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a b s t r a c t

Lovász conjectured that there is a smallest integer f (l) such that for every f (l)-connected
graph G and every two vertices s, t of G there is a path P connecting s and t such that
G − V (P) is l-connected. This conjecture is still open for l ≥ 3. In this paper, we generalize
this conjecture to a k-vertex version: is there a smallest integer f (k, l) such that for every
f (k, l)-connected graph and every subset X with k vertices, there is a tree T connecting X
such that G − V (T ) is l-connected? We prove that f (k, 1) = k + 1 and f (k, 2) ≤ 2k + 1.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A well-known conjecture due to Lovász [7] says the following.

Conjecture 1.1 (Lovász [7]). There exists a smallest integer f (l) such that for every f (l)-connected graph G and two vertices s
and t in G, there exists a path P connecting s and t such that G − V (P) is k-connected.

This conjecture is still open except for the cases l ≤ 2. A theorem of Tutte [8] shows that f (1) = 3. For l = 2, f (2) = 5
is proved by Chen, Could, and Yu [2] and Kriesell [6]independently. Actually, they proved that the path to be deleted is in
fact an induced path. Later, Kawarabayashi, Lee and Yu [5] further proved that every 4-connected graph G other than the
double wheel has the property that for any given pair of vertices x and y,G has a path joining x and y such that G − V (P) is
2-connected. Although a weaker version of Conjecture 1.1 is proved in [4], the prospect is still not clear.

We follow [1] for general notations and terminology. For a graphG and an integer i > 0, letDi(G) denote the set of vertices
of degree i in G. As in [1], κ(G) and δ(G) denote the connectivity and the minimum degree of G, respectively. For a subset
X ⊆ V (G), a subtree T of G is said to be connecting X if X ⊆ V (T ) and if D1(T ) ⊆ X . Thus a path connecting two vertices
s and t can be viewed as a tree connecting {s, t}. With this viewpoint, we generalize the path connecting two vertices to a
tree connecting X for some specific vertex set X . Lovász’s conjecture can be extended to a more general version.

Conjecture 1.2. There exists a smallest integer f (k, l) such that for any vertex set X with order k of an f (k, l)-connected graph
G, there is a tree T connecting X such that G − V (T ) is l-connected.

When |X | = 1, the tree connecting X is trivial, and so f (1, l) = l+1.When k = 2, Conjecture 1.2 becomes Conjecture 1.1.
Hence f (2, 1) = 3 and f (2, 2) = 5. The purpose of this paper is to extend these former results as follows.
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Theorem 1.3. Let k ≥ 1 be an integer. Then each of the following holds.
(i) f (k, 1) = k + 1.
(ii) f (k, 2) ≤ 2k + 1.

In the next section, we give some terminologies and some previous results used in this paper.

2. Preliminaries

LetG be a graph and X be a vertex subset ofG. As in [1],G[X] denotes the subgraph induced by X andG−X is the subgraph
induced by V (G) − X . The neighborhood NG(X) of X is the set of vertices in V (G) − X which are adjacent to some vertex in X .
If X = {x}, we also use G − x and NG(x) for G − {x} and NG({x}), respectively. If H is a subgraph of G, we often use NG(H) for
NG(V (H)) and let |H| = |V (H)|. If e ∈ E(G), then V (e) denotes the set of vertices incident with e, and G/e denotes the graph
obtained from G by contracting e.

In [3], Yanmei Hong, Liying Kang and Xingxing Yu define an X-tree as follows.

Definition 2.1 (X-Tree [3]). Let X be a vertex subset of a graph G. An X-tree is a minimal connected induced subgraph of G
containing X .

When |X | = 1,G[X] is the unique X-tree. When |X | = 2, an X-tree is simply an induced path in G between the two
vertices in X . When |X | ≥ 3, an X-tree need not be a tree. The following lemma shows the relation between an X-tree and
a tree connecting X .

Lemma 2.2. Let X be a vertex subset of a graph G and T be an X-tree of G. Then every spanning tree of T is connecting X.

Proof. Let T0 be a spanning tree of T . Then X ⊆ V (T0). It suffices to show that every leaf of T0 lies in X . Assume that
v ∈ V (T ) − X is a leaf of T0. Then T0 − v is connected and thus T − v is also connected and contains X , contradicting the
minimality of T . �

Lemma 2.2 shows that an X-tree is somewhat like an ‘‘induced’’ tree connecting X . Hence to find a tree connecting X , it
suffices to find an X-tree. In fact, in Section 3, we prove the existence of an X-tree instead of a tree connecting X .

In [3], Yanmei Hong, Liying Kang and Xingxing Yu studied some properties of X-trees and defined a partition, called an
H-partition, of an X-tree T according to a subgraph H in G − V (T ). Since we emphasize how to partition V (T ), we only
mention the properties of an H-partition as follows.

Lemma 2.3 ([3]). Let X ⊆ V (G) be a subset with |X | = k and T be an X-tree of G. For any connected subgraph H of G − V (T ),
there exists a partition (V1, V2, V3) (called an H-partition) of V (T ) corresponding to H such that
(a) NG(V1) ∩ (V (H) ∪ V3) = ∅,
(b) X ⊆ V1 ∪ V2,
(c) for any u ∈ V3, each component of T − u contains a neighbor of H (so G[V (T ) ∪ V (H)] − u is connected),
(d) |V2| ≤ k, where |V2| = |X | only if every component of G[V1 ∪ V2] − E(G[V2]) is a path between X and V2 with all internal

vertices (if any) in V1.

3. Main result

In this section, we first prove Theorem 3.1, which implies f (k, 1) ≤ k+ 1. We will then present an example to show that
f (k, 1) ≥ k + 1 which will establish Theorem 1.3(i).

Theorem 3.1. Let G be a (k+1)-connected graph. For any vertex subset X ⊆ V (G)with |X | = k and for a vertex v ∈ V (G)−X,G
has an X-tree T such that v ∉ V (T ) and G − V (T ) is connected.

Proof. If k = 1, then G[X] is the unique X-tree. Since G is 2-connected, G − X is connected. Hence we assume that k ≥ 2 in
the rest of the proof. Thus G − v is connected.

For each X-tree T in G − v, there is a component of G − V (T ) containing v, say C0. Let C1, . . . , Cq denote the other
components of G − V (T ) such that |C1| ≥ · · · ≥ |Cq|, and let S(T ) = (|C0|, |C1|, . . . , |Cq|). Choose an X-tree T in G − v such
that S(T ) is maximized with respect to the lexicographic ordering.

If q = 0, thenG−V (T ) = C0 is connected and the theoremholds in this case. Assume that q > 0. Then by Lemma2.3,V (T )
has a Cq-partition (V1, V2, V3). By Lemma 2.3(a),NG(Cq) ⊆ V2∪V3. By Lemma 2.3(d), |V2| ≤ k. Since |NG(Cq)| ≥ κ(G) ≥ k+1,
and since |V2| ≤ k, we conclude that NG(Cq) ∩ V3 ≠ ∅.

For any vertex u ∈ V3, by Lemma 2.3(b) and (c), X ⊆ V (T )∪V (Cq)−u andG[V (T )∪V (Cq)]−u is connected. It follows that
G has another X-tree T ′ as a subgraph of G[V (T )∪V (Cq)]−u. If u has a neighbor in Ci for some 0 ≤ i ≤ q−1, one component
of G−V (T ′) contains V (Ci)∪{u}, and so S(T ′)would be bigger than S(T ) in the lexicographic order, contradicting the choice
of T . Therefore, NG(u) ∩ V (Ci) = ∅ for 0 ≤ i ≤ q − 1. Furthermore, as u in the argument above can be any vertex in V3, it
follows that NG(V3) ∩ V (Ci) = ∅ for 0 ≤ i ≤ q − 1. Thus by Lemma 2.3(d), |NG(V3 ∪ V (Cq))| ≤ |V2| ≤ k contrary to the
assumption that κ(G) ≥ k + 1. �
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Let G be a graph obtained from a Kk, whose vertex set is denoted by X , by adding m ≥ k + 1 isolated vertices, denoted
by v1, . . . , vm, and all possible edges from these m vertices to X . It is routine to verify that κ(G) = k. If there is a tree T
connecting X such that G − V (T ) is connected, then G − V (T ) is just an isolated vertex, say vm. So V (T ) = V (G) − {vm} =

X ∪ {v1, . . . , vm−1}. Since T is a tree connecting X , for each i = 1, . . . ,m − 1, vi has degree at least 2 in T . Hence,
|E(T )| ≥ 2(m − 1). On the other hand, |E(T )| = |V (T )| − 1 = k + m − 2. It follows that 2(m − 1) ≤ k + m − 2,
contradictingm ≥ k + 1. So g(k, 1) > k. Together with Theorem 3.1, f (k, 1) = k + 1.

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 3.1, with much more complicated and different
details. As in [1], a block of a graph G is a maximal subgraphwithout a cut vertex. Thus every block withmore than 2 vertices
is 2-connected.

Theorem 3.2. For any set X with k vertices in a (2k+1)-connected graphG, there is an X-tree T such that G−V (T ) is2-connected.

Proof. When k = 1,G[X] is the unique X-tree, and so κ(G − X) ≥ 2. Arguing by contradiction, we assume that k ≥ 2, and
X is a vertex subset of G with |X | = k such that

G does not have an X-tree L such that κ(G − V (L)) ≥ 2. (3.1)

For each X-tree T of G, let B be a block of G − V (T ) with maximum order. Denote by C1, . . . , Cq the components of
G − (V (T ) ∪ V (B)) such that |C1| ≥ · · · ≥ |Cq|. Let S(T ) = (|C1|, . . . , |Cq|). Choose an X-tree T in G such that

|B| is maximum, (3.2)

and, subject to (3.2),

S(T ) is maximum with respect to the lexicographic ordering. (3.3)

Claim 1. q > 0.

By contradiction, assume that q = 0. If |B| ≥ 3, then G − V (T ) = B is 2-connected, contrary to (3.1). Thus |B| ≤ 2. If
V (T ) = X , then |G| = |X | + |B| ≤ k + 2, contrary to the assumption that κ(G) ≥ 2k + 1 with k ≥ 2. Hence there exists a
vertex u ∈ V (T ) − X . By the definition of an X-tree, the minimality of T implies that V (B) ∪ {u} is a vertex cut of G, contrary
to the assumption that κ(G) ≥ 2k + 1 ≥ 5. This proves Claim 1.

By Lemma 2.3 with H = Cq, V (T ) has a Cq-partition (V1, V2, V3). Similar to the proof of Theorem 3.1, we will show
|NG(V (Cq) ∪ V3)| ≤ 2k, which forces the order of B is at most k, and leads to a contradiction.

In fact, by Lemma 2.3(a), both Cq and V3 has no neighbors in V1. By the definition of B and Ci, Cq has no neighbors in Ci for
1 ≤ i ≤ q − 1 and, since B is a block of G − V (T ),

|NG(Cq) ∩ V (B)| ≤ 1. (3.4)

Hence it suffices to determine the number of neighbors of V3 in B and in the Ci’s. Next, we construct a subset U3 of V3 by a
sequence of edge contractions, aiming at determining the number of neighbors of U3 in B and Ci.

To this end, we start with G0 = G and T0 = T , and construct two sequences T0, T1, . . . and G0,G1, . . . as follows. Suppose
Gi and Ti have been obtained. An edge e = uv in Ti is contractible if both u, v ∉ V1 ∪ V2 and Gi[V (Ti) ∪ V (Cq)] − {u, v} is
connected. If Ti has a contractible edge e, then define Ti+1 = Ti/e and Gi+1 = Gi/e (we also view V1 and V2 as vertex subsets
of Ti+1 and Gi+1). Otherwise, we stop. Assume that we stop at i = r and let U3 = V (Tr) − V1 ∪ V2. Since all contractions are
taken in G[V3], for notational convenience, vertices and subgraphs in G − V3 will be viewed as vertices and subgraphs of Gi,
for any iwith 0 ≤ i ≤ r .

Claim 2. For any i ≤ r, and for any vertex u ∈ V (Ti) − V1 ∪ V2, Ti − u is disconnected and Gi[V (Ti) ∪ V (Cq)] − u is connected.

In fact, any vertex u ∈ U3 corresponds to a vertex subset, disjoint with X , of T . By the minimality of an X-tree, Tr − u is
disconnected.

It suffices to verify that Gi[V (Ti) ∪ V (Cq)] − u is connected. We argue by induction on i. When i = 0, it holds by
Lemma 2.3(c). Suppose i > 0 and Gj[V (Tj) ∪ V (Cq)] − u is connected for any value of 0 ≤ j < i.

Assume zw is the contractible edge of Ti−1 such that Ti = Ti−1/zw and z0 is the vertex of Ti onto which the edge zw
is contracted. Then since zw is a contractible edge, Gi−1[V (Ti−1) ∪ V (Cq)] − {z, w} is connected. Note that u is a vertex of
Ti − V1 ∪ V2. If u = z0 then Gi[V (Ti) ∪ V (Cq)] − u = Gi−1[V (Ti−1) ∪ V (Cq)] − {z, w} is connected, by the definition of a
contractible edge. If u ≠ z0, then Gi[V (Ti) ∪ V (Cq)] − u = (Gi−1[V (Ti−1) ∪ V (Cq)] − u)/zw is also connected by induction.
This proves Claim 2.

By Claim 2, and from the fact that Tr has no contractible edges, we conclude that

for each u ∈ U3, Tr − u is disconnected, and Gr [V (Tr) ∪ V (Cq)] − u is connected, (3.5)

and that

for any edge e of G[U3],G[V (T ′) ∪ V (Cq)] − V (e) is disconnected. (3.6)

Based on (3.5) and (3.6), we make the following observations.
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Claim 3. NGr (U3) ∩ V (Ci) = ∅ for 1 ≤ i ≤ q − 1.

Suppose that for some i with 1 ≤ i ≤ q − 1,U3 has a vertex u such that NGr (u) ∩ V (Ci) ≠ ∅. Without loss of generality,
wemay assume i is as small as possible. Let Vu be the set of vertices in T contracted to u. By definition of contraction, G[Vu] is
connected and Tr−u can be obtained from T−Vu by contraction. By (3.5),Gr [V (Tr)∪V (Cq)]−u (and soG[V (T )∪V (Cq)]−Vu) is
connected and so G has an X-tree T ′ contained in G[V (T )∪V (Cq)]−Vu. As B, C1, C2, . . . , Ci−1 remain unchanged in G−V (T ′)
and as Ci ∪ Vu is in a component of G− V (T ′), S(T ′) is bigger than S(T ) in the lexicographic ordering, contrary to (3.3). This
proves Claim 3.

Claim 4. |NGr (U3) ∩ V (B)| ≤ k − 1.

We shall show that for each u ∈ U3, |NGr (u) ∩ V (B)| ≤ 1 and |U3| ≤ k − 1, which leads to the validity of Claim 4.
By contradiction, suppose that for some u ∈ U3, |NGr (u) ∩ V (B)| ≥ 2. Let u1, u2 ∈ NGr (u) ∩ V (B) and let Vu be the set

of vertices in T contracted onto u. Then G[Vu] is connected and u1, u2 ∈ NG(Vu). Therefore, G[Vu ∪ {u1, u2}] has a path P
joining u1 and u2 with internal vertices in Vu. By (3.6), Gr [V (Tr) ∪ V (Cq)] − u is connected, and so G[V (T ) ∪ V (Cq)] − Vu is
also connected. It follows that G has an X-tree T ′ contained in G[V (T ) ∪ V (Cq)] − Vu. As B is a block in G − V (T ), and as P is
disjoint from T ′, B ∪ P is in a block of G − V (T ′), which implies the maximal block of G − V (T ′) is bigger than B, contrary to
(3.2). This contradiction proves that |NGr (u) ∩ V (B)| ≤ 1 for any u ∈ U3.

We shall show that |U3| ≤ k−1 by a few steps. For each edge e = zw ∈ E(Gr [U3]), wewill define a subgraph Fe, as follows.
Let Z1, . . . , Za, F1, . . . , Fb,W1, . . . ,Wc be the components of Tr −{w, z} such that w ∉ NTr (Zi) for i = 1, . . . , a, z ∉ NTr (Wj)
for j = 1, . . . , c , and z, w ∈ NTr (Fp) for 1 ≤ p ≤ b. Since z ∈ U3,Gr [V (Tr) ∪ V (Cq)] − z is connected by (3.5), and so
NGr (Cq) ∩ V (Zi) ≠ ∅ for i = 1, . . . , a. Similarly, NGr (Cq) ∩ V (Wj) ≠ ∅ for j = 1, . . . , c. By (3.6), Gr [V (Tr) ∪ V (Cq)] − {z, w}

is disconnected, and so NGr (Cq) ∩ V (Fp) = ∅ for some 1 ≤ p ≤ b. Fix one such value p and define Fe = Fp. Hence

NGr (Cq) ∩ V (Fe) = ∅. (3.7)

Subclaim 4.1. For any edge e = zw of Gr [U3], the component Fe satisfies NTr (Fe) = {z, w}, V (Fe) ∩ U3 = ∅, and V (Fe) ∩

V2 ≠ ∅.

By the definition of Fe,NTr (Fe) = {z, w}. If V (Fe)∩U3 has a vertex x, then by (3.5), Tr −x is disconnected, and so Tr −x has
a component C ′

x such that V (C ′
x) ⊆ V (Fe). By (3.5), C ′

x contains some neighbor of Cq, contrary to (3.7). Hence V (Fe) ∩U3 = ∅.
Since Fe is a component of Tr − {z, w}, V (Fe) ∩ U3 = ∅ and NTr (V1) ∩ U3 = ∅, it follows that V (Fe) ∩ V2 ≠ ∅. This proves
Subclaim 4.1.

Subclaim 4.2. For any two edges e, f ∈ E(Gr [U3]), V (Fe) ∩ V (Ff ) = ∅.

Denote e = u1v1, f = u2v2. Then u1, v1, u2, v2 ∈ U3. By Subclaim 4.1, V (Fe) ∩ U3 = ∅, and so u2, v2 ∉ V (Fe). Thus Fe is
still connected in Tr − {u2, v2}. As Ff is a component of Tr − {u2, v2}, if V (Fe) ∩ V (Ff ) ≠ ∅, then V (Fe) ⊆ V (Ff ). Similarly,
V (Ff ) ⊆ V (Fe). It follows that V (Fe) = V (Ff ), and so {u1, v1} = NGr (Fe) = NGr (Ff ) = {u2, v2}, a contradiction. This proves
Subclaim 4.2.

LetD1, . . . ,Dt be the components of Gr [U3] andH1, . . . ,Hk′ be the components of Gr [V1∪V2]. Since Tr is connected, each
Hi contains some vertices in V2, and so by Lemma 2.3(d), k′

≤ |V2| ≤ k. Let H be the graph obtained from Tr by contracting
D1, . . . ,Dt to d1, . . . , dt and contracting H1, . . . ,Hk′ to h1, . . . , hk′ . Then H is bipartite and connected.

Suppose that E(Gr [U3]) = {e1, . . . , em}. By Subclaim 4.1, Fei is a component of Gr [V1 ∪ V2]. By Subclaim 4.2 and without
loss of generality, we may assume Fei = Hi for i = 1, . . . ,m. Let F = {h1, . . . , hm}. Then by Subclaim 4.1, each vertex in F
has degree 1 in H . Hence H − F is still connected.

Subclaim 4.3. Every di is a cut vertex of H − F .

Suppose that this is not the case. Without loss of generality, we may assume H − (F ∪ {d1}) is still connected. As T
is a minimal connected induced subgraph containing X, Tr − V (D1) (and hence H − d1) is disconnected. Therefore there
must be some hi ∈ F only adjacent to d1. Since hi ∈ F is only adjacent to d1 and since Hi = Fei , it follows that ei ∈ E(D1)
and so |D1| ≥ 2. Pick an arbitrary u ∈ V (D1). Then Tr − u has a component, say C , with V (C) ∩ V (D1) ≠ ∅. For any
v1 ∈ V (C) ∩ V (D1), Tr − v1 has a component C ′

1 contained in C . Choose a v1 ∈ V (C) ∩ V (D1) and such a component C ′

1
so that |C ′

1| is minimized. Then V (C ′

1) ∩ V (D1) = ∅ and NTr (C
′

1) = {v1}. Since u ∈ V (D1) is arbitrary, we may let u = v1.
Then there must be another vertex v2 ≠ v1 and C ′

2 such that V (C ′

2) ∩ V (D1) = ∅ and NTr (C
′

2) = {v2}. Similar to the proof of
Subclaim 4.2, we conclude that V (C ′

1) ∩ V (C ′

2) = ∅.
For i ∈ {1, 2}, let Fi =


hj : V (C ′

i ) ∩ V (Hj) ≠ ∅


∪

dj : V (C ′

i ) ∩ V (Dj) ≠ ∅


− F . We shall show that F1 and F2 induce
two components of H − F − d1, which implies d1 is a cut vertex, whence a contradiction is obtained.

By symmetry, we only need to show F1 induces a component of H − (F ∪ {d1}). Let F be a component of Gr [U3] or
Gr [V1 ∪ V2]. If V (F) ∩ V (C ′

1) ≠ ∅, then since V (C ′

1) ∩ V (D1) = ∅, both F ≠ D1 and V (F) ∩ V (D1) = ∅ hold. Hence F is still
connected in Tr − V (D1). As C ′

1 is a component of Tr − V (D1), V (F) ⊆ V (C ′

1). Hence, every component corresponding to a
vertex ofF1 is in fact contained in C ′

1. Thus in order to showF1 induces a component ofH −F , it suffices to showF1 ≠ ∅. In
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fact, letw1 be a neighbor of v1 in C ′

1. Then for some j1, w1 ∈ V (Hj1), and so V (Hj1) ⊆ V (C1) since V (Hj1)∩V (C ′

1) ≠ ∅. Hence,
v1 is the only neighbor of Hj1 in D1. By Subclaim 4.1, hj1 ∉ F , which implies F1 ≠ ∅. Therefore, F1 induces a component of
H − (F ∪ {d1}). Similarly, F2 induces a component of H − (F ∪ {d1}). Then d1 is a cut vertex of H − F , a contradiction
which implies Subclaim 4.3.

By the definition of the di’s, {d1, . . . , dt} is an independent set of H . By Subclaim 4.3, each di is a cut vertex of H − F .
It follows that H − (F ∪ {d1, . . . , dt}) has at least t + 1 component, and so k′

− m ≥ t + 1. This implies |U3| ≤ m + t ≤

k′
− 1 ≤ k − 1. This proves Claim 4.
By (3.4), by Lemma 2.3(d) and by Claim 4,

|NG(V3 ∪ V (Cq))| ≤ |NG(Cq) ∩ V (B)| + |NG(V3) ∩ V (B)| + |V2|

= |NG(Cq) ∩ V (B)| + |NGr (U3) ∩ V (B)| + |V2| ≤ 2k. (3.8)

By κ(G) ≥ 2k+1 and by (3.8),NG(V3∪V (Cq)) is not a vertex cut ofG, which implies V (G) = (V3∪V (Cq))∪NG(V3∪V (Cq)).
By (3.2), by (3.4) and by Claim 4, we conclude that for every X-tree T , the maximum block B of G − V (T ) satisfies

|B| ≤ |NGr (U3) ∩ B| + |NG(Cq) ∩ B| ≤ k. (3.9)

Next, we will find another X-tree T ′ in G such that G− V (T ′) has a block with order at least k+ 1, leading to a contradiction
to (3.9).

Choose an X-tree T ′ such that

(a) |V (T ′)| is minimized, and
(b) subject to (a), |E(G − V (T ′))| is maximized.

Let δ = δ(G−V (T ′)) and x ∈ V (G−V (T ′)) be a vertexwith degree δ. By Lemma2.3,V (T ′)has an {x}-partition (V ′

1, V
′

2, V
′

3).
We shall show that

δ(G − V (T ′)) ≥ k, (3.10)

and so G − V (T ′) has a block of order at least k + 1. This will be justified by the next few claims.

Claim 5. For any vertex u ∈ V ′

3, |NG(u) − V (T ′)| ≤ δ + 1.

Suppose, for the sake of contradiction, that there is a vertex u ∈ V ′

3 such that |NG(u) − V (T ′)| ≥ δ + 2. By Lemma 2.3(c),
G[V (T ′) ∪ {x}] − u is connected, and so G[V (T ′) ∪ {x}] − u has an X-tree T ′′. By (a), T ′′

= G[V (T ′) ∪ {x}] − u is also an X-tree
with minimum order. However, |E(G − V (T ′′))| ≥ |E(G − V (T ′))| − δ + (δ + 2) − 1 > |E(G − V (T ′))|, contradicting the
choice (b) of T ′. This proves Claim 5.

Let δ′ be the minimum degree of G[V ′

3] and u a vertex of G[V ′

3] with degree δ′. Denote A1 := NG(u)∩V ′

2 and A2 = V ′

2 −A1.
Then by Claim 5, |A1| ≥ 2k + 1 − (δ + 1) − δ′

= 2k − δ − δ′, and

|A2| = |V ′

2| − |A1| ≤ k − (2k − δ − δ′) = δ + δ′
− k. (3.11)

With a similar idea in the proof of Subclaim 4.1, we also have the next claim.

Claim 6. For any edge e = zw of G[V ′

3] not incident with u, there is a component Fzw of T ′
− {z, w} such that N(Fzw) ∩ V ′

3 =

{z, w}, V (Fzw) ∩ V ′

3 = ∅, V (Fzw) ∩ A1 = ∅ and V (Fzw) ∩ A2 ≠ ∅.

Let e = zw be an edge of G[V ′

3] not incident with u. Let Z1, . . . , Za, F1, . . . , Fb,W1, . . . ,Wc be the components of
T ′

− {w, z} such that w ∉ NG(Zi) for i = 1, . . . , a, z ∉ NG(Wj) for j = 1, . . . , c , and z, w ∈ NG(Fp) for 1 ≤ p ≤ b. By
Lemma 2.3(c), each of Z1, . . . , Za,W1, . . . ,Wc contains some neighbor of x. By (a), G[V (T ′) ∪ {x}] − {z, w} is not connected,
and so x ∉ NG(Fp) for some 1 ≤ p ≤ b. Define Fzw to be this Fp. By the definition of Fzw,N(Fzw) ∩ V ′

3 = {z, w}. If there exists
z ′

∈ V (Fzw) ∩ V ′

3, then T ′
− z ′ has a component, say F , contained in Fzw . By Lemma 2.3(c), G[V (T ′) ∪ {x}] − z ′ is connected,

and so x ∈ NG(F), contrary to the choice of p. Hence V (Fzw) ∩ V ′

3 = ∅, and so u ∉ NG(Fzw), which implies V (Fzw) ∩ A1 = ∅.
Thus V (Fzw) ∩ A2 ≠ ∅, completing the proof of Claim 6.

Claim 7. If |V ′

3| ≥ 2 then there exists v ∈ V ′

3−{u} and a component Fv of T ′
−{v} such that NG(Fv)∩V ′

3 = {v}, V (Fv)∩A1 = ∅

and V (Fv) ∩ A2 ≠ ∅.

Suppose |V ′

3| ≥ 2. Then T ′
−u has a component, say F , with V (F)∩V ′

3 ≠ ∅. For any v ∈ V (F)∩V ′

3, at least one component
of T ′

− v, say Fv , is contained in F . Choose v and Fv so that |Fv| is minimum. Then V (Fv) ∩ V ′

3 = ∅ and NG(Fv) ∩ V ′

3 = {v}.
Thus u ∉ NG(Fv), and so V (Fv) ∩ A1 = ∅. Hence, V (Fv) ∩ A2 ≠ ∅, completing the proof of Claim 7.

Let |V ′

3| = t ′ and |E(G[V ′

3])| = m′. If t ′ = 1, then δ′
= 0. By (3.11) and as |A2| ≥ 0, δ ≥ k, and so (3.10) holds. Thus we

assume t ′ ≥ 2. Let S := {zw : zw is an edge of G[V ′

3] − u} ∪ {v}, where v is the vertex found in Claim 7. By an argument
similar to the proof of Subclaim 4.2, we have the following observation:

For any e, f ∈ S, V (Fe) ∩ V (Ff ) = ∅. (3.12)
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By Claims 6 and 7 and by (3.12), |A2| ≥ |S| = m′
− δ′

+ 1 > δ′(t ′/2 − 1). This, together with (3.11), implies
δ′(t ′/2 − 1) < δ + δ′

− k. It follows that δ − k > δ′(t ′/2 − 2). Suppose that δ < k. Then t ′ < 4 and so t ′ = 2 or 3.
By δ′

≤ t ′ − 1, δ − k > (t ′ − 1)(t ′/2− 2) = −1, contradicting our assumption δ < k. Hence δ ≥ k and so (3.10) must hold.
Let P be a longest path of G − V (T ′) and y an end of P . Since P is longest, NG(y) ⊆ V (P). Let z be the neighbor of y with

maximum distance to y on P . Then the (y, z)-segment of P and the edge yz form a cycle of order at least k + 1 by the fact
δ ≥ k, which implies there is a block of G−V (T ′) with order at least k+1, contrary to (3.9), which completes the proof. �
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