This proves Case 2.

Table 3
Existence of $Y_{5,2,2}$ in Lemma 3.5 when $n_{1}=2$ and $n_{2}=n_{3}=5$.

| $v_{i}$ | $Y_{5,2,2}$ |
| :--- | :--- |
| $v_{4}$ | The union of $v_{2} v_{3} u u^{\prime}, P\left[v_{2}, v_{4}\right] v_{5} v_{6}$ and $v_{2} v_{1} v_{12} v_{11} v_{10} v_{9} v_{8}$ |
| $v_{5}$ | The union of $v_{5} v_{4} v_{3} u, P\left[v_{5}, v_{2}\right] v_{1} v_{12}$ and $v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{11}$ |
| $v_{6}$ | The union of $v_{6} v_{5} v_{4} v_{3}, P\left[v_{6}, v_{2}\right] v_{1} u$ and $v_{6} v_{7} v_{8} v_{9} v_{10} v_{11} v_{12}$ |
| $v_{7}$ | The union of $v_{7} v_{8} v_{9} v_{10}, P\left[v_{7}, v_{2}\right] v_{1} v_{12}$ and $v_{7} v_{6} v_{5} v_{4} v_{3} u u^{\prime}$ |
| $v_{8}$ | The union of $v_{8} v_{9} v_{10} v_{11}, v_{8} u v_{1} v_{12}$ and $P\left[v_{8}, u\right] v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2}$ |

Case 3. $n_{2}=4$ and $n_{1}=2$.
Thus $v_{3}, v_{7} \in N_{G_{0}^{\prime}}(u)$ and so $\left(C^{\prime}-v_{3} v_{4}\right) \cup\left\{u v_{3}, u v_{7}\right\}$ is an $L(h-4+2,3)$. As $h-2 \geq 10$, by Lemma $2.6, Y_{4,3,2}, Y_{5,2,2} \subseteq G$. It remains to show that $Y_{3,3,3} \subseteq G$.

Recall that $P I_{G}(u)$ has an edge $u u^{\prime}$. By $\kappa^{\prime}\left(G_{0}^{\prime}\right) \geq 3$ and $\kappa\left(G_{0}^{\prime}\right) \geq 2, G_{0}^{\prime}$ has a $\left(v_{2}, v_{i}\right)$-path $Q_{2}$ such that $V\left(C^{\prime}\right) \cap V\left(Q_{2}\right)=$ $\left\{v_{2}, v_{i}\right\}$ for some $i \neq 2$. Since $G_{0}^{\prime}$ is reduced and since $C^{\prime}$ is longest, $i \notin\{h, 1,2,3,4\}$.

If $i=5$, then the union of paths $v_{5} v_{4} v_{3} u u^{\prime}, Q_{2}\left[v_{5}, v_{2}\right] v_{1} v_{h} v_{h-1}$ and $v_{5} v_{6} v_{7} v_{8} v_{9}$ contains a $Y_{3,3,3}$. If $i=6$, then the union of paths $v_{6} v_{5} v_{4} v_{3} u, Q_{2}\left[v_{6}, v_{2}\right] v_{1} v_{h} v_{h-1}$ and $v_{6} v_{7} v_{8} v_{9} v_{10}$ contains a $Y_{3,3,3}$. Therefore, by symmetry and since $u v_{7}$ is not used in the proof for $i \in\{5,6\}$, we may assume that $i \notin\{5,6, h-1, h-2\}$.

If $i=7$, then the union of $v_{7} v_{8} v_{9} v_{10} v_{11}, v_{7} v_{6} v_{5} v_{4} v_{3}$ and $v_{7} v_{2} v_{3} u u^{\prime}$ is a $Y_{3,3,3}$.
If $i=8$, then $\left(C^{\prime} \cup Q_{2} \cup\left\{u v_{1}, u v_{3}\right\}\right)-\left\{v_{1} v_{2}, v_{7} v_{8}\right\}$ is an $L\left(h-6+\left|E\left(Q_{2}\right)\right|+2,4\right)$. Since $h \geq 12, h-4+\left|E\left(Q_{2}\right)\right| \geq 9$, and so by Lemma $2.6, Y_{3,3,3} \subseteq G$.

If $i=9$, then the union of $v_{9} v_{10} v_{11} \ldots v_{h} v_{1}, v_{9} v_{8} v_{7} v_{6} v_{5}$ and $v_{9} v_{2} v_{3} u u^{\prime}$ contains a $Y_{3,3,3}$.
If $10 \leq i \leq h-3$, then the union of the cycle $v_{2} v_{3} v_{4} \ldots v_{i} v_{2}$ and the path $v_{i} v_{i+1} \ldots v_{h} v_{1} u u^{\prime}$ is an $L\left(h^{\prime}, k^{\prime}\right)$ with $h^{\prime} \geq 10$ and $k^{\prime} \geq 5$. By Lemma 2.6, $Y_{3,3,3} \subseteq G$. This proves Case 3 and completes the proof of the lemma.
Continuation of the proof of Theorem 1.5(i) and (ii). Suppose that (3.1) holds. If $c\left(G_{0}^{\prime}\right) \geq 12$, then by Lemmas 3.3-3.5, either $Y_{s_{1}, s_{2}, 1} \subset G$ for any $s_{1}, s_{2}>0$ with $s_{1}+s_{2}+1 \leq 10$, or $Y_{s_{1}, s_{2}, s_{3}} \subset G$ for any $s_{1}, s_{2}, s_{3}>0$ with $s_{1}+s_{2}+s_{3} \leq 9$, contrary to (3.3). Hence we assume that $c\left(G_{0}^{\prime}\right) \leq 11$. By Theorem 2.2, either $G$ is supereulerian, whence by Theorem 2.11, $L(G)$ is hamiltonian, contrary to (3.1); or $G$ is contractible to $P(10)$, whence by Lemma 3.1, $L(G)$ is not hamiltonian and $G \in \mathcal{F}$, contrary to (3.1). This completes the proof of Theorem 1.5.

## Acknowledgments

The authors would like to thank the referees for their helpful suggestions which improved the presentation of the paper. Xiaoling Ma is supported in part by the Natural Science Foundation of Xinjiang University (XY110102).

## Appendix

See Tables 1-3 and Fig. 4.

## References

[1] L. Beineke, Derived graphs and digraphs, in: Beiträge zur Graphentheorie, Teubner, Leipzig, 1968.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, 1976.
[3] J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonianicity and closure in claw-free graph, Discrete Math. 196 (1999) 29-50.
[4] P.A. Catlin, A reduction methods to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[5] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223-246.
[6] P.A. Catlin, Z. Hand, H.-J. Lai, Graphs without spanning eulerian subgraphs, Discrete Math. 160 (1996) 81-91.
[7] Z.-H. Chen, Reduction of Graphs and Spanning Eulerian Subgraphs, Ph.D. Dissertation, Wayne State University, 1991.
[8] Z.-H. Chen, H.-J. Lai, Supereulerian graphs and the Petersen graph, II, Ars Combin. 48 (1998) 271-282.
[9] F. Harary, Graph Theory, Edison-Wesley Publishing Company, Reading, 1969.
[10] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701-710.
[11] H.-J. Lai, L. Xiong, H. Yan, J. Yan, Every 3-connected claw-free $Z_{8}$-free graph is Hamiltonian, J. Graph Theory 64 (2010) 1-11.
[12] D. Li, H.-J. Lai, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422-428.
[13] X. Ma, H.-J. Lai, W. Xiong, B. Wu, X. An, Hamiltonicity of 3-connected claw-free graphs (submitted for publication).
[14] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[15] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
[16] Y. Shao, Claw-Free Graphs and Line Graphs, Ph.D. Dissertation, West Virginia University, 2005.
[17] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.


[^0]:    * This work was supported by the NSFC (No. 11061034).
    * Corresponding author at: Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States.

    E-mail addresses: hjlai@math.wvu.edu, hongjianlai@gmail.com (H.-J. Lai), mxlmath@sina.com (X. Ma).

