Degree condition and Z_{3}-connectivity

Xiangwen Li ${ }^{\text {a,* }}$, Hong-Jian Lai ${ }^{\text {b }}$, Yehong Shao ${ }^{\text {c }}$
${ }^{\text {a }}$ Huazhong Normal University, Wuhan 430079, China
${ }^{\mathrm{b}}$ West Virginia University, Morgantown, WV 26505, USA
c Ohio University Southern, Ironton, OH 45638, USA

ARTICLE INFO

Article history:

Received 11 February 2010
Received in revised form 30 November
2011
Accepted 11 January 2012
Available online 10 February 2012

Keywords:

Nowhere-zero 3-flows
Z_{3}-connectivity
Ore-condition

Abstract

Let G be a 2-edge-connected simple graph on $n \geq 3$ vertices and A an abelian group with $|A| \geq 3$. If a graph G^{*} is obtained by repeatedly contracting nontrivial A-connected subgraphs of G until no such a subgraph left, we say G can be A-reduced to G^{*}. Let G_{5} be the graph obtained from K_{4} by adding a new vertex v and two edges joining v to two distinct vertices of K_{4}. In this paper, we prove that for every graph G satisfying $\max \{d(u), d(v)\} \geq \frac{n}{2}$ where $u v \notin E(G), G$ is not Z_{3}-connected if and only if G is isomorphic to one of twenty two graphs or G can be Z_{3}-reduced to K_{3}, K_{4} or K_{4}^{-}or G_{5}. Our result generalizes the former results in [R. Luo, R. Xu, J. Yin, G. Yu, Ore-condition and Z_{3}-connectivity, European J. Combin. 29 (2008) 1587-1595] by Luo et al., and in [G. Fan, C. Zhou, Ore condition and nowhere zero 3-flows, SIAM J. Discrete Math. 22 (2008) 288-294] by Fan and Zhou.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite and may have multiple edges without loops. Terminology and notation not defined here are from [1]. Let H be a subgraph of a graph G and u a vertex of G. Denote by $d_{H}(u)$ the degree of u in H. When $H=G$, we write $d(u)$ for $d_{G}(u)$. Let H_{1} and H_{2} be two subgraphs of G such that $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\emptyset$. Denote by $e_{G}\left(H_{1}, H_{2}\right)$ (or simply $e\left(H_{1}, H_{2}\right)$) the number of edges with one end vertex in H_{1} and the other one in H_{2}. If $V\left(H_{1}\right)=\{a\}$, we use $e_{G}\left(a, H_{2}\right)$ (or simply $e\left(a, H_{2}\right)$) instead of $e_{G}\left(H_{1}, H_{2}\right)$. For simplicity, if V_{1}, V_{2} are two subsets of $V(G)$ with $V_{1} \cap V_{2}=\emptyset$, we use $e_{G}\left(V_{1}, V_{2}\right)$ for $e_{G}\left(G\left[V_{1}\right], G\left[V_{2}\right]\right)$. We similarly define $e\left(V_{1}, V_{2}\right)$ and $e\left(a, V_{2}\right)$. A simple graph G satisfies the Ore-condition [10] if for every $u v \notin E(G), d(u)+d(v) \geq|V(G)|$. A vertex v is a k^{+}-vertex if $d(v) \geq k$. For simplicity, a 3-cycle on three vertices u, v and w is denoted by $u v w$.

Let G be a graph. For an orientation D of a graph G and for a vertex $v \in V(G)$, denote by $E^{+}(v)$ (or $E^{-}(v)$, respectively) the set of edges with tails (or heads, respectively) at v. It is known [5] that group connectivity is independent of the orientation of G. The subscript D may be omitted when D is understood from the context.

Let A denote a nontrivial abelian group with identity element 0 , and let $A^{*}=A-\{0\}$. Define $F(G, A)=\{f: E(G) \rightarrow A\}$ and $F\left(G, A^{*}\right)=\left\{f: E(G) \rightarrow A^{*}\right\}$. For an $f \in F(G, A)$, the boundary of f is a mapping $\partial f: V(G) \rightarrow A$ defined by $\partial f(v)$ $=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)$, for each $v \in V(G)$.

Tutte [12] first introduced the theory of nowhere-zero flows. The concept of group connectivity was introduced by Jaeger et al. in [5], where nowhere-zero flows were successfully generalized to group connectivity. We give these definitions below.

Let G be an undirected graph and A an abelian group with identity 0 . A mapping $b: V(G) \rightarrow A$ is an A-valued zero-sum mapping on G if $\sum_{v \in V(G)} b(v)=0$. Denote by $\mathcal{Z}(G, A)$ all A-valued zero-sum mappings on G. A graph G is A-connected if for each $b \in \mathcal{Z}(G, A)$, there is an $f \in F\left(G, A^{*}\right)$ such that $b=\partial f$. A graph G admits a nowhere-zero A-flow if there exists an $f \in F\left(G, A^{*}\right)$ such that $\partial f(v) \equiv 0$ for G.

[^0]

Fig. 1. Exceptional graphs for the main theorem.
A contraction of a graph G is the graph G^{\prime} obtained from G by contracting a set of edges and deleting any loops generated in the process. When H is a subgraph of G, the contraction of G obtained by contracting the edges in H and deleting resulting loops is denoted by G / H. Note that each component of H becomes a vertex of G / H. A graph G is A-reduced if no nontrivial subgraph of G is A-connected. We say that a graph G_{0} is an A-reduction of G if G_{0} is A-reduced and if G_{0} can be obtained from G by contracting all maximally A-connected subgraphs of G [7]. It is known that (Corollary 2.3 of [7]) the A-reduction of a graph is A-reduced and an A-reduction of a reduced graph is itself.

The following two conjectures on nowhere-zero flows and group connectivity are well-known.
Conjecture 1.1 (Tutte, [12,15]). Every 4-edge-connected graph admits nowhere-zero Z_{3}-flow.
Conjecture 1.2 (Jaeger et al., [5]). Every 5-edge-connected graph is Z_{3}-connected.
In order to approach these two conjectures, nowhere-zero 3-flows and Z_{3}-connectivity have been studied extensively. More recently, degree conditions are used to ensure the existence of nowhere-zero flows and group connectivity of graphs. For the literature for group connectivity, the readers can see the survey [8], and the results [14,13,16] and others. In particular, Fan and Zhou [4,3] investigated sufficient degree conditions for nowhere-zero Z_{3}-flows. Luo et al. [9] extended the result of Fan and Zhou [4] by characterizing all Z_{3}-connected graphs satisfying the Ore-condition.

Theorem 1.3 (Luo et al. [9]). Let G be a simple graph satisfying the Ore-condition with at least three vertices. The graph G is not Z_{3}-connected if and only if G is one of G_{i} in Fig. 1, where $1 \leq i \leq 12$.

Motivated by Conjectures 1.1 and 1.2 and Theorem 1.3, we will further investigate Z_{3}-connectivity by a given degree condition. To simplify the notation, for an integer $n \geq 3$, we define \mathcal{F} to be the set of all simple 2-edge-connected graphs on n vertices such that $G \in \mathcal{F}$ if and only if $\max \{d(u), d(v)\} \geq \frac{n}{2}$ for every $u v \notin E(G)$. In this paper, we prove the following result.

Theorem 1.4. Let $G \in \mathcal{F}$ on $n \geq 3$ vertices. The graph G is not Z_{3}-connected if and only if one of the following holds:
(1) G is isomorphic to one of 22 graphs in Fig. 1; or
(2) G can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}.

Theorem 1.4 generalized the result of Luo et al. [9]. If a graph G satisfies the Ore-condition, then $\max \{d(u), d(v)\} \geq \frac{n}{2}$ for every pair of nonadjacent vertices u and v and so G satisfies the hypothesis of Theorem 1.4. Note that each of G_{i}, where $13 \leq i \leq 22$, contains a pair of nonadjacent vertices with the sum of their degree less than $\left|V\left(G_{i}\right)\right|$. Thus, G is isomorphic to none of G_{13}, \ldots, G_{22}. We now show that G cannot be Z_{3}-reduced to G_{j} for each $j \in\{1,3,4,5\}$. Suppose otherwise that G is Z_{3}-reduced to G_{j}, where $j \in\{1,3,4,5\}$. Let H be a nontrivial Z_{3}-connected subgraph of G and v_{H} be a vertex of G_{i} which H is contracted to. Since every Z_{3}-connected graph has at least 5 vertices and v_{H} has at most four neighbors in G_{j}, H contains at least one vertex u such that $d_{G}(u) \leq|V(H)|-1$ and $e(u, G-V(H))=0$. If G_{j} has two vertices $v_{H_{1}}$ and $v_{H_{2}}$ such that two nontrivial Z_{3}-subgraphs H_{1} and H_{2} are contracted to, respectively, pick $u_{1} \in V\left(H_{1}\right)$ and $u_{2} \in V\left(H_{2}\right)$ satisfying $d\left(u_{k}\right) \leq\left|V\left(H_{k}\right)\right|-1$ for $k=1,2$, and $u_{1} u_{2} \notin E(G)$. If G has only one Z_{3}-connected subgraph H, pick a vertex u_{1} with $d\left(u_{1}\right) \leq|V(H)|-1$ such that $e(u, G-V(H))=0$, and $u_{2} \in V(G)-V(H)$, then $u_{1} u_{2} \notin E(G)$. In both cases, it is easy to see that $d\left(u_{1}\right)+d\left(u_{2}\right)<n$ and G does not satisfy the Ore-condition. This tells us that if G satisfies the Ore-condition, then G cannot be Z_{3}-reduced to none of G_{1}, G_{3}, G_{4} and G_{5}. So, Theorem 1.4 extends Theorem 1.3.

As G_{i} admits a nowhere-zero 3-flow for each $i \in\{1,2,3,5,8,11\}$, the argument above implies that G_{j} does not admit a nowhere-zero 3-flow if and only if $j \in\{4,6,7,9,10,12\}$ and so the Fan's result follows from Theorem 1.4.

We organize this paper as follows. We establish several lemmas in Section 2. We prove Theorem 1.4 for small cases when $n \leq 8$ in Section 3 and the case when $n \geq 9$ in Section 4 .

2. Lemmas

To simplify the notation, throughout the rest of this paper, we use $Z_{3}=\{0,1,2\}$, and so equality concerning elements in Z_{3} is to mean congruence modulo 3. We first state the Turán theorem.

Theorem 2.1 (Turán, [11]). Let G be a simple graph on n vertices. If $|E(G)| \geq \frac{n^{2}}{4}$, then G contains a triangle or $G \cong K_{m, m}$, where m is a positive integer.

Lemma 2.2 (Lai, [6]). Let G be a graph and A an abelian group with $|A| \geq 3$. Then each of the following holds:
(1) K_{1} is A-connected;
(2) if $e \in E(G)$ and if G is A-connected, then G / e is A-connected, and
(3) if H is a subgraph of G and if both H and G / H are A-connected, then G is A-connected.

One notes that K_{4} is not Z_{3}-connected. A nontrivial Z_{3}-connected simple graph G has $|V(G)| \geq 5$. Denote by C_{n} the cycle of length n. For every $n \geq 3$, we define $W_{n}=C_{n}+w$, where w is the center. A wheel W_{n} is even (or odd) if n is even (or odd).

Lemma 2.3 ([2,5,6,9]). Let A be an abelian group. Then each of the following holds:
(1) both K_{n} and K_{n}^{-}are Z_{3}-connected if $n \geq 5$;
(2) C_{n} is A-connected if and only if $|A| \geq n+1$;
(3) $K_{m, n}$ is Z_{3}-connected if $m \geq n \geq 4$;
(4) $W_{2 k}$ is Z_{3}-connected, where $k \geq 2$;
(5) if G is not Z_{3}-connected, then none of any spanning subgraph of G is Z_{3}-connected; and
(6) let G be a simple graph and H a nontrivial Z_{3}-connected subgraph of G. Then $|V(H)| \geq 5$.

Let G be a graph and let u, v, w be three vertices of G with $u v, u w \in E(G) . G_{[u v, u w]}$ is defined to be the graph obtained from G by deleting two edges $u v$ and $u w$ and adding one edge $v w$. It is clear that $d_{G[u v, u w]}(u)=d(u)-2$.

Lemma 2.4 ([2,6]). Let A be an abelian group. Let G be a graph and let u, v, we three vertices of G with degree $d(u) \geq 4$ and $u v, u w \in E(G)$. If $G_{[u v, u w]}$ is A-connected, then so is G.

Let A be an abelian group. Let H be a connected subgraph of G and let $V_{1}=V(H), V_{2}=V(G)-V(H)$. From the proof [8, Proposition 3.2], we obtain the following lemma.

Lemma 2.5 (Lai, [6]). Let $b \in \mathcal{Z}(G, A)$. If there is a mapping $f \in F\left(G, A^{*}\right)$ such that $\partial f(v)=b(v)$, then define $b^{\prime}: V_{2} \rightarrow A$ by

$$
b^{\prime}(v)= \begin{cases}b(v), & \text { if } v \in V_{2}-N(H) \\ b(v)-\sum_{e \in E^{-}(v) \cap E\left(V_{1}, V_{2}\right)} f(e)+\sum_{e \in E^{+}(v) \cap E\left(V_{1}, V_{2}\right)} f(e) & \text { if } v \in N(H) \cap V_{2}\end{cases}
$$

Then for such a $b^{\prime} \in \mathcal{Z}(G-H, A)$, there is a mapping $f^{\prime}: G-H \rightarrow A^{*}$ such that $\partial f^{\prime}(v)=b^{\prime}(v)$ for each $v \in V_{2}$.
Lemma 2.6. Both Γ_{1} and Γ_{2} in Fig. 2 are Z_{3}-connected.

Γ_{1}

Γ_{2}

Fig. 2. Two Z_{3}-connected graphs.
Proof. Let $\Gamma=\Gamma_{2}$ and $\Gamma^{\prime}=\Gamma_{\left[v_{2} v_{5}, v_{2} v_{6}\right]}$. It is easy to verify that Γ^{\prime} can be Z_{3}-reduced to K_{1} which is Z_{3}-connected. By Lemma 2.4, G is Z_{3}-connected.

Let $\Gamma=\Gamma_{1}$ and $\Gamma^{\prime}=\Gamma_{\left[v_{2} v_{3}, v_{2} v_{4}\right]}$. Then Γ^{\prime} contains a 2 -cycle (v_{3}, v_{4}). We contract this 2-cycle to a new vertex v^{*} and then we get another 2 -cycle $\left(v^{*}, v_{5}\right)$. We contract this 2 -cycle into another new vertex $v^{* *}$. In this time, we get an even wheel W_{4} induced by $v^{* *}, v_{6}, v_{1}, u_{1}, u_{2}$ with the center at $v^{* *}$. We contract this W_{4} into one vertex and also get a 2 -cycle. Contracting this 2-cycle, finally we get a K_{1} which is Z_{3}-connected. By Lemma 2.3(2) and (4), and by Lemma 2.4, Γ_{1} is Z_{3}-connected.

The following lemma is from the survey on group connectivity and group coloring by Lai et al. [8].
Lemma 2.7. Let G be a graph and $v \in V(G)$ with $d_{G}(v)=2$. Then G is Z_{3}-connected if and only if $G-v$ is Z_{3}-connected.
Lemma 2.8. None of G_{16}, G_{19}, G_{21} and G_{22} is Z_{3}-connected.
Proof. We shall use the same notation for the labeling of the vertices of these graphs as in Fig. 1. Recall that K_{4} does not have a nowhere-zero 3-flow, and so cannot be Z_{3}-connected.

Since $G_{16}-\left\{v_{1}, v_{6}\right\}$ is a K_{4}, which is not Z_{3}-connected, by Lemma 2.7, G_{16} is also not Z_{3}-connected.
Since G_{19} can be contracted to K_{4}, and since K_{4} does not have a nowhere-zero Z_{3}-flow, by Lemma $2.2(2), G_{19}$ is no Z_{3}-connected.

We now show that G_{21} is not Z_{3}-connected. Suppose otherwise that G_{21} is Z_{3}-connected. By the definition, for a $b \in$ $Z\left(G_{21}, Z_{3}\right)$ by $b\left(u_{1}\right)=b\left(u_{2}\right)=0, b\left(v_{1}\right)=b\left(v_{3}\right)=b\left(v_{5}\right)=1$ and $b\left(v_{2}\right)=b\left(v_{4}\right)=b\left(v_{6}\right)=2$, there is an $f \in Z\left(G_{21}, Z_{3}\right)$ such that $\partial f=b$. Recall that group connected is independent of orientations. We assume that $u_{1} u_{2}$ is oriented from u_{1} to $u_{2} ; u_{1} v_{1}$ is from v_{1} to $u_{1} ; u_{1} v_{4}$ from v_{4} to $u_{1} ; u_{2} v_{1}$ from u_{2} to $v_{1} ; u_{2} v_{4}$ from u_{2} to v_{4}. If $f\left(u_{1} u_{2}\right)=\lambda \in Z_{3}^{*}$, then $f\left(v_{1} u_{1}\right)=f\left(v_{4} u_{1}\right)=f\left(u_{2} v_{1}\right)=f\left(u_{2} v_{4}\right)=\mu \in Z_{3}-\{0, \lambda\}$.

Note that $f\left(u_{2} v_{1}\right)=f\left(v_{1} u_{1}\right)$ and $f\left(u_{2} v_{4}\right)=f\left(v_{4} u_{1}\right)$. By Lemma 2.5, there is a mapping $f^{\prime}: V(G)-\left\{u_{1}, u_{2}\right\} \rightarrow Z_{3}^{*}$ such that $\partial f^{\prime}\left(v_{i}\right)=b\left(v_{i}\right)$, where $1 \leq i \leq 6$.

We assume that $v_{6} v_{1}$ is oriented from v_{6} to $v_{1}, v_{1} v_{2}$ is from v_{1} to $v_{2} ; v_{3} v_{4}$ is from v_{3} to $v_{4} ; v_{4} v_{5}$ is from v_{4} to v_{5}. $b\left(v_{1}\right)=1$ implies that $f^{\prime}\left(v_{6} v_{1}\right)=1$ and $f^{\prime}\left(v_{1} v_{2}\right)=2 ; b\left(v_{4}\right)=2$ implies that $f^{\prime}\left(v_{3} v_{4}\right)=2$ and $f^{\prime}\left(v_{4} v_{5}\right)=1$. Let $G^{*}=$ $G_{21}-\left\{u_{1}, u_{2}, v_{1}, v_{4}\right\}$. By Lemma 2.5, there is a $b^{\prime \prime} \in \mathcal{Z}\left(G^{*}, Z_{3}\right)$ with $b^{\prime \prime}\left(v_{i}\right)=0, i=2,3,5,6$, which implies that K_{4} admits nowhere-zero Z_{3}-flow. This contradiction proves that G_{21} is not Z_{3}-connected.

It remains to show that G_{22} is not Z_{3}-connected. Suppose otherwise that G_{22} is Z_{3}-connected. By the definition, for a $b \in \mathcal{Z}\left(G_{22}, Z_{3}\right)$ with $b\left(v_{i}\right)=2, i=1,2, \ldots, 6$ and $b\left(u_{j}\right)=0, j=1,2$, there is an $f \in F\left(G_{22}, Z_{3}^{*}\right)$ such that $\partial f=b$. Assume that $u_{1} u_{2}$ is oriented from u_{2} to $u_{1} ; u_{1} v_{1}$ is from u_{1} to $v_{1} ; u_{1} v_{6}$ from u_{1} to $v_{6} ; u_{2} v_{3}$ from v_{3} to $u_{2} ; v_{4} u_{2}$ from v_{4} to u_{2}.

Let $f\left(u_{1} u_{2}\right)=\lambda \in Z_{3}^{*}$. Then $f\left(u_{1} v_{1}\right)=f\left(u_{1} v_{6}\right)=f\left(u_{2} v_{3}\right)=f\left(u_{2} v_{4}\right)=\mu \in Z_{3}-\{0, \lambda\}$. Let $G^{\prime}=G_{22}-\left\{u_{1}, u_{2}\right\}$ and define $b^{\prime}: V\left(G^{\prime}\right) \rightarrow Z_{3}$ by $b^{\prime}\left(v_{1}\right)=b\left(v_{1}\right)-\mu=2-\mu ; b^{\prime}\left(v_{2}\right)=b\left(v_{2}\right)=2 ; b^{\prime}\left(v_{3}\right)=b\left(v_{3}\right)+\mu=2+\mu ; b^{\prime}\left(v_{4}\right)=$ $b\left(v_{4}\right)+\mu=2+\mu ; b^{\prime}\left(v_{5}\right)=b\left(v_{5}\right)=2$ and $b^{\prime}\left(v_{6}\right)=b\left(v_{6}\right)-\mu=2-\mu$. It is easy to see that $b^{\prime}\left(v_{3}\right)=b^{\prime}\left(v_{4}\right)=0$ or $b^{\prime}\left(v_{1}\right)=b^{\prime}\left(v_{6}\right)=0$ depends on $\mu=1$ or $\mu=2$. By symmetry of G^{\prime}, we assume that $\mu=1$. In this case, $b^{\prime}\left(v_{1}\right)=1, b^{\prime}\left(v_{2}\right)=2, b^{\prime}\left(v_{3}\right)=0, b^{\prime}\left(v_{4}\right)=0, b^{\prime}\left(v_{5}\right)=2$ and $b^{\prime}\left(v_{6}\right)=1$.

Lemma 2.5 shows that for such a b^{\prime}, there is an $f^{\prime} \in F\left(G^{\prime}, Z_{3}^{*}\right)$ with $\partial f^{\prime}=b^{\prime}$. Note that $b^{\prime}\left(v_{3}\right)=0$ and $b^{\prime}\left(v_{4}\right)=0$. All edges incident with v_{3} are assumed to be oriented either into or from v_{3}, f^{\prime} achieves 1 or 2 at these edges. In this case, all edges incident with v_{4} must be oriented either from or into v_{4}, f^{\prime} achieves 1 or 2 at these edges. In all cases, $G^{\prime}-\left\{v_{3}, v_{4}\right\}$ is a $K_{4}-v_{2} v_{5}$ with vertex set $\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ and $b^{\prime}\left(v_{1}\right)=b^{\prime}\left(v_{6}\right)=1, b^{\prime}\left(v_{2}\right)=b^{\prime}\left(v_{5}\right)=2$. We assume, without loss of generality, that two edges incident with $v_{2}\left(v_{5}\right)$ are oriented from $v_{2}\left(v_{5}\right)$. Since $b^{\prime}\left(v_{2}\right)=b^{\prime}\left(v_{5}\right)=2$, f^{\prime} achieves 1 on these four edges. f^{\prime} cannot achieve any non-zero element of Z_{3} on an edge $v_{1} v_{6}$ no matter how $v_{1} v_{6}$ is oriented. This contradiction proves that G_{22} is not Z_{3}-connected.

From Lemma 2.8 and Theorem 1.3, we obtain the following lemma.
Lemma 2.9. None of $G_{1}, G_{2}, \ldots, G_{22}$ is Z_{3}-connected.
Proof. Theorem 1.3 states that none of G_{i}, where $1 \leq i \leq 12$, is Z_{3}-connected. By Lemma 2.8 , none of G_{16}, G_{19}, G_{21} and G_{22} is Z_{3}-connected. Since G_{13}, G_{14}, G_{18} and G_{20} are spanning subgraphs of G_{10}, G_{15} is a spanning subgraph of G_{12} and G_{17} is a spanning subgraph of G_{16}. By Lemma 2.3(5), none of $G_{13}, G_{14}, G_{15}, G_{17}, G_{18}$ and G_{20} is Z_{3}-connected.

3. The case when $n \leq 8$

Throughout this section, we assume that $G \in \mathcal{F}$ on n vertices. Define

$$
\begin{equation*}
X_{G}=\left\{u \in V(G): d(u)<\frac{n}{2}\right\} \tag{1}
\end{equation*}
$$

Throughout the rest of this section, we assume that $X=X_{G}$. For simplicity, we define $Y=V(G)-X$. The following fact is straightforward.

Lemma 3.1. (1) $G \in \mathcal{F}$ if and only if $G[X]$ is a complete subgraph of G.
(2) If $G[Y]$ is Z_{3}-connected and $e(X, Y) \geq|X|+1$, then G is Z_{3}-connected.

Lemma 3.2. If G is not Z_{3}-connected and if $5 \leq n \leq 8$, then either $1 \leq|X| \leq\left\lfloor\frac{n}{2}\right\rfloor-1$ or G is one of $G_{7}, G_{8}, G_{9}, G_{10}, G_{11}$ and G_{12}.

Proof. Suppose otherwise that $|X| \geq\left\lfloor\frac{n}{2}\right\rfloor$. By Lemma 3.1, $d_{G[X]}(x)=|X|-1$. Since G is connected, G has a vertex $x_{0} \in X$ adjacent to a vertex not in X, and so $d\left(x_{0}\right) \geq|X| \geq\left\lfloor\frac{n}{2}\right\rfloor$. When n is even, $d\left(x_{0}\right) \geq \frac{n}{2}$ and this contradicts the definition of X. Thus, n is odd. If $|X| \geq\left\lfloor\frac{n}{2}\right\rfloor+1$, since G is 2-edge connected, there is a vertex $x \in X$ such that $d(x) \geq\left\lfloor\frac{n}{2}\right\rfloor+1 \geq \frac{n}{2}$. This contradiction shows that $|X|=\left\lfloor\frac{n}{2}\right\rfloor$. Then $|Y|=\left\lceil\frac{n}{2}\right\rceil$. In this case $|Y|=|X|+1$ and for each vertex $x \in X, e(x, Y) \leq 1$. It implies that there is at least one vertex $y \in Y$ such that $d(y) \leq\left\lfloor\frac{n}{2}\right\rfloor$. This contradiction establishes $|X| \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

If $X=\emptyset$, then $d(u) \geq \frac{n}{2}$ for each vertex $u \in V(G)$. In this case, G satisfies the Ore-condition, and G is one of $G_{7}, G_{8}, G_{9}, G_{10}, G_{11}$ and G_{12} by Theorem 1.3.

Lemma 3.3. Suppose that $3 \leq n \leq 5$. Then G is not Z_{3}-connected if and only if G is G_{i} in Fig. 1 , where $1 \leq i \leq 6$.
Proof. Since no simple graph of order at most 4 is Z_{3}-connected, $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$. Thus, we may assume that $n=5$. By Lemma 3.2, $|X| \leq 1$. If $X=\{x\}$, then $d(x)=2$ and for each $y \in V(G)-X, d(y) \geq 3$, and so $G \in\left\{G_{5}, G_{6}\right\}$. Hence we assume that $X=\emptyset$. By Theorem 1.3, G is Z_{3}-connected or $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$.

Lemma 3.4. Suppose that $n=6$. Then G is not Z_{3}-connected if and only if G is G_{i} in Fig. 1, where $7 \leq i \leq 20$.
Proof. By Lemma 3.2, $|X| \leq 2$. If $X=\emptyset$, then G is $G_{i}, 7 \leq i \leq 12$, from Theorem 1.3. If $|X|=2$, then as $\kappa^{\prime}(G) \geq 2, d(v)=2$ for each $v \in X$. Thus, $e(v, G-X)=1$ for each $v \in X$. Thus there are at most two vertices $u_{1}, u_{2} \in Y$ such that $d_{G[Y]}\left(u_{i}\right)=2$, for $i=1,2$. In this case, $G \in\left\{G_{18}, G_{19}, G_{20}\right\}$.

Hence $X=\{v\}$. As $\kappa^{\prime}(G) \geq 2, d(v)=2$, and so $d_{G}(y) \geq 3$ for each $y \in Y$. By Lemma $2.7, G$ is Z_{3}-connected if and only if $G-v$ is. By Lemma 3.3, if $G-v$ has at most one vertex of degree 2 , then $G \in\left\{G_{13}, G_{14}, G_{16}, G_{17}\right\}$. Hence we assume that $G-v$ has exactly two vertices of degree 2 . Note that if $G-v$ has 3 vertices of degree 4 , then $\delta(G-v) \geq 3$, which implies that G contains a K_{5}^{-}which is Z_{3}-connected, a contradiction. Since the number of odd degree vertices must be even, $G-v$ has exactly one vertex of degree 4 . This forces that $G=G_{15}$.

Lemma 3.5. Suppose that $n=7$. G is not Z_{3}-connected if and only if G is Z_{3}-reduced to K_{3}.
Proof. If G is Z_{3}-reduced to K_{3}, by Lemma 2.2, G is not Z_{3}-connected. Thus, assume that G is not Z_{3}-connected. By Lemma 3.2 and Theorem 1.3, $0<|X| \leq 2$. Suppose first that $X=\{v\}$. Then $d(v) \leq 3$ and for each vertex u of $G[Y], d_{G[Y]}(u) \geq 3$. This means that $G[Y]$ satisfying the Ore-condition with $n=6$. If $G[Y]$ is not Z_{3}-connected, by Theorem 1.3 , then $G[Y]$ is one of $G_{7}, G_{8}, \ldots, G_{12}$. On the other hand, $G[Y]$ has at least three 4^{+}-vertices while each of G_{7}, \ldots, G_{12} has at most two 4^{+}-vertices. This contradiction proves that $G[Y]$ is Z_{3}-connected and so is G, a contradiction.

Thus, we assume that $X=\left\{x_{1}, x_{2}\right\}$. Then $d\left(x_{1}\right) \leq 3$ and $d\left(x_{2}\right) \leq 3$. We first assume that $e\left(\left\{x_{1}, x_{2}\right\}, Y\right) \leq 2$. In this case, $d\left(x_{1}\right)=d\left(x_{2}\right)=2$ and $e\left(\left\{x_{1}, x_{2}\right\}, Y\right)=2$ since G is 2-edge connected. Moreover, $G^{*}=G-\left\{x_{1}, x_{2}\right\}$ contains at least three 4^{+}-vertices. It follows that G^{*} is K_{5} or K_{5}^{-}which is Z_{3}-connected by Lemma 2.3(1). So G can be Z_{3}-reduced to K_{3}. Thus, $e\left(\left\{x_{1}, x_{2}\right\}, Y\right) \geq 3$. In the remainder of the proof we will use the following claim.

Claim. Suppose that $e\left(\left\{x_{1}, x_{2}\right\}, Y\right) \geq 3$. If $u_{1}, u_{2} \in Y$ such that $e\left(\left\{u_{1}, u_{2}\right\},\left\{x_{1}, x_{2}\right\}\right)=0$, then G is Z_{3}-connected.
Let $G^{*}=G[Y]=G-\left\{x_{1}, x_{2}\right\}$. Then G^{*} has a degree sequence $d_{1} \leq d_{2} \leq d_{3} \leq d_{4} \leq d_{5}$ with $d_{1} \geq 2, d_{2} \geq 2, d_{4}=d_{5}=4$. Thus, $G[Y]$ satisfies the Chvátal-condition and G^{*} contains a Hamilton cycle $C=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$.

When $u_{1} u_{2}=y_{i} y_{i+1}$, where the subscript i is taken modulo $5, G^{*}$ is isomorphic to K_{5} or K_{5}^{-}which is Z_{3}-connected by Lemma 2.3(1). By Lemma 3.1, G is Z_{3}-connected.

Thus, we assume, without loss of generality, that $y_{1}=u_{1}, y_{3}=u_{2}$. Since $d_{G^{*}}\left(y_{1}\right)=d_{G^{*}}\left(y_{3}\right)=4, y_{1} y_{3}, y_{1} y_{4}, y_{3} y_{5} \in$ $E\left(G^{*}\right)$. If either $y_{2} y_{5} \in E\left(G^{*}\right)$ or $y_{2} y_{4} \in E\left(G^{*}\right)$, then G^{*} contains an even wheel W_{4}. By Lemma 2.3(4), G^{*} is Z_{3}-connected and so is G. If both $y_{2} y_{5} \notin E\left(G^{*}\right)$ and $y_{2} y_{4} \notin E\left(G^{*}\right)$, then $x_{1} y_{2}, x_{2} y_{2} \in E(G)$ and $e\left(y_{i},\left\{x_{1}, x_{2}\right\}\right) \geq 1$, where $i=4$, 5 , since for each $y \in Y, d(y) \geq 4$. In this case, $G_{\left[y_{5} y_{1}, y_{5} y_{3}\right]}$ contains a 2 -cycle. Contract this 2-cycle and recursively contract any new 2-cycle obtained in the process, finally we get a K_{1} which is Z_{3}-connected. By Lemmas 2.2 and $2.4, G$ is Z_{3}-connected. So far, we have proved our claim.

Recall that G is not Z_{3}-connected. By Claim, let $e\left(\left\{x_{1}, x_{2}\right\}, Y\right)=4$ and $\left|\left(N\left(x_{1}\right) \cup N\left(x_{2}\right)\right) \cap Y\right|=4$. It follows that there exists $y^{*} \in Y$ such that $d_{G^{*}}(y)=4$ and for each $y \in Y-\left\{y^{*}\right\}, d_{G^{*}}(y) \geq 3$ and hence $d_{G^{*}-y^{*}}(y) \geq 2$. By the Ore's Theorem, the subgraph induced by $Y-\left\{y^{*}\right\}$ is a 4-cycle. In this case, G^{*} contains an even wheel W_{4} with the center at y^{*}. By Lemma 2.3(4), G^{*} is Z_{3}-connected and so is G, a contradiction.

Lemma 3.6. Suppose that $n=8$. G is not Z_{3}-connected if and only if G can be Z_{3}-reduced to K_{3} or K_{4} or K_{4}^{-}or G is G_{22} or G_{21}.
Proof. We shall use the same notation for the labeling of the vertices of the graphs in Fig. 1. If G can be Z_{3}-reduced to K_{3} or K_{4} or K_{4}^{-}or G is G_{22} or G_{21}, by Lemmas 2.2 and $2.9, G$ is not Z_{3}-connected. Thus, assume that G is not Z_{3}-connected. Let $d_{1} \leq d_{2} \leq \cdots \leq d_{|Y|}$ be a degree sequence of $G[Y]$. By Lemma 3.2 and Theorem 1.3, $0<|X| \leq 3$.
Case 1. $X=\left\{x_{1}, x_{2}, x_{3}\right\}$.
It follows that $d_{G[X]}\left(x_{i}\right)=2$ and $e\left(x_{i}, G-X\right) \leq 1$ for each $x_{i}, i=1,2$, 3. Since G is 2-edge connected, $3 \geq e(X, G-X) \geq 2$. If $|N(X) \cap Y|=1$ or $|N(X) \cap Y|=3$, then $G[Y] \in \mathcal{F}$ with $|V(G[Y])|=5$. Since $G[Y]$ contains at least two 4^{+}-vertices, by Lemma 3.3, $G[Y]$ is Z_{3}-connected. When $e(X, G-X)=3, G$ can be Z_{3}-reduced to K_{4}. When $e(X, G-X)=2$, G can be Z_{3}-reduced to K_{4}^{-}. Assume that $|N(X) \cap Y|=2$. Then $d_{1} \geq 2, d_{2} \geq 3$ and $d_{5} \geq d_{4} \geq d_{3} \geq 4$. Thus, $G[Y]$ satisfies the Chvátal-condition and $G[Y]$ is a Hamilton cycle $C=y_{1} y_{2} y_{3} y_{4} y_{5} y_{1}$. Since $|N(X) \cap Y|=2$, there are two adjacent vertices y_{i}, y_{i+1} with $e\left(\left\{y_{i}, y_{i+1}\right\}, X\right)=0$. In this case, $G[Y]$ contains an even wheel W_{4} induced by y_{1}, \ldots, y_{5} with the center vertex at y_{i}. By Lemma 2.3(4), $G[Y]$ is Z_{3}-connected and hence G can be Z_{3}-reduced to K_{4}^{-}since G is not Z_{3}-connected.
Case 2. $X=\left\{x_{1}, x_{2}\right\}$.
Since G is 2-edge connected, $4 \geq e(X, G-X) \geq 2$. Suppose first that $|N(X) \cap Y|=4$. Then $d_{1} \geq 3, d_{2} \geq 3, d_{3} \geq 3, d_{4} \geq$ $3, d_{6} \geq d_{5} \geq 4$. Thus, $G[Y] \in \mathcal{F}$. Since G is not Z_{3}-connected, by Lemma 3.4, $G[Y]$ is one of G_{i}, where $7 \leq i \leq 20$. Since each vertex of $G[Y]$ is a 3^{+}-vertex and $G[Y]$ has at least two 4^{+}-vertices, $G[Y]$ is one of G_{9}, G_{10} and G_{11}. If $G[Y]$ is G_{11}, then G is isomorphic to Γ_{1} or G_{22}. By Lemmas 2.6 and 3.1, G is G_{22}. Assume then that $G[Y]$ is G_{10}. By Lemmas 2.3(5), 2.6 and 3.1, Γ_{1} is not a subgraph of G. Thus, G_{22} is a subgraph of G, that is, G is obtained from G_{22} by adding an edge $v_{2} v_{5}$ in Fig. 1. In this case, let $G^{\prime}=G_{\left[v_{3} v_{2}, v_{3} v_{5}\right]}$. Then G^{\prime} can be Z_{3}-reduced to K_{1} which is Z_{3}-connected. By Lemmas 2.2 and $2.4, G$ is Z_{3}-connected, a contradiction. Thus, $G[Y]$ is G_{9}. Then G is isomorphic to Γ_{2}. By Lemma 2.6, G is Z_{3}-connected, a contradiction.

Suppose that $|N(X) \cap Y|=3$. In this case, $d_{1} \geq 2, d_{2} \geq 3, d_{3} \geq 3$ and $d_{6} \geq d_{5} \geq d_{4} \geq 4$. It is easy to see that $G[Y] \in \mathcal{F}$. By Lemmas 3.1 and 3.4, $G[Y]$ is G_{16} with three vertices of degree 4. In this case, we assume, without loss of generality, that $x_{1} v_{1}, x_{1} v_{6}, x_{2} v_{6}, x_{2} v_{3} \in E(G)$. Let $G^{\prime}=G_{\left[v_{3} v_{5}, v_{3} v_{2}\right]}$. Then G^{\prime} can be Z_{3}-reduced to K_{1} which is Z_{3}-connected. By Lemmas 2.2 and $2.4, G$ is Z_{3}-connected, a contradiction.

Suppose then that $|N(X) \cap Y|=2$. In this case, $d_{1} \geq 2, d_{2} \geq 2$ and $d_{6} \geq d_{5} \geq d_{4} \geq d_{3} \geq 4$. If $d_{2} \geq 3$, then $G[Y] \in \mathcal{F}$. Thus, $d_{1}=d_{2}=2$ and $d_{6} \geq \cdots \geq d_{3} \geq 4$. Let $y_{1}, y_{2} \in Y$ such that $d_{G[Y]}\left(y_{1}\right)=d_{G[Y]}\left(y_{2}\right)=2$. If $y_{1} y_{2} \notin E(G[Y])$, then $G[Y] \in \mathcal{F}$. On the other hand, if $G[Y] \in \mathcal{F}$, since $G[Y]$ contains four 4^{+}-vertices, by Lemma $3.4, G[Y]$ is Z_{3}-connected. Thus, we assume that $d_{G[Y]}\left(y_{1}\right)=d_{G[Y]}\left(y_{2}\right)=2$ and $y_{1} y_{2} \notin E(G[Y])$. In this case, G is G_{21}.
Case 3. $X=\{x\}$.
By the hypothesis, $2 \leq d(x) \leq 3$. In this case, $d_{1} \geq 3, d_{2} \geq 3, d_{3} \geq 3$ and $d_{7} \geq d_{6} \geq d_{5} \geq d_{4} \geq 4$. Then $G[Y]$ satisfies the Chvátal-condition and $G[Y]$ has a Hamilton cycle $y_{1} y_{2} \cdots y_{7} y_{1}$.

Suppose first that $d_{7} \geq 5$. We assume, without loss of generality, that $d\left(y_{1}\right)=d_{7}$. Since $|Y|=7$, there are y_{j}, y_{j+1} such that $y_{1} y_{j}, y_{1} y_{j+1} \in E(G[Y])$, where $j \neq 2, j+1 \neq 7$. Let $G^{\prime}=G[Y]_{\left[y_{1} y_{j}, y_{1} y_{j+1}\right]}$. It follows that G^{\prime} contains a 2-cycle $\left(y_{j}, y_{j+1}\right)$. We contract this 2 -cycle into a new vertex and recursively contract any new 2 -cycle obtained in the process. Let $G^{\prime \prime}$ be the resulting graph from $G[Y]$. Then $\left|V\left(G^{\prime \prime}\right)\right| \leq 6$ and $\delta\left(G^{\prime \prime}\right) \mid \geq 2 . \delta\left(G^{\prime \prime}\right)=2$ if and only if $d(x)=2, x y_{j}, x y_{j+1} \in E(G), d\left(y_{j}\right)=$ $4, d\left(y_{j+1}\right)=4, d_{G^{\prime \prime}}\left(v_{H}\right)=2, d_{G^{\prime \prime}}\left(y_{1}\right)=d\left(y_{1}\right)-2, d_{G^{\prime \prime}}(v)=4$ for $v \in V\left(G^{\prime \prime}\right)-\left\{v_{H}, y_{1}\right\}$ and $\left|V\left(G^{\prime \prime}\right)\right|=6$. Thus, $G^{\prime \prime} \in \mathcal{F}$. If $\left|V\left(G^{\prime \prime}\right)\right| \leq 5$, by Lemmas 3.1 and 3.3, $G^{\prime \prime}$ is one of G_{i}, where $1 \leq i \leq 6$. We claim that $G^{\prime \prime}$ is not one of G_{i}, where $1 \leq i \leq 6$. It is easy to see that when $u \notin\left\{v_{H}, y_{1}\right\}, d_{G^{\prime \prime}}(u) \geq 3$. Thus, $G^{\prime \prime}$ is not one of G_{1}, G_{2} and G_{3}. When $\left|V\left(G^{\prime \prime}\right)\right|=4$, $G^{\prime \prime}$ has at least one 4^{+}-vertex, which implies that $G^{\prime \prime}$ is not G_{4}. When $\left|V\left(G^{\prime \prime}\right)\right|=5, G^{*}$ has at least two 4^{+}-vertices and no vertex of degree 2 . This shows that $G^{\prime \prime}$ is not one of G_{5} and G_{6}. This contradiction shows that $\left|V\left(G^{\prime \prime}\right)\right|=6$. Since $G^{\prime \prime}$ has at least four 4^{+}-vertices, by Lemma 3.4, $G^{\prime \prime}$ is Z_{3}-connected and so is G, a contradiction.

Thus, $d_{7}=4$. Since the number of vertices of odd degree is even, $d(x)=2$. Let $N(x)=\left\{u_{1}, u_{2}\right\}$ such that $d_{G[Y]}\left(u_{1}\right)=$ $d_{G[Y]}\left(u_{2}\right)=3$. If $u_{1} u_{2} \in E\left(G^{*}\right)$, then $G^{\prime}=G-x \in \mathcal{F}$. By Lemma $3.5, G^{\prime}$ is Z_{3}-connected or G^{\prime} can be Z_{3}-reduced to K_{3}. Since G is not Z_{3}-connected, by Lemma 2.2, G^{\prime} is not Z_{3}-connected. So G^{\prime} can be Z_{3}-reduced to K_{3}, which is contrary to the fact that each vertex of G^{\prime} is 3^{+}-vertex.

Thus, $u_{1} u_{2} \notin E\left(G^{\prime}\right)$. Then $u_{2} \notin N\left(u_{1}\right)$. Let $G^{\prime \prime}=G^{\prime}-u_{1}$. Then $\left|V\left(G^{\prime \prime}\right)\right|=6$ and $G^{\prime \prime}$ has two vertices of degree 4 and four vertices of degree 3. It implies that $G^{\prime \prime} \in \mathcal{F}$. By Lemma 3.4, $G^{\prime \prime}$ is G_{9} or G_{11}. When $G^{\prime \prime}=G_{9}$, by symmetry, G^{\prime} is $G^{\prime \prime} \cup\left\{u_{2} v_{4}, u_{2} v_{5}, u_{2} v_{6}\right\}$ or $G^{\prime \prime} \cup\left\{u_{2} v_{3}, u_{2} v_{5}, u_{2} v_{6}\right\}$. In both cases, let $G^{*}=G_{\left[v_{6} v_{1}, v_{6} v_{2}\right]}^{\prime}$. When $G^{\prime \prime}$ is G_{11}, by symmetry, $G^{\prime}=G^{\prime \prime} \cup\left\{u_{2} v_{1}, u_{2} v_{3}, u_{2} v_{4}\right\}$. Let $G_{\left[v_{2} v_{3}, v_{2} v_{4}\right]}^{\prime}$. We contract all 2-cycle obtained in the process and G^{*} is Z_{3}-reduced to K_{1}, which is Z_{3}-connected. By Lemma 2.4, G^{\prime} is Z_{3}-connected and so is G, a contradiction.

4. The proof of Theorem 1.4

Throughout this section, we assume that $G \in \mathcal{F}$ on $n \geq 9$ vertices and $X=X_{G}$. We argue by contradiction, and assume that there exists a graph $G \in \mathcal{F}$ such that
G is a counterexample to Theorem 1.4
subject to (2)
$|V(G)|$ is minimized.
In order to complete the proof of Theorem 1.4, we establish some lemmas. The following Lemmas 4.1 and 4.2, Corollary 4.3, Lemmas 4.4-4.10 have the same hypotheses of Theorem 1.4. By Lemmas 2.2 and 2.3(1), the following lemma is straightforward.

Lemma 4.1. Let H be a maximal nontrivial Z_{3}-connected subgraph of G and let $G^{*}=G / H$. Then
(1) If $|V(H) \cap X| \geq 2$, then $X \subseteq V(H)$.
(2) For each vertex $v \in V(G)-V(H), e(v, H) \leq 1$. Moreover, for each vertex $v \in V(G)-(V(H) \cup X), d_{G^{*}}(v)>\frac{\left|V\left(G^{*}\right)\right|}{2}$.

Lemma 4.2. If $n \geq 9$, then G does not contain a nontrivial Z_{3}-connected subgraph H.
Proof. Suppose that our lemma fails and let H be a maximal Z_{3}-connected subgraph of G. Denote $G^{*}=G / H$ and let v_{H} be the vertex of G^{*} obtained by contracting H.

We claim that $G^{*} \in \mathcal{F}$. By Lemma 3.1, it is sufficient to show that $X_{G^{*}}$ is a complete subgraph of G^{*}. If $|V(H) \cap X| \geq 2$, by Lemma 4.1, $X \subseteq V(H)$ and for each vertex $v \in V\left(G^{*}\right)-\left\{v_{H}\right\}, d_{G^{*}}(v) \geq \frac{\left|V\left(G^{*}\right)\right|}{2}$. Thus, $X_{G^{*}} \subseteq\left\{v_{H}\right\}$ and $G^{*} \in \mathcal{F}$. Thus, assume that $|V(H) \cap X| \leq 1$. If $|V(H) \cap X|=1$, then $|X| \leq 4$, for otherwise the subgraph induced by $V(H) \cup X$ is Z_{3}-connected, contrary to the choice of H. In this case, $v_{H} \in X_{G^{*}}$ and $X_{G^{*}} \subseteq X$. Thus, $X_{G^{*}}$ is a complete subgraph of G^{*}. By Lemma 4.1, $G^{*} \in \mathcal{F}$.

It remains for us to show that $V(H) \cap X=\emptyset$. Let $k=|V(H)|$. We claim that $k \leq \frac{n}{2}$. Suppose otherwise that $k>\frac{n}{2}$. If $v \in V(G)-(V(H) \cup X)$, then $d_{G}(v) \geq \frac{n}{2}$. Since $k>\frac{n}{2},|V(G)-V(H)|<\frac{n}{2}$. Thus, v has at least two neighbors in H. This contradicts to that $e(v, H) \leq 1$ by Lemma $4.1(2)$. This contradiction proves that $V(G)=(V(H) \cup X)$. Thus, G is Z_{3}-connected or G can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}, contrary to (2).

Thus, $k \leq \frac{n}{2}$. In this case, $d_{G^{*}}\left(v_{H}\right) \geq k \frac{n}{2}-k(k-1)$. When $k \leq \frac{n}{2}$ and $k \geq 1$,

$$
k \frac{n}{2}-k(k-1)-\frac{n-k+1}{2}=(k-1)\left(\frac{n}{2}-k\right)+\frac{k-1}{2} \geq 0 .
$$

Thus, $d_{G^{*}}\left(v_{H}\right) \geq \frac{n-k+1}{2}$. This means that $X_{G^{*}} \subseteq X$ and hence $X_{G^{*}}$ is a complete subgraph of G^{*} and $G^{*} \in \mathcal{F}$.
By the choice of G, G^{*} is Z_{3}-connected or G^{*} is isomorphic to G_{i}, where $1 \leq i \leq 22$, or G^{*} can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}. If G^{*} is Z_{3}-connected, by Lemma $2.2 G$ is Z_{3}-connected, contrary to (2). If G^{*} can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}, so is G, contrary to (2). If G^{*} is one of G_{i}, where $1 \leq i \leq 22$, let $D=\{v: d(v) \leq 4\}$. $n \geq 9$ implies that if $v \in D$, then $v \in X$. Moreover, all vertices of D except one vertex form a $K_{|D|-1}$ in $G_{i}\left(v_{H}\right.$ may be in D). It means that G^{*} is one of G_{1}, G_{3}, G_{4} and G_{5}. Thus, G can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}, contrary to (2).

When $|X| \geq 5, G[X]$ is a Z_{3}-connected subgraph. We obtain the following corollary immediately from Lemma 4.2.
Corollary 4.3. $|X| \leq 4$.
A K_{4}^{-}of G is a distinguished K_{4}^{-}if it is induced by the union of two triangles $u u_{1} u_{2}$ and $u_{1} u_{2} w$ with $u \notin X$ and the vertex u is called a distinguished vertex of it. For such a distinguished K_{4}^{-}of G, define $G^{\prime}=G_{\left[u u_{1}, u u_{2}\right]}$ and let $G_{0}=G^{\prime} / H$ be a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected and contains a 2-cycle $\left(u_{1}, u_{2}\right)$. In order to prove that $G_{0} \in \mathcal{F}$, by Lemma 4.1 , we only need to show that $X_{G_{0}}$ is a complete subgraph of G_{0}. By Lemma 4.1, we only consider whether u, v_{H} and x are in $X_{G_{0}}$, where $x \in X$ in the following lemmas.

Lemma 4.4. Suppose that $n \geq 9$ and $G_{0}=G^{\prime} / H$ is a Z_{3}-reduction of $\left.G^{\prime}=G_{\left[u u_{1}, \text { uu }\right.}\right]$, where H is Z_{3}-connected. Then each of the following holds.
(1) If $|V(H)| \geq 5$ and $u \notin V(H)$, then $d_{G_{0}}(u) \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$, and
(2) G_{0} is 2-edge-connected.

Proof. (1) When $|V(H)| \geq 5,\left|V\left(G_{0}\right)\right| \leq n-4$ and $d_{G_{0}}(u) \geq \frac{n}{2}-2 \geq \frac{\mid V\left(G_{0} \mid\right)}{2}$.
(2) It is sufficient to show that G^{\prime} is 2-edge-connected. Suppose otherwise that G^{\prime} is not 2-edge-connected. We define $G^{\prime \prime}$ as follows. $G^{\prime \prime}=G^{\prime}$ if G^{\prime} is not connected; $G^{\prime \prime}=G^{\prime}-e$ if G^{\prime} has a cut edge $e=x y$. Let F_{1} and F_{2} be the two components of $G^{\prime \prime}$ such that $u \in V\left(F_{1}\right)$ and $u_{1}, u_{2} \in V\left(F_{2}\right)$.

Suppose that G^{\prime} is not connected. Since $n \geq 9, d(u) \geq 5$ implies that $d_{F_{1}}(u) \geq 3$. Assume first that both F_{1} and F_{2} contain a vertex not in $X \cup\{u\}$. Then F_{1} contains a vertex $v \in V(G)-(X \cup\{u\})$. Since $d(v) \geq \frac{n}{2},\left|V\left(F_{1}\right)\right| \geq \frac{n}{2}+1$. Similarly, $\left|V\left(F_{2}\right)\right| \geq \frac{n}{2}$. Thus, $n \geq\left|V\left(F_{1}\right)\right|+\left|V\left(F_{2}\right)\right| \geq n+1$, a contradiction.

Thus, either F_{1} or F_{2} does not contain any vertex in $V(G)-(X \cup\{u\})$. In the former case, since F_{1} does not contain any vertex in $V(G)-(X \cup\{u\}), V\left(F_{1}\right) \subseteq X \cup\{u\}$. Note that G^{\prime} is not connected, $V\left(F_{1}\right)=X \cup\{u\}$. Thus, each vertex in F_{2} is in $V(G)-X$. Since $d_{F_{2}}\left(u_{1}\right) \geq \frac{n}{2}-1 \geq 4, u_{1}$ has a neighbor $z \in V\left(F_{2}\right)$ such that $e\left(z, F_{1}\right)=0$. From $d_{F_{2}}(z) \geq 5,\left|V\left(F_{2}\right)\right| \geq 6$. Then
F_{2} contains at most two vertices of degree at least $\max \left\{\frac{n}{2}-1,4\right\}$ and others has degree at least max $\left\{\frac{n}{2}, 5\right\}$. Theorem 1.3 shows that F_{2} is Z_{3}-connected, contrary to Lemma 4.2. In the later case, for each vertex v in $F_{1}-u, d(v) \geq \frac{n}{2}$ and $d_{F_{1}}(u) \geq \frac{n}{2}-2$. Applying Theorem 1.3 to F_{1}, similarly, F_{1} is Z_{3}-connected, contrary to Lemma 4.2.

Suppose then that G^{\prime} has a cut edge $e=x y$. Assume that both F_{1} and F_{2} contain a vertex not in $X \cup\{u\}$. We claim that $\left|V\left(F_{1}\right)\right| \geq \frac{n}{2}+1$. If F_{1} contains such a vertex v and $v \neq x$, then $d_{F_{1}}(v) \geq \frac{n}{2}$ and $\left|V\left(F_{1}\right)\right| \geq \frac{n}{2}+1$. If F_{1} contains only one such a vertex and $v=x$, then $d_{F_{1}}(v) \geq \frac{n}{2}-1$. Since $n \geq 9, d_{F_{1}}(v) \geq 4$. Note that $|X| \leq 4$. When each neighbor of v is in X, we have $d_{F_{1}}(v)=4,|X|=4$ and $n=8,9, F_{1}$ contains a K_{5} which is Z_{3}-connected by Lemma 2.3(1), contrary to Lemma 4.2. Thus, v has a neighbor v^{\prime} not in X. If $v^{\prime} \neq u, e\left(v^{\prime}, F_{2}\right)=0$ and $d_{F_{1}}\left(v^{\prime}\right) \geq \frac{n}{2}$ and $\left|V\left(F_{1}\right)\right| \geq \frac{n}{2}+1$; if $v^{\prime}=u$, then $d_{F_{1}}(v)=4,|X|=3$ and $e(u, X) \geq 2$. Thus, F_{1} contains an even wheel W_{4} which is Z_{3}-connected by Lemma 2.3(4), contrary to Lemma 4.2.

Suppose that F_{2} contains a vertex z not in X. When $z \notin\left\{y, u_{1}, u_{2}\right\}$ or $z \in\left\{u_{1}, u_{2}\right\}-y$ where $y \in\left\{u_{1}, u_{2}\right\}, d_{F_{2}}(z) \geq \frac{n}{2}-1$ and $\left|V\left(F_{2}\right)\right| \geq \frac{n}{2}$. In this case, $n \geq\left|V\left(F_{1}\right)\right|+\left|V\left(F_{2}\right)\right| \geq n+1$, a contradiction. Thus, $z=y=u_{2}$ and $u_{1} \in X$ and $V\left(F_{2}\right)-z \subseteq X$. Since $d_{F_{2}}(z) \geq \frac{n}{2}-2 \geq 3,|X| \geq 3$. On the other hand, $|X| \leq 4$. Then $F_{2}=K_{4}$ or K_{5}^{-}. By Lemmas 2.3(1) and 4.2, $F_{2}=K_{4}, d(z)=5$ and $n=9,10$. Each vertex $(\neq u)$ in F_{1} has degree at least $\max \left\{\frac{n}{2}, 5\right\}$ and $\left|V\left(F_{1}\right)\right|=5$, 6 . Since G is simple, $\left|V\left(F_{1}\right)\right|=6$. Theorem 1.3 proves that F_{1} is Z_{3}-connected, contrary to Lemma 4.2.

It remains that one of F_{1} and F_{2} does not contain any vertex in $V(G)-(X \cup\{u\})$. If F_{1} does not contain any vertex in $V(G)-(X \cup\{u\})$, then $d_{F_{1}}(u) \geq 3$ and $\left|V\left(F_{1}\right)\right| \geq 4$. Note that $G[X]$ is a complete graph. Since $x y$ is a cut edge $G, y \notin X$. This implies that each vertex in F_{2} is in $V(G)-X$ and has degree at least $\max \left\{\frac{n}{2}-1,4\right\}$ except one when $y \in\left\{u_{1}, u_{2}\right\}$. By Theorem $1.3, F_{2}$ is Z_{3}-connected, contrary to Lemma 4.2. The proof is similar for the case when F_{2} does not contain any vertex in $V(G)-(X \cup\{u\})$.

Lemma 4.5. Suppose that $n \geq 9$. If G contains a distinguished K_{4}^{-}and $X \cap V\left(K_{4}^{-}\right)=\emptyset$, then $G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Proof. Our proof is divided in to two parts. In first part, we show that if G satisfies the hypothesis of our lemma, we find a distinguished K_{4}^{-}, which is the union of two triangles $u u_{1} u_{2}$ and $w u_{1} u_{2}$ and $V\left(K_{4}^{-}\right) \cap X=\emptyset$ such that $G^{\prime}=G_{\left[u u_{1}, u u_{2}\right]}$ and $G_{0}=G^{\prime} / H$ such that either $|V(H)| \geq 5$ or $d_{G_{0}}(u) \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$; in second part, we show $G_{0} \in \mathcal{F}$. Let K be the given subgraph of G such that such a K_{4}^{-}is a subgraph of $K, V_{1}=V(K)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, and $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{1} v_{3}, v_{2} v_{4}, v_{3} v_{4}\right\} \subseteq E(K)$.
Case 1. $v_{1} v_{4} \in E(G)$.
In this case, the subgraph induced by V_{1} is a K_{4}. We claim that there is a vertex $v_{0} \notin V_{1}$ such that $e\left(v_{0}, V_{1}\right) \geq 2$. Suppose otherwise that for each vertex $v \notin V_{1}, e\left(v, V_{1}\right) \leq 1$. Then $n-4 \geq e\left(V_{1}, V(G)-V_{1}\right)=d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)+d\left(v_{4}\right)-12 \geq$ $2 n-12$, which implies that $n \leq 8$. This contradicts that $n \geq 9$. Thus, we assume that $e\left(v_{0}, V_{1}\right) \geq 2$. It follows from Lemmas 2.3 and 4.2 that $e\left(v_{0}, V_{1}\right)=2$. We assume, without loss of generality, that $v_{0} v_{1}, v_{0} v_{2} \in E(G)$.

In this case, we further claim that there is one vertex $u_{0} \in V(G)-\left(\left\{v_{0}\right\} \cup V_{1}\right)$ such that $e\left(u_{0}, V_{1}\right) \geq 2$ for otherwise we have $n-5 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)+d\left(v_{4}\right)-3-3-4-4 \geq 4\left\lceil\frac{n}{2}\right\rceil-14$. When n is even, this inequality implies that $n \leq 8$; when n is odd; this inequality implies $n \leq 7$. Both cases contradicts assumption that $n \geq 9$. Thus, when $n \geq 9$, such a vertex u_{0} exists. Note that $d\left(v_{3}\right) \geq 5$ and $d\left(v_{4}\right) \geq 5$. We define \mathcal{G} as follows. If $u_{0} v_{3} \notin E(G)$, let $\mathcal{G}=G_{\left[v_{3} v_{1}, v_{3} v_{2}\right]}$; If $u_{0} v_{4} \notin E(G)$, let $\widetilde{G}=G_{\left[v_{4} v_{1}, v_{4} v_{2}\right]}$. Thus, assume that $u_{0} v_{3}, u_{0} v_{4} \in E(G)$. If $u_{0}, v_{0} \in X$, by Lemma 3.1, then $u_{0} v_{0} \in E(G)$. In this case, $\widetilde{G}=G_{\left[v_{4} v_{1}, v_{4} v_{2}\right]}$. Thus, we say $u_{0} \notin X$ or $v_{0} \notin X$. If $u_{0} \notin X$, let $\widetilde{G}=G_{\left[u_{0} v_{3}, u_{0} v_{4}\right]}$; if $v_{0} \notin X$, let $\widetilde{G}=G_{\left[v_{0} v_{1}, v_{0} v_{2}\right]}$. Let $G_{0}=\widetilde{G} / H$ be a Z_{3}-reduction of \widetilde{G}, where H is Z_{3}-connected with $|V(H)| \geq 5$ and contains a 2-cycle. By Lemma 4.4, G_{0} is 2-edge connected.
Case 2. $v_{1} v_{4} \notin E(G)$.
We claim that there is a vertex $v_{0} \notin V_{1}$ such that either $e\left(v_{0},\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq 2$ or $e\left(v_{0},\left\{v_{2}, v_{3}, v_{4}\right\}\right) \geq 2$. Suppose otherwise that for each vertex $v \notin V_{1}$, both $e\left(v,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \leq 1$ and $e\left(v,\left\{v_{2}, v_{3}, v_{4}\right\}\right) \leq 1$. Then $N\left(v_{2}\right) \cap N\left(v_{3}\right)-\left\{v_{1}, v_{4}\right\}=$ \emptyset and $\left|N\left(v_{2}\right) \cup N\left(v_{3}\right)\right|=\left|N\left(v_{2}\right)\right|+\left|N\left(v_{3}\right)\right|-\left|N\left(v_{2}\right) \cap N\left(v_{3}\right)\right| \geq n-2$. It follows that $n-\left|N\left(v_{2}\right) \cup N\left(v_{3}\right)\right| \leq 2$. Since $\left|N\left(v_{2}\right) \cap N\left(v_{4}\right)-\left\{v_{3}\right\}\right| \leq 0$ and $\left|N\left(v_{3}\right) \cap N\left(v_{4}\right)-\left\{v_{2}\right\}\right| \leq 0, N\left(v_{4}\right) \subseteq\left(V(G)-\left(N\left(v_{2}\right) \cup N\left(v_{3}\right) \cup\left\{v_{1}\right\}\right)\right) \cup\left\{v_{2}, v_{3}\right\}$ and $d\left(v_{4}\right) \leq 4$ and hence $n \leq 8$, contrary to that $n \geq 9$. By symmetry, assume that there exists v_{0} such that $v_{0} v_{3}, v_{0} v_{4} \in E(G)$ or $v_{0} v_{2}, v_{0} v_{3} \in E(G)$.

We prove here for the case when $v_{0} v_{3}, v_{0} v_{4} \in E(G)$. The proof for the case when $v_{0} v_{2}, v_{0} v_{3} \in E(G)$ is similar. Suppose first that $v_{2} v_{0} \in E(G)$. By Lemmas 2.3 and $4.2, v_{0} v_{1} \notin E(G)$. If $v_{0} \notin X$, then we get a K_{4} induced by v_{2}, v_{3}, v_{4} and v_{0}, that is Case 1. Thus, assume that $v_{0} \in X$. We claim that there is no vertex $w \notin V_{1} \cup\left\{v_{0}\right\}$ such that $w v_{1} \in E(G)$ and $w v_{4} \in E(G)$. Otherwise, suppose such a vertex exists. If $w \notin X$, let $\widetilde{G}=G_{\left[w v_{1}, w v_{4}\right]}$ and let $G_{0}=\widetilde{G} / H$, which contains a K_{5}^{-}and $|V(H)| \geq 5$. Thus, $v_{0}, w \in X$, by Lemma 3.1, $w v_{0} \in E(G)$. In this case, let $G=G_{\left[v_{2} v_{3}, v_{2} v_{4}\right]}$. Thus, for each vertex w, either $w v_{1} \notin E(G)$ or $w v_{4} \notin E(G)$. Similarly, for each vertex w, either $w v_{0} \notin E(G)$ or $w v_{1} \notin E(G)$. We claim that there is a vertex u_{0} such that $e\left(u_{0},\left\{v_{0}\right\} \cup V_{1}\right) \geq 2$. Otherwise, we have $n-5 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)+d\left(v_{4}\right)+d\left(v_{0}\right)-3-2-4-4-3 \geq 2 n-13+d\left(v_{0}\right)-3$. Since $d\left(v_{0}\right) \geq 3, n \leq 8$, contrary to that $n \geq 9$. Thus, such a vertex u_{0} exists. If $u_{0} v_{1} \in E(G)$, then $u_{0} v_{3} \in E(G)$ by symmetry. When $u_{0} \notin X$, then let $\widetilde{G}=G_{\left[u_{0} v_{1}, u_{0} v_{3}\right]}$; when $u_{0} \in X$, then $u_{0} v_{0} \in E(G)$ and let $\widetilde{G}=G_{\left[v_{2} v_{4}, v_{3} v_{4}\right]}$. If $u_{0} v_{1} \notin E(G)$, let $\widetilde{G}=G_{\left[v_{1} v_{2}, v_{1} v_{3}\right]}$.

Suppose then that $v_{2} v_{0} \notin E(G)$. In this case, $v_{0} v_{1} \notin E(G)$ for otherwise G contains an even wheel W_{4} with the center at v_{3}, which is Z_{3}-connected by Lemma 2.3(4), contrary to Lemma 4.2. We claim that there is a vertex $u_{1} \notin\left\{v_{0}\right\} \cup V_{1}$ such that
$e\left(u_{1}, V_{1}\right) \geq 2$. Otherwise, we have $n-5 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right) \pm d\left(v_{4}\right)-3-3-4-2 \geq 2 n-12$, which implies $n \leq 7$, contrary to that $n \geq 9$. Thus, such a vertex u_{1} exists. If $v_{0} \notin X$, let $\widetilde{G}=G_{\left[v_{0} v_{3}, v_{0} v_{4}\right]}$. Thus, assume that $v_{0} \in X$. If $u_{1} \in X$, then $v_{0} u_{1} \in E(G)$ by Lemma 3.1. If $u_{1} v_{4} \in E(G)$, let $\widetilde{G}=G_{\left[v_{1} v_{2}, v_{1} v_{3}\right]}$; if $u_{1} v_{4} \notin E(G)$, let $\widetilde{G}=G_{\left[v_{4} v_{2}, v_{4} v_{3}\right]}$. Thus, $u_{1} \notin X$. In this case, if $v_{1} u_{1} \notin E(G)$, let $\widetilde{G}=G_{\left[v_{1} v_{2}, v_{1} v_{3}\right]}$. Thus, $u_{1} v_{1} \in E(G)$. Let $u_{1} v_{j} \in E(G)$ for $j=2$, 3, 4. If $u_{1} v_{4} \notin E(G)$, let $\widetilde{G}=G_{\left[u_{1} v_{1}, u_{1} v_{j}\right]}$. Thus $u_{1} \notin X$ and $u_{1} v_{1}, u_{1} v_{4} \in E(G)$. In this case, we claim that there is a vertex $u_{2} \notin\left\{u_{1}, v_{0}\right\} \cup V_{1}$ such that $e\left(u_{2}, V_{1}\right) \geq 2$. Otherwise, we have $n-6 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)+d\left(v_{4}\right)-3-3-4-4 \geq 2 n-14$, which implies that $n \leq 8$, contrary to that $n \geq \underset{\sim}{9}$. Thus such a vertex u_{2} exists. Similarly, we have $u_{2} \notin X$ and $u_{2} v_{1}, u_{2} v_{4} \in E(G)$. Define $G^{\prime}=G_{\left[u_{1} v_{1}, u_{1} v_{4}\right]}$ and then define $\widetilde{G}=G_{\left[u_{2} v_{1}, u_{2} v_{4}\right]}^{\prime}$. In all cases above, let $G_{0}=\widetilde{G} / H$, where H is the maximal Z_{3}-subgraph containing the 2-cycle in \widetilde{G}. It is easy to see that $|V(H)| \geq 5$. So far we have completed the first part of our proof.

From now on we show the second part of our proof. For simplicity, we assume that $\widetilde{G}=G_{\left[u u_{1}, u u_{2}\right]}$ with $u u_{1}, u u_{2} \in E(G)$. From our definition of \widetilde{G}, let $G_{0}=\widetilde{G} / H$ be a Z_{3}-reduction of \widetilde{G}, where H is Z_{3}-connected, contains a 2-cycle $\left(u_{1}, u_{2}\right)$ and $|V(H)| \geq 5$. By Lemma 4.4, we only consider whether v_{H} and $x \in X$ are in $X_{G_{0}}$.

Suppose that $V(H) \cap X \neq \emptyset$. If $|V(H) \cap X| \geq 2$, by Lemma 4.1, $X \subseteq V(H)$. Thus, $X_{G_{0}}$ contains at most v_{H}, that is, $X_{G_{0}} \subseteq\left\{v_{H}\right\}$. If $|V(H) \cap X|=1$, then $v_{H} \in X$ and $X_{G_{0}} \subseteq X$. In both cases, by Lemma 4.4, $G_{0} \in \mathcal{F}$.

Thus, we assume that $V(H) \cap X=\emptyset$. Suppose that $k=|V(H)| \leq \frac{n}{2}-1$. Since

$$
k \frac{n}{2}-k(k-1)-2-\frac{n-k+1}{2}=(k-1)\left(\frac{n}{2}-k\right)+\frac{k-5}{2} \geq 0
$$

$d_{G_{0}}\left(v_{H}\right) \geq \frac{n-k+1}{2}$. It follows that $v_{H} \notin X_{G_{0}}, X_{G_{0}} \subseteq X$ and hence $G_{0} \in \mathcal{F}$.
Suppose that $k \geq \frac{n}{2}$. We claim that there is no vertex $v \in V(G)-(V(H) \cup X)$. Suppose otherwise such a vertex v exists. It follows that $d_{G_{0}}(v)=d_{G}(v) \geq \frac{n}{2}$, which implies that $e(v, H) \geq 2$, contrary to Lemma 4.1. This contradiction shows that $V(G)=X \cup V(H)$. It follows that $V\left(G_{0}\right)=X \cup\left\{v_{H}\right\}$ and hence $u \in V(H)$. By Corollary $4.3,|X| \leq 4$.

When $|X|=4$, by Lemma 4.4, $e_{G_{0}}\left(v_{H}, X\right) \geq 2$. We claim that $e_{G_{0}}\left(v_{H}, X\right)=2$. Otherwise G_{0} contains a K_{5}^{-}which is Z_{3}-connected. By Lemmas 2.2 and $2.4, G$ is Z_{3}-connected, contrary to (2). Thus, G_{0} is G_{5}. When $2 \leq|X| \leq 3,2=e_{G_{0}}\left(v_{H}, X\right) \leq$ $|X|$ since $V(H) \cap X=\emptyset . G_{0}$ is one of G_{1}, G_{3} and G_{4}.

Lemma 4.6. If $n \geq 9$ and $|X|=1$, then G contains a distinguished K_{4}^{-}. Moreover, $G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.
Proof. Define $G^{*}=G-X$ and $X=\{x\}$. Assume that $d_{G}(x)=t \geq 2$. It follows that

$$
\sum_{v \in V\left(G^{*}\right)} d_{G^{*}}(v) \geq t\left(\frac{n}{2}-1\right)+(n-t-1) \frac{n}{2}=\frac{n^{2}-n}{2}-t
$$

Since $t \leq \frac{n-1}{2},\left|E\left(G^{*}\right)\right| \geq\left(\frac{n-1}{2}\right)^{2}$. By Theorem 2.1, G^{*} contains a triangle or is isomorphic to $K_{m, m}$. In the later case, since $n \geq 9, m \geq 5$. By Lemma 2.3, G^{*} is Z_{3}-connected. Since G is 2 -edge connected, by Lemma $2.2, G$ is Z_{3}-connected, contrary to (2). In the former case, let $v_{1} v_{2} v_{3}$ be a triangle of G^{*}.

We claim that there is a vertex $u \in V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $e\left(u,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq 2$. Suppose otherwise that for each vertex $u \in V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}, e\left(u,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \leq 1$. In this case, $n-3 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)-6 \geq 3\left(\frac{n}{2}\right)-6$, which implies that $n \leq 6$, contrary to that $n \geq 9$. We assume, without loss of generality, that $u v_{1}, u v_{2} \in E(G)$.

If $u \neq x, G^{*}$ contains a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and u with distinguished vertex u. By Lemma 4.5, $G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}. Thus, $u=x$ and hence G contains a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and x with distinguished vertex v_{3}. If $x v_{3} \in E(G)$, define $G^{\prime}=G_{\left[v_{3} v_{1}, v_{3} v_{2}\right]}$ and let G_{0} be a Z_{3}-reduction of G^{\prime}. In this case, $v_{3} x \in E\left(G_{0}\right)$ and $X_{G_{0}} \subseteq\left\{v_{3}, x\right\}$ and $X_{G_{0}}$ is a complete subgraph of G_{0}. If $v_{3} x \notin E\left(G_{0}\right)$, we claim that there is a vertex $u_{0} \notin\left\{x, v_{1}, v_{2}, v_{3}\right\}$ such that $e\left(u_{0},\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq 2$. Suppose otherwise that such a vertex does not exist. Then $n-4 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)-6-2 \geq 3\left(\frac{n}{2}\right)-8$, which implies that $n \leq 8$, contrary to that $n \geq 9$. Thus, such a vertex u_{0} exists and $u_{0} \notin X$. So the distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and u_{0} with the distinguished vertex u_{0} is as required. By Lemma $4.5, G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

In order to prove Lemma 4.10, we establish the following two lemmas.
Lemma 4.7. Suppose that $n \geq 9$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, where $2 \leq t \leq 4$. If $\sum_{i<j}\left|N\left(x_{i}\right) \cap N\left(x_{j}\right)-X\right| \geq 2$, then G contains a distinguished K_{4}^{-}. Moreover, $G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.
Proof. Suppose first that $X=\left\{x_{1}, x_{2}\right\}$ and $y_{1}, y_{2} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. Then G contains a distinguished K_{4}^{-}induced by x_{1}, x_{2}, y_{1} and y_{2} with distinguished vertex y_{1}. Let $G^{\prime}=G_{\left[y_{1} x_{1}, y_{1} x_{2}\right]}$ and $G_{0}=G^{\prime} / H$ be a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected. If $y_{1} y_{2} \in E(G)$, then $y_{1} v_{H} \in E\left(G_{0}\right)$ or $y_{1}=v_{H}$ in G_{0}. Moreover, $X_{G_{0}} \subseteq\left\{y_{1}, v_{H}\right\}$ and $G_{0} \in \mathcal{F}$. Thus, $y_{1} y_{2} \notin E(G)$.

If $|V(H)|=3$ and $d\left(x_{1}\right)+d\left(x_{2}\right) \leq 6$, let $G^{*}=G-\left\{x_{1}, x_{2}\right\}$. Since $n \geq 9, \sum_{v \in V\left(G^{*}\right)} d(v) \geq(n-4) \frac{n}{2}+2\left(\frac{n}{2}-2\right)>\frac{(n-2)^{2}}{2}$. By Theorem 2.1, G^{*} contains a K_{3} with vertex set $\left\{v_{1}, v_{2}, v_{3}\right\}$. We claim that there is a vertex $v \notin\left\{v_{1}, v_{2}, v_{3}, x_{1}, x_{2}\right\}$ such that $e\left(v,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq 2$. Suppose otherwise that such a vertex does not exist. Then $n-3 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)-6 \geq 3\left(\frac{n}{2}\right)-6$, which $n \leq 6$, contrary to that $n \geq 9$. Thus, G^{*} contains a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and v with the distinguished vertex v. By Lemma $4.5, G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Suppose that $|V(H)|=3$ and $d\left(x_{1}\right)+d\left(x_{2}\right) \geq 7$. In this case, $d_{G_{0}}\left(v_{H}\right) \geq \frac{n}{2}-2+1=\frac{n-|V(H)|+1}{2}$. Thus $X_{G_{0}} \subseteq\left\{y_{1}\right\}$. Thus, $G_{0} \in \mathcal{F}$.

Now we assume that $|V(H)|=4$. Let $v_{5} \in V(H)-\left(X \cup\left\{y_{2}\right\}\right)$. Since $n \geq 9, d_{G_{0}}\left(v_{H}\right)=d\left(y_{2}\right)+d\left(v_{5}\right)+d\left(x_{1}\right)+d\left(x_{2}\right)-12 \geq$ $n-6 \geq \frac{n-3}{2}$ as $d\left(x_{1}\right)+d\left(x_{2}\right) \geq 6$. Thus, $d_{G_{0}}\left(v_{H}\right) \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$. By Lemma 4.4, $X_{G_{0}} \subseteq\left\{y_{1}\right\}$ and $G_{0} \in \mathcal{F}$. When $|V(H)| \geq 5$, $X_{G_{0}} \subseteq\left\{v_{H}\right\}$. Thus, $G_{0} \in \mathcal{F}$.

Suppose then that $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. As in the proof of Lemma 4.6, there is at least one vertex $u \notin X$ such that $e(u, X) \geq 2$. We choose $y \in\{u: e(u, X) \geq 2$ and $u \notin X\}$ such that $e(y, X)$ is maximum and let $z \in N\left(x_{a}\right) \cap N\left(x_{b}\right)-(X \cup\{y\})$, where $a, b \in\{1,2,3\}$. Without loss of generality, we assume that $y x_{1}, y x_{2} \in E(G)$. In this case, G contains a distinguished K_{4}^{-} induced by x_{1}, x_{2}, x_{3} and u with the distinguished vertex u. Define $G^{\prime}=G_{\left[y x_{1}, y x_{2}\right]}$ and $G_{0}=G^{\prime} / H$ be a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected and contains a 2-cycle (x_{1}, x_{2}). If $\sum_{i<j}\left|N\left(x_{i}\right) \cap N\left(x_{j}\right)-X\right| \geq 3$, then $|V(H)| \geq 5$ and hence $G_{0} \in \mathcal{F}$. If $e(y, X)=3$, then v_{H} is adjacent to u or $v_{H}=u$ in G_{0}. Thus, $X_{G_{0}} \subseteq\left\{v_{H}, u\right\}$ and hence $G_{0} \in \mathcal{F}$. If $e(X, G-X) \geq 5$, then $d_{G_{0}}\left(v_{H}\right) \geq \frac{n}{2}-2+1 \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$. Thus, $X_{G_{0}} \subseteq\{y\}$ and $G_{0} \in \mathcal{F}$.

Thus, $\sum_{i<j}\left|N\left(x_{i}\right) \cap N\left(x_{j}\right)-X\right|=2, e(X, G-X)=4, e(y, X)=2$ and $e(z, X)=2$. In this case, let $G^{*}=G-X$. Then $\sum_{v \in V\left(G^{*}\right)} d_{G^{*}}(v) \geq(n-5) \frac{n}{2}+2\left(\frac{n}{2}-2\right)>\frac{(n-3)^{2}}{2}$. By Theorem 2.1, G^{*} contains a triangle $v_{1} v_{2} v_{3}$. We claim that there is a vertex $u \in V\left(G^{*}\right)$ such that $e\left(u,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq 2$ for otherwise we have $n-6 \geq d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right)+d_{G^{*}}\left(v_{3}\right)-6 \geq \frac{3 n}{2}-6-4$, which implies that $n \leq 8$, contrary to that $n \geq 9$. Thus, we obtain the distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and u with the distinguished vertex u. By Lemma $4.5, G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Suppose that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. By Lemmas 2.3 and 4.2, for each vertex $u \in V(G)-X$ such that $e(u, X) \leq 2$. Assume that $\sum_{i<j}\left|N\left(x_{i}\right) \cap N\left(x_{j}\right)-X\right| \geq 2$ and $y \in N\left(x_{i}\right) \cap N\left(x_{j}\right)-X$, where $i \neq j, i, j \in\{1,2,3$, 4$\}$. In this case, we get a distinguished K_{4} induced by x_{i}, x_{j}, x_{k} and y with the distinguished vertex y, where $k \in\{1,2,3,4\}-\{i, j\}$. Let $G^{\prime}=G_{\left[y x_{i}, y x_{j}\right]}$ and $G_{0}=G^{\prime} / H$ be a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected. In this case, $|V(H)| \geq 5$. Thus, $d_{G_{0}}(y) \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$. It follows that $X_{G_{0}} \subseteq\left\{v_{H}\right\}$. Thus, $G_{0} \in \mathcal{F}$.

Lemma 4.8. Suppose that $n \geq 9$ and G contains a triangle $v_{1} v_{2} v_{3}$ where $v_{i} \notin X$ for $i=1$, 2, 3. If $e\left(X,\left\{v_{1}, v_{2}, v_{3}\right\}\right) \geq|X|+2$, where $2 \leq|X| \leq 3$, then G contains a distinguished K_{4}^{-}. Moreover, $G_{0} \in \mathcal{F}$.
Proof. Let $X=\left\{x_{1}, x_{2}\right\}$. We assume, without loss of generality, that $e\left(v_{1}, X\right)=\min _{i \in\{1,2,3\}} e\left(v_{i}, X\right)$. If $e\left(v_{1}, X\right)=0$, then $e\left(X,\left\{v_{1}, v_{2}, v_{3}\right\}\right)=4$ and $e\left(v_{2}, X\right)=e\left(v_{3}, X\right)=2$. In this case, we get a distinguished K_{4}^{-}induced by v_{3}, x_{1}, x_{2} and v_{2} with the distinguished vertex v_{2}. Define $G^{\prime}=G_{\left[v_{2} v_{3}, v_{2} x_{1}\right]}$. Then $v_{2} v_{H} \in E\left(G_{0}\right),\left\{x_{1}, x_{2}\right\} \subseteq V(H)$ and $X_{G_{0}} \subseteq\left\{v_{H}, v_{2}\right\}$. Thus, $G_{0} \in \mathcal{F}$. If $e\left(v_{1}, X\right) \geq 1$, we assume, without loss of generality, that $v_{1} x_{1}, v_{2} x_{2}, x_{1} v_{3}, x_{2} v_{3} \in E(G)$. In this case, we get a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and x_{2} with the distinguished vertex v_{1}. Define $G^{\prime}=G_{\left[v_{1} v_{3}, v_{1} v_{2}\right]}$ and $G_{0}=G^{\prime} / H$ be a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected. In this case, $v_{1} v_{H} \in E\left(G_{0}\right)$ or $v_{H}=v_{1}$. Thus, $X_{G_{0}} \subseteq\left\{v_{1}, v_{H}\right\}$ and $G_{0} \in \mathcal{F}$.

Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. We assume, without loss of generality, that $e\left(v_{1}, X\right)=\min _{i \in\{1,2,3\}} e\left(v_{i}, X\right)$. If $e\left(v_{1}, X\right)=0$, we assume, without loss of generality, that $e\left(v_{2}, X\right)=3$. In this case, G contains an even wheel W_{4} induced by X and v_{2}, v_{3} with the center at v_{2}, which is Z_{3}-connected, contrary to Lemma 4.2 . Thus, $e\left(v_{1}, X\right) \geq 1$. In this case, we may assume that $x_{3} v_{2}, x_{3} v_{3} \in E(G)$ and hence we get a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and x_{2} with the distinguished vertex v_{1}. Define $G^{\prime}=G_{\left[v_{1} v_{2}, v_{1} v_{3}\right]}$ and $G_{0}=G^{\prime} / H$ a Z_{3}-reduction of G^{\prime}, where $\left\{x_{1}, x_{2}, x_{3}, v_{2}, v_{3}\right\} \subseteq V(H)$. In this case $|V(H)| \geq 5$. By Lemma 4.4, $X_{G_{0}} \subseteq\left\{v_{H}\right\}$ and $G_{0} \in \mathcal{F}$.

Lemma 4.9. If $n \geq 9$ and $|X| \geq 2$, then G contains a triangle T such that $V(T) \cap X=\emptyset$.
Proof. Suppose then that $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$, where $2 \leq s \leq 4$. By Corollary 4.3, $G[X]$ is a complete subgraph of G. Let $G^{*}=G-X$. Let $d_{G}\left(x_{k}\right)=t_{k} 1 \leq k \leq|X|$. By Lemma 4.7, let $\epsilon=\sum_{i<j}\left|N\left(x_{i}\right) \cap N\left(x_{j}\right)-X\right| \leq 1$. Since $t_{k} \leq \frac{n-1}{2}$ for $1 \leq k \leq|X|$,

$$
\begin{aligned}
\sum_{v \in V\left(G^{*}\right)} d_{G^{*}}(v) \geq & \left((n-|X|-\epsilon)-\left(t_{1}+\cdots+t_{|X|}-2(|E(G[X])|+\epsilon)\right)\right) \frac{n}{2} \\
& +\left(t_{1}+\cdots+t_{|X|}-2(|E(G[|X|])|+\epsilon)\right)\left(\frac{n}{2}-1\right)+\epsilon\left(\frac{n}{2}-2\right) \\
= & \frac{n(n-|X|)}{2}-\left(t_{1}+\cdots+t_{|X|}\right)+2|E(G[X])| \\
\geq & \frac{(n-|X|)^{2}}{2}+\frac{|X|^{2}-|X|}{2}
\end{aligned}
$$

which implies that $\left|E\left(G^{*}\right)\right|>\frac{(n-|X|)^{2}}{4}$ since $2 \leq|X| \leq 4$. By Theorem 2.1, G^{*} contains a triangle T.
Lemma 4.10. If $n \geq 9$ and $2 \leq|X| \leq 4$, then G contains a distinguished K_{4}^{-}. Moreover, $G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Proof. By Lemma 4.9, G contains a triangle $T=v_{1} v_{2} v_{3}$ such that $V(T) \cap X=\emptyset$. We claim that there is a vertex $u \notin X \cup V(T)$ such that the K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and u is distinguished. Suppose otherwise that such a vertex does
not exist. When $X=\left\{x_{1}, x_{2}\right\}$, by Lemma 4.8, $e(X, T) \leq 3$. Thus, $n-5 \geq d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)-6-3 \geq 3 \frac{n}{2}-9$, which implies that $n \leq 8$, contrary to our assumption that $n \geq 9$. When $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, by Lemma $4.8, e(X, T) \leq 4$. Thus, $n-6 \geq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(v_{3}\right)-6-4 \geq 3\left(\frac{n}{2}\right)-10$, which implies that $n \leq 8$, a contradiction. In both cases, G contains a distinguished K_{4}^{-}induced by v_{1}, v_{2}, v_{3} and u. By Lemma $4.5, G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. We claim $e(T, X) \leq 3$. Suppose otherwise that $e(T, X) \geq 4$. Note that $e(v, X) \leq 2$ for each vertex $v \in V(T)$ by Lemma 2.3(1). We assume, without loss of generality, that v_{1} is a vertex of T such that $e\left(v_{1}, X\right)=\min _{v \in V(T)} e(v, X)$. If there is a vertex, say x_{1}, in X such that $x_{1} v_{2}, x_{1} v_{3} \in E(G)$, then G contains a distinguished K_{4} induced by v_{1}, v_{2}, v_{4} and x_{1} with the distinguished vertex v_{1}. Thus, each vertex of X has one neighbor in T. We may assume $v_{1} x_{1}, v_{1} x_{2}, v_{2} x_{3}, v_{3} x_{4} \in E(G)$ and hence G contains a distinguished K_{4}^{-}induced by $v_{1}, x_{1}, x_{2}, x_{3}$ with the distinguished vertex v_{1}. In both cases, define $G^{\prime}=G_{\left[v_{1} v_{2}, v_{1} v_{3}\right]}$. Let $G_{0}=G^{\prime} / H$ a Z_{3}-reduction of G^{\prime}, where H is Z_{3}-connected. In this case, $|V(H)| \geq 4$ (H has 2-cycle). It implies that $d_{G_{0}}\left(v_{1}\right) \geq \frac{\left|V\left(G_{0}\right)\right|}{2}$ and $X_{G_{0}} \subseteq\left\{v_{H}\right\}$. Thus, $G_{0} \in \mathcal{F}$.

We now claim that there exist $1 \leq i<j \leq 3$ such that $u \in N\left(v_{i}\right) \cap N\left(v_{j}\right)-(V(T) \cup X)$. Otherwise we have $n-7$ $\geq d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)+d_{G}\left(v_{3}\right)-6-3 \geq 3 \frac{n}{2}-9$. It implies that $n \leq 6$, contrary to that $n \geq 9$. Then G contains a distinguished K_{4}^{-}induced by u, v_{1}, v_{2} and v_{3} such that $\left\{u, v_{1}, v_{2}, v_{3}\right\} \cap X=\emptyset$. By Lemma $4.5, G_{0} \in \mathcal{F}$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}.

Proof of Theorem 1.4. Assume that G is one of G_{1}, \ldots, G_{22} or G can be Z_{3}-reduced to G_{i}, where $i \in\{1,3,4,5\}$. We will show that G is not Z_{3}-connected. By Lemma 2.9, none of G_{1}, \ldots, G_{22} is Z_{3}-connected. Assume that G can be Z_{3}-reduced to G_{i} for $i \in\{1,3,4,5\}$. We claim that G is not Z_{3}-connected. Suppose otherwise that G is Z_{3}-connected. Let $X \subset E(G)$ such that $G_{i}=G / X$. By Lemma 2.2(2), G_{i} is Z_{3}-connected, contrary to Lemma 2.9.

Conversely, assume that G is not Z_{3}-connected. By contradiction, suppose that G satisfies (2) and (3). By Lemmas 3.3-3.6, $n \geq 9$. By Corollary $4.3,|X| \leq 4$. By Lemmas 4.6 and $4.10, G$ contains a K_{4}^{-}which is the union of two triangles $u v_{1} v_{2}$ and $v_{1} v_{2} w$. Let $G^{\prime}=G_{\left[u v_{1}, u v_{2}\right]}$ and let $G_{0}=G^{\prime} / H$, where H is a Z_{3}-connected subgraph of G^{\prime} and contains a 2-cycle $\left(v_{1}, v_{2}\right)$. Then either $G_{0} \in \mathcal{F}$ and $\left|V\left(G_{0}\right)\right|<|V(G)|$ or G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}. In the former case, by the choice of G, G_{0} is Z_{3}-connected or G_{0} is one of G_{i}, where $1 \leq i \leq 22$, or G_{0} can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}. If G_{0} is Z_{3}-connected, by Lemma 2.4, G is Z_{3}-connected, contrary to (2).

Assume that G_{0} is one of G_{i}, where $1 \leq i \leq 22$. Note that $n \geq 9$. If $d(v) \leq 4$, then $v \in X$. Let $D=\{v \in V(G): d(v) \leq 4\}$. Since G is connected, all vertices of degree at most 4 in G_{i} except v_{H} are in D, where $1 \leq i \leq 22$. It implies that G contains a complete graph $K_{|D|-1}$. Thus, G_{0} is one of G_{1}, G_{3}, G_{4} and G_{5}. This means that G can be Z_{3}-reduced to G_{1}, G_{3}, G_{4} and G_{5}.

Suppose that G_{0} can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}. If $u \in V(H)$, then G can be Z_{3}-reduced to one of G_{1}, G_{3}, G_{4} and G_{5}. Thus, assume that $u \notin V(H)$, that is, v_{H} and u are two different vertices of G_{0}. Since $u \notin X$ and $n \geq 9, d(u) \geq 5$ and $d_{G_{0}}(u) \geq 3$. This implies that G_{0} cannot be Z_{3}-reduced to G_{1}. One notes that all vertices of G_{i}, where $3 \leq i \leq 5$ have degree less than 5 . Since $n \geq 9, d_{G}(v) \geq 5$ for each vertex $v \in V(G)-X$. Thus, $d_{G^{\prime}}(v) \geq 5$ for each vertex $v \in V\left(G^{\prime}\right)-\left(X \cup\left\{u, v_{H}\right\}\right)$. It follows that each vertex in $G_{i}, i=3,4,5$, is v_{H} or u or belongs to X_{G}.

When G_{0} is G_{3} or G_{5}, v_{H} is the vertex of degree 2 in $G_{i}, i=3,5$. By Corollary 4.3, H does not contains any vertex in X_{G}. When G_{0} is $G_{3}, d_{G_{0}}(u)=3$, which implies that $d_{G}(u)=5$ and $n=9$ or 10 . Thus, $6 \leq|V(H)| \leq 7$. When G_{0} is $G_{5}, d_{G_{0}}(u)=4$, which implies that $d_{G}(u)=6, n=11$ or 12 and $7 \leq|V(H)| \leq 8$. In both cases, $V(H) \cap X_{G}=\emptyset$ and $e(H, G-V(H))=4$. Let $H^{*}=H-v_{1} v_{2}$. Then H^{*} is a subgraph of G. When G_{0} is G_{3}, by computing the sum of degrees of all vertices in H^{*}, H^{*} contains at most one vertex of degree 3 and at least one vertex of degree 5^{+}; when G_{0} is G_{5}, by computing the sum of degrees of all vertices in H^{*}, H^{*} contains at most one vertex of degree 4 and all others of degree 5^{+}. This means that H^{*} satisfies the Ore-condition. By Theorem 1.3, H^{*} is Z_{3}-connected or H^{*} is one of G_{i}, where $1 \leq i \leq 12$. In the later case, for each case, H^{*} contains at least one 5^{+}-vertex while G_{i} has no 5^{+}-vertex, a contradiction. In the former case, we contract H^{*} in $G, G / H^{*}$ contains a 2 -cycle $\left(v_{H^{*}}, u\right)$ and we continue to contract 2 -cycles. Eventually, we obtain a K_{1} which is Z_{3}-connected. By Lemma 2.4, G is Z_{3}-connected, contrary to (2).

Thus, assume that G_{0} can be Z_{3}-reduced to G_{4}. Let $V\left(G_{4}\right)=\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}, w_{1}=v_{H}, w_{2}=u$. Since $d_{G_{4}}\left(w_{2}\right)=$ $d_{G_{0}}(u)=3, d_{G}(u)=5$. This implies that $9 \leq n \leq 10$. Thus $6 \leq|V(H)| \leq 7 . w_{3}, w_{4} \in X_{G}$. By Lemma 3.1, H contains at most one vertex of X_{G}.

If H contains exactly one vertex x of X_{G}, then $x w_{3}, x w_{4} \in E(G)$. Since $d_{G}(x) \leq 4, d_{H}(x) \leq 2$. Let $G^{*}=G-\left\{x, w_{2}, w_{3}, w_{4}\right\}$. Then for each vertex z of $G^{*}, d_{G^{*}}(z) \geq 3$ and $\left|V\left(G^{*}\right)\right| \leq 6$. Thus, G^{*} satisfies the Ore-condition. By Theorem $1.3, G^{*}$ is Z_{3}-connected or G^{*} is G_{i}, where $1 \leq i \leq 12$. Since G^{*} has either at least four 4^{+}-vertices or three 4^{+}-vertices and at least one 5^{+}-vertex, G^{*} is none of $G_{i}, 1 \leq i \leq 12$. Thus, G^{*} is Z_{3}-connected. It implies that G is Z_{3}-connected, contrary to (2).

Thus, H contains no vertex in X_{G}. If H contains one vertex x such that $x w_{2}, x w_{3}, x w_{4} \in E(G)$, let $G^{*}=G-\left\{w_{3}, w_{4}\right\}$. It is easy to verify that G^{*} satisfies the Ore-condition. If H has no such a vertex, let $G^{*}=G-\left\{w_{2}, w_{3}, w_{4}\right\}$. In this case, let $x w_{4} \in E(G)$. Then either $x w_{3} \in E(G)$ or $x w_{3} \notin E(G)$. In both cases, G^{*} contains at most one 3^{+}-vertex and others are 4^{+}-vertices. It is easy to see that $\left|V\left(G^{*}\right)\right| \leq 7$ and G^{*} is 2-edge-connected. By Theorem $1.3, G^{*}$ is Z_{3}-connected or G^{*} is one of G_{i}, where $1 \leq i \leq 12$. Since G contains at least one 5^{+}-vertex and four 4^{+}-vertices or at least two 5^{+}-vertices and three 4^{+}-vertices, G^{*} is not one of $G_{i}, 1 \leq i \leq 12$. Thus, G^{*} is Z_{3}-connected. Since G / H^{*} contains 2 -cycles, G can be Z_{3}-reduced to K_{1} which is Z_{3}-connected. By Lemma $2.4, G$ is Z_{3}-connected, contrary to (2).

Acknowledgments

The authors would like to thank the referees for valuable comments and suggestions which led to the improvement of the paper. The first author was partially supported by the Natural Science Foundation of China (11171129).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] J. Chen, E. Eschen, H.-J. Lai, Group connectivity of certain graphs, Ars Combin. 89 (2008) 141-158.
[3] G. Fan, C. Zhou, Degree sum and nowhere zero 3-flows, Discrete Math. 308 (2008) 6233-6240.
[4] G. Fan, C. Zhou, Ore condition and nowhere zero 3-flows, SIAM J. Discrete Math. 22 (2008) 288-294.
[5] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[6] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin. 16 (2000) 165-176.
[7] H.-J. Lai, Nowhere zero 3-flows in locally connected graphs, J. Graph Theory 42 (2003) 211-219.
[8] H.-J. Lai, X. Li, M. Zhan, H. Shao, Group connectivity and group colorings of graphs-a survey, Acta Math. Sinica 27 (2011) 405-434.
[9] R. Luo, R. Xu, J. Yin, G. Yu, Ore-condition and Z_{3}-connectivity, European J. Combin. 29 (2008) 1587-1595.
[10] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[11] P. Turán, On an extremal problem in graph theory, Mat. Lapok 48 (1941) 436-452.
[12] W.T. Tutte, A contribution to the theory of chromatical polinomials, Canad. J. Math. 6 (1954) 80-91.
[13] J. Yan, Nowhere-zero 3-flows and Z_{3}-connectivity of a family of graphs, Discrete Math. 311 (2011) 1988-1994.
[14] X. Yao, X. Li, H.-J. Lai, Degree conditions for group connectivity, Discrete Math. 310 (2010) 1050-1058.
[15] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.
[16] X. Zhang, M. Zhan, R. Xu, Y. Shao, X. Li, H. Lai, Degree sum condition for Z_{3}-connectivity in graphs, Discrete Math. 310 (2010) $3390-3397$.

[^0]: * Corresponding author.

 E-mail addresses: xwli68@yahoo.cn, xwli2808@yahoo.com (X. Li).

