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a b s t r a c t

For an integer s1, s2, s3 > 0, let Ns1,s2,s3 denote the graph obtained by identifying each
vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, and Ps3+1 of length
s1, s2, and s3, respectively.We determine a familyF of graphs such that, every 3-connected
(K1,3,Ns1,s2,1)-free graph Γ with s1 + s2 + 1 ≤ 10 is hamiltonian if and only if the closure
of Γ is L(G) for some graph G ∉ F . We also obtain the following results.

(i) Every 3-connected (K1,3,Ns1,s2,s3 )-free graph with s1 + s2 + s3 ≤ 9 is hamiltonian.
(ii) If G is a 3-connected (K1,3,Ns1,s2,0)-free graph with s1 + s2 ≤ 9, then G is hamiltonian

if and only if the closure of G is not the line graph of a member in F .
(iii) Every 3-connected (K1,3,Ns1,s2,0)-free graph with s1 + s2 ≤ 8 is hamiltonian.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs. Undefined terms and notation will follow [2]. For a graph G which contains at least
one cycle, the circumference of G, denoted by c(G), is the length of a longest cycle contained in G; and the girth of G, denoted
by g(G), is the length of a shortest cycle contained in G. By H ⊆ Gwe mean that H is a subgraph of G. If H ⊆ G, then the set
of vertices of attachments of H in G is defined as

AG(H) = {v ∈ V (H) : NG(v) − V (H) ≠ ∅}.

For an integer i ≥ 0 and v ∈ V (G), define

Di(G) = {v ∈ V (G) : dG(v) = i}, and EG(v) = {e ∈ E(G) : e is incident with v in G}.

For a vertex v ∈ V (G), define NG(v) = {u ∈ V (G) | vu ∈ E(G)}. The subscript G in the notations above might be omitted if
G is understood from the context.

Let G be a graph and X ⊆ E(G) be an edge subset. The contraction G/X is the graph obtained from G by identifying the two
ends of each edge in X and then deleting the resulting loops. We define G/∅ = G. If H ⊆ G, then we write G/H for G/E(H).
If H is a connected subgraph of G, and if vH is the vertex in G/H onto which H is contracted, then H is the preimage of vH ,
and is denoted by PIG(vH). If H is the preimage of vH in G/H , then we also say that vH is lifted to H in G. When the graph G is
understood from the context, we often use PI(v) for PIG(v). A vertex v in a contraction of G is nontrivial if PI(v) has at least
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one edge. If P ′ is a path (or cycle, respectively) in G′, then since for any v ∈ V (P ′), by the definition of contractions, PI(v) is a
connected subgraph of G, then P ′ can be extended to a path (or a cycle, respectively) of G by adding (possibly empty) paths
in each PI(v) to P ′, viewed as the induced subgraph G[E(P ′)]. In this case, we say that P ′ is lifted to P , or P is a lifting of P ′.

For integer s1, s2, s3, k ≥ 0, let Pk denote a path of k vertices and Ns1,s2,s3 be the graph obtained by identifying each vertex
of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1, respectively. The graph N0,0,k is also known as Zk. For
graphs H1,H2, . . . ,Hs, a graph G is {H1,H2, · · ·Hs}-free if it contains no induced subgraph isomorphic to a copy of Hi for any
i. A graph G is called claw-free if it is K1,3-free.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only
if the corresponding edges in G have at least one vertex in common. Beineke [1] and Robertson [9] showed that line graphs
are K1,3-free graphs.

Two fascinating conjectures on hamiltonian line graphs and hamiltonian claw-free graphs have attracted the attention
of many researchers.

Conjecture 1.1. (i) (Thomassen, [17]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [14]) Every 4-connected K1,3-free graph is hamiltonian.

Ryjác̆ek [15] introduced the line graph closure cl(G) of a claw-free graph G and used it to show that Conjecture 1.1(i)
and (ii) are equivalent. Motivated by Conjecture 1.1, many have investigated forbidden induced subgraph conditions for
hamiltonicity. In 1999, Brousek, Ryjáček and Favaron proved the following theorem.

Theorem 1.2 (Brousek, Ryjáček and Favaron [3]). Every 3-connected {K1,3,N0,0,4}-free graph is hamiltonian.

In 2010, Lai et al. extended Theorem 1.2 by showing a best possible result stated below.

Theorem 1.3 (Lai, Xiong, Yan, and Yan [11]). Every 3-connected {K1,3,N0,0,8}-free graph is hamiltonian.

A recent research by Ma et al. [13] determined two well characterized families of graphs F1 and F2 such that both
conclusions in the following hold.

Theorem 1.4 (Ma et al. [13]). (i) A 3-connected {K1,3,N0,0,9}-free graph G is hamiltonian if and only if the closure of G is not
the line graph of a graph in F1.
(ii) A 3-connected {K1,3, P12}-free graph G is hamiltonian if and only if the closure of G is not the line graph of a graph in F2.

The main purpose of this paper is to extend the theorems above.
Throughout this paper, we use P(10) to denote the Petersen graph. Let s ≥ 1 be an integer. When s > 1, the vertex of

degree s in K1,s is the center of K1,s. When s = 1, any vertex of K1,1 is a center of it. A graph is a star if it is isomorphic to a
K1,s. Let F denote the family of graphs such that L ∈ F if and only if F is obtained from P(10) by identifying every vertex
v ∈ V (P(10)) with the center of a star K1,s(v), where s(v) ≥ 1.

Theorem 1.5. Let s1, s2, s3 > 0 be integers such that s1 + s2 + s3 ≤ 10.
(i) If s1 + s2 + 1 ≤ 10, every 3-connected {K1,3,Ns1,s2,1}-free graph Γ is hamiltonian if and only if the closure of Γ is the line
graph L(G) for some graph G ∉ F .
(ii) If s1 + s2 + s3 ≤ 9, every 3-connected {K1,3,Ns1,s2,s3}-free graph is hamiltonian.
(iii) If s1 + s2 ≤ 9, every 3-connected {K1,3,Ns1,s2,0}-free graph Γ is hamiltonian if and only the closure of Γ is the line graph
L(G) for some graph G ∉ F .
(iv) If s1 + s2 ≤ 8, every 3-connected {K1,3,Ns1,s2,0}-free graph is hamiltonian.

This result motivates the following conjecture. If s1 + s2 + s3 ≤ 10, every 3-connected {K1,3,Ns1,s2,s3}-free graph Γ is
hamiltonian if and only if the closure of Γ is the line graph L(G) for some graph G ∉ F . Our strategy in this paper is to
apply Ryjác̆ek’s line graph closure to convert the problem to a line graph problem. Therefore, we want to prove that if a 3-
connected line graph L(G) does not have the indicatedNs1,s2,s3 as an induced subgraph, then either L(G) has a Hamilton cycle
or G ∈ F . Using a recent theorem of Ma et al. in [13], we approach the problem via two routes: when G can be contracted
to the Petersen graph, we show that G ∈ F ; and when G cannot be contracted to the Petersen graph, we show that L(G)
will have an induced Ns1,s2,s3 to obtain a contradiction. Our arguments will apply Catlin’s reductionmethod. In Section 2, we
display the basics of Catlin’s reduction method and other related tools we have developed to be used in the arguments. The
proof of the main result is in the last section.

2. Catlin’s reduction and Ryjác̆ek’s line graph closure

Following [2], κ(G) and κ ′(G) denote connectivity and edge connectivity of G, respectively. Given vertices u, v ∈ V (G),
a path P in G from u to v is referred to as a (u, v)-path, and is often denoted by P(u, v) to emphasize the end vertices. A
subpath of a path P is defined to be a path that is a subgraph of P . For convenience of discussion, cycles are often given
with an orientation. For a cycle C = u1u2 · · · ulu1, C[ui, uj] denotes the consecutive vertices on C from ui to uj in the chosen
direction of C , and C(ui, uj] = C[ui, uj] − {ui}, C[ui, uj) = C[ui, uj] − {uj} and C(ui, uj) = C[ui, uj] − {ui, uj}.
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2.1. Catlin’s reduction method

We shall apply Catlin’s reduction using collapsible graphs. For a graph G, let O(G) denote the set of odd degree vertices
in G. In [4], Catlin discovered collapsible graphs. A graph G is collapsible if for any R ⊆ V (G) with |R| ≡ 0 (mod 2), G has
a spanning connected subgraph TR with O(TR) = R. Catlin showed in [4] that for any graph G, every vertex of G lies in a
unique maximal collapsible subgraph of G. The reduction of G, denoted by G′, is obtained from G by contracting all maximal
collapsible subgraphs of G. A graph is reduced if it is the reduction of some graph. The next theorem summarizes the most
frequently applied properties.

Theorem 2.1 (Catlin, [4]). Let G be a connected graph, H be a collapsible subgraph of G, vH the vertex in G/H with PIG(vH) = H,
and G′ the reduction graph of G. Then each of the following holds.
(i) (Theorem 3 of [4]) G is collapsible if and only if G/H is collapsible. In particular, G is collapsible if and only if the reduction
G′

= K1.
(ii) (Theorem 5 of [4]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [4]) G′ is simple, g(G′) ≥ 4 and δ(G′) ≤ 3.
(iv) (Theorem 8 of [4]) G is supereulerian if and only if G′ is supereulerian.
(v) (Theorem 8 of [4]) If L′ is an open (or closed, respectively) trail of G/H such that vH ∈ V (L′), then G has an open (or closed,
respectively) trail L with E(L′) ⊆ E(L) and V (H) ⊆ V (L).
(vi) (Lemma 1 of [5]) K3,3 − e is collapsible.
(vii) (Theorem 1.3 of [6]) If a connected graph G is at most two edges short of having two edge-disjoint spanning trees, then the
reduction of G must be in {K1, K2} ∪ {K2,t : t ≥ 1}.

Chen [7] showed that every 3-edge-connected graphwith atmost 11 vertices is either supereulerian or contractible to the
Petersen graph. It has also been observed [8] that Petersen graph is the smallest obstacle in searching for spanning eulerian
subgraphs. Ma et al. proved something more general.

Theorem 2.2 (Ma et al., [13]). Let G be a 3-edge-connected simple graph. If c(G) ≤ 11, then G is supereulerian if and only if G
is not contractible to the Petersen graph.

We need a few more lemmas in the arguments of our proofs. Lemma 2.3 can be routinely verified.

Lemma 2.3. Let P(10)denote the Petersen graph. For any vertices u1, u2 ∈ V (P(10)) such that u1u2 ∈ E(P(10)), both P(10)−u1
and P(10) − {u1, u2} are hamiltonian.

Lemma 2.4. Let G be a graph with κ ′(G) ≥ 3, H ⊂ G be an induced connected subgraph of G, and let vH be the vertex in G/H
with PI(vH) = H. If vH has degree at most 3 in G/H, each of the following holds.
(i) If |V (H)| ≤ 5, then H is collapsible unless H ∼= K2,3 with AG(H) = D2(H).
(ii) If H is not collapsible, then for any u ∈ AG(H), H has a path of length at least 4 with u being an end vertex.
Proof. We argue by induction on |V (H)|. Since κ ′(G) ≥ 3 and dG/H(vH) ≤ 3, κ ′(H) ≥ 2. By Theorem 2.1(iii), any
2-edge-connected graph with at most 3 vertices must be collapsible. Hence the lemma holds when |V (H)| ≤ 3. Assume
that |V (H)| ≥ 4 and the lemma holds for smaller values of |V (H)|. Suppose that H has a nontrivial collapsible subgraph
L. Let G′

= G/L and H ′
= H/L. By the definition of contraction, κ(G′) ≥ κ ′(G) ≥ 3, H ′

⊆ G′ is an induced subgraph,
and G/H ∼= G′/H ′ such that vH has degree 3 in both G/H ∼= G′/H ′. Since L is nontrivial, |V (H ′)| < |V (H)|. By induction,
either H ′ is collapsible, whence by Theorem 2.1(i), H is collapsible; or H ′ ∼= K2,3, whence 5 = |V (H ′)| < |V (H)| ≤ 5, a
contradiction. If H has a cut vertex z, then H has two connected subgraphs H1 and H2 with min{|V (H1)|, |V (H2)|} ≥ 2 such
that V (H1) ∩ V (H2) = {z} and H = H1 ∪ H2. By induction, either both Hi’s are collapsible, whence by Theorem 2.1(i), H is
collapsible; or one of theHi’ is isomorphic to K2,3, whence 5 = |V (H ′)| < |V (H)| ≤ 5, a contradiction. Thus, wemay assume
that

H is reduced and κ(H) ≥ 2. (2.1)

Let C be a longest cycle of H that contains u. If |V (H)| = 4, then |V (C)| = 4 and so V (C) = V (H). Since |AG(H)| ≤ 3, and
since δ(G) ≥ κ ′(G) ≥ 3, H must have a cycle of length at most 3, whence H must be collapsible, contrary to (2.1). Hence we
assume that |V (H)| ≥ 5.

If |V (H)| = |V (C)| = 5, then by δ(G) ≥ κ ′(G) ≥ 3, C has two chords, whence H must be collapsible, contrary to (2.1).
Hence |V (C)| = 4. As κ ′(G) ≥ 3 and |V (H)| = 5, H ∼= K2,3 and AG(H) = D2(H), and so (i) holds.

Now assume that H is not collapsible. If H ∼= K2,3 or if |V (C)| ≥ 5, then (ii) holds trivially. Hence we assume that
|V (H)| ≥ 6 and |V (C)| = 4. Choose a maximum t ≥ 2 such that K2,t ⊂ H and u ∈ V (K2,t). If V (K2,t) = V (H), then since
|V (H)| ≥ 6, t ≥ 6 − 2 = 4. Since |AG(H)| ≤ 3, there must be a vertex u′

∈ D2(H) − AG(H). By κ ′(G) ≥ 3, |EH(u′)| ≥ 3,
implying that H contains a cycle of length at most 3, contrary to (2.1) and Theorem 2.1(iii).

Thus there must be a vertex u′′
∈ V (H)−V (K2,t). Since κ(H) ≥ 2, H has two paths P ′

1, P
′

2 from u′′ to two distinct vertices
of K2,t . It follows that H has a cycle of length at least 5, contrary to the assumption that C is a longest cycle of H containing
u. This proves Lemma 2.4. �
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Fig. 1. Examples of Ys1,s2,s3 and Ns1,s2,s3 .

Fig. 2. Non-collapsible graphs in Lemma 2.7.

Fig. 3. Some collapsible graphs:W ′

3 , L2 and L3 .

Lemma 2.5. Let G be a 2-connected graph, then every 3 vertices are on a path.

Proof. Let u1, u2, u3 ∈ V (G). Since κ(G) ≥ 2, u1 and u2 are in a cycle C . Since G is connected, G has a path from u3 to V (C),
and so G has a path containing u1, u2 and u3. �

For integers s1 ≥ s2 ≥ s3 ≥ 1, let Ys1,s2,s3 be the graph obtained from disjoint paths Ps1+2, Ps2+2 and Ps3+2 by identifying
an end vertex of each of these three paths. (An example is depicted in Fig. 1.) For integers h, k > 0, let L(h, k) be the graph
obtained by identifying an end vertex of a path Pk+1 and a vertex in a cycle Ch which was disjoint from Pk+1. The following
lemma follows from straightforward observations and definitions.

Lemma 2.6. Let s1, s2, s3 ≥ 1 and h, k be integers, and let G be a graph.
(i) If k ≥ s3 + 1 and h ≥ s1 + s2 + 3, then Ys1,s2,s3 ⊆ L(h, k).
(ii) If Ys1,s2,s3 ⊆ G, then for any s′1 ≤ s1, s′2 ≤ s2, s′3 ≤ s3, Ys′1,s

′
2,s

′
3

⊆ G.

(iii) If Y8,1,1, Y7,2,1, Y6,3,1, Y6,2,2, Y5,4,1, Y5,3,2, Y4,4,2, Y4,3,3 ⊆ G, then for any s1, s2, s3 ≥ 1with s1 + s2 + s3 ≤ 10, Ys1,s2,s3 ⊆ G.
(iv) If Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G, then for any s1, s2, s3 ≥ 2 with s1 + s2 + s3 ≤ 9, Ys1,s2,s3 ⊆ G.
(v) If Y8,1,0, Y7,2,0, Y6,3,0, Y5,4,0 ⊆ G, then for any s1, s2 ≥ 1with s1 + s2 ≤ 9, Ys1,s2,0 ⊆ G. In particular, if G has an L(h, 1) as a
subgraph with h ≥ 12, then for any s1, s2 ≥ 1 with s1 + s2 ≤ 9, Ys1,s2,0 ⊆ G.

Lemma 2.7 (Li, Lai, and Zhan, Lemma 2.1 of [12]). Let G be a connected simple graph with n ≤ 8 vertices and with D1(G) = ∅,
|D2(G)| ≤ 2. Then either G is one of three graphs depicted in Fig. 2, or the reduction of G is K1 or K2.

Let C6 = v1v2v3v4v5v6v1 denote a 6-cycle, and u0, v0 be vertices not in V (C6). Define W ′

3
∼= C6 + {v0v1, v0v3, v0v5},

L1 ∼= C6 + {u0v1, u0v3, u0v5, v0v1, v0v3, v0v5}, L2 ∼= W ′

3 + v1v4, and L3 ∼= C6 + {v0v1, v0v4, v2v5} (see Fig. 3).
An edge cut X of a graph G is an essential edge cut if both sides of G − X are nontrivial. A graph G is essentially k-edge-

connected if G does not have an essential edge cut of size less than k.

Lemma 2.8. Each of the following holds.
(i) L1, L2, and L3 are collapsible.
(ii) Let G be an essentially 3-edge-connected graph with κ ′(G) ≥ 2, |D2(G)| ≤ 3 and c(G) ≤ 6. Then either G is collapsible or
the reduction of G is in {K2,3,W ′

3}.
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Proof. Part (i) can be proved using the samemethod in the proof of Lemma 1 in [5]. It suffices to prove (ii). By contradiction,
assume that

G is a counterexample to Lemma 2.8(ii) with |V (G)| the smallest. (2.2)

Since contractiondoes not decrease edge-connectivity and essential edge-connectivity, anddoes not increase circumference,
by Theorem 2.1(iii) and (2.2), G must be reduced with g(G) ≥ 4. If G has a cut vertex, then each block of G satisfies the
hypothesis of the lemma, and so by (2.2), and by the fact that G is reduced, every block of G is in {K2,3,W ′

3}. If G has at least
two end blocks, then |D2(G)| ≥ 4, contrary to the assumption that |D2(G)| ≤ 3. Hence κ(G) ≥ 2. Let c = c(G) ≤ 6 and
C = v1v2v3v4 . . . vcv1 be a longest cycle of G.

If C has a chord, then sinceG is reduced,wemay assume that v2v5 ∈ E(G). Since |D2(G)| ≤ 3,wemay assume V (G)−V (C)
has a vertex z with zv1 ∈ E(G). By κ(G) ≥ 2, G has a path Q ′ with zv1 ∈ E(Q ′) and |V (Q ′)∩V (C)| = 2. Since c(G) ≤ 6 and G
has no 3-cycle, Q ′

= v1zv5 or Q ′
= v1zv3. By |D2(G)| ≤ 3 and κ(G) ≥ 2 again, we may assume that z (or by symmetry, v6)

is adjacent to a vertex in V (G) − (V (C) ∪ {z}), and so a (z, vi)-path Q ′′ for some vi ∈ V (C) such that V (Q ′′) ∩ V (C) = {vi}.
Hence G has a cycle of length at least 7, contrary to c(G) ≤ 6. Therefore, we conclude that C does not have a chord.

If V (G) = V (C), then as G is essentially 3-edge-connected with κ ′(G) ≥ 2, |D2(G)| ≤ 2, and by Lemma 2.7, G must be
collapsible, contrary to (2.2). Hence V (G) − V (C) ≠ ∅.

Since κ(G) ≥ 2, V (G) − V (C) has a vertex u such that, without loss of generality, uv1 ∈ E(G). As κ(G) ≥ 2, uv1, v1v2
must be contained in a cycle of G, and so G has a (v1, vi)-path Q1, such that V (Q1) ∩ V (C) = {v1, vi} with i ≠ 1. Since C is
longest in G, i ∉ {2, c} and i ∈ {3, c − 1} only if Q1 = v1uvi. A path Q of G satisfying |V (Q ) ∩ V (C)| = 2 and |E(Q )| ≥ 2 will
be referred to as a long chord of C . As c(G) ≤ 6 and as G is reduced, every long chord of C has length at most 3.
Case 1 c = 6.

Since V (G) − V (C) ≠ ∅, C must have a long chord with length 2 or 3.
Case 1.1 C has a long chord of length 3. We may assume that Q1 = v1uu′v4 is a long chord of C .
Subcase 1.1.1 v2, v3 ∉ D2(G) or v5, v6 ∉ D2(G).

Wemay assume that v2, v3 ∉ D2(G). Then for somew2, w3 ∈ V (C)∪{u, u′
}, G has a (v2, w2)-path Q2 and a (v3, w3)-path

Q3 such that V (Q2) ∩ (V (C) ∪ {u, u′
}) = {v2, w2} and V (Q3) ∩ (V (C) ∪ {u, u′

}) = {v3, w3}, and such that v2 ≠ w2 and
v3 ≠ w3. If {w2, w3} ∩ {u, u′, v5, v6} ≠ ∅, or if w2 ∈ {v1, v3}, or w3 ∈ {v2, v4}, then G has a cycle of length at least 7,
contrary to the assumption that c(G) = 6. Hence we must have w2 = v4 and w3 = v1. As G is reduced and by c(G) = 6,
|E(Q2)| = |E(Q3)| = 2. But then, G[E(Q1) ∪ E(Q2) ∪ E(Q3)] is a cycle of length 8, contrary to c(G) = 6.
Subcase 1.1.2 {v2, v3} ∩ D2(G) ≠ ∅ and {v5, v6} ∩ D2(G) ≠ ∅.

Since |D2(G)| ≤ 3, we assume that u ∉ D2(G). Then by κ(G) ≥ 2, G has a (u, w)-path Qu with V (Qu) ∩ (V (C) ∪

{u, u′
}) = {u, w}. Since c(G) = 6 and since G is reduced, we must have w = v4 and |E(Qu)| = 2. By symmetry, if

u′
∉ D2(G), then G has a (u′, v1)-path Qu′ with V (Qu′) ∩ (V (C) ∪ {u′

}) = {u, v1} and with |E(Qu′)| = 2. It follows that
G[E(Qu) ∪ E(Qu′) ∪ {uu′, v1v2, v2v3, v3v4}] is a cycle of length at least 7, contrary to the assumption of c(G) = 6. Therefore,
we must have u′

∈ D2(G), and for some w′
∈ V (G) − V (C). Qu = uw′v4. By the assumption of Subcase 1.1.2, w′

∉ D2(G),
and so by κ(G) ≥ 2, G has a (w′, w′′)-path Qw′ such that V (Qw′) ∩ (V (C) ∪ {u}) = {w′, w′′

} with w′
≠ w′′. But then, G

always has a cycle of length at least 7, contrary to the assumption of c(G) = 6.
Case 1.2 C does not have a long chord of length 3.

We may assume that Q1 = v1uv3. If u ∉ D2(G), then by the assumption of Case 1.2, and by the fact that G is reduced, we
must have uv5 ∈ E(G), and soW ′

3 ⊆ G. IfW ′

3 spans G, then G = W ′

3 as adding any edge toW ′

3 will create a cycle of length at
most 3, or a collapsible L2 (Lemma 2.8(i)). Hence we conclude that G does not contain aW ′

3 and u ∈ D2(G).
If v2 ∉ D2(G), then by κ(G) ≥ 2, G has a (v2, z2)-path Z2 with V (Z2)∩(V (C)∪{u}) = {v2, z2} andwith v2 ≠ z2. If z2 = v5,

then either G has a cycle of length at least 7, orW ′

3 ⊆ G, contrary to the assumption that c = 6 andW ′

3 ⊈ G. If z2 ∈ {v4, v6},
then G has a cycle of length at least 7, contrary to the assumption of c(G) = 6. Hence v2 ∈ D2(G).

Since u, v2 ∈ D2(G) and since |D2(G)| ≤ 3, {v4, v5, v6} − D2(G) ≠ ∅. If v5 ∉ D2(G), then G has a (v5, z5)-path Z5 with
V (Z5) ∩ V (C) = {v5, z5} and with v5 ≠ z5. Since v2, u ∈ D2(G), and since c = 6, z5 ∈ {v1, v3}. By symmetry and by the fact
that G is reduced, assume that z5 = v1, and Z5 = v1u′v5. Since |D2(G)| ≤ 3, we may assume that v6 ∉ D2(G) and so G has a
(v6, z6)-path Z6 with V (Z6) ∩ (V (C) ∪ {u′

}) = {v6, z6} and with v6 ≠ z6. But then, z6 ∈ {v1, v3, v4, v5, u′
}, and in any case,

G has a cycle of length at least 7, contrary to c = 6.
Hence we assume that z5 ∈ D2(G) and so v4, v6 ∉ D2(G). As κ(G) ≥ 2, for i ∈ {4, 6}, G has a (vi, zi)-path Zi with

V (Zi) ∩ V (C) = {vi, zi} and with vi ≠ zi. If z4 = v6 (or v4 = z6), then by c = 6 and by the fact that G is reduced, we assume
that Z4 = v4u′′z6. But then, by symmetry, sincev5 ∈ D2(G), wemust haveu′′

∈ D2(G), and sov2, u.v−5, u′′
∈ D2(G), contrary

to |D2(G)| ≤ 3. Hence z6 = v3. By symmetry, z4 = v1. Thus v1v4, v3v6 ∈ E(G), and so G[V (C6) ∪ {u}] is a 2-connected graph
with 7 vertices and 3 vertices of degree 2. By Lemma 2.7, this is a collapsible graph, contrary to the assumption that G is
reduced. This proves Case 1.
Case 2 c = 5.

Since V (G) − V (C) ≠ ∅ and since c(G) = 5, C must have a long chord with length 2. By symmetry, suppose that
Q1 = v1uv3 is a long chord of C . Since |D2(G)| ≤ 3, {u, v2, v4, v5} − D2(G) ≠ ∅. Suppose first that u ∉ D2(G) (or by
symmetry, v2 ∉ D2(G)), then by κ(G) ≥ 2, G has a (u, w2)-path Q2 with u ≠ w2 and V (Q2) ∩ (V (C) ∪ {u}) = {u, w2}. But
then, in any case, G has a cycle of length at least 6, contrary to the assumption of c(G) = 5.
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Hence we may assume that u, v2 ∈ D2(G) and so, by symmetry, v4 ∉ D2(G). By κ(G) ≥ 2, G has a (v4, w4)-path
Q4 with v4 ≠ w4 and V (Q4) ∩ V (C) = {v4, w4}. By the assumptions that c = 5 and G is reduced, we must have
Q4 = v4u′v1. By |D2(G)| ≤ 3, we may assume that v5 ∉ D2(G) and so G has a (v5, w5)-path Q5 with v5 ≠ w5 and
V (Q5) ∩ (V (C) ∪ {u′

}) = {v5, w5}. As G is reduced and as c = 5, w5 ∈ {u′, v1, v3, v4}. In any case, G has a cycle of length at
least 6, contrary to c = 5.
Case 3 c = 4.

Again by V (G)−V (C) ≠ ∅ and c(G) = 4, C must have a long chordwith length 2. By symmetry, suppose that Q1 = v1uv3
is a long chord of C . Then G contains subgraph isomorphic to K2,3. Let H ∼= K2,t be a subgraph of Gwith t ≥ 3 maximized.

If V (G) = V (H), then since adding any edge to join two vertices of K2,t will result in a collapsible graph (by
Theorem 2.1(vii)), it follows by D2(G) ≤ 3 that G = K2,3. If V (G) − V (H) has a vertex u, then by κ(G) ≥ 2, G has a
(w, w′)-path Q with w ≠ w′ such that V (Q )∩ V (H) = {w, w′

}. If {w, w′
}−Dt(H) ≠ ∅, then G has a cycle of length at least

5, contrary to the assumption that c(G) = 4. If w, w′
∈ Dt(H), then H is contained in a subgraph isomorphic to K2,t+1 of G,

contrary to the choice of H . This proves Case 3, as well as the lemma. �

Lemma 2.9. Let G be a graph with κ ′(G) ≥ 3 such that G is contracted to P(10). If for some vertex u ∈ V (P(10)), PI(u) is not
collapsible, then both of the following hold.
(i) for any integer s1, s2, s3 ≥ 1 with s1 + s2 + s3 ≤ 10, Ys1,s2,s3 ⊆ G.
(ii) for any integer s1, s2 ≥ 1 with s1 + s2 ≤ 9, Ys1,s2,0 ⊆ G.

Proof. It suffices to prove (i). We argue by contradiction and assume that G is a counterexample with |V (G)| minimized.
Since P(10) is reduced, if L is a collapsible subgraph of G, then G/L is also contractible to P(10). Thus by the minimality of G,
we assume that

G is reduced. (2.3)

Let H = PI(u). Suppose that c(H) ≥ 7. Let C ′ be a longest cycle of H . By Lemma 2.3, P(10) − u has a cycle of
length 9, which can be left to a cycle C of length c ≥ 9 in G. Let e ∈ EP(10)(u). Lift e to a path in G joining a vertex
in C ′ and a vertex in C . Then C ′

∪ C ∪ P contains an L(c ′, 9) and an L(c, 7) with c ′
≥ 7 and c ≥ 9. By Lemma 2.6(i),

Y8,1,1, Y7,2,1, Y6,3,1, Y6,2,2, Y5,4,1, Y5,3,2, Y4,4,2, Y4,3,3 ⊆ G, and so the lemma follows from Lemma 2.6(iii).
Therefore, we assume that c(H) ≤ 6. By Lemma 2.8(ii), H ∈ {K2,3,W ′

3} with AG(H) = D2(H). In this case, for any integer
s1, s2, s3 ≥ 1with s1 + s2 + s3 ≤ 10, Ys1,s2,s3 ⊆ G. (Detailed verifications can be found in Tables 1 and 2 of the Appendix.) �

The core of a graph is formally introduced by Shao [16]. Let G be a graph such that κ(L(G)) ≥ 3 and such that L(G) is not
complete. For each v ∈ D2(G), let EG(v) = {ev

1, e
v
2} and define

X1(G) = ∪v∈D1(G) EG(v), and X2(G) = {ev
2 : v ∈ D2(G)}. (2.4)

Since κ(L(G)) ≥ 3, D2(G) is an independent set of G and for any v ∈ D2(G), |X2(G)∩ EG(v)| = 1. Define the core of the graph
G as

G0 = G/(X1(G) ∪ X2(G)) = (G − D1(G))/X2(G). (2.5)

Edges in∪v∈D2(G) EG(v)−X2(G) are referred to as nontrivial edges in G0. Vertices of G adjacent to a vertex inD1(G) are viewed
as the contraction image of edges in ∪v∈D1(G) EG(v). An eulerian graph H ⊆ G is dominating in G if E(G− V (H)) = ∅. Harary
and Nash-Williams found a close relationship between dominating eulerian subgraphs and hamiltonian line graphs.

Theorem 2.10 (Harary and Nash-Williams, [10]). Let G be a connected graph with at least 3 edges. The line graph L(G) is
hamiltonian if and only if G has a dominating eulerian graph.

Utilizing Theorem 2.10 and Catlin’s collapsible graphs [4], Shao proves the following useful theorem. A justification for
Theorem 2.11(iii) can be found in [13].

Theorem 2.11 (Shao, Section 1.4 of [16]). Let G0 be the core of graph G, then each of the following holds.
(i) G0 is nontrivial and δ(G0) ≥ κ ′(G0) ≥ 3.
(ii) G0 is well defined.
(iii) L(G) is hamiltonian if and only if G0 has a dominating eulerian subgraph containing all nontrivial vertices and both end
vertices of each nontrivial edge.

By (2.4), the edge set

E ′

1(G) =


v∈D2(G)

EG(v) − X2(G) (2.6)

is the set of nontrivial edges in G0. Let G′

0 be the reduction of G0. Then G′

0 is a contraction of both G0 and G, and so we can
view E(G′

0) ⊆ E(G0) ⊆ E(G). Define
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Λ(G0) = {v ∈ V (G0) : PIG0(v) is nontrivial or v is an end of a nontrivial edge of G0}, and (2.7)

Λ′(G0) = {v ∈ V (G′

0) : PIG(v) is nontrivial or contains an end of a nontrivial edge of G0}. (2.8)

Lemma 2.12. Let G be a connected simple graph satisfying κ(L(G)) ≥ 3, G0 be the core of G and G′

0 be the reduction of G0.
Suppose that G′

0 = P(10), and L(G) is not hamiltonian. Then each of the following holds.

(i) V (G′

0) = Λ′(G0).

(ii) If G′

0 contains at least one nontrivial edge, then for any integers s1 ≥ s2 > 0 with s1 + s2 + 1 ≤ 10, Ys1,s2,1 ⊆ G.

(iii) If G′

0 contains at least one nontrivial edge, then for any integers s1 ≥ s2 > 0, s3 ≥ 0 with s1 + s2 + s3 ≤ 9, Ys1,s2,s3 ⊆ G.

(iv) If G′

0 has a nontrivial vertex v such that PIG(v) is not a star, then the conclusions of Lemma 2.12(ii) and (iii) must hold.

(v) Either G ∈ F or the conclusions of Lemma 2.12(ii) and (iii) must hold.

Proof. (i) If for some v′
∈ V (G′

0) − Λ′(G0), then as G′

0 = P(10), G′

0 has a cycle C ′ containing Λ′(G0). Hence C ′ can be lifted
to an eulerian subgraph H ′ of G0, containing all vertices in Λ(G0). By Theorem 2.11, L(G) is hamiltonian, contrary to the
assumption that L(G) is not hamiltonian.
(ii) Let e′ be a nontrivial edge of G′

0, and if G′

0 has at least two nontrivial edges, then let e′′ denote another. Since G′

0 = P(10),
G′

0 has vertex w such that G′

0 − w has a spanning cycle C ′ with e′, e′′
∈ E(C ′). Since w ∉ V (C ′), C ′ has a vertex w′

∈ V (C ′)
such thatww′

∈ E(P(10)). (In fact, as P(10) is a 3-regular graph, there are three choices for suchw′ in C ′.) By Lemma 2.12(i),
either ww′ is a nontrivial edge or both w and w′ are nontrivial vertices. It follows that the edge ww′ in G′

0 can be lifted to a
path Q of length 2 in G. Since C ′ contains at least one nontrivial edge, C ′ can be lifted to a cycle C of length at least 10 in G. It
follows that C∪Q is an L(h, 2)with h ≥ 10. If h ≥ 12, then by Lemma 2.6, for any integers s1 ≥ s2 > 0with s1+s2+1 ≤ 10,
Ys1,s2,1 ⊆ G.

Hence we may assume that h ∈ {10, 11}. By Lemma 2.6, for any integers s1 ≥ s2 > 0 with s1 + s2 + 1 ≤ 10, Yl1,l2,1 ⊆ G,
where (l1, l2) ∈ {(s1, s2 −1), (s1 −1, s2)} if h = 11, or (l1, l2) = (s1 −1, s2 −1) if h = 10. Let z0 be the only vertex of degree
3 in Yl1,l2,1, and let Q ′

1,Q2,Q3 be the three internally disjoint paths from z0 in Yl1,l2,1, of length l1 + 1, l2 + 1, 2, respectively.
Let z ′

i denote the other end vertex of Q ′

i , 1 ≤ i ≤ 2. By Lemma 2.12(i), z ′

i is either a nontrivial vertex, or an end of a nontrivial
edge not in C ′. Since w′ has more than one choices, we can choose w′ so that z ′

i ’s are independent in G′

0. If follows that Q ′

i
can be lifted to a path of length s1 + 1, and so Ys1,s2,1 ⊆ G.
(iii) The proof is similar to that for (ii). We outline the idea here. Since s1 + s2 + s3 ≤ 9 and s1 ≥ s2 ≥ s3, s3 ≤ 3. If s3 = 3,
then by inspection, G′

0 = P(10) contains a Y2,2,2 such thatD1(Y2,2,2) = {w1, w2, w3} is independent in G′

0. By Lemma 2.12(i),
each wi is either nontrivial or an end of a nontrivial edge. Thus this Y2,2,2 of G′

0 can be lifted to a Y3,3,3 in G.
If s3 = 2, then P(10)has an L(8, 2) and so by Lemma2.6, for any integers s1 ≥ s2 > 0with s1+s2+2 ≤ 9, Ys1−1,s2−1,1 ⊆ G′

0
such that D1(Y2,2,2) is independent in G′

0. By Lemma 2.12(i), This Ys1−1,s2−1,1 of G′

0 can be lifted to a Ys1,s2,2 in G.
If s3 = 1, then by Lemma 2.12(ii), for any integers s1 ≥ s2 > 0 with s1 + s2 + 1 ≤ 9, Ys1,s2,1 in G.

(iv) Suppose G′

0 has a vertex z0 such that PIG(z0) is not a star. Since PIG(z0) is connected, for any z ′
∈ AG(PIG(z0)), PIG(z0) has

a path of length at least 2 from z ′. Since G′

0 = P(10), for any v ∈ V (G′

0), G
′

0 has an L(9, 1) and an L(8, 2) such that v is the
only vertex of degree 3 in L ∈ {L(9, 1), L(8, 2)}. Using this property, it follows that for any s1 ≥ s2 > 0 and s3 ≥ 0 with
either s1 + s2 + 1 ≤ 10 or s1 + s2 + s3 ≤ 9, G′

0 has a Y = Ys1−2,s2−1,0 (if s1 + s2 + 1 ≤ 10) or a Y = Ys1−2,s2−1,l3 , (where
l3 = max{s3 − 1, 0} if s1 + s2 + s3 ≤ 9), such that the path Q of length s1 − 1 in Y ends at z0. By Lemma 2.12(i) and by the
choice of z0, Ys1,s2,1 (if s1 + s2 + 1 ≤ 10) and Ys1,s2,s3 (if s1 + s2 + s3 ≤ 9) are subgraphs of G, whence the conclusions in
Lemma 2.12(ii) and (iii) must hold.
(v) By Lemma 2.12(i)–(iv), we may assume that G′

0 has no nontrivial edges and for every vertex v ∈ V (G′

0), PIG(v) is a star.
Therefore, G ∈ F . �

2.2. Closure of claw-free graphs

Ryjác̆ek [15] introduced the line graph closure cl(G) of a claw-free graph G, which becomes a useful tool in investigating
hamiltonian claw-free graphs. We refer the reader to [15] for the definition of cl(G).

Theorem 2.13 (Ryjáček, [15]). Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined;
(i) cl(G) is the line graph of a triangle-free graph;

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Theorem 2.14 (Brousek, Ryjáček and Favaron [3]). Let G be a claw-free graph, and let s1, s2, s3 ≥ 0 be integers. If G is Ns1,s2,s3-
free, then cl(G) is also Ns1,s2,s3-free.
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3. Proof of the main result

Wewill prove Theorem 1.5 in this section. Let s1 ≥ s2 ≥ s3 ≥ 0 be integers and N = Ns1,s2,s3 such that either s3 = 1 and
s1 + s2 + 1 ≤ 10, or s3 > 0 and s1 + s2 + s3 ≤ 9, or s3 = 0 and s1 + s2 ≤ 9. By Theorems 2.13 and 2.14, it suffices to prove
Theorem 1.5 for 3-connected N-free line graphs of simple graphs.

Throughout this section, we assume that G is a connected simple graph such that L(G) is a 3-connected {K1,3,N}-
free graph. Let G0 be the core of G, and G′

0 be the reduction of G0. Let Λ(G0) and Λ′(G0) be given by (2.7), and (2.8). By
Theorem 2.11, κ ′(G′

0) ≥ 3. By Theorem 2.1, if G′

0 has a dominating eulerian subgraph containing all vertices in Λ′(G0), then
G0 has a dominating eulerian subgraph containing all vertices in Λ(G0), and so by Theorem 2.11, L(G) is hamiltonian.

We argue by contradiction to prove Theorem 1.5, and assume that

G is a counterexample to Theorem 1.5 with |V (G0)| minimized. (3.1)

By the discussion above, by (3.1) and by Theorem 2.1, we may assume that

κ(G′

0) ≥ 2, G′

0 is reduced and does not have an eulerian subgraph containing Λ′(G0). (3.2)

For the given values s1, s2, s3, since L(G) is Ns1,s2,s3-free, we conclude that

G does not contain Ys1,s2,s3 as a subgraph. (3.3)

Lemma 3.1. If G0 is contractible to the Petersen graph, then G ∈ F .

Proof. If for some v ∈ V (P(10)), PIG0(v) is not collapsible, then by Lemma 2.9, (3.3) is violated. Hence we may assume that
G′

0 = P(10), and so Lemma 3.1 follows from Lemma 2.12. �

If c(G′

0) ≤ 11, then by Theorem 2.2, either G′

0 is supereulerian, contrary to (3.2), or is contractible to the Petersen graph,
whence by Lemma 3.1, G ∈ F , contrary to (3.1). Therefore, we may assume that c(G′

0) ≥ 12.

Lemma 3.2. Theorem 1.5(iii) and (iv) must hold.

Proof. If c(G′

0) ≤ 11, then by Theorem 2.2 and by (3.2), G′

0 is contractible to the Petersen graph. By Lemma 3.1, Theo-
rem 1.5(iii) and (iv) must hold. Now assume that G′

0 has a cycle C of length h ≥ 12. By (3.2), C is not spanning, and so G
has an L(h, 1) as a subgraph. By Lemma 2.6, for any s1 ≥ s2 > 0 with s1 + s2 ≤ 9, G has a Ys1,s2,0 as a subgraph, and so
Theorem 1.5(iii) and (iv) hold also. �

It remains to prove Theorem 1.5(i) and (ii). By Theorem 2.2 and by Lemma 3.1, we assume that h = c(G′

0) ≥ 12 and
C ′

= v1v2 . . . vhv1 is a longest cycle of G′

0 such that

|V (C ′) ∩ Λ(G′

0)| is maximized. (3.4)

The cycle C ′ can be lifted to a cycle C ofGwith length |V (C)| ≥ h ≥ 12. By (3.2),Λ(G0)−V (C ′) ≠ ∅. SinceG′

0 is connected,G
′

0
has a path P ′ with |E(P ′)| ≥ 1 such that |V (P ′) ∩ V (C ′)| = 1. We call any such path a C ′-path of G′

0. Let l = max{|E(P ′)| : P ′

is a C ′-path P ′ in G′

0}. Note that h ≥ 12. If l ≥ 4, then G′

0 has an L(h, 4) as a subgraph. By Lemma 2.6, we have a violation to
(3.3). Thus l ≤ 3.

Lemma 3.3. If l = 3, then for any s1, s2, s3 > 0 with s1 + s2 + s3 ≤ 10, Ys1,s2,s3 ⊆ G.

Proof. Suppose l = 3. Then G has an L(h, 3) as a subgraph. By Lemma 2.6, Ys1,s2,s3 is in G for any s1 ≥ s2 ≥ s3 ≥ 1 with
s3 ≤ 2. It remains to show that Y4,3,3 ⊆ G. Without loss of generality, we may assume that P ′

= v1u1u2u3. Since κ ′(G′

0) ≥ 3,
u3 must be adjacent to two different vertices in V (C ′), and so one such vertex vi satisfies i ≠ 1. If i ∈ {2, 3, 4, h−2, h−1, h},
thenG′

0 would have a cycle longer than C ′, contrary to c(G′

0) = |V (C ′)|. If 6 ≤ i ≤ h−4, then C ′
∪P ′

−vivi+1 or C ′
∪P ′

−vi−1vi
can be lifted to an L(h′, k′) in G with h′

≥ 9 and k′
≥ 5, and so Y4,3,3 ⊆ G. Hence i ∈ {5, h − 3}. By symmetry, we assume

that u3v5 ∈ E(G′

0), and either u3v1 or u3vh−3 ∈ E(G′

0).
Since κ ′(G′

0) ≥ 3, u2 is adjacent to a vertex u′
∉ V (P ′). If u′

∉ V (C ′), then the discussion on the neighbors of u3
indicates that NG′

0
(u′) ⊆ {u2, v1, v5, vh−3}. If u′vh−3 ∈ E(G′

0), then the union of the paths u2u′vh−3vh−2vh−1vh, u2u1v1v2v3

and u2u3v5v6v7 is a Y4,3,3 of G′

0, whence Y4,3,3 ⊆ G. Hence we must have u′v1, u′v5, u3v1, u3v5 ∈ E(G′

0). But then
G′

0[{u
′v1, u′v5, u3v1, u3v5, u2u′

} ∪ E(P ′)] ∼= K3,3 − e. By Theorem 2.1(vi), it is collapsible, contrary to (3.2).
Therefore, u′

∈ V (C ′). Arguing similarly to the discussion on the neighbors of u3 above, we conclude that u′
= vj ∈ V (C ′)

with 4 ≤ j ≤ 6 or h − 4 ≤ j ≤ h − 2. Since u3v5 ∈ E(G′

0), if 4 ≤ j ≤ 6, then G′

0 has a cycle longer than C ′, contrary to the
choice of c. Thus h−4 ≤ j ≤ h−2, and so as c(G′

0) = |V (C ′

0)| and as G′

0 has no 3 cycles, u3vh−3 ∉ E(G′

0). Hence v1u3 ∈ E(G′

0).
If j = h − 2, then C ′

0 ∪ {u3v5, u2vh−2, u2u3} − vh−3vh−2 can be lifted to an L(h′′, 4) with h′′
≥ 10. By Lemma 2.6, G′

0 has a
Y4,3,3 whence Y4,3,3 ⊆ G. If j = h− 3, then the union of the paths u3u2vh−3vh−2vh−1vh, u3v1v2v3v4 and u3v5v6v7v8 is a Y4,3,3
in G′

0. If j = h− 4, then C ′

0 ∪ {u3v1, u2vh−4, u2u3} − vh−3vh−4 can be lifted to an L(h′′, 4) with h′′
≥ 10, and so by Lemma 2.6,

G′

0 has a Y4,3,3. Therefore in any case, Y4,3,3 ⊆ G, and so the lemma follows. �
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Lemma 3.4. If l = 2, then for any s1, s2, s3 > 0, Ys1,s2,1 ⊆ G if s1 + s2 + 1 ≤ 10 and Ys1,s2,s3 ⊆ G if s1 + s2 + s3 ≤ 9.

Proof. Suppose l = 2. Then L(h, 2) ⊆ Gwith h ≥ 12. By Lemma 2.6, Ys1,s2,1 ⊆ G for any s1 ≥ s2 ≥ 1 with s1 + s2 + 1 ≤ 10.
Thus by Lemma 2.6(iv), it suffices to show Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G.

Without loss of generality, we may assume that P ′
= v1u1u2. Since κ ′(G′

0) ≥ 3 and since G′

0 has no 3-cycles, there exist
i and j with 2 < i < j < h such that u2vi, u2vj ∈ E(G′

0). By symmetry, we may assume that h + 1 − j ≥ i − 1. Since C ′

is longest in G′

0, 4 ≤ i < j ≤ h − 2. If {i, j} ∩ {6, h − 4} ≠ ∅, then, assuming i = 6, C ′

0 ∪ P ′
∪ {u2v6} − v1v2 is a L(h′, k′)

with h′
≥ 10 and k′

≥ 4, whence by Lemma 2.6, Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G. The same conclusion can be made if h ≥ 13, and
v7, vh−5 ∈ NG′

0
(u2). Thus we assume that if h = 12, then v6, v8 ∉ NG′

0
(u2), and if h ≥ 13, then v6, v7, . . . , vh−4 ∉ NG′

0
(u2).

Suppose that h ≥ 13. Then as C ′

0 is longest and G′

0 is reduced, we must have i ∈ {4, 5} and j ∈ {h − 3, h − 2}. If
(i, j) = (4, h−2), then C ′

0∪{u2vi, u2vj}−v3v4 is an L(h′, 5)with h′
≥ 9; and if (i, j) = (5, h−3), then C ′

0∪{u2vi, u2vj}−v5v6
contains an L(h′′, 4) with h′′

≥ 10. Thus by Lemma 2.6, in either case, Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G. If (i, j) = (4, h − 3) (or
by symmetry, (i, j) = (5, h − 2)), then C ′

0 ∪ P ′
∪ {u2vh−3} − v1vh is an L(h′′′, 3) with h′′′

≥ 12, whence by Lemma 2.6,
Y5,2,2, Y4,3,2 ⊆ G; and the union of u2u1v1v2v3, u2vh−3vh−2vh−1vh, and u2v4v5 · · · v8v9 contains a Y3,3,3. Therefore, if h ≥ 13,
then Lemma 3.4 holds.

Hence we assume that h = 12. By symmetry, we assume that i ≤ 6 and 12 − j + 1 ≥ i − 1. As G′

0 is reduced, 4 ≤ i ≤ 6.
It is shown above that if v6 or v8 is in NG′

0
(u2), then Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G. Hence we assume that v6, v8 ∉ NG′

0
(u2), and so

i ∈ {4, 5}.
If i = 5, then j ∈ {7, 9}, and C ′

0 ∪P ′
∪{u2v5}−v1v2 is an L(11, 3). By Lemma 2.6, Y5,2,2, Y4,3,2, ⊆ G. If j = 9, then the union

of u2u1v1v2v3, u2v5v6v7v8 and u2v9v10v11v12 is a Y3,3,3. If j = 7, then the union of v7v6v5v4v3, v7u2u1v1v2 and v7v8v9v10v11
is a Y3,3,3. Hence we assume that v5 ∉ NG′

0
(u2).

Suppose that i = 4. Then j ∈ {7, 9, 10}. If j = 7, then (C ′
− v1v2) ∪ P ′

∪ {u2v7} is an L(9, 5) and so by Lemma 2.6,
Y4,3,2, Y3,3,3 ⊆ G. The union of u2v4v5v6, u2u1v1v2 and u2v7v8v9v10v11v12 is a Y5,2,2, and so the lemma holds if j = 7. If j = 9,
(C ′

− v4v5) ∪ P ′
∪ {u2v4, u2v9} is an L(9, 4). By Lemma 2.6, Y3,3,3, Y4,3,2, ⊆ G. The union of v9v8v7v6v5v4v3, v9u2u1v1 and

v9v10v11v12 is a Y5,2,2, and so the lemma holds if j = 9.
Assume that j = 10. Then (C ′

− v3v4) ∪ P ′
∪ {u2v4, u2v10} is an L(8, 5) and so by Lemma 2.6, Y4,3,2 ⊆ G. The union of

u2v4v3v2, u2u1v1v12 and u2v10v9v8v7v6v5 is a Y5,2,2. It remains to show that Y3,3,3 ⊆ G.
By κ ′(G′

0) ≥ 3 and by κ(G′

0) ≥ 2, NG′
0
(u1) − {v1, u2} has a vertex u′

1 and G′

0 has a (u1, v)-path Q such that (V (C ′)

∪ V (P ′)) ∩ V (Q ) = {u1, v} (with u′

1 = v possible). If u′

1 ≠ v, then replacing u2 by u′

1 in the arguments above, we conclude
that v4, v10 ∈ NG′

0
(u′

1), and so (C ′

0 − v3v4) ∪ {u2v10, u1u2, u1u′

1, u
′

1v4} is an L(10, 5), and so by Lemma 2.6, Y3,3,3 ⊆ G. Hence
we assume that u′

1 = v ∈ V (C ′

0). Since c is longest and since G′

0 is reduced, we must have u′

1 = v7. In this case, v10v9v8v7u1,
v10u2v4v5v6 and v10v11v12v1v2 form a Y3,3,3. This completes the proof of the lemma. �

Lemma 3.5. If l = 1, then for any s1, s2, s3 > 0, Ys1,s2,1 ⊆ G if s1 + s2 + 1 ≤ 10, and Ys1,s2,s3 ⊆ G if s1 + s2 + s3 ≤ 9.

Proof. By (3.2), Λ(G′

0) − V (C ′) ≠ ∅. Since l = 1, every vertex u ∈ Λ(G′

0) − V (C ′) is adjacent to a vertex in C ′. Choose
u ∈ Λ(G′

0) − V (C ′) such that

|V (PIG0(u))| is maximized. (3.5)

If u is an end of a nontrivial edge of G0, then we view that PI(u) is the contraction image of an edge incident with a vertex of
degree 2 in G. With this convention, |V (PIG0(u))| ≥ 2. We assume that uv1 ∈ E(G′

0).

Claim 1. Each of the following holds.

(i) Y8,1,1, Y7,2,1, Y6,3,1, Y5,4,1 ⊆ G.
(ii) If |V (PIG0(u))| ≥ 3, then Y6,2,2, Y5,3,2, Y4,4,2, Y4,3,3 ⊆ G.
(iii) For any u ∈ V (G′

0) − V (C ′), PIG0(u) is not a nontrivial collapsible subgraph of G0.

Proof of Claim 1. Since u ∈ Λ(G′

0), |V (PIG0(u))| ≥ 2, and so G[V (C)∪V (PIG(u))] contains a L(h0, 2) for some h0 = |V (C)| ≥

h ≥ 12. By Lemma 2.6, Claim 1(i) follows.
To prove (ii), we assume that |V (PIG0(u))| ≥ 3. Since PIG0(u) is collapsible, G0[V (PIG0(u)) ∪ {v1}] contains a L(h′, 3) with

h′
≥ h ≥ 12. By Lemma 2.6, Y6,2,2, Y5,3,2, Y4,4,2 ⊆ G. If |V (PIG0(u))| ≥ 4, then a similar argument implies Y4,3,3 ⊆ G. Hence

we assume that |V (PIG0(u))| = 3, and so PIG0(u) is spanned by a K3. Since dG′
0
(u) ≥ κ ′(G′

0) ≥ 3, and since G′

0 is reduced,
|NG′

0
(u)| ≥ 3. We proceed with the proof by examining the distribution of the vertices of NG′

0
(u) in C ′

0.

Case 1. Suppose that NG′
0
(u) has distinct vertices x, ywith distance d on C ′, such that 5 ≤ d ≤

h
2 . Since PIG0(u) is spanned by

a K3, G0[PIG0(u) ∪ {x, y}] has an (x, y)-path Q1 of length 4. The two paths from x in C ′
− y can be lifted to two paths Q2 and

Q3 from x in G0 of length at least 4 and 5, respectively. Hence G0[E(Q1) ∪ E(Q2) ∪ E(Q3)] contains a Y4,3,3.
Case 2. Suppose that NG′

0
(u) has distinct vertices vi1 , vi2 , vi3 with 1 ≤ i1 < i2 < i3 ≤ h and with i2 ≡ i1 + 2 (mod h) such

that

either i3 ≡ i2 + 2 (mod h) or i3 ≡ i2 + 3 (mod h).
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Since i2 ≡ i1 + 2 (mod h), if i3 ≡ i2 + 3 (mod h), then the distance between vi1 and vi3 on C ′ is 5. Thus by Case 1, we only
consider that case when i3 ≡ i2 + 2 (mod h).

Relabeling if needed, we assume that i1 = 1, and so v1, v3 ∈ NG′
0
(u), and v5 ∈ NG′

0
(u) ∪ NG′

0
(u). If v5 ∈ NG′

0
(u), then

by (3.4), |PIG(v4)| ≥ 2 (if v4 is an end of a nontrivial edge, then view that PIG(v4) is the contraction image of an edge
incident with a vertex of degree 2 in G), as otherwise, G′

0[E(C ′
−v4)∪{uv3, uv5}] is a cycle violating (3.4). Denote the vertex

in PIG(v4) incident with the edge v3v4 in G0 by v′

4. Then PIG(v4) contains an edge v′

4v
′′

4 . Since PIG0(u) is spanned by a K3,
G0[PIG0(u) ∪ {v1, v5}] has an (v1, v5)-path which can be lifted to a path Q1 in G of length at least 4. Furthermore, C ′

− v5 has
a path from v1 to v4 which can be lifted to a path Q2 in G of length at least 4 from v1 to v′′

4 , using the edge v′

4v
′′

4 ; and a path
from v1 to v6 which can be lifted to a path Q3 in G of length at least k − 5 ≥ 7. It follows that G[E(Q1) ∪ E(Q2) ∪ E(Q3)]
contains a Y4,3,3.
Case 3. Case 1 and Case 2 do not occur.

Without loss of generality, we assume that v1, vi, vj ∈ NG′
0
(u) with 1 < i < j and with i ≤

h
2 . Since G′

0 has no 3-cycles,
and since Case A and Case B do not occur, i ∈ {3, 4, 5} and j ∈ {h − 3, h − 2, h − 1}. By Case 1, the distance between any
two of the these three vertices v1, vi, vj must be at most 4. It follows by Case 2 that h = 12, i = 5 and j = 9. Since PIG0(u)
is spanned by a K3, denote V (PIG0(u)) = {u1, u2, u3}. By κ(L(G)) ≥ 3, we may assume that u1v5, u2v9 ∈ E(G). It follows
that the cycle C lifted from u1v5v6v7v8v9u2u1u3 and the path lifted from v10v11v12v1v2v3v4v5 will form an L(h, k) in Gwith
h ≥ 8 and k ≥ 7. It follows by Lemma 2.6, Y6,2,2, Y5,3,2 and Y4,2,2 are subgraphs of G. This proves (ii).

If for some u ∈ V (G′

0) − V (C ′), PIG0(u) is a nontrivial collapsible subgraph, then as G0 is simple, |PIG0(u)| ≥ 3. By
Claim 1(i) and (ii), and by Lemma 2.6, G has Ys1,s2,s3 as a subgraph, contrary to (3.3). This proves (iii), and completes the proof
for Claim 1. �

By Claim 1(i) and by Lemma 2.6, it remains to prove

Y5,2,2, Y4,3,2, Y3,3,3 ⊆ G. (3.6)

In the rest of the proof, we always assume that u is a vertex that satisfies u ∈ Λ(G0) − V (C ′). By Claim 1(iii), either PIG(u)
consists of an edge incident with a vertex in D2(G), or for some u′

∈ V (G), every edge in PIG(u) is in EG(u′) and is incident
with a vertex inD1(G). To simplify notations, throughout the rest of the proof of this lemma,we assume that u, u′ are vertices
in PIG(u) such that u′u ∈ E(PIG(u)) and u is the vertex in G incident with the edge uv1 in G′

0.
As |NG′

0
(u) ∩ V (C ′)| ≥ κ ′(G′

0) ≥ 3, relabeling if needed, we may assume that v1, vi, vj ∈ NG′
0
(u), such that if n1 = i − 1,

n2 = j − i, and n3 = h − j + 1, then n3 ≥ n2 ≥ n1. Note that n1 + n2 + n3 = h, and so

n3 ≥
h
3

≥ n1, and so G′

0 has an L(n2 + n3 + 2, n1 − 1). (3.7)

Since G′

0 is reduced, n1 ≥ 2. Suppose n1 ≥ 4. By (3.7), n2 + n3 + 2 ≥ 10 and n1 − 1 ≥ 4, by (3.7) and by Lemma 2.6, (3.6)
holds. Hence 2 ≤ n1 ≤ 3.

Claim 2. If n1 = 3, then (3.6) holds.

Proof of Claim 2. Suppose that n1 = 3. If n2 ≥ 5, then G′

0 has an L(n1 + n3 + 2, n2 − 1). Since n2 − 1 ≥ 4 and
n1 + n3 + 2 ≥ 3 + 5 + 2 = 10, G′

0 has an L(10, 4). By Lemma 2.6, (3.6) holds.
Assume that n2 = 4. Then G′

0 has an L(n1 +n3 +2, 3). As n1 +n3 +2 ≥ k−4+2 = 10, G′

0 has an L(10, 3). By Lemma 2.6,
Y4,3,2, Y5,2,2 ⊆ G. Since n1 = 3 and n2 = 4, uv8 ∈ E(G′

0). The union of v1v2v3v4v5, v1uv8v7v6 and v1vhvh−1vh−2vh−3 is a
Y3,3,3, and so (3.6) holds.

Hence n2 = n1 = 3 and so v4, v7 ∈ NG′
0
(u). It follows that (C ′

− v1vh) ∪ {uv1, uv7} contains an L(8, 5), and so by
Lemma 2.6, Y4,3,2 ⊆ G. It remains to show that Y5,2,2, Y3,3,3 ⊆ G.

Since κ ′(G′

0) ≥ 3 and κ(G′

0) ≥ 2, for l ∈ {2, 3}, G′

0 has a path Ql such that V (Ql) ∩ V (C ′) = {vl, vil} with il ≠ l. As
C ′ is longest and as G′

0 is reduced, i2, i3 ∉ {1, 2, 3, 4} unless Q2 = v2w2v4 and Q3 = v1w3v3 for some w2 ≠ w3 and
w2, w3 ∈ V (G′

0) − V (C ′). But if Q2 = v2w2v4 and Q3 = v1w3v3, then (C ′
∪ Q2 ∪ Q3) − {v1v2, v3v4} is a cycle of length at

least h + 2, contrary to the assumption that C ′ is longest. Hence we assume that i2, i3 ∉ {1, 2, 3, 4}.
Since C ′ is longest, u ∉ V (Q2) ∪ V (Q3) and i3 ∉ {5, 6, 12}. (If i3 = 5, then as G′

0 is reduced, |E(Q3)| ≥ 2, and
C ′

[v7, v3]Q3(v3, v5]v4uv7 is longer than C ′. If i3 = 6, then C ′
[v7, v3]Q3(v3, v6]v5v4uv7 is longer than C ′. If i3 = 12, then

C ′
[v4, v12]Q3(v12, v3]v2v1uv4 is longer than C ′.)
If i3 = 7, then (C ′

− v3v4) ∪ Q3 ∪ {uv4} is an L(h− 4+ |E(Q3)|, 4). As h− 4+ |E(Q3)| ≥ 9, by Lemma 2.6, Y3,3,3 ⊂ G. The
union of v3v4uu′, Q3[v3, v7]v6v5 and v3v2v1vhvh−1vh−2vh−3 contains a Y5,2,2. Hence (3.6) holds.

If i3 = 8, then (C ′
−v3v4)∪{uu′, uv4} is an L(h−5, 6). As h−5 ≥ 7, by Lemma2.6, Y5,2,2 ⊂ G. The union ofQ3[v8, v3]v2v1u,

v8v7v6v5v4 and v8v9v10v11v12 contains a Y3,3,3. Hence (3.6) holds.
If i3 = 9, then (C ′

− {v1vh, v3v4}) ∪ E(Q3) ∪ {uv1, uv4} is an L(9 + |E(Q3)|, h − 9). As 9 + |E(Q3)| ≥ 10 and h − 9 ≥ 3,
by Lemma 2.6, Y5,2,2 ⊂ G. The union of v9v10v11v12v1, Q3[v9, v3]v4uu′ and v9v8v7v6v5 contains a Y3,3,3. Hence (3.6) holds.

If i3 = 10, then the union of v10v11v12v1v2, Q2[v10, v3]v4uu′ and v10v9v8v7v6 contains a Y3,3,3; and the union of Q3
[v3, v10]v11v12, v3v2v1u and v3v4v5v6v7v8v9 has a Y5,2,2. Hence (3.6) holds.
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Table 1
Existence of Ys1,s2,s3 when PI(v) = K2,3 in the proof of Lemma 2.9.

Cases Ys1,s2,s3

s1 s2 s3 Ps1+1 Ps2+1 Ps3+1

8 1 1 vv1v4v2v9v8v7v6v5v3 vw1u2 vw2u1
7 2 1 vv1v4v2v5v3v8v7v6 vw1u2v9 vw2u1
6 3 1 vv1v3v5v2v4v7v6 vw1u2v9v8 vw2u1
6 2 2 vv1v4v2v5v3v8v7 vw2u1v6 vw1u2v9
5 4 1 vv1v4v2v5v6v7 vw1u2v9v8v3 vw2u1
5 3 2 vv1v3v5v2v4v7 vw1u2v9v8v7 vw2u1v6
4 4 2 vv1v3v5v2v4 vw1u2v9v8v7 vw2u1v6
4 3 3 vv1v3v5v2v4 vw1u2v9v8 vw2u1v6v7

Table 2
Existence of Ys1,s2,s3 when PI(v) = K ′

1,3 in the proof of Lemma 2.9.

Cases Ys1,s2,s3

s1 s2 s3 Ps1+1 Ps2+1 Ps3+1

8 1 1 uw5w4v1v4v2v5v3v8v7 uw1w6 uw3w2
7 2 1 uw5w4v1v4v2v5v3v8 uw3w2v9 uw1w6
6 3 1 uw5w4v1v4v2v5v3 uw3w2v9v8 uw1w6
6 2 2 uw5w4v1v4v2v5v3 uw3w2v9 uw1w6v6
5 4 1 uw5w4v1v4v2v5 uw3w2v9v8v7 uw1w6
5 3 2 uw5w4v1v4v2v5 uw3w2v9v8 uw1w6v6
4 4 2 uw5w4v1v4v2 uw3w2v9v8v7 uw1w6v6
4 3 3 uw5w4v1v4v2 uw3w2v9v8 uw1w6v6v7

Fig. 4. Graphs in Tables 1 and 2.

If i3 = 11, then (C ′
− {v1v2, v2v3}) ∪ E(Q3) ∪ {uv1, uu′

} has an L(8 + |E(Q3)|, h − 10 + 2). As 8 + |E(Q3)| ≥ 9 and
h − 10 + 2 ≥ 4, by Lemma 2.6, Y3,3,3 ⊂ G. The union of v3v4uu′, v3v2v1v12, and Q3[vv3 , v11]v10v9v8v7v6 and has a Y5,2,2.
Hence (3.6) holds. This proves Claim 2.

By Claim 2, n1 = 2, and so v3 ∈ NG′
0
(u). By (3.4), v2 ∈ Λ(G′

0). For notational convenience, let v2, v
′

2 be vertices in PIG(v2)

such that v2v
′

2 ∈ E(G) and such that v2 is the vertex in PIG(v2) incident with the edge uv2 in G′

0. If n2 ≥ 6, or n2 = 5 and
n3 ≥ 6, then h = n3 +n2 +n1 ≥ 13. Thus G′

0 has an L(h−n2 +2, n2 −1) as a subgraph. Since h−n2 +2 = n1 +n3 +2 ≥ 10
and n2 − 1 ≥ 4, by Lemma 2.6, (3.6) holds. Hence either n3 = n2 = 5, or n2 ≤ 4.
Case 1. n3 = n2 = 5 and n1 = 2.

Therefore, h = 12, and v1, v3, v8 ∈ NG′
0
(u). Hence (C ′

− v8v9) ∪ {uv1, uv8} is an L(9, 4), and so by Lemma 2.6,
Y4,3,2, Y3,3,3 ⊆ G. It suffices to show that Y5,2,2 ⊆ G. By κ ′(G′

0) ≥ 3, G′

0 has a path P such that V (C ′) ∩ V (P) = {v2, vi}

for some i ≠ 2. Since C ′ is longest, i ∉ {1, 3}. By symmetry, we may only examine the cases when i ∈ {4, 5, 6, 7, 8}. Table 3
in the Appendix shows that Y5,2,2 ⊆ G in any of these cases.
Case 2. 2 ≤ n2 ≤ 3 and n1 = 2.

If n2 = 2, then v5 ∈ NG′
0
(u), and so (C ′

− v1v2) ∪ {v2v
′

2, uv1, uv5} is an L(h − 4 + 2, 4). As h − 2 ≥ 10, by Lemma 2.6,
(3.6) holds.

If n2 = 3, then v6 ∈ NG′
0
(u), and so (C ′

− v1v2) ∪ {uv1, uv6, v2v
′

2} is an L(h − 5 + 2, 5). As h − 3 ≥ 9, by Lemma 2.6,
Y4,3,2, Y3,3,3 ⊂ G. The union of uv1v2v

′

2, uv3v4v5 and uv6v7v8v9v10v11 is a Y5,2,2. Hence (3.6) holds. This proves Case 2.
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Table 3
Existence of Y5,2,2 in Lemma 3.5 when n1 = 2 and n2 = n3 = 5.

vi Y5,2,2

v4 The union of v2v3uu′ , P[v2, v4]v5v6 and v2v1v12v11v10v9v8
v5 The union of v5v4v3u, P[v5, v2]v1v12 and v5v6v7v8v9v10v11
v6 The union of v6v5v4v3 , P[v6, v2]v1u and v6v7v8v9v10v11v12
v7 The union of v7v8v9v10 , P[v7, v2]v1v12 and v7v6v5v4v3uu′

v8 The union of v8v9v10v11 , v8uv1v12 and P[v8, u]v8v7v6v5v4v3v2

Case 3. n2 = 4 and n1 = 2.
Thus v3, v7 ∈ NG′

0
(u) and so (C ′

−v3v4)∪{uv3, uv7} is an L(h−4+2, 3). As h−2 ≥ 10, by Lemma 2.6, Y4,3,2, Y5,2,2 ⊆ G.
It remains to show that Y3,3,3 ⊆ G.

Recall that PIG(u) has an edge uu′. By κ ′(G′

0) ≥ 3 and κ(G′

0) ≥ 2, G′

0 has a (v2, vi)-path Q2 such that V (C ′) ∩ V (Q2) =

{v2, vi} for some i ≠ 2. Since G′

0 is reduced and since C ′ is longest, i ∉ {h, 1, 2, 3, 4}.
If i = 5, then the union of paths v5v4v3uu′, Q2[v5, v2]v1vhvh−1 and v5v6v7v8v9 contains a Y3,3,3. If i = 6, then the union

of paths v6v5v4v3u, Q2[v6, v2]v1vhvh−1 and v6v7v8v9v10 contains a Y3,3,3. Therefore, by symmetry and since uv7 is not used
in the proof for i ∈ {5, 6}, we may assume that i ∉ {5, 6, h − 1, h − 2}.

If i = 7, then the union of v7v8v9v10v11, v7v6v5v4v3 and v7v2v3uu′ is a Y3,3,3.
If i = 8, then (C ′

∪ Q2 ∪ {uv1, uv3}) − {v1v2, v7v8} is an L(h − 6 + |E(Q2)| + 2, 4). Since h ≥ 12, h − 4 + |E(Q2)| ≥ 9,
and so by Lemma 2.6, Y3,3,3 ⊆ G.

If i = 9, then the union of v9v10v11 . . . vhv1, v9v8v7v6v5 and v9v2v3uu′ contains a Y3,3,3.
If 10 ≤ i ≤ h − 3, then the union of the cycle v2v3v4 . . . viv2 and the path vivi+1 . . . vhv1uu′ is an L(h′, k′) with h′

≥ 10
and k′

≥ 5. By Lemma 2.6, Y3,3,3 ⊆ G. This proves Case 3 and completes the proof of the lemma. �

Continuation of the proof of Theorem 1.5(i) and (ii). Suppose that (3.1) holds. If c(G′

0) ≥ 12, then by Lemmas 3.3–3.5,
either Ys1,s2,1 ⊂ G for any s1, s2 > 0 with s1 + s2 + 1 ≤ 10, or Ys1,s2,s3 ⊂ G for any s1, s2, s3 > 0 with s1 + s2 + s3 ≤ 9,
contrary to (3.3). Hence we assume that c(G′

0) ≤ 11. By Theorem 2.2, either G is supereulerian, whence by Theorem 2.11,
L(G) is hamiltonian, contrary to (3.1); orG is contractible to P(10), whence by Lemma 3.1, L(G) is not hamiltonian andG ∈ F ,
contrary to (3.1). This completes the proof of Theorem 1.5. �
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Appendix

See Tables 1–3 and Fig. 4.
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