
Discrete Mathematics 312 (2012) 1658–1669

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Degree condition and Z3-connectivity
Xiangwen Li a,∗, Hong-Jian Lai b, Yehong Shao c

a Huazhong Normal University, Wuhan 430079, China
b West Virginia University, Morgantown, WV 26505, USA
c Ohio University Southern, Ironton, OH 45638, USA

a r t i c l e i n f o

Article history:
Received 11 February 2010
Received in revised form 30 November
2011
Accepted 11 January 2012
Available online 10 February 2012

Keywords:
Nowhere-zero 3-flows
Z3-connectivity
Ore-condition

a b s t r a c t

Let G be a 2-edge-connected simple graph on n ≥ 3 vertices and A an abelian group
with |A| ≥ 3. If a graph G∗ is obtained by repeatedly contracting nontrivial A-connected
subgraphs of G until no such a subgraph left, we say G can be A-reduced to G∗. Let G5 be the
graph obtained from K4 by adding a new vertex v and two edges joining v to two distinct
vertices of K4. In this paper, we prove that for every graphG satisfyingmax{d(u), d(v)} ≥

n
2

where uv ∉ E(G), G is not Z3-connected if and only if G is isomorphic to one of twenty
two graphs or G can be Z3-reduced to K3, K4 or K−

4 or G5. Our result generalizes the former
results in [R. Luo, R. Xu, J. Yin, G. Yu, Ore-condition and Z3-connectivity, European J. Combin.
29 (2008) 1587–1595] by Luo et al., and in [G. Fan, C. Zhou, Ore condition and nowhere zero
3-flows, SIAM J. Discrete Math. 22 (2008) 288–294] by Fan and Zhou.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite and may have multiple edges without loops. Terminology and notation not defined here
are from [1]. Let H be a subgraph of a graph G and u a vertex of G. Denote by dH(u) the degree of u in H . When H = G, we
write d(u) for dG(u). Let H1 and H2 be two subgraphs of G such that V (H1) ∩ V (H2) = ∅. Denote by eG(H1,H2) (or simply
e(H1,H2)) the number of edges with one end vertex in H1 and the other one in H2. If V (H1) = {a}, we use eG(a,H2) (or
simply e(a,H2)) instead of eG(H1,H2). For simplicity, if V1, V2 are two subsets of V (G) with V1 ∩ V2 = ∅, we use eG(V1, V2)
for eG(G[V1],G[V2]). We similarly define e(V1, V2) and e(a, V2). A simple graph G satisfies the Ore-condition [10] if for every
uv ∉ E(G), d(u) + d(v) ≥ |V (G)|. A vertex v is a k+-vertex if d(v) ≥ k. For simplicity, a 3-cycle on three vertices u, v and w
is denoted by uvw.

Let G be a graph. For an orientation D of a graph G and for a vertex v ∈ V (G), denote by E+(v) (or E−(v), respectively) the
set of edges with tails (or heads, respectively) at v. It is known [5] that group connectivity is independent of the orientation
of G. The subscript Dmay be omitted when D is understood from the context.

Let A denote a nontrivial abelian group with identity element 0, and let A∗
= A − {0}. Define F(G, A) = {f : E(G) → A}

and F(G, A∗) = {f : E(G) → A∗
}. For an f ∈ F(G, A), the boundary of f is a mapping ∂ f : V (G) → A defined by ∂ f (v)

=


e∈E+(v) f (e) −


e∈E−(v) f (e), for each v ∈ V (G).
Tutte [12] first introduced the theory of nowhere-zero flows. The concept of group connectivity was introduced by Jaeger

et al. in [5], where nowhere-zero flowswere successfully generalized to group connectivity.We give these definitions below.
Let G be an undirected graph and A an abelian group with identity 0. A mapping b : V (G) → A is an A-valued zero-sum

mapping on G if


v∈V (G) b(v) = 0. Denote by Z(G, A) all A-valued zero-sum mappings on G. A graph G is A-connected if
for each b ∈ Z(G, A), there is an f ∈ F(G, A∗) such that b = ∂ f . A graph G admits a nowhere-zero A-flow if there exists an
f ∈ F(G, A∗) such that ∂ f (v) ≡ 0 for G.
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Fig. 1. Exceptional graphs for the main theorem.

A contraction of a graph G is the graph G′ obtained from G by contracting a set of edges and deleting any loops generated
in the process. When H is a subgraph of G, the contraction of G obtained by contracting the edges in H and deleting resulting
loops is denoted by G/H . Note that each component of H becomes a vertex of G/H . A graph G is A-reduced if no nontrivial
subgraph of G is A-connected. We say that a graph G0 is an A-reduction of G if G0 is A-reduced and if G0 can be obtained from
G by contracting all maximally A-connected subgraphs of G [7]. It is known that (Corollary 2.3 of [7]) the A-reduction of a
graph is A-reduced and an A-reduction of a reduced graph is itself.

The following two conjectures on nowhere-zero flows and group connectivity are well-known.

Conjecture 1.1 (Tutte, [12,15]). Every 4-edge-connected graph admits nowhere-zero Z3-flow.

Conjecture 1.2 (Jaeger et al., [5]). Every 5-edge-connected graph is Z3-connected.

In order to approach these two conjectures, nowhere-zero 3-flows and Z3-connectivity have been studied extensively.
More recently, degree conditions are used to ensure the existence of nowhere-zero flows and group connectivity of graphs.
For the literature for group connectivity, the readers can see the survey [8], and the results [14,13,16] and others. In
particular, Fan and Zhou [4,3] investigated sufficient degree conditions for nowhere-zero Z3-flows. Luo et al. [9] extended
the result of Fan and Zhou [4] by characterizing all Z3-connected graphs satisfying the Ore-condition.

Theorem 1.3 (Luo et al. [9]). Let G be a simple graph satisfying the Ore-condition with at least three vertices. The graph G is not
Z3-connected if and only if G is one of Gi in Fig. 1, where 1 ≤ i ≤ 12.

Motivated by Conjectures 1.1 and 1.2 and Theorem 1.3, we will further investigate Z3-connectivity by a given degree
condition. To simplify the notation, for an integer n ≥ 3, we define F to be the set of all simple 2-edge-connected graphs
on n vertices such that G ∈ F if and only if max{d(u), d(v)} ≥

n
2 for every uv ∉ E(G). In this paper, we prove the following

result.

Theorem 1.4. Let G ∈ F on n ≥ 3 vertices. The graph G is not Z3-connected if and only if one of the following holds:

(1) G is isomorphic to one of 22 graphs in Fig. 1; or
(2) G can be Z3-reduced to one of G1,G3,G4 and G5.
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Theorem 1.4 generalized the result of Luo et al. [9]. If a graph G satisfies the Ore-condition, then max{d(u), d(v)} ≥
n
2

for every pair of nonadjacent vertices u and v and so G satisfies the hypothesis of Theorem 1.4. Note that each of Gi, where
13 ≤ i ≤ 22, contains a pair of nonadjacent vertices with the sum of their degree less than |V (Gi)|. Thus, G is isomorphic
to none of G13, . . . ,G22. We now show that G cannot be Z3-reduced to Gj for each j ∈ {1, 3, 4, 5}. Suppose otherwise that
G is Z3-reduced to Gj, where j ∈ {1, 3, 4, 5}. Let H be a nontrivial Z3-connected subgraph of G and vH be a vertex of Gi
which H is contracted to. Since every Z3-connected graph has at least 5 vertices and vH has at most four neighbors in Gj,H
contains at least one vertex u such that dG(u) ≤ |V (H)| − 1 and e(u,G − V (H)) = 0. If Gj has two vertices vH1 and vH2
such that two nontrivial Z3-subgraphs H1 and H2 are contracted to, respectively, pick u1 ∈ V (H1) and u2 ∈ V (H2) satisfying
d(uk) ≤ |V (Hk)| − 1 for k = 1, 2, and u1u2 ∉ E(G). If G has only one Z3-connected subgraph H , pick a vertex u1 with
d(u1) ≤ |V (H)| − 1 such that e(u,G − V (H)) = 0, and u2 ∈ V (G) − V (H), then u1u2 ∉ E(G). In both cases, it is easy to
see that d(u1) + d(u2) < n and G does not satisfy the Ore-condition. This tells us that if G satisfies the Ore-condition, then
G cannot be Z3-reduced to none of G1,G3,G4 and G5. So, Theorem 1.4 extends Theorem 1.3.

As Gi admits a nowhere-zero 3-flow for each i ∈ {1, 2, 3, 5, 8, 11}, the argument above implies that Gj does not admit a
nowhere-zero 3-flow if and only if j ∈ {4, 6, 7, 9, 10, 12} and so the Fan’s result follows from Theorem 1.4.

We organize this paper as follows.We establish several lemmas in Section 2.We prove Theorem 1.4 for small cases when
n ≤ 8 in Section 3 and the case when n ≥ 9 in Section 4.

2. Lemmas

To simplify the notation, throughout the rest of this paper, we use Z3 = {0, 1, 2}, and so equality concerning elements in
Z3 is to mean congruence modulo 3. We first state the Turán theorem.

Theorem 2.1 (Turán, [11]). Let G be a simple graph on n vertices. If |E(G)| ≥
n2
4 , then G contains a triangle or G ∼= Km,m, where

m is a positive integer.

Lemma 2.2 (Lai, [6]). Let G be a graph and A an abelian group with |A| ≥ 3. Then each of the following holds:

(1) K1 is A-connected;
(2) if e ∈ E(G) and if G is A-connected, then G/e is A-connected, and
(3) if H is a subgraph of G and if both H and G/H are A-connected, then G is A-connected.

One notes that K4 is not Z3-connected. A nontrivial Z3-connected simple graph G has |V (G)| ≥ 5. Denote by Cn the cycle
of length n. For every n ≥ 3, we defineWn = Cn +w, where w is the center. A wheelWn is even (or odd) if n is even (or odd).

Lemma 2.3 ([2,5,6,9]). Let A be an abelian group. Then each of the following holds:

(1) both Kn and K−
n are Z3-connected if n ≥ 5;

(2) Cn is A-connected if and only if |A| ≥ n + 1;
(3) Km,n is Z3-connected if m ≥ n ≥ 4;
(4) W2k is Z3-connected, where k ≥ 2;
(5) if G is not Z3-connected, then none of any spanning subgraph of G is Z3-connected; and
(6) let G be a simple graph and H a nontrivial Z3-connected subgraph of G. Then |V (H)| ≥ 5.

Let G be a graph and let u, v, w be three vertices of G with uv, uw ∈ E(G). G[uv,uw] is defined to be the graph obtained
from G by deleting two edges uv and uw and adding one edge vw. It is clear that dG[uv,uw]

(u) = d(u) − 2.

Lemma 2.4 ([2,6]). Let A be an abelian group. Let G be a graph and let u, v, w be three vertices of G with degree d(u) ≥ 4 and
uv, uw ∈ E(G). If G[uv,uw] is A-connected, then so is G.

Let A be an abelian group. Let H be a connected subgraph of G and let V1 = V (H), V2 = V (G) − V (H). From the proof
[8, Proposition 3.2], we obtain the following lemma.

Lemma 2.5 (Lai, [6]). Let b ∈ Z(G, A). If there is a mapping f ∈ F(G, A∗) such that ∂ f (v) = b(v), then define b′
: V2 → A by

b′(v) =


b(v), if v ∈ V2 − N(H),

b(v) −


e∈E−(v)∩E(V1,V2)

f (e) +


e∈E+(v)∩E(V1,V2)

f (e) if v ∈ N(H) ∩ V2.

Then for such a b′
∈ Z(G − H, A), there is a mapping f ′

: G − H → A∗ such that ∂ f ′(v) = b′(v) for each v ∈ V2.

Lemma 2.6. Both Γ1 and Γ2 in Fig. 2 are Z3-connected.
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Fig. 2. Two Z3-connected graphs.

Proof. Let Γ = Γ2 and Γ ′
= Γ[v2v5,v2v6]. It is easy to verify that Γ ′ can be Z3-reduced to K1 which is Z3-connected. By

Lemma 2.4, G is Z3-connected.
LetΓ = Γ1 andΓ ′

= Γ[v2v3,v2v4]. ThenΓ ′ contains a 2-cycle (v3, v4).We contract this 2-cycle to a newvertex v∗ and then
we get another 2-cycle (v∗, v5). We contract this 2-cycle into another new vertex v∗∗. In this time, we get an even wheelW4
induced by v∗∗, v6, v1, u1, u2 with the center at v∗∗. We contract thisW4 into one vertex and also get a 2-cycle. Contracting
this 2-cycle, finally we get a K1 which is Z3-connected. By Lemma 2.3(2) and (4), and by Lemma 2.4, Γ1 is Z3-connected. �

The following lemma is from the survey on group connectivity and group coloring by Lai et al. [8].

Lemma 2.7. Let G be a graph and v ∈ V (G) with dG(v) = 2. Then G is Z3-connected if and only if G − v is Z3-connected.

Lemma 2.8. None of G16,G19,G21 and G22 is Z3-connected.

Proof. We shall use the same notation for the labeling of the vertices of these graphs as in Fig. 1. Recall that K4 does not
have a nowhere-zero 3-flow, and so cannot be Z3-connected.

Since G16 − {v1, v6} is a K4, which is not Z3-connected, by Lemma 2.7, G16 is also not Z3-connected.
Since G19 can be contracted to K4, and since K4 does not have a nowhere-zero Z3-flow, by Lemma 2.2(2), G19 is no

Z3-connected.
We now show that G21 is not Z3-connected. Suppose otherwise that G21 is Z3-connected. By the definition, for a b ∈

Z(G21, Z3) by b(u1) = b(u2) = 0, b(v1) = b(v3) = b(v5) = 1 and b(v2) = b(v4) = b(v6) = 2, there is an f ∈ Z(G21, Z3)
such that ∂ f = b. Recall that group connected is independent of orientations. We assume that u1u2 is oriented from u1
to u2; u1v1 is from v1 to u1; u1v4 from v4 to u1; u2v1 from u2 to v1; u2v4 from u2 to v4. If f (u1u2) = λ ∈ Z∗

3 , then
f (v1u1) = f (v4u1) = f (u2v1) = f (u2v4) = µ ∈ Z3 − {0, λ}.

Note that f (u2v1) = f (v1u1) and f (u2v4) = f (v4u1). By Lemma 2.5, there is a mapping f ′
: V (G) − {u1, u2} → Z∗

3 such
that ∂ f ′(vi) = b(vi), where 1 ≤ i ≤ 6.

We assume that v6v1 is oriented from v6 to v1, v1v2 is from v1 to v2; v3v4 is from v3 to v4; v4v5 is from v4 to v5.
b(v1) = 1 implies that f ′(v6v1) = 1 and f ′(v1v2) = 2; b(v4) = 2 implies that f ′(v3v4) = 2 and f ′(v4v5) = 1. Let G∗

=

G21 − {u1, u2, v1, v4}. By Lemma 2.5, there is a b′′
∈ Z(G∗, Z3) with b′′(vi) = 0, i = 2, 3, 5, 6, which implies that K4 admits

nowhere-zero Z3-flow. This contradiction proves that G21 is not Z3-connected.
It remains to show that G22 is not Z3-connected. Suppose otherwise that G22 is Z3-connected. By the definition, for a

b ∈ Z(G22, Z3) with b(vi) = 2, i = 1, 2, . . . , 6 and b(uj) = 0, j = 1, 2, there is an f ∈ F(G22, Z∗

3 ) such that ∂ f = b. Assume
that u1u2 is oriented from u2 to u1; u1v1 is from u1 to v1; u1v6 from u1 to v6; u2v3 from v3 to u2; v4u2 from v4 to u2.

Let f (u1u2) = λ ∈ Z∗

3 . Then f (u1v1) = f (u1v6) = f (u2v3) = f (u2v4) = µ ∈ Z3 − {0, λ}. Let G′
= G22 − {u1, u2} and

define b′
: V (G′) → Z3 by b′(v1) = b(v1) − µ = 2 − µ; b′(v2) = b(v2) = 2; b′(v3) = b(v3) + µ = 2 + µ; b′(v4) =

b(v4) + µ = 2 + µ; b′(v5) = b(v5) = 2 and b′(v6) = b(v6) − µ = 2 − µ. It is easy to see that b′(v3) = b′(v4) = 0
or b′(v1) = b′(v6) = 0 depends on µ = 1 or µ = 2. By symmetry of G′, we assume that µ = 1. In this case,
b′(v1) = 1, b′(v2) = 2, b′(v3) = 0, b′(v4) = 0, b′(v5) = 2 and b′(v6) = 1.

Lemma 2.5 shows that for such a b′, there is an f ′
∈ F(G′, Z∗

3 ) with ∂ f ′
= b′. Note that b′(v3) = 0 and b′(v4) = 0. All

edges incident with v3 are assumed to be oriented either into or from v3, f ′ achieves 1 or 2 at these edges. In this case, all
edges incident with v4 must be oriented either from or into v4, f ′ achieves 1 or 2 at these edges. In all cases, G′

− {v3, v4}

is a K4 − v2v5 with vertex set {v1, v2, v5, v6} and b′(v1) = b′(v6) = 1, b′(v2) = b′(v5) = 2. We assume, without loss of
generality, that two edges incident with v2 (v5) are oriented from v2 (v5). Since b′(v2) = b′(v5) = 2, f ′ achieves 1 on these
four edges. f ′ cannot achieve any non-zero element of Z3 on an edge v1v6 nomatter how v1v6 is oriented. This contradiction
proves that G22 is not Z3-connected. �

From Lemma 2.8 and Theorem 1.3, we obtain the following lemma.

Lemma 2.9. None of G1,G2, . . . ,G22 is Z3-connected.

Proof. Theorem 1.3 states that none of Gi, where 1 ≤ i ≤ 12, is Z3-connected. By Lemma 2.8, none of G16,G19,G21 and G22
is Z3-connected. Since G13,G14,G18 and G20 are spanning subgraphs of G10,G15 is a spanning subgraph of G12 and G17 is a
spanning subgraph of G16. By Lemma 2.3(5), none of G13,G14,G15,G17,G18 and G20 is Z3-connected. �
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3. The case when n ≤ 8

Throughout this section, we assume that G ∈ F on n vertices. Define

XG =


u ∈ V (G) : d(u) <

n
2


. (1)

Throughout the rest of this section, we assume that X = XG. For simplicity, we define Y = V (G) − X . The following fact
is straightforward.

Lemma 3.1. (1) G ∈ F if and only if G[X] is a complete subgraph of G.
(2) If G[Y ] is Z3-connected and e(X, Y ) ≥ |X | + 1, then G is Z3-connected.

Lemma 3.2. If G is not Z3-connected and if 5 ≤ n ≤ 8, then either 1 ≤ |X | ≤ ⌊
n
2⌋ − 1 or G is one of G7,G8,G9,G10,G11

and G12.

Proof. Suppose otherwise that |X | ≥ ⌊
n
2⌋. By Lemma 3.1, dG[X](x) = |X | − 1. Since G is connected, G has a vertex x0 ∈ X

adjacent to a vertex not in X , and so d(x0) ≥ |X | ≥ ⌊
n
2⌋. When n is even, d(x0) ≥

n
2 and this contradicts the definition of X .

Thus, n is odd. If |X | ≥ ⌊
n
2⌋ + 1, since G is 2-edge connected, there is a vertex x ∈ X such that d(x) ≥ ⌊

n
2⌋ + 1 ≥

n
2 . This

contradiction shows that |X | = ⌊
n
2⌋. Then |Y | = ⌈

n
2⌉. In this case |Y | = |X | + 1 and for each vertex x ∈ X, e(x, Y ) ≤ 1. It

implies that there is at least one vertex y ∈ Y such that d(y) ≤ ⌊
n
2⌋. This contradiction establishes |X | ≤ ⌊

n
2⌋ − 1.

If X = ∅, then d(u) ≥
n
2 for each vertex u ∈ V (G). In this case, G satisfies the Ore-condition, and G is one of

G7,G8,G9,G10,G11 and G12 by Theorem 1.3. �

Lemma 3.3. Suppose that 3 ≤ n ≤ 5. Then G is not Z3-connected if and only if G is Gi in Fig. 1, where 1 ≤ i ≤ 6.

Proof. Since no simple graph of order at most 4 is Z3-connected, G ∈ {G1,G2,G3,G4}. Thus, we may assume that n = 5. By
Lemma 3.2, |X | ≤ 1. If X = {x}, then d(x) = 2 and for each y ∈ V (G) − X, d(y) ≥ 3, and so G ∈ {G5,G6}. Hence we assume
that X = ∅. By Theorem 1.3, G is Z3-connected or G ∈ {G1,G2,G3,G4}. �

Lemma 3.4. Suppose that n = 6. Then G is not Z3-connected if and only if G is Gi in Fig. 1, where 7 ≤ i ≤ 20.

Proof. By Lemma 3.2, |X | ≤ 2. If X = ∅, then G is Gi, 7 ≤ i ≤ 12, from Theorem 1.3. If |X | = 2, then as κ ′(G) ≥ 2, d(v) = 2
for each v ∈ X . Thus, e(v,G− X) = 1 for each v ∈ X . Thus there are at most two vertices u1, u2 ∈ Y such that dG[Y ](ui) = 2,
for i = 1, 2. In this case, G ∈ {G18,G19,G20}.

Hence X = {v}. As κ ′(G) ≥ 2, d(v) = 2, and so dG(y) ≥ 3 for each y ∈ Y . By Lemma 2.7, G is Z3-connected if and only
if G − v is. By Lemma 3.3, if G − v has at most one vertex of degree 2, then G ∈ {G13,G14,G16,G17}. Hence we assume that
G − v has exactly two vertices of degree 2. Note that if G − v has 3 vertices of degree 4, then δ(G − v) ≥ 3, which implies
that G contains a K−

5 which is Z3-connected, a contradiction. Since the number of odd degree vertices must be even, G − v
has exactly one vertex of degree 4. This forces that G = G15. �

Lemma 3.5. Suppose that n = 7. G is not Z3-connected if and only if G is Z3-reduced to K3.

Proof. If G is Z3-reduced to K3, by Lemma 2.2, G is not Z3-connected. Thus, assume that G is not Z3-connected. By Lemma 3.2
and Theorem 1.3, 0 < |X | ≤ 2. Suppose first that X = {v}. Then d(v) ≤ 3 and for each vertex u of G[Y ], dG[Y ](u) ≥ 3. This
means that G[Y ] satisfying the Ore-condition with n = 6. If G[Y ] is not Z3-connected, by Theorem 1.3, then G[Y ] is one of
G7,G8, . . . ,G12. On the other hand,G[Y ] has at least three 4+-verticeswhile each ofG7, . . . ,G12 has atmost two 4+-vertices.
This contradiction proves that G[Y ] is Z3-connected and so is G, a contradiction.

Thus, we assume that X = {x1, x2}. Then d(x1) ≤ 3 and d(x2) ≤ 3. We first assume that e({x1, x2}, Y ) ≤ 2. In this
case, d(x1) = d(x2) = 2 and e({x1, x2}, Y ) = 2 since G is 2-edge connected. Moreover, G∗

= G − {x1, x2} contains at least
three 4+-vertices. It follows that G∗ is K5 or K−

5 which is Z3-connected by Lemma 2.3(1). So G can be Z3-reduced to K3. Thus,
e({x1, x2}, Y ) ≥ 3. In the remainder of the proof we will use the following claim.

Claim. Suppose that e({x1, x2}, Y ) ≥ 3. If u1, u2 ∈ Y such that e({u1, u2}, {x1, x2}) = 0, then G is Z3-connected.

Let G∗
= G[Y ] = G−{x1, x2}. Then G∗ has a degree sequence d1 ≤ d2 ≤ d3 ≤ d4 ≤ d5 with d1 ≥ 2, d2 ≥ 2, d4 = d5 = 4.

Thus, G[Y ] satisfies the Chvátal-condition and G∗ contains a Hamilton cycle C = y1y2y3y4y5y1.
When u1u2 = yiyi+1, where the subscript i is taken modulo 5, G∗ is isomorphic to K5 or K−

5 which is Z3-connected by
Lemma 2.3(1). By Lemma 3.1, G is Z3-connected.

Thus, we assume, without loss of generality, that y1 = u1, y3 = u2. Since dG∗(y1) = dG∗(y3) = 4, y1y3, y1y4, y3y5 ∈

E(G∗). If either y2y5 ∈ E(G∗) or y2y4 ∈ E(G∗), then G∗ contains an even wheelW4. By Lemma 2.3(4), G∗ is Z3-connected and
so is G. If both y2y5 ∉ E(G∗) and y2y4 ∉ E(G∗), then x1y2, x2y2 ∈ E(G) and e(yi, {x1, x2}) ≥ 1, where i = 4, 5, since for each
y ∈ Y , d(y) ≥ 4. In this case, G[y5y1,y5y3] contains a 2-cycle. Contract this 2-cycle and recursively contract any new 2-cycle
obtained in the process, finally we get a K1 which is Z3-connected. By Lemmas 2.2 and 2.4, G is Z3-connected. So far, we have
proved our claim.
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Recall that G is not Z3-connected. By Claim, let e({x1, x2}, Y ) = 4 and |(N(x1) ∪ N(x2)) ∩ Y | = 4. It follows that there
exists y∗

∈ Y such that dG∗(y) = 4 and for each y ∈ Y −{y∗
}, dG∗(y) ≥ 3 and hence dG∗−y∗(y) ≥ 2. By the Ore’s Theorem, the

subgraph induced by Y −{y∗
} is a 4-cycle. In this case, G∗ contains an evenwheelW4 with the center at y∗. By Lemma 2.3(4),

G∗ is Z3-connected and so is G, a contradiction. �

Lemma 3.6. Suppose that n = 8. G is not Z3-connected if and only if G can be Z3-reduced to K3 or K4 or K−

4 or G is G22 or G21.
Proof. We shall use the same notation for the labeling of the vertices of the graphs in Fig. 1. If G can be Z3-reduced to K3
or K4 or K−

4 or G is G22 or G21, by Lemmas 2.2 and 2.9, G is not Z3-connected. Thus, assume that G is not Z3-connected. Let
d1 ≤ d2 ≤ · · · ≤ d|Y | be a degree sequence of G[Y ]. By Lemma 3.2 and Theorem 1.3, 0 < |X | ≤ 3.
Case 1. X = {x1, x2, x3}.

It follows that dG[X](xi) = 2 and e(xi,G−X) ≤ 1 for each xi, i = 1, 2, 3. SinceG is 2-edge connected, 3 ≥ e(X,G−X) ≥ 2.
If |N(X) ∩ Y | = 1 or |N(X) ∩ Y | = 3, then G[Y ] ∈ F with |V (G[Y ])| = 5. Since G[Y ] contains at least two 4+-vertices,
by Lemma 3.3, G[Y ] is Z3-connected. When e(X,G − X) = 3,G can be Z3-reduced to K4. When e(X,G − X) = 2,G can be
Z3-reduced to K−

4 . Assume that |N(X) ∩ Y | = 2. Then d1 ≥ 2, d2 ≥ 3 and d5 ≥ d4 ≥ d3 ≥ 4. Thus, G[Y ] satisfies the
Chvátal-condition and G[Y ] is a Hamilton cycle C = y1y2y3y4y5y1. Since |N(X) ∩ Y | = 2, there are two adjacent vertices
yi, yi+1 with e({yi, yi+1}, X) = 0. In this case, G[Y ] contains an even wheelW4 induced by y1, . . . , y5 with the center vertex
at yi. By Lemma 2.3(4), G[Y ] is Z3-connected and hence G can be Z3-reduced to K−

4 since G is not Z3-connected.
Case 2. X = {x1, x2}.

Since G is 2-edge connected, 4 ≥ e(X,G− X) ≥ 2. Suppose first that |N(X) ∩ Y | = 4. Then d1 ≥ 3, d2 ≥ 3, d3 ≥ 3, d4 ≥

3, d6 ≥ d5 ≥ 4. Thus, G[Y ] ∈ F . Since G is not Z3-connected, by Lemma 3.4, G[Y ] is one of Gi, where 7 ≤ i ≤ 20. Since each
vertex of G[Y ] is a 3+-vertex and G[Y ] has at least two 4+-vertices, G[Y ] is one of G9,G10 and G11. If G[Y ] is G11, then G is
isomorphic to Γ1 or G22. By Lemmas 2.6 and 3.1, G is G22. Assume then that G[Y ] is G10. By Lemmas 2.3(5), 2.6 and 3.1, Γ1
is not a subgraph of G. Thus, G22 is a subgraph of G, that is, G is obtained from G22 by adding an edge v2v5 in Fig. 1. In this
case, let G′

= G[v3v2,v3v5]. Then G′ can be Z3-reduced to K1 which is Z3-connected. By Lemmas 2.2 and 2.4, G is Z3-connected,
a contradiction. Thus, G[Y ] is G9. Then G is isomorphic to Γ2. By Lemma 2.6, G is Z3-connected, a contradiction.

Suppose that |N(X) ∩ Y | = 3. In this case, d1 ≥ 2, d2 ≥ 3, d3 ≥ 3 and d6 ≥ d5 ≥ d4 ≥ 4. It is easy to see that G[Y ] ∈ F .
By Lemmas 3.1 and 3.4, G[Y ] is G16 with three vertices of degree 4. In this case, we assume, without loss of generality, that
x1v1, x1v6, x2v6, x2v3 ∈ E(G). Let G′

= G[v3v5,v3v2]. Then G′ can be Z3-reduced to K1 which is Z3-connected. By Lemmas 2.2
and 2.4, G is Z3-connected, a contradiction.

Suppose then that |N(X) ∩ Y | = 2. In this case, d1 ≥ 2, d2 ≥ 2 and d6 ≥ d5 ≥ d4 ≥ d3 ≥ 4. If d2 ≥ 3, then G[Y ] ∈ F .
Thus, d1 = d2 = 2 and d6 ≥ · · · ≥ d3 ≥ 4. Let y1, y2 ∈ Y such that dG[Y ](y1) = dG[Y ](y2) = 2. If y1y2 ∉ E(G[Y ]), then
G[Y ] ∈ F . On the other hand, if G[Y ] ∈ F , since G[Y ] contains four 4+-vertices, by Lemma 3.4, G[Y ] is Z3-connected. Thus,
we assume that dG[Y ](y1) = dG[Y ](y2) = 2 and y1y2 ∉ E(G[Y ]). In this case, G is G21.
Case 3. X = {x}.

By the hypothesis, 2 ≤ d(x) ≤ 3. In this case, d1 ≥ 3, d2 ≥ 3, d3 ≥ 3 and d7 ≥ d6 ≥ d5 ≥ d4 ≥ 4. Then G[Y ] satisfies
the Chvátal-condition and G[Y ] has a Hamilton cycle y1y2 · · · y7y1.

Suppose first that d7 ≥ 5. We assume, without loss of generality, that d(y1) = d7. Since |Y | = 7, there are yj, yj+1 such
that y1yj, y1yj+1 ∈ E(G[Y ]), where j ≠ 2, j + 1 ≠ 7. Let G′

= G[Y ][y1yj,y1yj+1]. It follows that G′ contains a 2-cycle (yj, yj+1).
We contract this 2-cycle into a new vertex and recursively contract any new 2-cycle obtained in the process. Let G′′ be the
resulting graph from G[Y ]. Then |V (G′′)| ≤ 6 and δ(G′′)| ≥ 2. δ(G′′) = 2 if and only if d(x) = 2, xyj, xyj+1 ∈ E(G), d(yj) =

4, d(yj+1) = 4, dG′′(vH) = 2, dG′′(y1) = d(y1) − 2, dG′′(v) = 4 for v ∈ V (G′′) − {vH , y1} and |V (G′′)| = 6. Thus, G′′
∈ F . If

|V (G′′)| ≤ 5, by Lemmas 3.1 and 3.3, G′′ is one of Gi, where 1 ≤ i ≤ 6.We claim that G′′ is not one of Gi, where 1 ≤ i ≤ 6. It is
easy to see that when u ∉ {vH , y1}, dG′′(u) ≥ 3. Thus, G′′ is not one of G1,G2 and G3. When |V (G′′)| = 4,G′′ has at least one
4+-vertex, which implies that G′′ is not G4. When |V (G′′)| = 5,G∗ has at least two 4+-vertices and no vertex of degree 2.
This shows that G′′ is not one of G5 and G6. This contradiction shows that |V (G′′)| = 6. Since G′′ has at least four 4+-vertices,
by Lemma 3.4, G′′ is Z3-connected and so is G, a contradiction.

Thus, d7 = 4. Since the number of vertices of odd degree is even, d(x) = 2. Let N(x) = {u1, u2} such that dG[Y ](u1) =

dG[Y ](u2) = 3. If u1u2 ∈ E(G∗), then G′
= G − x ∈ F . By Lemma 3.5, G′ is Z3-connected or G′ can be Z3-reduced to K3. Since

G is not Z3-connected, by Lemma 2.2, G′ is not Z3-connected. So G′ can be Z3-reduced to K3, which is contrary to the fact that
each vertex of G′ is 3+-vertex.

Thus, u1u2 ∉ E(G′). Then u2 ∉ N(u1). Let G′′
= G′

− u1. Then |V (G′′)| = 6 and G′′ has two vertices of degree 4
and four vertices of degree 3. It implies that G′′

∈ F . By Lemma 3.4, G′′ is G9 or G11. When G′′
= G9, by symmetry, G′

is G′′
∪ {u2v4, u2v5, u2v6} or G′′

∪ {u2v3, u2v5, u2v6}. In both cases, let G∗
= G′

[v6v1,v6v2]
. When G′′ is G11, by symmetry,

G′
= G′′

∪ {u2v1, u2v3, u2v4}. Let G′

[v2v3,v2v4]
. We contract all 2-cycle obtained in the process and G∗ is Z3-reduced to K1,

which is Z3-connected. By Lemma 2.4, G′ is Z3-connected and so is G, a contradiction. �

4. The proof of Theorem 1.4

Throughout this section, we assume that G ∈ F on n ≥ 9 vertices and X = XG. We argue by contradiction, and assume
that there exists a graph G ∈ F such that

G is a counterexample to Theorem 1.4 (2)
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subject to (2)

|V (G)| is minimized. (3)

In order to complete the proof of Theorem 1.4, we establish some lemmas. The following Lemmas 4.1 and 4.2, Corollary 4.3,
Lemmas 4.4–4.10 have the same hypotheses of Theorem 1.4. By Lemmas 2.2 and 2.3(1), the following lemma is
straightforward.

Lemma 4.1. Let H be a maximal nontrivial Z3-connected subgraph of G and let G∗
= G/H. Then

(1) If |V (H) ∩ X | ≥ 2, then X ⊆ V (H).
(2) For each vertex v ∈ V (G) − V (H), e(v,H) ≤ 1. Moreover, for each vertex v ∈ V (G) − (V (H) ∪ X), dG∗(v) >

|V (G∗)|

2 .

Lemma 4.2. If n ≥ 9, then G does not contain a nontrivial Z3-connected subgraph H.

Proof. Suppose that our lemma fails and let H be a maximal Z3-connected subgraph of G. Denote G∗
= G/H and let vH be

the vertex of G∗ obtained by contracting H .
We claim that G∗

∈ F . By Lemma 3.1, it is sufficient to show that XG∗ is a complete subgraph of G∗. If |V (H) ∩ X | ≥ 2, by
Lemma 4.1, X ⊆ V (H) and for each vertex v ∈ V (G∗) − {vH}, dG∗(v) ≥

|V (G∗)|

2 . Thus, XG∗ ⊆ {vH} and G∗
∈ F . Thus, assume

that |V (H) ∩ X | ≤ 1. If |V (H) ∩ X | = 1, then |X | ≤ 4, for otherwise the subgraph induced by V (H) ∪ X is Z3-connected,
contrary to the choice of H . In this case, vH ∈ XG∗ and XG∗ ⊆ X . Thus, XG∗ is a complete subgraph of G∗. By Lemma 4.1,
G∗

∈ F .
It remains for us to show that V (H) ∩ X = ∅. Let k = |V (H)|. We claim that k ≤

n
2 . Suppose otherwise that k > n

2 . If
v ∈ V (G) − (V (H) ∪ X), then dG(v) ≥

n
2 . Since k > n

2 , |V (G) − V (H)| < n
2 . Thus, v has at least two neighbors in H . This

contradicts to that e(v,H) ≤ 1 by Lemma 4.1(2). This contradiction proves that V (G) = (V (H)∪X). Thus, G is Z3-connected
or G can be Z3-reduced to one of G1,G3,G4 and G5, contrary to (2).

Thus, k ≤
n
2 . In this case, dG∗(vH) ≥ k n

2 − k(k − 1). When k ≤
n
2 and k ≥ 1,

k
n
2

− k(k − 1) −
n − k + 1

2
= (k − 1)

n
2

− k


+
k − 1
2

≥ 0.

Thus, dG∗(vH) ≥
n−k+1

2 . This means that XG∗ ⊆ X and hence XG∗ is a complete subgraph of G∗ and G∗
∈ F .

By the choice of G,G∗ is Z3-connected or G∗ is isomorphic to Gi, where 1 ≤ i ≤ 22, or G∗ can be Z3-reduced to one of
G1,G3,G4 and G5. If G∗ is Z3-connected, by Lemma 2.2 G is Z3-connected, contrary to (2). If G∗ can be Z3-reduced to one of
G1,G3,G4 and G5, so is G, contrary to (2). If G∗ is one of Gi, where 1 ≤ i ≤ 22, let D = {v : d(v) ≤ 4}. n ≥ 9 implies that if
v ∈ D, then v ∈ X . Moreover, all vertices of D except one vertex form a K|D|−1 in Gi (vH may be in D). It means that G∗ is one
of G1,G3,G4 and G5. Thus, G can be Z3-reduced to one of G1,G3,G4 and G5, contrary to (2). �

When |X | ≥ 5,G[X] is a Z3-connected subgraph. We obtain the following corollary immediately from Lemma 4.2.

Corollary 4.3. |X | ≤ 4.

A K−

4 ofG is a distinguished K−

4 if it is induced by the union of two triangles uu1u2 and u1u2w with u ∉ X and the vertex u is
called a distinguished vertex of it. For such a distinguished K−

4 of G, define G′
= G[uu1,uu2] and let G0 = G′/H be a Z3-reduction

of G′, where H is Z3-connected and contains a 2-cycle (u1, u2). In order to prove that G0 ∈ F , by Lemma 4.1, we only need
to show that XG0 is a complete subgraph of G0. By Lemma 4.1, we only consider whether u, vH and x are in XG0 , where x ∈ X
in the following lemmas.

Lemma 4.4. Suppose that n ≥ 9 and G0 = G′/H is a Z3-reduction of G′
= G[uu1,uu2], where H is Z3-connected. Then each of the

following holds.

(1) If |V (H)| ≥ 5 and u ∉ V (H), then dG0(u) ≥
|V (G0)|

2 , and
(2) G0 is 2-edge-connected.

Proof. (1) When |V (H)| ≥ 5, |V (G0)| ≤ n − 4 and dG0(u) ≥
n
2 − 2 ≥

|V (G0|)
2 .

(2) It is sufficient to show that G′ is 2-edge-connected. Suppose otherwise that G′ is not 2-edge-connected. We define G′′

as follows. G′′
= G′ if G′ is not connected; G′′

= G′
− e if G′ has a cut edge e = xy. Let F1 and F2 be the two components of G′′

such that u ∈ V (F1) and u1, u2 ∈ V (F2).
Suppose thatG′ is not connected. Since n ≥ 9, d(u) ≥ 5 implies that dF1(u) ≥ 3. Assume first that both F1 and F2 contain a

vertex not in X∪{u}. Then F1 contains a vertex v ∈ V (G)−(X∪{u}). Since d(v) ≥
n
2 , |V (F1)| ≥

n
2 +1. Similarly, |V (F2)| ≥

n
2 .

Thus, n ≥ |V (F1)| + |V (F2)| ≥ n + 1, a contradiction.
Thus, either F1 or F2 does not contain any vertex in V (G) − (X ∪ {u}). In the former case, since F1 does not contain any

vertex in V (G) − (X ∪ {u}), V (F1) ⊆ X ∪ {u}. Note that G′ is not connected, V (F1) = X ∪ {u}. Thus, each vertex in F2 is in
V (G)−X . Since dF2(u1) ≥

n
2 −1 ≥ 4, u1 has a neighbor z ∈ V (F2) such that e(z, F1) = 0. From dF2(z) ≥ 5, |V (F2)| ≥ 6. Then
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F2 contains atmost two vertices of degree at leastmax{ n
2 −1, 4} and others has degree at leastmax{ n

2 , 5}. Theorem1.3 shows
that F2 is Z3-connected, contrary to Lemma 4.2. In the later case, for each vertex v in F1 − u, d(v) ≥

n
2 and dF1(u) ≥

n
2 − 2.

Applying Theorem 1.3 to F1, similarly, F1 is Z3-connected, contrary to Lemma 4.2.
Suppose then that G′ has a cut edge e = xy. Assume that both F1 and F2 contain a vertex not in X ∪ {u}. We claim that

|V (F1)| ≥
n
2 +1. If F1 contains such a vertex v and v ≠ x, then dF1(v) ≥

n
2 and |V (F1)| ≥

n
2 +1. If F1 contains only one such a

vertex and v = x, then dF1(v) ≥
n
2 −1. Since n ≥ 9, dF1(v) ≥ 4. Note that |X | ≤ 4. When each neighbor of v is in X , we have

dF1(v) = 4, |X | = 4 and n = 8, 9, F1 contains a K5 which is Z3-connected by Lemma 2.3(1), contrary to Lemma 4.2. Thus, v
has a neighbor v′ not in X . If v′

≠ u, e(v′, F2) = 0 and dF1(v
′) ≥

n
2 and |V (F1)| ≥

n
2 + 1; if v′

= u, then dF1(v) = 4, |X | = 3
and e(u, X) ≥ 2. Thus, F1 contains an even wheel W4 which is Z3-connected by Lemma 2.3(4), contrary to Lemma 4.2.

Suppose that F2 contains a vertex z not in X . When z ∉ {y, u1, u2} or z ∈ {u1, u2} − ywhere y ∈ {u1, u2}, dF2(z) ≥
n
2 − 1

and |V (F2)| ≥
n
2 . In this case, n ≥ |V (F1)| + |V (F2)| ≥ n + 1, a contradiction. Thus, z = y = u2 and u1 ∈ X and

V (F2) − z ⊆ X . Since dF2(z) ≥
n
2 − 2 ≥ 3, |X | ≥ 3. On the other hand, |X | ≤ 4. Then F2 = K4 or K−

5 . By Lemmas 2.3(1) and
4.2, F2 = K4, d(z) = 5 and n = 9, 10. Each vertex (≠ u) in F1 has degree at least max{ n

2 , 5} and |V (F1)| = 5, 6. Since G is
simple, |V (F1)| = 6. Theorem 1.3 proves that F1 is Z3-connected, contrary to Lemma 4.2.

It remains that one of F1 and F2 does not contain any vertex in V (G) − (X ∪ {u}). If F1 does not contain any vertex in
V (G) − (X ∪ {u}), then dF1(u) ≥ 3 and |V (F1)| ≥ 4. Note that G[X] is a complete graph. Since xy is a cut edge G, y ∉ X .
This implies that each vertex in F2 is in V (G) − X and has degree at least max{ n

2 − 1, 4} except one when y ∈ {u1, u2}. By
Theorem 1.3, F2 is Z3-connected, contrary to Lemma 4.2. The proof is similar for the casewhen F2 does not contain any vertex
in V (G) − (X ∪ {u}). �

Lemma 4.5. Suppose that n ≥ 9. If G contains a distinguished K−

4 and X ∩ V (K−

4 ) = ∅, then G0 ∈ F or G0 is one of G1,G3,G4
and G5.

Proof. Our proof is divided in to two parts. In first part, we show that if G satisfies the hypothesis of our lemma, we find a
distinguished K−

4 , which is the union of two triangles uu1u2 and wu1u2 and V (K−

4 ) ∩ X = ∅ such that G′
= G[uu1,uu2] and

G0 = G′/H such that either |V (H)| ≥ 5 or dG0(u) ≥
|V (G0)|

2 ; in second part, we show G0 ∈ F . Let K be the given subgraph of
G such that such a K−

4 is a subgraph of K , V1 = V (K) = {v1, v2, v3, v4}, and {v1v2, v2v3, v1v3, v2v4, v3v4} ⊆ E(K).
Case 1. v1v4 ∈ E(G).

In this case, the subgraph induced by V1 is a K4. We claim that there is a vertex v0 ∉ V1 such that e(v0, V1) ≥ 2. Suppose
otherwise that for each vertex v ∉ V1, e(v, V1) ≤ 1. Then n−4 ≥ e(V1, V (G)−V1) = d(v1)+d(v2)+d(v3)+d(v4)−12 ≥

2n − 12, which implies that n ≤ 8. This contradicts that n ≥ 9. Thus, we assume that e(v0, V1) ≥ 2. It follows from
Lemmas 2.3 and 4.2 that e(v0, V1) = 2. We assume, without loss of generality, that v0v1, v0v2 ∈ E(G).

In this case, we further claim that there is one vertex u0 ∈ V (G) − ({v0} ∪ V1) such that e(u0, V1) ≥ 2 for otherwise
we have n − 5 ≥ d(v1) + d(v2) + d(v3) + d(v4) − 3 − 3 − 4 − 4 ≥ 4⌈ n

2⌉ − 14. When n is even, this inequality implies
that n ≤ 8; when n is odd; this inequality implies n ≤ 7. Both cases contradicts assumption that n ≥ 9. Thus, when n ≥ 9,
such a vertex u0 exists. Note that d(v3) ≥ 5 and d(v4) ≥ 5. We defineG as follows. If u0v3 ∉ E(G), letG = G[v3v1,v3v2]; If
u0v4 ∉ E(G), letG = G[v4v1,v4v2]. Thus, assume that u0v3, u0v4 ∈ E(G). If u0, v0 ∈ X , by Lemma 3.1, then u0v0 ∈ E(G). In
this case,G = G[v4v1,v4v2]. Thus, we say u0 ∉ X or v0 ∉ X . If u0 ∉ X , letG = G[u0v3,u0v4]; if v0 ∉ X , letG = G[v0v1,v0v2]. Let
G0 = G/H be a Z3-reduction ofG, where H is Z3-connected with |V (H)| ≥ 5 and contains a 2-cycle. By Lemma 4.4, G0 is
2-edge connected.
Case 2. v1v4 ∉ E(G).

We claim that there is a vertex v0 ∉ V1 such that either e(v0, {v1, v2, v3}) ≥ 2 or e(v0, {v2, v3, v4}) ≥ 2. Suppose
otherwise that for each vertex v ∉ V1, both e(v, {v1, v2, v3}) ≤ 1 and e(v, {v2, v3, v4}) ≤ 1. ThenN(v2)∩N(v3)−{v1, v4} =

∅ and |N(v2) ∪ N(v3)| = |N(v2)| + |N(v3)| − |N(v2) ∩ N(v3)| ≥ n − 2. It follows that n − |N(v2) ∪ N(v3)| ≤ 2. Since
|N(v2) ∩ N(v4) − {v3}| ≤ 0 and |N(v3) ∩ N(v4) − {v2}| ≤ 0,N(v4) ⊆ (V (G) − (N(v2) ∪ N(v3) ∪ {v1})) ∪ {v2, v3} and
d(v4) ≤ 4 and hence n ≤ 8, contrary to that n ≥ 9. By symmetry, assume that there exists v0 such that v0v3, v0v4 ∈ E(G)
or v0v2, v0v3 ∈ E(G).

We prove here for the case when v0v3, v0v4 ∈ E(G). The proof for the case when v0v2, v0v3 ∈ E(G) is similar. Suppose
first that v2v0 ∈ E(G). By Lemmas 2.3 and 4.2, v0v1 ∉ E(G). If v0 ∉ X , then we get a K4 induced by v2, v3, v4 and v0, that is
Case 1. Thus, assume that v0 ∈ X . We claim that there is no vertex w ∉ V1 ∪ {v0} such that wv1 ∈ E(G) and wv4 ∈ E(G).
Otherwise, suppose such a vertex exists. Ifw ∉ X , letG = G[wv1,wv4] and let G0 = G/H , which contains a K−

5 and |V (H)| ≥ 5.
Thus, v0, w ∈ X , by Lemma 3.1, wv0 ∈ E(G). In this case, letG = G[v2v3,v2v4]. Thus, for each vertex w, either wv1 ∉ E(G) or
wv4 ∉ E(G). Similarly, for each vertex w, either wv0 ∉ E(G) or wv1 ∉ E(G). We claim that there is a vertex u0 such that
e(u0, {v0}∪V1) ≥ 2. Otherwise,we have n−5 ≥ d(v1)+d(v2)+d(v3)+d(v4)+d(v0)−3−2−4−4−3 ≥ 2n−13+d(v0)−3.
Since d(v0) ≥ 3, n ≤ 8, contrary to that n ≥ 9. Thus, such a vertex u0 exists. If u0v1 ∈ E(G), then u0v3 ∈ E(G) by symmetry.
When u0 ∉ X , then let G = G[u0v1,u0v3]; when u0 ∈ X , then u0v0 ∈ E(G) and let G = G[v2v4,v3v4]. If u0v1 ∉ E(G), letG = G[v1v2,v1v3].

Suppose then that v2v0 ∉ E(G). In this case, v0v1 ∉ E(G) for otherwise G contains an even wheel W4 with the center at
v3, which is Z3-connected by Lemma 2.3(4), contrary to Lemma 4.2. We claim that there is a vertex u1 ∉ {v0} ∪ V1 such that
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e(u1, V1) ≥ 2. Otherwise, we have n− 5 ≥ d(v1) + d(v2) + d(v3) + d(v4) − 3− 3− 4− 2 ≥ 2n− 12, which implies n ≤ 7,
contrary to that n ≥ 9. Thus, such a vertex u1 exists. If v0 ∉ X , letG = G[v0v3,v0v4]. Thus, assume that v0 ∈ X . If u1 ∈ X , then
v0u1 ∈ E(G) by Lemma 3.1. If u1v4 ∈ E(G), letG = G[v1v2,v1v3]; if u1v4 ∉ E(G), letG = G[v4v2,v4v3]. Thus, u1 ∉ X . In this case,
if v1u1 ∉ E(G), letG = G[v1v2,v1v3]. Thus, u1v1 ∈ E(G). Let u1vj ∈ E(G) for j = 2, 3, 4. If u1v4 ∉ E(G), letG = G[u1v1,u1vj].
Thus u1 ∉ X and u1v1, u1v4 ∈ E(G). In this case, we claim that there is a vertex u2 ∉ {u1, v0} ∪ V1 such that e(u2, V1) ≥ 2.
Otherwise, we have n− 6 ≥ d(v1) + d(v2) + d(v3) + d(v4) − 3− 3− 4− 4 ≥ 2n− 14, which implies that n ≤ 8, contrary
to that n ≥ 9. Thus such a vertex u2 exists. Similarly, we have u2 ∉ X and u2v1, u2v4 ∈ E(G). Define G′

= G[u1v1,u1v4] and
then defineG = G′

[u2v1,u2v4]
. In all cases above, let G0 = G/H , where H is the maximal Z3-subgraph containing the 2-cycle inG. It is easy to see that |V (H)| ≥ 5. So far we have completed the first part of our proof.

From now on we show the second part of our proof. For simplicity, we assume thatG = G[uu1,uu2] with uu1, uu2 ∈ E(G).
From our definition of G, let G0 = G/H be a Z3-reduction of G, where H is Z3-connected, contains a 2-cycle (u1, u2) and
|V (H)| ≥ 5. By Lemma 4.4, we only consider whether vH and x ∈ X are in XG0 .

Suppose that V (H)∩X ≠ ∅. If |V (H)∩X | ≥ 2, by Lemma 4.1, X ⊆ V (H). Thus, XG0 contains atmost vH , that is, XG0 ⊆ {vH}.
If |V (H) ∩ X | = 1, then vH ∈ X and XG0 ⊆ X . In both cases, by Lemma 4.4, G0 ∈ F .

Thus, we assume that V (H) ∩ X = ∅. Suppose that k = |V (H)| ≤
n
2 − 1. Since

k
n
2

− k(k − 1) − 2 −
n − k + 1

2
= (k − 1)

n
2

− k


+
k − 5
2

≥ 0,

dG0(vH) ≥
n−k+1

2 . It follows that vH ∉ XG0 , XG0 ⊆ X and hence G0 ∈ F .
Suppose that k ≥

n
2 . We claim that there is no vertex v ∈ V (G) − (V (H) ∪ X). Suppose otherwise such a vertex v exists.

It follows that dG0(v) = dG(v) ≥
n
2 , which implies that e(v,H) ≥ 2, contrary to Lemma 4.1. This contradiction shows that

V (G) = X ∪ V (H). It follows that V (G0) = X ∪ {vH} and hence u ∈ V (H). By Corollary 4.3, |X | ≤ 4.
When |X | = 4, by Lemma 4.4, eG0(vH , X) ≥ 2. We claim that eG0(vH , X) = 2. Otherwise G0 contains a K−

5 which is
Z3-connected. By Lemmas 2.2 and 2.4,G is Z3-connected, contrary to (2). Thus,G0 isG5. When 2 ≤ |X | ≤ 3, 2 = eG0(vH , X) ≤

|X | since V (H) ∩ X = ∅. G0 is one of G1,G3 and G4. �

Lemma 4.6. If n ≥ 9 and |X | = 1, then G contains a distinguished K−

4 . Moreover, G0 ∈ F or G0 is one of G1,G3,G4 and G5.

Proof. Define G∗
= G − X and X = {x}. Assume that dG(x) = t ≥ 2. It follows that

v∈V (G∗)

dG∗(v) ≥ t
n
2

− 1


+ (n − t − 1)
n
2

=
n2

− n
2

− t.

Since t ≤
n−1
2 , |E(G∗)| ≥ ( n−1

2 )2. By Theorem 2.1, G∗ contains a triangle or is isomorphic to Km,m. In the later case, since
n ≥ 9,m ≥ 5. By Lemma 2.3, G∗ is Z3-connected. Since G is 2-edge connected, by Lemma 2.2, G is Z3-connected, contrary to
(2). In the former case, let v1v2v3 be a triangle of G∗.

We claim that there is a vertex u ∈ V (G) − {v1, v2, v3} such that e(u, {v1, v2, v3}) ≥ 2. Suppose otherwise that for each
vertex u ∈ V (G) − {v1, v2, v3}, e(u, {v1, v2, v3}) ≤ 1. In this case, n − 3 ≥ d(v1) + d(v2) + d(v3) − 6 ≥ 3( n

2 ) − 6, which
implies that n ≤ 6, contrary to that n ≥ 9. We assume, without loss of generality, that uv1, uv2 ∈ E(G).

If u ≠ x,G∗ contains a distinguished K−

4 induced by v1, v2, v3 and u with distinguished vertex u. By Lemma 4.5,
G0 ∈ F or G0 is one of G1,G3,G4 and G5. Thus, u = x and hence G contains a distinguished K−

4 induced by v1, v2, v3
and x with distinguished vertex v3. If xv3 ∈ E(G), define G′

= G[v3v1,v3v2] and let G0 be a Z3-reduction of G′. In this
case, v3x ∈ E(G0) and XG0 ⊆ {v3, x} and XG0 is a complete subgraph of G0. If v3x ∉ E(G0), we claim that there is a
vertex u0 ∉ {x, v1, v2, v3} such that e(u0, {v1, v2, v3}) ≥ 2. Suppose otherwise that such a vertex does not exist. Then
n− 4 ≥ d(v1) + d(v2) + d(v3) − 6− 2 ≥ 3( n

2 ) − 8, which implies that n ≤ 8, contrary to that n ≥ 9. Thus, such a vertex u0

exists and u0 ∉ X . So the distinguished K−

4 induced by v1, v2, v3 and u0 with the distinguished vertex u0 is as required. By
Lemma 4.5, G0 ∈ F or G0 is one of G1,G3,G4 and G5. �

In order to prove Lemma 4.10, we establish the following two lemmas.

Lemma 4.7. Suppose that n ≥ 9 and X = {x1, x2, . . . , xt}, where 2 ≤ t ≤ 4. If


i<j |N(xi) ∩ N(xj) − X | ≥ 2, then G contains
a distinguished K−

4 . Moreover, G0 ∈ F or G0 is one of G1,G3,G4 and G5.

Proof. Suppose first that X = {x1, x2} and y1, y2 ∈ N(x1) ∩ N(x2). Then G contains a distinguished K−

4 induced by x1, x2, y1
and y2 with distinguished vertex y1. Let G′

= G[y1x1,y1x2] and G0 = G′/H be a Z3-reduction of G′, where H is Z3-connected. If
y1y2 ∈ E(G), then y1vH ∈ E(G0) or y1 = vH in G0. Moreover, XG0 ⊆ {y1, vH} and G0 ∈ F . Thus, y1y2 ∉ E(G).

If |V (H)| = 3 and d(x1) + d(x2) ≤ 6, let G∗
= G − {x1, x2}. Since n ≥ 9,


v∈V (G∗) d(v) ≥ (n − 4) n

2 + 2( n
2 − 2) > (n−2)2

2 .
By Theorem 2.1, G∗ contains a K3 with vertex set {v1, v2, v3}. We claim that there is a vertex v ∉ {v1, v2, v3, x1, x2} such that
e(v, {v1, v2, v3}) ≥ 2. Suppose otherwise that such a vertex does not exist. Then n−3 ≥ d(v1)+d(v2)+d(v3)−6 ≥ 3( n

2 )−6,
which n ≤ 6, contrary to that n ≥ 9. Thus, G∗ contains a distinguished K−

4 induced by v1, v2, v3 and v with the distinguished
vertex v. By Lemma 4.5, G0 ∈ F or G0 is one of G1,G3,G4 and G5.
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Suppose that |V (H)| = 3 and d(x1) + d(x2) ≥ 7. In this case, dG0(vH) ≥
n
2 − 2 + 1 =

n−|V (H)|+1
2 . Thus XG0 ⊆ {y1}. Thus,

G0 ∈ F .
Nowwe assume that |V (H)| = 4. Let v5 ∈ V (H)−(X∪{y2}). Since n ≥ 9, dG0(vH) = d(y2)+d(v5)+d(x1)+d(x2)−12 ≥

n − 6 ≥
n−3
2 as d(x1) + d(x2) ≥ 6. Thus, dG0(vH) ≥

|V (G0)|
2 . By Lemma 4.4, XG0 ⊆ {y1} and G0 ∈ F . When |V (H)| ≥ 5,

XG0 ⊆ {vH}. Thus, G0 ∈ F .
Suppose then that X = {x1, x2, x3}. As in the proof of Lemma 4.6, there is at least one vertex u ∉ X such that e(u, X) ≥ 2.

We choose y ∈ {u : e(u, X) ≥ 2 and u ∉ X} such that e(y, X) is maximum and let z ∈ N(xa) ∩ N(xb) − (X ∪ {y}), where
a, b ∈ {1, 2, 3}. Without loss of generality, we assume that yx1, yx2 ∈ E(G). In this case, G contains a distinguished K−

4
induced by x1, x2, x3 and u with the distinguished vertex u. Define G′

= G[yx1,yx2] and G0 = G′/H be a Z3-reduction of G′,
where H is Z3-connected and contains a 2-cycle (x1, x2). If


i<j |N(xi)∩N(xj)−X | ≥ 3, then |V (H)| ≥ 5 and hence G0 ∈ F .

If e(y, X) = 3, then vH is adjacent to u or vH = u in G0. Thus, XG0 ⊆ {vH , u} and hence G0 ∈ F . If e(X,G − X) ≥ 5, then
dG0(vH) ≥

n
2 − 2 + 1 ≥

|V (G0)|
2 . Thus, XG0 ⊆ {y} and G0 ∈ F .

Thus,


i<j |N(xi) ∩ N(xj) − X | = 2, e(X,G − X) = 4, e(y, X) = 2 and e(z, X) = 2. In this case, let G∗
= G − X . Then

v∈V (G∗) dG∗(v) ≥ (n − 5) n
2 + 2( n

2 − 2) > (n−3)2

2 . By Theorem 2.1, G∗ contains a triangle v1v2v3. We claim that there is a
vertex u ∈ V (G∗) such that e(u, {v1, v2, v3}) ≥ 2 for otherwisewe have n−6 ≥ dG∗(v1)+dG∗(v2)+dG∗(v3)−6 ≥

3n
2 −6−4,

which implies that n ≤ 8, contrary to that n ≥ 9. Thus, we obtain the distinguished K−

4 induced by v1, v2, v3 and uwith the
distinguished vertex u. By Lemma 4.5, G0 ∈ F or G0 is one of G1,G3,G4 and G5.

Suppose that X = {x1, x2, x3, x4}. By Lemmas 2.3 and 4.2, for each vertex u ∈ V (G) − X such that e(u, X) ≤ 2. Assume
that


i<j |N(xi)∩N(xj)−X | ≥ 2 and y ∈ N(xi)∩N(xj)−X , where i ≠ j, i, j ∈ {1, 2, 3, 4}. In this case, we get a distinguished

K4 induced by xi, xj, xk and ywith the distinguished vertex y, where k ∈ {1, 2, 3, 4} − {i, j}. Let G′
= G[yxi,yxj] and G0 = G′/H

be a Z3-reduction of G′, where H is Z3-connected. In this case, |V (H)| ≥ 5. Thus, dG0(y) ≥
|V (G0)|

2 . It follows that XG0 ⊆ {vH}.
Thus, G0 ∈ F . �

Lemma 4.8. Suppose that n ≥ 9 and G contains a triangle v1v2v3 where vi ∉ X for i = 1, 2, 3. If e(X, {v1, v2, v3}) ≥ |X | + 2,
where 2 ≤ |X | ≤ 3, then G contains a distinguished K−

4 . Moreover, G0 ∈ F .

Proof. Let X = {x1, x2}. We assume, without loss of generality, that e(v1, X) = mini∈{1,2,3} e(vi, X). If e(v1, X) = 0, then
e(X, {v1, v2, v3}) = 4 and e(v2, X) = e(v3, X) = 2. In this case, we get a distinguished K−

4 induced by v3, x1, x2 and v2 with
the distinguished vertex v2. Define G′

= G[v2v3,v2x1]. Then v2vH ∈ E(G0), {x1, x2} ⊆ V (H) and XG0 ⊆ {vH , v2}. Thus, G0 ∈ F .
If e(v1, X) ≥ 1, we assume, without loss of generality, that v1x1, v2x2, x1v3, x2v3 ∈ E(G). In this case, we get a distinguished
K−

4 induced by v1, v2, v3 and x2 with the distinguished vertex v1. Define G′
= G[v1v3,v1v2] and G0 = G′/H be a Z3-reduction

of G′, where H is Z3-connected. In this case, v1vH ∈ E(G0) or vH = v1. Thus, XG0 ⊆ {v1, vH} and G0 ∈ F .
Let X = {x1, x2, x3}. We assume, without loss of generality, that e(v1, X) = mini∈{1,2,3} e(vi, X). If e(v1, X) = 0, we

assume, without loss of generality, that e(v2, X) = 3. In this case, G contains an even wheel W4 induced by X and v2, v3
with the center at v2, which is Z3-connected, contrary to Lemma 4.2. Thus, e(v1, X) ≥ 1. In this case, we may assume
that x3v2, x3v3 ∈ E(G) and hence we get a distinguished K−

4 induced by v1, v2, v3 and x2 with the distinguished vertex v1.
Define G′

= G[v1v2,v1v3] and G0 = G′/H a Z3-reduction of G′, where {x1, x2, x3, v2, v3} ⊆ V (H). In this case |V (H)| ≥ 5. By
Lemma 4.4, XG0 ⊆ {vH} and G0 ∈ F . �

Lemma 4.9. If n ≥ 9 and |X | ≥ 2, then G contains a triangle T such that V (T ) ∩ X = ∅.

Proof. Suppose then that X = {x1, x2, . . . , xs}, where 2 ≤ s ≤ 4. By Corollary 4.3, G[X] is a complete subgraph of G. Let
G∗

= G−X . Let dG(xk) = tk1 ≤ k ≤ |X |. By Lemma 4.7, let ϵ =


i<j |N(xi)∩N(xj)−X | ≤ 1. Since tk ≤
n−1
2 for 1 ≤ k ≤ |X |,

v∈V (G∗)

dG∗(v) ≥ ((n − |X | − ϵ) − (t1 + · · · + t|X | − 2(|E(G[X])| + ϵ)))
n
2

+ (t1 + · · · + t|X | − 2(|E(G[|X |])| + ϵ))
n
2

− 1


+ ϵ
n
2

− 2


=
n(n − |X |)

2
− (t1 + · · · + t|X |) + 2|E(G[X])|

≥
(n − |X |)2

2
+

|X |
2
− |X |

2
,

which implies that |E(G∗)| >
(n−|X |)2

4 since 2 ≤ |X | ≤ 4. By Theorem 2.1, G∗ contains a triangle T . �

Lemma 4.10. If n ≥ 9 and 2 ≤ |X | ≤ 4, then G contains a distinguished K−

4 . Moreover, G0 ∈ F or G0 is one of G1,G3,G4
and G5.

Proof. By Lemma 4.9, G contains a triangle T = v1v2v3 such that V (T ) ∩ X = ∅. We claim that there is a vertex
u ∉ X ∪ V (T ) such that the K−

4 induced by v1, v2, v3 and u is distinguished. Suppose otherwise that such a vertex does
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not exist. When X = {x1, x2}, by Lemma 4.8, e(X, T ) ≤ 3. Thus, n − 5 ≥ d(v1) + d(v2) + d(v3) − 6 − 3 ≥ 3 n
2 − 9,

which implies that n ≤ 8, contrary to our assumption that n ≥ 9. When X = {x1, x2, x3}, by Lemma 4.8, e(X, T ) ≤ 4. Thus,
n− 6 ≥ dG(v1) + dG(v2) + dG(v3) − 6− 4 ≥ 3( n

2 ) − 10, which implies that n ≤ 8, a contradiction. In both cases, G contains
a distinguished K−

4 induced by v1, v2, v3 and u. By Lemma 4.5, G0 ∈ F or G0 is one of G1,G3,G4 and G5.
Let X = {x1, x2, x3, x4}. We claim e(T , X) ≤ 3. Suppose otherwise that e(T , X) ≥ 4. Note that e(v, X) ≤ 2 for

each vertex v ∈ V (T ) by Lemma 2.3(1). We assume, without loss of generality, that v1 is a vertex of T such that
e(v1, X) = minv∈V (T ) e(v, X). If there is a vertex, say x1, in X such that x1v2, x1v3 ∈ E(G), then G contains a distinguished K4
induced by v1, v2, v4 and x1 with the distinguished vertex v1. Thus, each vertex of X has one neighbor in T . We may assume
v1x1, v1x2, v2x3, v3x4 ∈ E(G) and henceG contains a distinguished K−

4 induced by v1, x1, x2, x3 with the distinguished vertex
v1. In both cases, defineG′

= G[v1v2,v1v3]. LetG0 = G′/H a Z3-reduction ofG′, whereH is Z3-connected. In this case, |V (H)| ≥ 4
(H has 2-cycle). It implies that dG0(v1) ≥

|V (G0)|
2 and XG0 ⊆ {vH}. Thus, G0 ∈ F .

We now claim that there exist 1 ≤ i < j ≤ 3 such that u ∈ N(vi) ∩ N(vj) − (V (T ) ∪ X). Otherwise we have n − 7
≥ dG(v1) + dG(v2) + dG(v3) − 6 − 3 ≥ 3 n

2 − 9. It implies that n ≤ 6, contrary to that n ≥ 9. Then G contains a
distinguished K−

4 induced by u, v1, v2 and v3 such that {u,v1, v2, v3}∩X = ∅. By Lemma 4.5,G0 ∈ F orG0 is one ofG1,G3,G4
and G5. �

Proof of Theorem 1.4. Assume that G is one of G1, . . . ,G22 or G can be Z3-reduced to Gi, where i ∈ {1, 3, 4, 5}. We will
show that G is not Z3-connected. By Lemma 2.9, none of G1, . . . ,G22 is Z3-connected. Assume that G can be Z3-reduced to Gi
for i ∈ {1, 3, 4, 5}. We claim that G is not Z3-connected. Suppose otherwise that G is Z3-connected. Let X ⊂ E(G) such that
Gi = G/X . By Lemma 2.2(2), Gi is Z3-connected, contrary to Lemma 2.9.

Conversely, assume that G is not Z3-connected. By contradiction, suppose that G satisfies (2) and (3). By Lemmas 3.3–3.6,
n ≥ 9. By Corollary 4.3, |X | ≤ 4. By Lemmas 4.6 and 4.10, G contains a K−

4 which is the union of two triangles uv1v2 and
v1v2w. Let G′

= G[uv1,uv2] and let G0 = G′/H , where H is a Z3-connected subgraph of G′ and contains a 2-cycle (v1, v2).
Then either G0 ∈ F and |V (G0)| < |V (G)| or G0 is one of G1,G3,G4 and G5. In the former case, by the choice of G,G0 is
Z3-connected or G0 is one of Gi, where 1 ≤ i ≤ 22, or G0 can be Z3-reduced to one of G1,G3,G4 and G5. If G0 is Z3-connected,
by Lemma 2.4, G is Z3-connected, contrary to (2).

Assume that G0 is one of Gi, where 1 ≤ i ≤ 22. Note that n ≥ 9. If d(v) ≤ 4, then v ∈ X . Let D = {v ∈ V (G) : d(v) ≤ 4}.
Since G is connected, all vertices of degree at most 4 in Gi except vH are in D, where 1 ≤ i ≤ 22. It implies that G
contains a complete graph K|D|−1. Thus, G0 is one of G1,G3,G4 and G5. This means that G can be Z3-reduced to G1,G3,G4
and G5.

Suppose that G0 can be Z3-reduced to one of G1,G3,G4 and G5. If u ∈ V (H), then G can be Z3-reduced to one of G1,G3,G4
and G5. Thus, assume that u ∉ V (H), that is, vH and u are two different vertices of G0. Since u ∉ X and n ≥ 9, d(u) ≥ 5 and
dG0(u) ≥ 3. This implies that G0 cannot be Z3-reduced to G1. One notes that all vertices of Gi, where 3 ≤ i ≤ 5 have degree
less than 5. Since n ≥ 9, dG(v) ≥ 5 for each vertex v ∈ V (G)−X . Thus, dG′(v) ≥ 5 for each vertex v ∈ V (G′)− (X ∪{u, vH}).
It follows that each vertex in Gi, i = 3, 4, 5, is vH or u or belongs to XG.

When G0 is G3 or G5, vH is the vertex of degree 2 in Gi, i = 3, 5. By Corollary 4.3, H does not contains any vertex in XG.
When G0 is G3, dG0(u) = 3, which implies that dG(u) = 5 and n = 9 or 10. Thus, 6 ≤ |V (H)| ≤ 7.When G0 is G5, dG0(u) = 4,
which implies that dG(u) = 6, n = 11 or 12 and 7 ≤ |V (H)| ≤ 8. In both cases, V (H) ∩ XG = ∅ and e(H,G − V (H)) = 4.
Let H∗

= H − v1v2. Then H∗ is a subgraph of G. When G0 is G3, by computing the sum of degrees of all vertices in H∗,H∗

contains at most one vertex of degree 3 and at least one vertex of degree 5+; when G0 is G5, by computing the sum of
degrees of all vertices in H∗,H∗ contains at most one vertex of degree 4 and all others of degree 5+. This means that H∗

satisfies the Ore-condition. By Theorem 1.3, H∗ is Z3-connected or H∗ is one of Gi, where 1 ≤ i ≤ 12. In the later case, for
each case,H∗ contains at least one 5+-vertexwhileGi has no 5+-vertex, a contradiction. In the former case, we contractH∗ in
G,G/H∗ contains a 2-cycle (vH∗ , u) and we continue to contract 2-cycles. Eventually, we obtain a K1 which is Z3-connected.
By Lemma 2.4, G is Z3-connected, contrary to (2).

Thus, assume that G0 can be Z3-reduced to G4. Let V (G4) = {w1, w2, w3, w4}, w1 = vH , w2 = u. Since dG4(w2) =

dG0(u) = 3, dG(u) = 5. This implies that 9 ≤ n ≤ 10. Thus 6 ≤ |V (H)| ≤ 7. w3, w4 ∈ XG. By Lemma 3.1, H contains at most
one vertex of XG.

If H contains exactly one vertex x of XG, then xw3, xw4 ∈ E(G). Since dG(x) ≤ 4, dH(x) ≤ 2. Let G∗
= G−{x, w2, w3, w4}.

Then for each vertex z of G∗, dG∗(z) ≥ 3 and |V (G∗)| ≤ 6. Thus, G∗ satisfies the Ore-condition. By Theorem 1.3, G∗

is Z3-connected or G∗ is Gi, where 1 ≤ i ≤ 12. Since G∗ has either at least four 4+-vertices or three 4+-vertices and at
least one 5+-vertex, G∗ is none of Gi, 1 ≤ i ≤ 12. Thus, G∗ is Z3-connected. It implies that G is Z3-connected, contrary
to (2).

Thus, H contains no vertex in XG. If H contains one vertex x such that xw2, xw3, xw4 ∈ E(G), let G∗
= G − {w3, w4}.

It is easy to verify that G∗ satisfies the Ore-condition. If H has no such a vertex, let G∗
= G − {w2, w3, w4}. In this case,

let xw4 ∈ E(G). Then either xw3 ∈ E(G) or xw3 ∉ E(G). In both cases, G∗ contains at most one 3+-vertex and others are
4+-vertices. It is easy to see that |V (G∗)| ≤ 7 and G∗ is 2-edge-connected. By Theorem 1.3, G∗ is Z3-connected or G∗ is one
of Gi, where 1 ≤ i ≤ 12. Since G contains at least one 5+-vertex and four 4+-vertices or at least two 5+-vertices and three
4+-vertices, G∗ is not one of Gi, 1 ≤ i ≤ 12. Thus, G∗ is Z3-connected. Since G/H∗ contains 2-cycles, G can be Z3-reduced to
K1 which is Z3-connected. By Lemma 2.4, G is Z3-connected, contrary to (2). �
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