Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are
encouraged to visit:

Non-separating subgraphs ${ }^{\text {¹ }}$

Yanmei Hong ${ }^{\text {a,* }}$, Hong-Jian Lai ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Fuzhou University, Fuzhou, 350108, China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

ARTICLE INFO

Article history:

Received 21 February 2012
Received in revised form 2 November 2012
Accepted 5 November 2012

Keywords:

Connectivity
Non-separating subgraphs
X-tree

Abstract

Lovász conjectured that there is a smallest integer $f(l)$ such that for every $f(l)$-connected graph G and every two vertices s, t of G there is a path P connecting s and t such that $G-V(P)$ is l-connected. This conjecture is still open for $l \geq 3$. In this paper, we generalize this conjecture to a k-vertex version: is there a smallest integer $f(k, l)$ such that for every $f(k, l)$-connected graph and every subset X with k vertices, there is a tree T connecting X such that $G-V(T)$ is l-connected? We prove that $f(k, 1)=k+1$ and $f(k, 2) \leq 2 k+1$. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

A well-known conjecture due to Lovász [7] says the following.
Conjecture 1.1 (Lovász [7]). There exists a smallest integer $f(l)$ such that for every $f(l)$-connected graph G and two vertices s and t in G, there exists a path P connecting s and t such that $G-V(P)$ is k-connected.

This conjecture is still open except for the cases $l \leq 2$. A theorem of Tutte [8] shows that $f(1)=3$. For $l=2, f(2)=5$ is proved by Chen, Could, and Yu [2] and Kriesell [6]independently. Actually, they proved that the path to be deleted is in fact an induced path. Later, Kawarabayashi, Lee and Yu [5] further proved that every 4-connected graph G other than the double wheel has the property that for any given pair of vertices x and y, G has a path joining x and y such that $G-V(P)$ is 2 -connected. Although a weaker version of Conjecture 1.1 is proved in [4], the prospect is still not clear.

We follow [1] for general notations and terminology. For a graph G and an integer $i>0$, let $D_{i}(G)$ denote the set of vertices of degree i in G. As in [1], $\kappa(G)$ and $\delta(G)$ denote the connectivity and the minimum degree of G, respectively. For a subset $X \subseteq V(G)$, a subtree T of G is said to be connecting X if $X \subseteq V(T)$ and if $D_{1}(T) \subseteq X$. Thus a path connecting two vertices s and t can be viewed as a tree connecting $\{s, t\}$. With this viewpoint, we generalize the path connecting two vertices to a tree connecting X for some specific vertex set X. Lovász's conjecture can be extended to a more general version.

Conjecture 1.2. There exists a smallest integer $f(k, l)$ such that for any vertex set X with order k of an $f(k, l)$-connected graph G, there is a tree T connecting X such that $G-V(T)$ is l-connected.

When $|X|=1$, the tree connecting X is trivial, and so $f(1, l)=l+1$. When $k=2$, Conjecture 1.2 becomes Conjecture 1.1. Hence $f(2,1)=3$ and $f(2,2)=5$. The purpose of this paper is to extend these former results as follows.

[^0]Theorem 1.3. Let $k \geq 1$ be an integer. Then each of the following holds.
(i) $f(k, 1)=k+1$.
(ii) $f(k, 2) \leq 2 k+1$.

In the next section, we give some terminologies and some previous results used in this paper.

2. Preliminaries

Let G be a graph and X be a vertex subset of G. As in [1], $G[X]$ denotes the subgraph induced by X and $G-X$ is the subgraph induced by $V(G)-X$. The neighborhood $N_{G}(X)$ of X is the set of vertices in $V(G)-X$ which are adjacent to some vertex in X. If $X=\{x\}$, we also use $G-x$ and $N_{G}(x)$ for $G-\{x\}$ and $N_{G}(\{x\})$, respectively. If H is a subgraph of G, we often use $N_{G}(H)$ for $N_{G}(V(H))$ and let $|H|=|V(H)|$. If $e \in E(G)$, then $V(e)$ denotes the set of vertices incident with e, and G / e denotes the graph obtained from G by contracting e.

In [3], Yanmei Hong, Liying Kang and Xingxing Yu define an X-tree as follows.
Definition 2.1 (X-Tree [3]). Let X be a vertex subset of a graph G. An X-tree is a minimal connected induced subgraph of G containing X.

When $|X|=1, G[X]$ is the unique X-tree. When $|X|=2$, an X-tree is simply an induced path in G between the two vertices in X. When $|X| \geq 3$, an X-tree need not be a tree. The following lemma shows the relation between an X-tree and a tree connecting X.

Lemma 2.2. Let X be a vertex subset of a graph G and T be an X-tree of G. Then every spanning tree of T is connecting X.
Proof. Let T_{0} be a spanning tree of T. Then $X \subseteq V\left(T_{0}\right)$. It suffices to show that every leaf of T_{0} lies in X. Assume that $v \in V(T)-X$ is a leaf of T_{0}. Then $T_{0}-v$ is connected and thus $T-v$ is also connected and contains X, contradicting the minimality of T.

Lemma 2.2 shows that an X-tree is somewhat like an "induced" tree connecting X. Hence to find a tree connecting X, it suffices to find an X-tree. In fact, in Section 3, we prove the existence of an X-tree instead of a tree connecting X.

In [3], Yanmei Hong, Liying Kang and Xingxing Yu studied some properties of X-trees and defined a partition, called an H-partition, of an X-tree T according to a subgraph H in $G-V(T)$. Since we emphasize how to partition $V(T)$, we only mention the properties of an H -partition as follows.

Lemma 2.3 ([3]). Let $X \subseteq V(G)$ be a subset with $|X|=k$ and T be an X-tree of G. For any connected subgraph H of $G-V(T)$, there exists a partition $\left(V_{1}, V_{2}, V_{3}\right)$ (called an H-partition) of $V(T)$ corresponding to H such that
(a) $N_{G}\left(V_{1}\right) \cap\left(V(H) \cup V_{3}\right)=\emptyset$,
(b) $X \subseteq V_{1} \cup V_{2}$,
(c) for any $u \in V_{3}$, each component of $T-u$ contains a neighbor of H (so $G[V(T) \cup V(H)]-u$ is connected),
(d) $\left|V_{2}\right| \leq k$, where $\left|V_{2}\right|=|X|$ only if every component of $G\left[V_{1} \cup V_{2}\right]-E\left(G\left[V_{2}\right]\right)$ is a path between X and V_{2} with all internal vertices (if any) in V_{1}.

3. Main result

In this section, we first prove Theorem 3.1, which implies $f(k, 1) \leq k+1$. We will then present an example to show that $f(k, 1) \geq k+1$ which will establish Theorem 1.3(i).

Theorem 3.1. Let G be a $(k+1)$-connected graph. For any vertex subset $X \subseteq V(G)$ with $|X|=k$ and for a vertex $v \in V(G)-X, G$ has an X-tree T such that $v \notin V(T)$ and $G-V(T)$ is connected.
Proof. If $k=1$, then $G[X]$ is the unique X-tree. Since G is 2-connected, $G-X$ is connected. Hence we assume that $k \geq 2$ in the rest of the proof. Thus $G-v$ is connected.

For each X-tree T in $G-v$, there is a component of $G-V(T)$ containing v, say C_{0}. Let C_{1}, \ldots, C_{q} denote the other components of $G-V(T)$ such that $\left|C_{1}\right| \geq \cdots \geq\left|C_{q}\right|$, and let $s(T)=\left(\left|C_{0}\right|,\left|C_{1}\right|, \ldots,\left|C_{q}\right|\right)$. Choose an X-tree T in $G-v$ such that $\delta(T)$ is maximized with respect to the lexicographic ordering.

If $q=0$, then $G-V(T)=C_{0}$ is connected and the theorem holds in this case. Assume that $q>0$. Then by Lemma 2.3, $V(T)$ has a C_{q}-partition $\left(V_{1}, V_{2}, V_{3}\right)$. By Lemma 2.3(a), $N_{G}\left(C_{q}\right) \subseteq V_{2} \cup V_{3}$. By Lemma 2.3(d), $\left|V_{2}\right| \leq k$. Since $\left|N_{G}\left(C_{q}\right)\right| \geq \kappa(G) \geq k+1$, and since $\left|V_{2}\right| \leq k$, we conclude that $N_{G}\left(C_{q}\right) \cap V_{3} \neq \emptyset$.

For any vertex $u \in V_{3}$, by Lemma 2.3(b) and (c), $X \subseteq V(T) \cup V\left(C_{q}\right)-u$ and $G\left[V(T) \cup V\left(C_{q}\right)\right]-u$ is connected. It follows that G has another X-tree T^{\prime} as a subgraph of $G\left[V(T) \cup V\left(C_{q}\right)\right]-u$. If u has a neighbor in C_{i} for some $0 \leq i \leq q-1$, one component of $G-V\left(T^{\prime}\right)$ contains $V\left(C_{i}\right) \cup\{u\}$, and so $s\left(T^{\prime}\right)$ would be bigger than $s(T)$ in the lexicographic order, contradicting the choice of T. Therefore, $N_{G}(u) \cap V\left(C_{i}\right)=\emptyset$ for $0 \leq i \leq q-1$. Furthermore, as u in the argument above can be any vertex in V_{3}, it follows that $N_{G}\left(V_{3}\right) \cap V\left(C_{i}\right)=\emptyset$ for $0 \leq i \leq q-1$. Thus by Lemma 2.3(d), $\left|N_{G}\left(V_{3} \cup V\left(C_{q}\right)\right)\right| \leq\left|V_{2}\right| \leq k$ contrary to the assumption that $\kappa(G) \geq k+1$.

Let G be a graph obtained from a K_{k}, whose vertex set is denoted by X, by adding $m \geq k+1$ isolated vertices, denoted by v_{1}, \ldots, v_{m}, and all possible edges from these m vertices to X. It is routine to verify that $\kappa(G)=k$. If there is a tree T connecting X such that $G-V(T)$ is connected, then $G-V(T)$ is just an isolated vertex, say v_{m}. So $V(T)=V(G)-\left\{v_{m}\right\}=$ $X \cup\left\{v_{1}, \ldots, v_{m-1}\right\}$. Since T is a tree connecting X, for each $i=1, \ldots, m-1, v_{i}$ has degree at least 2 in T. Hence, $|E(T)| \geq 2(m-1)$. On the other hand, $|E(T)|=|V(T)|-1=k+m-2$. It follows that $2(m-1) \leq k+m-2$, contradicting $m \geq k+1$. So $g(k, 1)>k$. Together with Theorem 3.1,f(k, 1$)=k+1$.

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 3.1, with much more complicated and different details. As in [1], a block of a graph G is a maximal subgraph without a cut vertex. Thus every block with more than 2 vertices is 2 -connected.

Theorem 3.2. For any set X with k vertices in a $2 k+1)$-connected graph G, there is an X-tree T such that $G-V(T)$ is 2-connected.
Proof. When $k=1, G[X]$ is the unique X-tree, and so $\kappa(G-X) \geq 2$. Arguing by contradiction, we assume that $k \geq 2$, and X is a vertex subset of G with $|X|=k$ such that
G does not have an X-tree L such that $\kappa(G-V(L)) \geq 2$.
For each X-tree T of G, let B be a block of $G-V(T)$ with maximum order. Denote by C_{1}, \ldots, C_{q} the components of $G-(V(T) \cup V(B))$ such that $\left|C_{1}\right| \geq \cdots \geq\left|C_{q}\right|$. Let $s(T)=\left(\left|C_{1}\right|, \ldots,\left|C_{q}\right|\right)$. Choose an X-tree T in G such that
$|B|$ is maximum,
and, subject to (3.2),
$s(T)$ is maximum with respect to the lexicographic ordering.
Claim 1. $q>0$.
By contradiction, assume that $q=0$. If $|B| \geq 3$, then $G-V(T)=B$ is 2 -connected, contrary to (3.1). Thus $|B| \leq 2$. If $V(T)=X$, then $|G|=|X|+|B| \leq k+2$, contrary to the assumption that $\kappa(G) \geq 2 k+1$ with $k \geq 2$. Hence there exists a vertex $u \in V(T)-X$. By the definition of an X-tree, the minimality of T implies that $V(B) \cup\{u\}$ is a vertex cut of G, contrary to the assumption that $\kappa(G) \geq 2 k+1 \geq 5$. This proves Claim 1 .

By Lemma 2.3 with $H=C_{q}, V(T)$ has a C_{q}-partition $\left(V_{1}, V_{2}, V_{3}\right)$. Similar to the proof of Theorem 3.1, we will show $\left|N_{G}\left(V\left(C_{q}\right) \cup V_{3}\right)\right| \leq 2 k$, which forces the order of B is at most k, and leads to a contradiction.

In fact, by Lemma 2.3(a), both C_{q} and V_{3} has no neighbors in V_{1}. By the definition of B and C_{i}, C_{q} has no neighbors in C_{i} for $1 \leq i \leq q-1$ and, since B is a block of $G-V(T)$,

$$
\begin{equation*}
\left|N_{G}\left(C_{q}\right) \cap V(B)\right| \leq 1 \tag{3.4}
\end{equation*}
$$

Hence it suffices to determine the number of neighbors of V_{3} in B and in the C_{i} 's. Next, we construct a subset U_{3} of V_{3} by a sequence of edge contractions, aiming at determining the number of neighbors of U_{3} in B and C_{i}.

To this end, we start with $G_{0}=G$ and $T_{0}=T$, and construct two sequences T_{0}, T_{1}, \ldots and G_{0}, G_{1}, \ldots as follows. Suppose G_{i} and T_{i} have been obtained. An edge $e=u v$ in T_{i} is contractible if both $u, v \notin V_{1} \cup V_{2}$ and $G_{i}\left[V\left(T_{i}\right) \cup V\left(C_{q}\right)\right]-\{u, v\}$ is connected. If T_{i} has a contractible edge e, then define $T_{i+1}=T_{i} / e$ and $G_{i+1}=G_{i} / e$ (we also view V_{1} and V_{2} as vertex subsets of T_{i+1} and G_{i+1}). Otherwise, we stop. Assume that we stop at $i=r$ and let $U_{3}=V\left(T_{r}\right)-V_{1} \cup V_{2}$. Since all contractions are taken in $G\left[V_{3}\right]$, for notational convenience, vertices and subgraphs in $G-V_{3}$ will be viewed as vertices and subgraphs of G_{i}, for any i with $0 \leq i \leq r$.

Claim 2. For any $i \leq r$, and for any vertex $u \in V\left(T_{i}\right)-V_{1} \cup V_{2}, T_{i}-u$ is disconnected and $G_{i}\left[V\left(T_{i}\right) \cup V\left(C_{q}\right)\right]-u$ is connected.
In fact, any vertex $u \in U_{3}$ corresponds to a vertex subset, disjoint with X, of T. By the minimality of an X-tree, $T_{r}-u$ is disconnected.

It suffices to verify that $G_{i}\left[V\left(T_{i}\right) \cup V\left(C_{q}\right)\right]-u$ is connected. We argue by induction on i. When $i=0$, it holds by Lemma 2.3(c). Suppose $i>0$ and $G_{j}\left[V\left(T_{j}\right) \cup V\left(C_{q}\right)\right]-u$ is connected for any value of $0 \leq j<i$.

Assume $z w$ is the contractible edge of T_{i-1} such that $T_{i}=T_{i-1} / z w$ and z_{0} is the vertex of T_{i} onto which the edge $z w$ is contracted. Then since $z w$ is a contractible edge, $G_{i-1}\left[V\left(T_{i-1}\right) \cup V\left(C_{q}\right)\right]-\{z, w\}$ is connected. Note that u is a vertex of $T_{i}-V_{1} \cup V_{2}$. If $u=z_{0}$ then $G_{i}\left[V\left(T_{i}\right) \cup V\left(C_{q}\right)\right]-u=G_{i-1}\left[V\left(T_{i-1}\right) \cup V\left(C_{q}\right)\right]-\{z, w\}$ is connected, by the definition of a contractible edge. If $u \neq z_{0}$, then $G_{i}\left[V\left(T_{i}\right) \cup V\left(C_{q}\right)\right]-u=\left(G_{i-1}\left[V\left(T_{i-1}\right) \cup V\left(C_{q}\right)\right]-u\right) / z w$ is also connected by induction. This proves Claim 2.

By Claim 2, and from the fact that T_{r} has no contractible edges, we conclude that
for each $u \in U_{3}, T_{r}-u$ is disconnected, and $G_{r}\left[V\left(T_{r}\right) \cup V\left(C_{q}\right)\right]-u$ is connected,
and that
for any edge e of $G\left[U_{3}\right], G\left[V\left(T^{\prime}\right) \cup V\left(C_{q}\right)\right]-V(e)$ is disconnected.
Based on (3.5) and (3.6), we make the following observations.

Claim 3. $N_{G_{r}}\left(U_{3}\right) \cap V\left(C_{i}\right)=\emptyset$ for $1 \leq i \leq q-1$.
Suppose that for some i with $1 \leq i \leq q-1, U_{3}$ has a vertex u such that $N_{G_{r}}(u) \cap V\left(C_{i}\right) \neq \emptyset$. Without loss of generality, we may assume i is as small as possible. Let V_{u} be the set of vertices in T contracted to u. By definition of contraction, $G\left[V_{u}\right]$ is connected and $T_{r}-u$ can be obtained from $T-V_{u}$ by contraction. By (3.5), $G_{r}\left[V\left(T_{r}\right) \cup V\left(C_{q}\right)\right]-u$ (and so $\left.G\left[V(T) \cup V\left(C_{q}\right)\right]-V_{u}\right)$ is connected and so G has an X-tree T^{\prime} contained in $G\left[V(T) \cup V\left(C_{q}\right)\right]-V_{u}$. As $B, C_{1}, C_{2}, \ldots, C_{i-1}$ remain unchanged in $G-V\left(T^{\prime}\right)$ and as $C_{i} \cup V_{u}$ is in a component of $G-V\left(T^{\prime}\right), \delta\left(T^{\prime}\right)$ is bigger than $\delta(T)$ in the lexicographic ordering, contrary to (3.3). This proves Claim 3.

Claim 4. $\left|N_{G_{r}}\left(U_{3}\right) \cap V(B)\right| \leq k-1$.
We shall show that for each $u \in U_{3},\left|N_{G_{r}}(u) \cap V(B)\right| \leq 1$ and $\left|U_{3}\right| \leq k-1$, which leads to the validity of Claim 4 .
By contradiction, suppose that for some $u \in U_{3},\left|N_{G_{r}}(u) \cap V(B)\right| \geq 2$. Let $u_{1}, u_{2} \in N_{G_{r}}(u) \cap V(B)$ and let V_{u} be the set of vertices in T contracted onto u. Then $G\left[V_{u}\right]$ is connected and $u_{1}, u_{2} \in N_{G}\left(V_{u}\right)$. Therefore, $G\left[V_{u} \cup\left\{u_{1}, u_{2}\right\}\right]$ has a path P joining u_{1} and u_{2} with internal vertices in V_{u}. By (3.6), $G_{r}\left[V\left(T_{r}\right) \cup V\left(C_{q}\right)\right]-u$ is connected, and so $G\left[V(T) \cup V\left(C_{q}\right)\right]-V_{u}$ is also connected. It follows that G has an X-tree T^{\prime} contained in $G\left[V(T) \cup V\left(C_{q}\right)\right]-V_{u}$. As B is a block in $G-V(T)$, and as P is disjoint from $T^{\prime}, B \cup P$ is in a block of $G-V\left(T^{\prime}\right)$, which implies the maximal block of $G-V\left(T^{\prime}\right)$ is bigger than B, contrary to (3.2). This contradiction proves that $\left|N_{G_{r}}(u) \cap V(B)\right| \leq 1$ for any $u \in U_{3}$.

We shall show that $\left|U_{3}\right| \leq k-1$ by a few steps. For each edge $e=z w \in E\left(G_{r}\left[U_{3}\right]\right)$, we will define a subgraph F_{e}, as follows. Let $Z_{1}, \ldots, Z_{a}, F_{1}, \ldots, F_{b}, W_{1}, \ldots, W_{c}$ be the components of $T_{r}-\{w, z\}$ such that $w \notin N_{T_{r}}\left(Z_{i}\right)$ for $i=1, \ldots, a, z \notin N_{T_{r}}\left(W_{j}\right)$ for $j=1, \ldots, c$, and $z, w \in N_{T_{r}}\left(F_{p}\right)$ for $1 \leq p \leq b$. Since $z \in U_{3}, G_{r}\left[V\left(T_{r}\right) \cup V\left(C_{q}\right)\right]-z$ is connected by (3.5), and so $N_{G_{r}}\left(C_{q}\right) \cap V\left(Z_{i}\right) \neq \emptyset$ for $i=1, \ldots, a$. Similarly, $N_{G_{r}}\left(C_{q}\right) \cap V\left(W_{j}\right) \neq \emptyset$ for $j=1, \ldots, c$. By (3.6), $G_{r}\left[V\left(T_{r}\right) \cup V\left(C_{q}\right)\right]-\{z, w\}$ is disconnected, and so $N_{G_{r}}\left(C_{q}\right) \cap V\left(F_{p}\right)=\emptyset$ for some $1 \leq p \leq b$. Fix one such value p and define $F_{e}=F_{p}$. Hence

$$
\begin{equation*}
N_{G_{r}}\left(C_{q}\right) \cap V\left(F_{e}\right)=\emptyset . \tag{3.7}
\end{equation*}
$$

Subclaim 4.1. For any edge $e=z w$ of $G_{r}\left[U_{3}\right]$, the component F_{e} satisfies $N_{T_{r}}\left(F_{e}\right)=\{z, w\}, V\left(F_{e}\right) \cap U_{3}=\emptyset$, and $V\left(F_{e}\right) \cap$ $V_{2} \neq \emptyset$.

By the definition of $F_{e}, N_{T_{r}}\left(F_{e}\right)=\{z, w\}$. If $V\left(F_{e}\right) \cap U_{3}$ has a vertex x, then by (3.5), $T_{r}-x$ is disconnected, and so $T_{r}-x$ has a component C_{x}^{\prime} such that $V\left(C_{x}^{\prime}\right) \subseteq V\left(F_{e}\right)$. By (3.5), C_{x}^{\prime} contains some neighbor of C_{q}, contrary to (3.7). Hence $V\left(F_{e}\right) \cap U_{3}=\emptyset$. Since F_{e} is a component of $T_{r}-\{z, w\}, V\left(F_{e}\right) \cap U_{3}=\emptyset$ and $N_{T_{r}}\left(V_{1}\right) \cap U_{3}=\emptyset$, it follows that $V\left(F_{e}\right) \cap V_{2} \neq \emptyset$. This proves Subclaim 4.1.

Subclaim 4.2. For any two edges $e, f \in E\left(G_{r}\left[U_{3}\right]\right), V\left(F_{e}\right) \cap V\left(F_{f}\right)=\emptyset$.
Denote $e=u_{1} v_{1}, f=u_{2} v_{2}$. Then $u_{1}, v_{1}, u_{2}, v_{2} \in U_{3}$. By Subclaim 4.1, $V\left(F_{e}\right) \cap U_{3}=\emptyset$, and so $u_{2}, v_{2} \notin V\left(F_{e}\right)$. Thus F_{e} is still connected in $T_{r}-\left\{u_{2}, v_{2}\right\}$. As F_{f} is a component of $T_{r}-\left\{u_{2}, v_{2}\right\}$, if $V\left(F_{e}\right) \cap V\left(F_{f}\right) \neq \emptyset$, then $V\left(F_{e}\right) \subseteq V\left(F_{f}\right)$. Similarly, $V\left(F_{f}\right) \subseteq V\left(F_{e}\right)$. It follows that $V\left(F_{e}\right)=V\left(F_{f}\right)$, and so $\left\{u_{1}, v_{1}\right\}=N_{G_{r}}\left(F_{e}\right)=N_{G_{r}}\left(F_{f}\right)=\left\{u_{2}, v_{2}\right\}$, a contradiction. This proves Subclaim 4.2.

Let D_{1}, \ldots, D_{t} be the components of $G_{r}\left[U_{3}\right]$ and $H_{1}, \ldots, H_{k^{\prime}}$ be the components of $G_{r}\left[V_{1} \cup V_{2}\right]$. Since T_{r} is connected, each H_{i} contains some vertices in V_{2}, and so by Lemma $2.3(\mathrm{~d}), k^{\prime} \leq\left|V_{2}\right| \leq k$. Let \mathscr{H} be the graph obtained from T_{r} by contracting D_{1}, \ldots, D_{t} to d_{1}, \ldots, d_{t} and contracting $H_{1}, \ldots, H_{k^{\prime}}$ to $h_{1}, \ldots, h_{k^{\prime}}$. Then \mathscr{H} is bipartite and connected.

Suppose that $E\left(G_{r}\left[U_{3}\right]\right)=\left\{e_{1}, \ldots, e_{m}\right\}$. By Subclaim 4.1, $F_{e_{i}}$ is a component of $G_{r}\left[V_{1} \cup V_{2}\right]$. By Subclaim 4.2 and without loss of generality, we may assume $F_{e_{i}}=H_{i}$ for $i=1, \ldots$, . Let $\mathcal{F}=\left\{h_{1}, \ldots, h_{m}\right\}$. Then by Subclaim 4.1, each vertex in \mathcal{F} has degree 1 in \mathscr{H}. Hence $\mathscr{H}-\mathcal{F}$ is still connected.

Subclaim 4.3. Every d_{i} is a cut vertex of $\mathscr{H}-\mathcal{F}$.

Suppose that this is not the case. Without loss of generality, we may assume $\mathscr{H}-\left(\mathcal{F} \cup\left\{d_{1}\right\}\right)$ is still connected. As T is a minimal connected induced subgraph containing $X, T_{r}-V\left(D_{1}\right)$ (and hence $\left.\mathscr{H}-d_{1}\right)$ is disconnected. Therefore there must be some $h_{i} \in \mathcal{F}$ only adjacent to d_{1}. Since $h_{i} \in \mathcal{F}$ is only adjacent to d_{1} and since $H_{i}=F_{e_{i}}$, it follows that $e_{i} \in E\left(D_{1}\right)$ and so $\left|D_{1}\right| \geq 2$. Pick an arbitrary $u \in V\left(D_{1}\right)$. Then $T_{r}-u$ has a component, say C, with $V(C) \cap V\left(D_{1}\right) \neq \emptyset$. For any $v_{1} \in V(C) \cap V\left(D_{1}\right), T_{r}-v_{1}$ has a component C_{1}^{\prime} contained in C. Choose a $v_{1} \in V(C) \cap V\left(D_{1}\right)$ and such a component C_{1}^{\prime} so that $\left|C_{1}^{\prime}\right|$ is minimized. Then $V\left(C_{1}^{\prime}\right) \cap V\left(D_{1}\right)=\emptyset$ and $N_{T_{r}}\left(C_{1}^{\prime}\right)=\left\{v_{1}\right\}$. Since $u \in V\left(D_{1}\right)$ is arbitrary, we may let $u=v_{1}$. Then there must be another vertex $v_{2} \neq v_{1}$ and C_{2}^{\prime} such that $V\left(C_{2}^{\prime}\right) \cap V\left(D_{1}\right)=\emptyset$ and $N_{T_{r}}\left(C_{2}^{\prime}\right)=\left\{v_{2}\right\}$. Similar to the proof of Subclaim 4.2, we conclude that $V\left(C_{1}^{\prime}\right) \cap V\left(C_{2}^{\prime}\right)=\emptyset$.

For $i \in\{1,2\}$, let $\mathcal{F}_{i}=\left\{h_{j}: V\left(C_{i}^{\prime}\right) \cap V\left(H_{j}\right) \neq \emptyset\right\} \cup\left\{d_{j}: V\left(C_{i}^{\prime}\right) \cap V\left(D_{j}\right) \neq \emptyset\right\}-\mathcal{F}$. We shall show that \mathcal{F}_{1} and \mathcal{F}_{2} induce two components of $\mathscr{H}-\mathcal{F}-d_{1}$, which implies d_{1} is a cut vertex, whence a contradiction is obtained.

By symmetry, we only need to show \mathcal{F}_{1} induces a component of $\mathscr{H}-\left(\mathcal{F} \cup\left\{d_{1}\right\}\right)$. Let F be a component of $G_{r}\left[U_{3}\right]$ or $G_{r}\left[V_{1} \cup V_{2}\right]$. If $V(F) \cap V\left(C_{1}^{\prime}\right) \neq \emptyset$, then since $V\left(C_{1}^{\prime}\right) \cap V\left(D_{1}\right)=\emptyset$, both $F \neq D_{1}$ and $V(F) \cap V\left(D_{1}\right)=\emptyset$ hold. Hence F is still connected in $T_{r}-V\left(D_{1}\right)$. As C_{1}^{\prime} is a component of $T_{r}-V\left(D_{1}\right), V(F) \subseteq V\left(C_{1}^{\prime}\right)$. Hence, every component corresponding to a vertex of \mathcal{F}_{1} is in fact contained in C_{1}^{\prime}. Thus in order to show \mathcal{F}_{1} induces a component of $\mathscr{H}-\mathcal{F}$, it suffices to show $\mathcal{F}_{1} \neq \emptyset$. In
fact, let w_{1} be a neighbor of v_{1} in C_{1}^{\prime}. Then for some $j_{1}, w_{1} \in V\left(H_{j_{1}}\right)$, and so $V\left(H_{j_{1}}\right) \subseteq V\left(C_{1}\right)$ since $V\left(H_{j_{1}}\right) \cap V\left(C_{1}^{\prime}\right) \neq \emptyset$. Hence, v_{1} is the only neighbor of $H_{j_{1}}$ in D_{1}. By Subclaim 4.1, $h_{j_{1}} \notin \mathcal{F}$, which implies $\mathcal{F}_{1} \neq \emptyset$. Therefore, \mathcal{F}_{1} induces a component of $\mathscr{H}-\left(\mathcal{F} \cup\left\{d_{1}\right\}\right)$. Similarly, \mathcal{F}_{2} induces a component of $\mathscr{H}-\left(\mathcal{F} \cup\left\{d_{1}\right\}\right)$. Then d_{1} is a cut vertex of $\mathscr{H}-\mathcal{F}$, a contradiction which implies Subclaim 4.3.

By the definition of the d_{i} 's, $\left\{d_{1}, \ldots, d_{t}\right\}$ is an independent set of \mathscr{H}. By Subclaim 4.3, each d_{i} is a cut vertex of $\mathscr{H}-\mathcal{F}$. It follows that $\mathscr{H}-\left(\mathcal{F} \cup\left\{d_{1}, \ldots, d_{t}\right\}\right)$ has at least $t+1$ component, and so $k^{\prime}-m \geq t+1$. This implies $\left|U_{3}\right| \leq m+t \leq$ $k^{\prime}-1 \leq k-1$. This proves Claim 4.

By (3.4), by Lemma 2.3(d) and by Claim 4,

$$
\begin{align*}
\left|N_{G}\left(V_{3} \cup V\left(C_{q}\right)\right)\right| & \leq\left|N_{G}\left(C_{q}\right) \cap V(B)\right|+\left|N_{G}\left(V_{3}\right) \cap V(B)\right|+\left|V_{2}\right| \\
& =\left|N_{G}\left(C_{q}\right) \cap V(B)\right|+\left|N_{G_{r}}\left(U_{3}\right) \cap V(B)\right|+\left|V_{2}\right| \leq 2 k . \tag{3.8}
\end{align*}
$$

By $\kappa(G) \geq 2 k+1$ and by $(3.8), N_{G}\left(V_{3} \cup V\left(C_{q}\right)\right)$ is not a vertex cut of G, which implies $V(G)=\left(V_{3} \cup V\left(C_{q}\right)\right) \cup N_{G}\left(V_{3} \cup V\left(C_{q}\right)\right)$. By (3.2), by (3.4) and by Claim 4, we conclude that for every X-tree T, the maximum block B of $G-V(T)$ satisfies

$$
\begin{equation*}
|B| \leq\left|N_{G_{r}}\left(U_{3}\right) \cap B\right|+\left|N_{G}\left(C_{q}\right) \cap B\right| \leq k \tag{3.9}
\end{equation*}
$$

Next, we will find another X-tree T^{\prime} in G such that $G-V\left(T^{\prime}\right)$ has a block with order at least $k+1$, leading to a contradiction to (3.9).

Choose an X-tree T^{\prime} such that
(a) $\left|V\left(T^{\prime}\right)\right|$ is minimized, and
(b) subject to (a), $\left|E\left(G-V\left(T^{\prime}\right)\right)\right|$ is maximized.

Let $\delta=\delta\left(G-V\left(T^{\prime}\right)\right)$ and $x \in V\left(G-V\left(T^{\prime}\right)\right)$ be a vertex with degree δ. By Lemma 2.3, $V\left(T^{\prime}\right)$ has an $\{x\}$-partition $\left(V_{1}^{\prime}, V_{2}^{\prime}, V_{3}^{\prime}\right)$. We shall show that

$$
\begin{equation*}
\delta\left(G-V\left(T^{\prime}\right)\right) \geq k, \tag{3.10}
\end{equation*}
$$

and so $G-V\left(T^{\prime}\right)$ has a block of order at least $k+1$. This will be justified by the next few claims.
Claim 5. For any vertex $u \in V_{3}^{\prime},\left|N_{G}(u)-V\left(T^{\prime}\right)\right| \leq \delta+1$.
Suppose, for the sake of contradiction, that there is a vertex $u \in V_{3}^{\prime}$ such that $\left|N_{G}(u)-V\left(T^{\prime}\right)\right| \geq \delta+2$. By Lemma 2.3(c), $G\left[V\left(T^{\prime}\right) \cup\{x\}\right]-u$ is connected, and so $G\left[V\left(T^{\prime}\right) \cup\{x\}\right]-u$ has an X-tree $T^{\prime \prime}$. By (a), $T^{\prime \prime}=G\left[V\left(T^{\prime}\right) \cup\{x\}\right]-u$ is also an X-tree with minimum order. However, $\left|E\left(G-V\left(T^{\prime \prime}\right)\right)\right| \geq\left|E\left(G-V\left(T^{\prime}\right)\right)\right|-\delta+(\delta+2)-1>\left|E\left(G-V\left(T^{\prime}\right)\right)\right|$, contradicting the choice (b) of T^{\prime}. This proves Claim 5.

Let δ^{\prime} be the minimum degree of $G\left[V_{3}^{\prime}\right]$ and u a vertex of $G\left[V_{3}^{\prime}\right]$ with degree δ^{\prime}. Denote $A_{1}:=N_{G}(u) \cap V_{2}^{\prime}$ and $A_{2}=V_{2}^{\prime}-A_{1}$. Then by Claim $5,\left|A_{1}\right| \geq 2 k+1-(\delta+1)-\delta^{\prime}=2 k-\delta-\delta^{\prime}$, and

$$
\begin{equation*}
\left|A_{2}\right|=\left|V_{2}^{\prime}\right|-\left|A_{1}\right| \leq k-\left(2 k-\delta-\delta^{\prime}\right)=\delta+\delta^{\prime}-k \tag{3.11}
\end{equation*}
$$

With a similar idea in the proof of Subclaim 4.1, we also have the next claim.
Claim 6. For any edge $e=z w$ of $G\left[V_{3}^{\prime}\right]$ not incident with u, there is a component $F_{z w}$ of $T^{\prime}-\{z, w\}$ such that $N\left(F_{z w}\right) \cap V_{3}^{\prime}=$ $\{z, w\}, V\left(F_{z w}\right) \cap V_{3}^{\prime}=\emptyset, V\left(F_{z w}\right) \cap A_{1}=\emptyset$ and $V\left(F_{z w}\right) \cap A_{2} \neq \emptyset$.

Let $e=z w$ be an edge of $G\left[V_{3}^{\prime}\right]$ not incident with u. Let $Z_{1}, \ldots, Z_{a}, F_{1}, \ldots, F_{b}, W_{1}, \ldots, W_{c}$ be the components of $T^{\prime}-\{w, z\}$ such that $w \notin N_{G}\left(Z_{i}\right)$ for $i=1, \ldots, a, z \notin N_{G}\left(W_{j}\right)$ for $j=1, \ldots, c$, and $z, w \in N_{G}\left(F_{p}\right)$ for $1 \leq p \leq b$. By Lemma 2.3(c), each of $Z_{1}, \ldots, Z_{a}, W_{1}, \ldots, W_{c}$ contains some neighbor of x. By (a), $G\left[V\left(T^{\prime}\right) \cup\{x\}\right]-\{z, w\}$ is not connected, and so $x \notin N_{G}\left(F_{p}\right)$ for some $1 \leq p \leq b$. Define $F_{z w}$ to be this F_{p}. By the definition of $F_{z w}, N\left(F_{z w}\right) \cap V_{3}^{\prime}=\{z, w\}$. If there exists $z^{\prime} \in V\left(F_{z w}\right) \cap V_{3}^{\prime}$, then $T^{\prime}-z^{\prime}$ has a component, say F, contained in $F_{z w}$. By Lemma 2.3(c), $G\left[V\left(T^{\prime}\right) \cup\{x\}\right]-z^{\prime}$ is connected, and so $x \in N_{G}(F)$, contrary to the choice of p. Hence $V\left(F_{z w}\right) \cap V_{3}^{\prime}=\emptyset$, and so $u \notin N_{G}\left(F_{z w}\right)$, which implies $V\left(F_{z w}\right) \cap A_{1}=\emptyset$. Thus $V\left(F_{z w}\right) \cap A_{2} \neq \emptyset$, completing the proof of Claim 6 .

Claim 7. If $\left|V_{3}^{\prime}\right| \geq 2$ then there exists $v \in V_{3}^{\prime}-\{u\}$ and a component F_{v} of $T^{\prime}-\{v\}$ such that $N_{G}\left(F_{v}\right) \cap V_{3}^{\prime}=\{v\}, V\left(F_{v}\right) \cap A_{1}=\emptyset$ and $V\left(F_{v}\right) \cap A_{2} \neq \emptyset$.

Suppose $\left|V_{3}^{\prime}\right| \geq 2$. Then $T^{\prime}-u$ has a component, say F, with $V(F) \cap V_{3}^{\prime} \neq \emptyset$. For any $v \in V(F) \cap V_{3}^{\prime}$, at least one component of $T^{\prime}-v$, say F_{v}, is contained in F. Choose v and F_{v} so that $\left|F_{v}\right|$ is minimum. Then $V\left(F_{v}\right) \cap V_{3}^{\prime}=\emptyset$ and $N_{G}\left(F_{v}\right) \cap V_{3}^{\prime}=\{v\}$. Thus $u \notin N_{G}\left(F_{v}\right)$, and so $V\left(F_{v}\right) \cap A_{1}=\emptyset$. Hence, $V\left(F_{v}\right) \cap A_{2} \neq \emptyset$, completing the proof of Claim 7 .

Let $\left|V_{3}^{\prime}\right|=t^{\prime}$ and $\left|E\left(G\left[V_{3}^{\prime}\right]\right)\right|=m^{\prime}$. If $t^{\prime}=1$, then $\delta^{\prime}=0$. By (3.11) and as $\left|A_{2}\right| \geq 0, \delta \geq k$, and so (3.10) holds. Thus we assume $t^{\prime} \geq 2$. Let $s:=\left\{z w: z w\right.$ is an edge of $\left.G\left[V_{3}^{\prime}\right]-u\right\} \cup\{v\}$, where v is the vertex found in Claim 7. By an argument similar to the proof of Subclaim 4.2, we have the following observation:

For any $e, f \in \delta, V\left(F_{e}\right) \cap V\left(F_{f}\right)=\emptyset$.

By Claims 6 and 7 and by (3.12), $\left|A_{2}\right| \geq|\delta|=m^{\prime}-\delta^{\prime}+1>\delta^{\prime}\left(t^{\prime} / 2-1\right)$. This, together with (3.11), implies $\delta^{\prime}\left(t^{\prime} / 2-1\right)<\delta+\delta^{\prime}-k$. It follows that $\delta-k>\delta^{\prime}\left(t^{\prime} / 2-2\right)$. Suppose that $\delta<k$. Then $t^{\prime}<4$ and so $t^{\prime}=2$ or 3 . By $\delta^{\prime} \leq t^{\prime}-1, \delta-k>\left(t^{\prime}-1\right)\left(t^{\prime} / 2-2\right)=-1$, contradicting our assumption $\delta<k$. Hence $\delta \geq k$ and so (3.10) must hold.

Let P be a longest path of $G-V\left(T^{\prime}\right)$ and y an end of P. Since P is longest, $N_{G}(y) \subseteq V(P)$. Let z be the neighbor of y with maximum distance to y on P. Then the (y, z)-segment of P and the edge $y z$ form a cycle of order at least $k+1$ by the fact $\delta \geq k$, which implies there is a block of $G-V\left(T^{\prime}\right)$ with order at least $k+1$, contrary to (3.9), which completes the proof.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[2] G. Chen, R. Gould, X. Yu, Graph connectivity after path removal, Combinatorica 23 (2003) 185-203.
[3] Y. Hong, L. Kang, X. Yu, Non-separating cycles avoiding k vertices (submitted for publication).
[4] K. Kawarabayashi, O. Lee, B. Reed, P. Wollan, A weaker version of Lovász's path removable conjecture, J. Combin. Theory Ser. B 98 (2008) $972-979$.
[5] K. Kawarabayashi, O. Lee, X. Yu, Non-separating paths in 4-connected graphs, Ann. Comb. 9 (2005) 47-56.
[6] M. Kriesell, Induced paths in 5-connected graphs, J. Graph Theory 36 (2001) 52-58.
[7] L. Lovász, Problems in graph theory, in: M. Fielder (Ed.), Recent Advances in Graph Theory, Acadamia Prague, 1975.
[8] W.T. Tutte, How to draw a graph, Proc. Lond. Math. Soc. (3) 13 (1963) 743-767.

[^0]: This research is supported in part by the NSFC and also in part by Fuzhou University (No. 022485).

 * Corresponding author.

 E-mail addresses: lovely-hym@163.com, yhong@fzu.edu.cn (Y. Hong).

