
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Discrete Mathematics 313 (2013) 101–104

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note

Group colorability of multigraphs✩

Hao Li a,∗, Hong-Jian Lai b
a Department of Mathematics, Renmin University of China, Beijing 100872, China
b Department of Mathematics, West Virginia University, Morgantown, WV 26505, USA

a r t i c l e i n f o

Article history:
Received 14 August 2009
Received in revised form 6 September 2012
Accepted 9 September 2012
Available online 1 October 2012

Keywords:
Group coloring
Multigraph
Upper bound

a b s t r a c t

Let G be a multigraph with a fixed orientation D and let Γ be a group. Let F(G, Γ ) denote
the set of all functions f : E(G) → Γ . A multigraph G is Γ -colorable if and only if for every
f ∈ F(G, Γ ), there exists a Γ -coloring c : V (G) → Γ such that for every e = uv ∈ E(G)
(assumed to be directed from u to v), c(u)c(v)−1

≠ f (e). We define the group chromatic
number χg (G) to be the minimum integerm such that G is Γ -colorable for any group Γ of
order ≥ m under the orientation D. In this paper, we investigate the properties of χg for
multigraphs and prove an analogue to Brooks’ Theorem.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we use the model of ‘graph’ that allows multiple edges but not loops; these are also called ‘finite loopless
multigraphs’. We use terms and notation of [1], unless otherwise stated. A nontrivial 2-regular connected graph is called
a circuit. For a graph G with vertex set V (G) and edge set E(G), we define an equivalence relation ‘‘∼’’ on E(G) such that
e1 ∼ e2 if e1 = e2 or if e1 and e2 form a circuit in G. Edges in the same equivalence class are parallel edges, and they have the
same endpoints. For u, v ∈ V (G), letm(u, v) denote the number of parallel edges with endpoints u and v. Themultiplicity of
G, denoted byM(G), is the maximum size of an equivalence class. The simplification of G, denoted by G0, is the simple graph
obtained by replacing each equivalence class by a single edge. For a graph H and a positive integer k, we define kH to be
the graph obtained by replacing each edge of H by a class of k parallel edges. For V1, V2 ⊆ V (G) and V1 ∩ V2 = ∅, let G[V1]

denote the induced subgraph of V1 and let E[V1, V2] denote the set of edges joining V1 and V2. We abbreviate E[{u}, V2] to
E[u, V2].

Group coloring was first introduced by Jeager et al. [2]. They introduced a concept of group connectivity as a
generalization of nowhere-zero flows. They also introduced group coloring as a dual concept to group connectivity.

An orientation D of G is a map hD : E(G) → V (G) such that hD(e) is a vertex incident with e in G, and the edge e is oriented
from hD(e) to the other endpoint. The graph G under the orientation D is sometimes denoted by D(G). In D(G), an oriented
edge is called an arc, and we write e = uv to mean hD(e) = u.

Let Γ be a nontrivial group and F(G, Γ ) be the set of all functions f : E(G) → Γ . For a function f ∈ F(G, Γ ), a (Γ , f )-
coloring of D(G) is a function c : V (G) → Γ such that c(u)c(v)−1

≠ f (e) when uv is an arc; D(G) is Γ -colorable if and
only if for any f ∈ F(G, Γ ) there exists a (Γ , f )-coloring. It is known [2] that whether G is Γ -colorable is independent of
the choice of the orientation. Therefore, we say simply that G is Γ -colorable when some orientation of G is Γ -colorable.
The group chromatic number of a graph G, denoted by χg(G), is defined to be the minimum positive integerm for which G is
Γ -colorable for every group Γ of order at leastm.
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For a subgraph H of G, (G,H) is said to be Γ -extendible if for any f ∈ F(G, Γ ) and any (Γ , f |E(H))-coloring c ′ of H , there
is a (Γ , f )-coloring c of G such that c|E(H) = c ′. The coloring c is then called an extension of c ′.

Prior studies on group chromatic number were restricted to simple graphs and considered only Abelian groups in the
definition of χg(G). The following results were proved under the assumptions that the groups involved are Abelian groups.
However, they remain valid without this assumption.

Theorem 1.1 (Lai and Zhang [5]). For any connected simple graph G,

χg(G) ≤ ∆(G) + 1

with equality if and only if G is a cycle or G is complete.

Theorem 1.2. Let G be a simple graph.
(i) (Lai and Zhang [6]) If G is K5-minor free, then χg(G) ≤ 5.
(ii) (Lai and Li [4]) If G is K3,3-minor free, then χg(G) ≤ 5.

The bound of Theorem 1.2(ii) is sharp. A 3-colorable simple planar graph with χg(G) = 5 is constructed in [3].
Note that although group coloring is a generalization of vertex coloring, they have different behaviors: for any bipartite

graph G, χ(G) = 2 while χg(G) can be arbitrary large. Lai and Zhang [5] showed that for any complete bipartite graph Km,n
with n ≥ mm, χg(Km,n) = m + 1. Moreover, group coloring of multigraphs is different from that of simple graphs. Consider
K2, for example. By Brooks’ Theorem and Theorem 1.1, χ(K2) = χg(K2) = 2 while χg(mK2) = m + 1(m ∈ Z+).

The main purpose of this paper is to extend Theorem 1.1 to multigraphs.

Theorem 1.3. For any connected multigraph G,

χg(G) ≤ ∆(G) + 1

where equality holds if and only if G is kCn or kKn for some positive integer k and n.

In order to prove our theorem, we will first show some properties of group coloring in Section 2. The upper bound of
χg(G) for multigraphs will be given in Section 3.

2. Elementary properties

In [5], Lai and Zhang proved the following properties of χg . Although they assumed that graphs are simple and groups
are Abelian groups, these properties still hold without such assumptions, as their proofs did not utilize the property that the
binary operations of the involved groups are commutative.

Proposition 2.1 (Lai and Zhang [5]). If G is a multigraph and Γ is a group, then each of the following holds:
(i) If G is Γ -colorable under an orientation D, then G is Γ -colorable under every orientation of G.
(ii) G is Γ -colorable if and only if each block of G is Γ -colorable.

By Proposition 2.1(i), χg(G) is not dependent on the choice of orientations of G. Furthermore, Proposition 2.1(ii) shows
that it suffices to consider 2-connected graphs in our proofs.

Proposition 2.2 (Lai and Zhang [5]). If G is a multigraph and Γ is a group, then each of the following holds:
(i) Let H ⊆ G. If (G,H) is Γ -extendible and H is Γ -colorable, then G is Γ -colorable.
(ii) Let H2 ⊆ H1 ⊆ G. If (G,H1) and (H1,H2) are Γ -extendible, then (G,H2) is also Γ -extendible.
(iii) Suppose that V (G) can be linearly ordered as v1, v2, . . . , vn such that dGi(vi) ≤ k (i = 1, 2, . . . , n), where Gi = G[{v1,

v2, . . . , vi}]. Then for any group Γ of order at least k + 1, (Gi+1,Gi) (i = 1, 2, . . . , n − 1) is Γ -extendible and so G is
Γ -colorable.

An immediate corollary of Proposition 2.2(iii) is given below.

Corollary 2.3 (Lai and Zhang [5]). If G is a multigraph, then each of the following holds:
(i) χg(G) ≤ maxH⊆G{δ(H)} + 1.
(ii) χg(G) ≤ ∆(G) + 1.

Lemma 2.4. Let G be a graph. Then for any k ∈ Z+, χg(kG) ≥ k(χg(G) − 1) + 1.

Proof. By the definition of χg(G), there exist a group Γ of order χg(G) − 1 and a function f ∈ F(G, Γ ) such that there
are no (Γ , f )-colorings of G. Let Γ ′

= Γ × Zk (where |Γ ′
| = k(χg(G) − 1)). Define f ′

∈ F(kG, Γ ′) by f (ei) = (f (e), i)
for 1 ≤ i ≤ k where {e1, e2, . . . , ek} are the k parallel edges in E(kG) corresponding to e ∈ E(G). There are no (Γ ′, f ′)-
colorings of kG, since any (Γ ′, f ′)-coloring of kG can give rise to a (Γ , f )-coloring of G. Therefore kG is not Γ ′-colorable, and
χg(kG) ≥ k(χg(G) − 1) + 1. �
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3. Group chromatic number of multigraphs

Brooks proved that for any connected graph G, χ(G) ≤ ∆(G) + 1 where equality holds if and only if either ∆(G) = 2
and G is an odd cycle or ∆(G) ≥ 3 and G is a complete graph. Lai and Zhang [5] proved Theorem 1.1 as a strengthening of
Brooks’ Theorem for the group chromatic number of simple graphs. In this section, we shall extend Theorems 1.1–1.3. We
start with two lemmas.

Lemma 3.1. Let Γ be a group. If S1 and S2 are subsets of Γ such that |S2| > |S1|, then there exist x and y in S2 such that
S1x ≠ S1y.

Proof. We argue by contradiction and assume that ∀x, y ∈ S2, S1x = S1y. Let |S1| = m. Since |S2| > |S1|, we can pickm + 1
distinct elements b1, b2, . . . , bm+1 from S2. Note that S1bi = S1bj for 1 ≤ i < j ≤ m + 1. Fix a ∈ S1. Since abi ∈ S1bi = S1b1
(1 ≤ i ≤ m + 1), {abi : 1 ≤ i ≤ m + 1} ⊆ S1b1. Since m = |S1b1| ≥ |{abi : 1 ≤ i ≤ m + 1}|, there exist 1 ≤ k < l ≤ m + 1
such that abk = abl. Hence bk = bl, contrary to the assumption that b1, b2, . . . , bm+1 are distinct. �

Lemma 3.2. Let G be a 2-connected graph whose simplification is neither a cycle nor a complete graph; then there exist three
vertices v1, v2, vn in G such that both of the following hold:
(i) v1vn, v2vn ∈ E(G) and v1v2 ∉ E(G), and
(ii) G − {v1, v2} is connected.

Theproof of Lemma3.2 is contained in almost every graph theory textbookwhichproves Brooks’ Theorem. So it is omitted
here.

Proof of Theorem 1.3. By Corollary 2.3(ii), we only need to show that when the equality holds, G must be either a kCn or
a kKn. Let G be a graph such that χg(G) = ∆(G) + 1 and n = |V (G)|. By Proposition 2.1(ii), we may assume that G is
2-connected.

Claim 1. G is regular.

If G not regular, then maxH⊆G{δ(H)} ≤ ∆(G) − 1. Therefore, by Corollary 2.3(i), χg(G) ≤ maxH⊆G{δ(H)} + 1 ≤ ∆(G), a
contradiction to χg(G) = ∆(G) + 1.

Claim 2. G0 is either a cycle or a complete graph.

Suppose that G0 is neither a cycle nor a complete graph. Since χg(G) = ∆(G) + 1, there exist a group Γ of order ∆(G)
and a function f ∈ F(G, Γ ) such that G has no (Γ , f )-colorings.

By Lemma 3.2, G has three vertices v1, v2, vn such that v1vn,v2vn ∈ E(G), v1v2 ∉ E(G) and G−{v1, v2} is connected. Now
we arrange the vertices of G − {v1, v2} in non-increasing order of their distance from vn, say v3, v4, . . . , vn. Then the list
{v1, v2, . . . , vn} is such that each vertex other than vn is adjacent to at least one vertex following it. Thus each vertex other
than vn is adjacent to at most ∆(G) − 1 vertices preceding it.

Let D be an orientation such that every arc between vi and vj is directed from vj to vi if i < j and from vi to vj otherwise.
Define a map c : V (G) → Γ as follows. For i = 1, 2, let ei denote an arc from vn to vi. Choose a1, a2 ∈ Γ such that
f (e1)a1 = f (e2)a2. Define c(vi) = ai (i = 1, 2). For vj (3 ≤ j ≤ n), let Aj = {f (e)c(vi) : e ∈ E[vj, vi] and i = 1, 2, . . . , j − 1}.
If j < n, then |Aj| ≤ dG[{v1,v2,...,vj}](vj) ≤ ∆(G) − 1 and Γ − Aj ≠ ∅; if j = n, then Γ − An ≠ ∅ since f (e1)a1 = f (e2)a2.
Hence we can choose c(vj) ∈ Γ − Aj (3 ≤ j ≤ n), so that c is a (Γ , f )-coloring of G, contrary to the assumption that G has
no (Γ , f )-colorings.

Claim 3. If G = kCn or kKn, then χg(G) = ∆(G) + 1.

IfG = kCn, thenbyCorollary 2.3(ii) and Lemma2.4,∆(G)+1 ≥ χg(G) ≥ k(3−1)+1 = ∆(G)+1, and soχg(G) = ∆(G)+1.
Similarly, if G = kKn, then χg(G) = ∆(G) + 1.

Claim 4. If G0 = Cn, then G = kCn, where k = M(G).

Assume that G ≠ kCn. By Claim 1, G is regular. It follows that G must satisfy both G0 = C2k = u1v1u2v2 · · · ukvk and
m(uivi) = a, m(viui+1) = b with a ≠ b, where i = 1, 2, . . . , k and the subscripts are taken modulo k. Without loss of
generality, assume a > b. Let D be an orientation of G such that every arc e ∈ E[ui, vi] is directed from ui to vi and every arc
e ∈ E[vi, ui+1] is directed from vi to ui+1 (i = 1, 2, . . . , k, where subscripts are taken modulo k).

Sinceχg(G) = ∆(G)+1, there exist a groupΓ of order∆(G) = a+b and f ∈ F(G, Γ ) such thatG has no (Γ , f )-colorings.
Let H = G[{u1, v1, u2, v2, . . . , uk−1, vk−1}]. Since H0 is a path, it follows by Corollary 2.3 that χg(H) ≤ ∆(H) = a + b and
then H has a (Γ , f |H)-coloring c ′. Let c : V (G) → Γ be a function where c|V (H) = c ′.

Let Γ1 = Γ \ {f (e) : e ∈ E[vk−1, uk]} and Γ2 = {f (e) : e ∈ E[vk, u1]}. Pick y0 ∈ Γ \ {f (e) : e ∈ E[uk, vk]}. Since
|{y−1

0 x−1c(vk−1)c(u1)
−1

: x ∈ Γ1}| = |Γ1| ≥ a > b ≥ |Γ2|, choose x0 ∈ Γ1 such that y−1
0 x−1

0 c(vk−1)c(u1)
−1

∉ Γ2.
Let c(uk) = x−1

0 c(vk−1) and c(vk) = y−1
0 c(uk). Now c is a (Γ , f )-coloring of G, contrary to the assumption that G has no

(Γ , f )-colorings. This completes the proof of Claim 4.
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Claim 5. If G0 = Kn, then G = kKn, where k = M(G).

Assume that G ≠ kKn and n ≥ 4. Since χg(G) = ∆(G) + 1, there exist a group Γ of order ∆(G) and a function
f ∈ F(G, Γ ) such that there is no (Γ , f )-coloring of G. By Claim 1, G is regular. It follows that there exist u, v1, v2 ∈ V (G)
with m(uv1) = a, m(uv2) = b and m(v1v2) = d such that a < b. Let H = G − {u, v1, v2}. Let D be an orientation such that
arcs in E[{u, v1, v2}, V (H)] are all directed into H; arcs in E[u, vi] are all directed from u to vi (i = 1, 2) and arcs in E[v2, v1]

are all directed from v2 to v1.
Since H is not regular, it follows by Corollary 2.3(i) that χg(H) ≤ ∆(H) ≤ ∆(G). Thus H has a (Γ , f |H)-coloring c . For

any v ∈ {v1, v2, u}, define Av = Γ \ {f (e)c(x) : x ∈ V (H), e ∈ E[v, x]}. Since |Γ | = ∆(G), |Av1 | ≥ a + d, |Av2 | ≥ b + d,
and |Au| ≥ a + b. Taking a subset if needed, we may assume that |Av1 | = a + d, |Av2 | = b + d, and |Au| = a + b.
Since |{f (e) : e ∈ E[v2, v1]}| ≤ d and |Av1 | = a + d, it follows by Lemma 3.1 that there exist x1, x2 ∈ Av1 such that
{f (e)x1 : e ∈ E[v2, v1]} ≠ {f (e)x2 : e ∈ E[v2, v1]}.

Let c1 be an extension of c on G[V (H) ∪ v1] such that c1(v1) = x1. For any v ∈ {v2, u}, define A′
v = Av \ {f (e)x1 : e ∈

E[v, v1]}. Note that |A′
v2

| ≥ b and |A′
u| ≥ b. If |A′

v2
| > b, then choose c1(u) ∈ A′

u and c1(v2) ∈ A′
v2

\ {f (e)−1c1(u)}, such that
c1 is a (Γ , f )-coloring of G, contrary to the assumption that G has no (Γ , f )-colorings. Thus

|A′

v2
| = b, and similarly |A′

u| = b. (1)

Assume that there is a z ∈ A′
u such that {f (e)−1z : e ∈ E[u, v2]} ≠ A′

v2
. Since |A′

v2
| = b = m(uv2) ≥ |{f (e)−1z : e ∈

E[u, v2]}|, we can pick y ∈ A′
v2

\ {f (e)−1z : e ∈ E[u, v2]} and extend c1 to a map c2 : V (G) → Γ by assigning c2(v2) = y and
c2(u) = z. By the choices of y and z, it is routine to verify that c2 is indeed a (Γ , f )-coloring of G, contrary to the assumption
that G has no (Γ , f )-colorings. Hence we may assume that

∀z ∈ A′

u, {f (e)−1z : e ∈ E[u, v2]} = A′

v2
. (2)

Let c0 be an extension of c on G such that c0(v1) = x2. For any v ∈ {v2, u}, define A′′
v = Av \ {f (e)x2 : e ∈ E[v, v1]}. By the

choice of x1 and x2, A′
v2

≠ A′′
v2
. So we can pick y0 ∈ A′′

v2
\ A′

v2
. As G has no (Γ , f )-colorings, it follows by a similar argument

to conclude (1) that we must also have |A′′
v2

| = |A′′
u| = b.

Since |Au| = a + b ≤ 2b, A′′
u ∩ A′

u ≠ ∅. Take z0 ∈ A′′
u ∩ A′

u. Define c2(v2) = y0 and c2(u) = z0. By (2) and since y0 ∉ A′
v2
,

it is routine to verify that c0 is indeed a (Γ , f )-coloring of G, contrary to the assumption that G has no (Γ , f )-colorings. This
completes the proof of Claim 5.

After we have established these claims, it is straightforward to see that Theorem 1.3 now follows from Claim 3 to 5. �

Since ∆(G) ≤ M(G)∆(G0), Corollary 3.3 below follows from Theorem 1.3 immediately.

Corollary 3.3. For any graph G, χg(G) ≤ M(G)∆(G0) + 1, with equality if and only if G = M(G)Cn or G = M(G)Kn.
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