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a b s t r a c t

The well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes
graphs with k edge-disjoint spanning trees. Edmonds generalizes this theorem tomatroids
with k disjoint bases. For any graph G thatmay not have k-edge-disjoint spanning trees, the
problem of determining what edges should be added to G so that the resulting graph has
k edge-disjoint spanning trees has been studied by Haas (2002) [11] and Liu et al. (2009)
[17], among others. This paper aims to determine, for a matroidM that has k disjoint bases,
the set Ek(M) of elements inM such that for any e ∈ Ek(M),M − e also has k disjoint bases.
Using thematroid strength defined by Catlin et al. (1992) [4], we present a characterization
of Ek(M) in terms of the strength ofM . Consequently, this yields a characterization of edge
sets Ek(G) in a graph G with at least k edge-disjoint spanning trees such that ∀e ∈ Ek(G),
G− e also has k edge-disjoint spanning trees. Polynomial algorithms are also discussed for
identifying the set Ek(M) in a matroidM , or the edge subset Ek(G) for a connected graph G.

© 2012 Published by Elsevier B.V.

1. Introduction

The number of edge-disjoint spanning trees in a network, when modeled as a graph, often represents certain strength of
the network [8]. The well-known spanning tree packing theorem of Nash-Williams [18] and Tutte [23] characterizes graphs
with k edge-disjoint spanning trees, for any integer k > 0. For any graph G, the problem of determining which edges should
be added to G so that the resulting graph has k edge-disjoint spanning trees has been studied; see [11,17], among others.
However, it has not been fully studied that for an integer k > 0, if a graph G has k edge-disjoint spanning trees, what kind of
edge e ∈ E(G) has the property that G− e also has k-edge-disjoint spanning trees. The research of this paper is motivated by
this problem. In fact, we will consider the problem that, if a matroidM has k disjoint bases, what kind of element e ∈ E(M)
has the property thatM − e also has k disjoint bases.

We consider finite graphs with possible multiple edges and loops, and follow the notation of Bondy and Murty [1] for
graphs, and Oxley [19] or Welsh [24] for matroids, except otherwise defined. Thus for a connected graph G, ω(G) denotes
the number of components of G. For a matroidM , we use ρM (or ρ, when the matroidM is understood from the context) to
denote the rank function ofM , and E(M), C(M) and B(M) to denote the ground set ofM , and the collections of the circuits
and the bases of M , respectively. Furthermore, if M is a matroid with E = E(M), and if X ⊂ E, then M − X is the restricted
matroid of M obtained by deleting the elements in X from M , and M/X is the matroid obtained by contracting elements in
X from M . As in [19,24], we use M − e forM − {e} and M/e for M/{e}.
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The spanning tree packing number of a connected graph G, denoted by τ(G), is the maximum number of edge-disjoint
spanning trees in G. A survey on spanning tree packing number can be found in [20]. By definition, τ(K1) = ∞. For a
matroid M , we similarly define τ(M) to be the maximum number of disjoint bases of M . Note that by definition, if M is a
matroid with ρ(M) = 0, then for any integer k > 0, τ (M) ≥ k. The following theorems are well known.

Theorem 1.1 (Nash-Williams [18] and Tutte [23]). Let G be a connected graph with E(G) ≠ ∅, and let k > 0 be an integer. Then
τ(G) ≥ k if and only if for any X ⊆ E(G), |E(G − X)| ≥ k(ω(G − X) − 1).

Theorem 1.2 (Edmonds [9]). Let M be a matroid with ρ(M) > 0. Then τ(M) ≥ k if and only if ∀X ⊆ E(M), |E(M) − X | ≥

k(ρ(M) − ρ(X)).

LetM be a matroid with rank function r . For any subset X ⊆ E(M) with ρ(X) > 0, the density of X is

dM(X) =
|X |

ρM(X)
.

When thematroidM is understood from the context,we often omit the subscriptM .We also use d(M) for d(E(M)). Following
the terminology in [4], the strength η(M) and the fractional arboricity γ (M) ofM are respectively defined as

η(M) = min{d(M/X) : ρ(X) < ρ(M)}, and γ (M) = max{d(X) : ρ(X) > 0}.

Thus Theorem 1.2 above indicates that

τ(M) = ⌊η(M)⌋. (1)

For an integer k > 0 and a matroid M with τ(M) ≥ k, we define Ek(M) = {e ∈ E(M) : τ(M − e) ≥ k}. Likewise, for
a connected graph G with τ(G) ≥ k, Ek(G) = {e ∈ E(G) : τ(G − e) ≥ k}. Using Theorem 1.1, Gusfield proved that high
edge-connectivity of a graph would imply high spanning tree packing number.

Theorem 1.3 (Gusfield [10]). Let k > 0 be an integer, and let κ ′(G) denote the edge-connectivity of a graph G. If κ ′(G) ≥ 2k,
then τ(G) ≥ k.

The next result strengthens Gusfield’s theorem, and indicates a sufficient condition for a graph G to satisfy Ek(G) = E(G).

Theorem 1.4 (Theorem 1.1 of [5]). Let k > 0 be an integer, and let κ ′(G) denote the edge-connectivity of a graph G. Then
κ ′(G) ≥ 2k if and only if ∀X ⊆ E(G) with |X | ≤ k, τ (G − X) ≥ k. In particular, if κ ′(G) ≥ 2k, then Ek(G) = E(G).

A natural question is to characterize all graphs G with the property Ek(G) = E(G). More generally, for any graph G with
τ(G) ≥ k, we are to determine the edge subset Ek(G). These questions can be presented in terms of matroids in a natural
way. The main purpose of this paper is to characterize Ek(M), for any matroid with τ(M) ≥ k. The next theorem is our main
result.

Theorem 1.5. Let M be a matroid and k > 0 be an integer. Each of the following holds.

(i) Suppose that τ(M) ≥ k. Then Ek(M) = E(M) if and only if η(M) > k.
(ii) In general, Ek(M) equals the maximal subset X ⊆ E(M) such that η(M|X) > k.

For a connected graph G with M(G) denoting its cycle matroid, let η(G) = η(M(G)) and γ (G) = γ (M(G)). Then
Theorem 1.5, when applied to cycle matroids, yields the corresponding theorem for graphs.

Corollary 1.6. Let G be a connected graph and k > 0 be an integer. Each of the following holds.

(i) If τ(G) ≥ k, Ek(G) = E(G) if and only if η(G) > k.
(ii) In general, Ek(G) equals the maximal subset X ⊆ E(G) such that every component of η(G[X]) > k.

In the next section, we shall discuss properties of the strength and the fractional arboricity of a matroidM , which will be
useful in the proofs of our main results. We will prove a decomposition theorem in Section 3, which will be applied in the
characterizations of Ek(M) and Ek(G) in Section 4. In the last section, we shall develop polynomial algorithms to locate the
sets Ek(M) and Ek(G).

2. Strength and fractional arboricity of a matroid

Both parameters η(M) and γ (M), and the problems related to uniformly dense graphs and matroids (defined below)
have been studied by many; see [4,2,3,6,7,13–15,15,21,22], among others. From the definitions of d(M), η(M) and γ (M),
we immediately have, for any matroidM with ρ(M) > 0,

η(M) ≤ d(M) ≤ γ (M). (2)
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As in [4], a matroid M satisfying η(M) = γ (M) is called a uniformly dense matroid. Both η(M) and γ (M) can also be
described by their behavior in some parallel extension of the matroid. For an integer t > 0, letMt denote matroid obtained
from M by replacing each element e ∈ E(M) by a parallel class of t elements. See p. 252 of [16]. This matroid Mt is usually
referred as the t-parallel extension ofM . For X ⊆ E(M), we use Xt to denote both the matroid (M|X)t and the set E((M|X)t).

Theorem 2.1 (Theorem 4 of [4], and Lemma 1 of [16]). Let M be a matroid and let s ≥ t > 0 be integers. Then we have the
following.

(i) η(M) ≥
s
t if and only if η(Mt) ≥ s.

(ii) γ (G) ≤
s
t if and only if γ (Mt) ≤ s.

(iii) tη(M) = η(Mt).
(iv) tγ (M) = γ (Mt).

Theorem 2.2 (Theorem 6 of [4]). Let M be a matroid. The following are equivalent.

(i) η(M) = d(M).
(ii) γ (M) = d(M).
(iii) η(M) = γ (M).
(iv) η(M) =

s
t , for some integers s ≥ t > 0, and Mt , the t-parallel extension of M, is a disjoint union of s bases of M.

(v) γ (M) =
s
t , for some integers s ≥ t > 0, and Mt , the t-parallel extension of M, is a disjoint union of s bases of M.

For each integer k > 0, define

Tk = {M : τ(M) ≥ k}.

Proposition 2.3. The matroid family Tk satisfies the following properties.

(C1) If ρ(M) = 0, then M ∈ Tk.
(C2) If M ∈ Tk and if e ∈ E(M), then M/e ∈ Tk.
(C3) Let X ⊆ E(M) and let N = M|X. If M/X ∈ Tk and if N ∈ Tk, then M ∈ Tk.

Proof. Recall that the bases of the contractionM/X has the following form; see, for example, Corollary 3.1.9 of by [19].

B(M/X) = {B′
⊆ E − X : B′

∪ BX ∈ B(M)}, where BX ∈ B(M|X). (3)

Since ρ(M) = 0, η(M) = ∞, (C1) follows from the definition of η immediately.
If e is a loop of M , then e is not in any basis of M and so by (3), M/e = M − e. Thus τ(M/e) = τ(M − e) = τ(M) ≥ k.

ThereforeM/e ∈ Tk.
Suppose that e is not a loop. Let B1, . . . , Bk be disjoint bases of M . We assume that ∀i ∈ {1, 2, . . . , k}, if e ∉ Bi, then

Ci = CM(e, Bi) is the unique circuit of Bi ∪ e. Since e is not a loop, ∃ei ∈ Ci − e. Define B′

i = Bi ∪ e − ei, if e ∉ Bi; B′

i = Bi,
if e ∈ Bi. It follows that B′

1, B
′

2, . . . , B
′

k are bases of M such that for any i ≠ j, Bi ∩ Bj = e. Note that if X = {e}, then
BX = {e} ∈ B(M|X). It follows from (3) that B′

i −e is a basis ofM/e, and all {B′

i −e} are disjoint. HenceM/e ∈ Tk. This proves
(C2).

Let B′′

1, B
′′

2, . . . , B
′′

k be disjoint bases of N and B′

1, B
′

2, . . . , B
′

k be disjoint bases ofM/N . By (3), B′

1 ∪ B′′

1, B
′

2 ∪ B′′

2, . . . , B
′

k ∪ B′′

k
are disjoint bases ofM , and so M ∈ Tk. �

Lemma 2.4. Let M be a matroid with ρ(M) > 0, and let l ≥ 1 be a fractional number. Each of the following holds.

(i) (Lemma 10 of [4]) If X ⊂ E(M) and if η(M|X) ≥ η(M), then η(M/X) = η(M).
(ii) (Theorem 17 of [4]) If X ⊂ E(M) and if d(X) = γ (M), then η(M|X) = γ (M|X) = d(X) = γ (M).
(iii) A matroid M is uniformly dense if and only if ∀X ⊆ E(M), d(X) ≤ η(M).
(iv) A matroid M is uniformly dense if and only if for any restriction N of M, η(N) ≤ η(M).
(v) If d(M) ≥ l, then there exists a subset X ⊆ E(M) with ρ(X) > 0 such that η(M|X) ≥ l.

Proof. (iii) If ∀X ⊆ E(M), d(X) ≤ η(M), then in particular, d(M) ≤ η(M). It follows from (2) that d(M) = η(M), and so
by Theorem 2.2, M is uniformly dense. Conversely, suppose that there exists an X ⊆ E(M) with d(X) > η(M). Then by (2),
γ (M) ≥ d(X) > η(M), contrary to the assumption thatM is uniformly dense.

(iv) By (iii) of this lemma, if M is uniformly dense, then for any restriction N, η(N) ≤ d(E(N)) ≤ η(M). On the other
hand, if M is not uniformly dense, then γ (M) > η(M). By the definition of γ (M), there exists an X ⊂ E(M) such that
d(X) = γ (M). It follows from (ii) of this lemma that η(M|X) = d(X) = γ (M) > η(M), contrary to the assumption. Hence
M must be uniformly dense.

(v) By (2), γ (M) ≥ d(M) ≥ l. By definition of γ (M), there exists a subset X ⊆ E(M) with ρ(X) > 0, such that
d(X) = γ (M). Let N = M|X . By (ii) of this lemma, η(N) = γ (N) = d(N) = γ (M) ≥ d(M) ≥ l. �
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For each rational number l > 1, define

Sl = {M : η(M) ≥ l}. (4)

Corollary 2.5. Let p > q > 0 be integers and let l = p
q . The matroid family Sl satisfies the following properties.

(C1) If ρ(M) = 0, then M ∈ Sl.
(C2) If M ∈ Sl and if e ∈ E(M), then M/e ∈ Sl.
(C3) Let X ⊆ E(M) and let N = M|X. If M/X ∈ Sl and if N ∈ Sl, then M ∈ Sl.

Proof. As (C1) and (C2) follow from the definition of η, it suffices to prove (C3) only. Since l =
p
q , and since both

η(M/X) ≥
p
q and η(M|X) ≥

p
q , it follows from Theorem 2.1 that Mq/(Xq) = (M/X)q ∈ Tp and Mq|Xp = (M|X)q ∈ Tp.

By Proposition 2.3(C3), Mq ∈ Tp, and so by Theorem 2.1,M ∈ Sl = S p
q

= {M : τ(Mq) ≥ p}. This verifies (C3). �

Lemma 2.6. Let M be a matroid with τ(M) ≥ k. Suppose that X ⊆ E(M) satisfies η(M|X) ≥ k. Then Ek(M|X) ⊆ Ek(M).

Proof. Let N = M|X . It is trivial if Ek(N) = ∅. Assume Ek(N) ≠ ∅. Let e ∈ Ek(N). Then τ(N − e) ≥ k. By definition
of contraction, (M − e)/(N − e) = M/N . Since M ∈ Tk, by Proposition 2.3(C2), M/N ∈ Tk. Since N − e ∈ Tk and
(M − e)/(N − e) ∈ Tk, by Proposition 2.3(C3),M − e ∈ Tk. Therefore e ∈ Ek(M). �

Lemma 2.7. Let M be a matroid, and N be a restriction of M. If M/N,N ∈ Tk, and if both Ek(N) = E(N) and Ek(M/N) =

Ek(M/N), then Ek(M) = E(M).

Proof. Let e ∈ E(M). There are two cases to be considered.
Case 1: e ∈ E(M) − E(N) = E(M/N). Since Ek(M/N) = E(M/N), τ (M/N − e) ≥ k. But (M − e)/N = M/N − e ∈ Tk, and
N ∈ Tk, by Proposition 2.3(C3),M − e ∈ Tk. Hence e ∈ Ek(M) ⊆ E(M).
Case 2: e ∈ E(N). Since Ek(N) = E(N), τ(N − e) ≥ k. Note that (M − e)/(N − e) ∼= M/N ∈ Tk. By Proposition 2.3(C3),
M − e ∈ Tk, and so e ∈ Ek(M) ⊆ E(M).

As for any e ∈ E(M), e ∈ Ek(M), we have Ek(M) = E(M). �

3. A decomposition theorem

Throughout this section, we assume that M is a matroid with ρ(M) > 0. A subset X ⊆ E(M) is an η-maximal subset and
M|X is an η-maximal restriction if for any subset Y ⊆ E(M) with Y properly contains X , we always have η(M|Y ) < η(M|X).

Lemma 3.1. If X ⊆ E(M) is an η-maximal subset, then X is a closed set in M.

Proof. Let η(M|X) =
s
t for some integers s ≥ t > 0. It follows from Theorem 2.1(i) thatM|X has s bases B1, B2, . . . , Bs such

that every elements of X lies in at most t of these bases. Suppose that X is not closed. Then there exists an e ∈ clM(X) − X ,
and so r(X ∪ e) = ρ(X). Thus B1, B2, . . . , Bs are also bases ofM|(X ∪ e), and every element in X ∪ e lies in at most t of these
bases. By Theorem 2.1(i), η(M|(X ∪ e)) ≥

s
t = η(M|X), contrary to the assumption that X is an η-maximal subset. �

Lemma 3.2. Let W ,W ′
⊂ E(M) be subsets of E(M), and let l ≥ 1 be an integer. If η(M|W ) ≥ l and η(M|W ′) ≥ l, then

η(M|(W ∪ W ′)) ≥ l.

Proof. Let N = M|(W ∪ W ′). Since N/W = (M|W ′)/(W ∩ W ′), it follows from Corollary 2.5(C2) that η(N/W ) =

η((M|W ′)/(W ∩ W ′)) ≥ η(M|W ′) ≥ l. Hence both N/W ∈ Sl and M|W ∈ Sl. It then follows from Corollary 2.5(C3)
that N ∈ Sl. Thus η(N) ≥ l. �

If N1 and N2 are two restrictions of M , we denote by N1 ∪ N2 = M|(E(N1) ∪ E(N2)), the restriction of M to the union of
the ground sets of N1 and N2. This notation can be extended to any finite union of restrictions.

Lemma 3.3. Let N be a restriction of M. Then M must have an η-maximal restriction L such that both E(N) ⊆ E(L) and
η(L) ≥ η(N).

Proof. Suppose that η(N) = l for some rational number l ≥ 1. Let FN be the collection of all restrictions N ′ of M such
that η(N ′) ≥ l. Define L =


N ′∈FN

N ′. As N ∈ FN , E(N) ⊆ E(L). By Lemma 3.2, η(L) ≥ l. By the definition of L, L must be
η-maximal. �

Lemma 3.4. For any restriction N of M, η(N) ≤ γ (M).

Proof. By (2), η(N) ≤ d(N) ≤ γ (M), and so it follows from the definition of γ (M). �
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Theorem 3.5. Let M be a matroid with ρ(M) > 0. Then each of the following holds.
(i) There exist an integer m > 0, and an m-tuple (l1, l2, . . . , lm) of positive rational numbers such that

η(M) = l1 < l2 < · · · < lm = γ (M), (5)

and a sequence of subsets

Jm ⊂ · · · ⊂ J2 ⊂ J1 = E(M), (6)

such that for each i with 1 ≤ i ≤ m,M|Ji is an η-maximal restriction of M with η(M|Ji) = li.
(ii) The integer m and the sequences (5) and (6) are uniquely determined by M.
(iii) For every i with 1 ≤ i ≤ m, Ji is a closed set in M.

Proof. Let R(M) denote the collection of all η-maximal restrictions ofM . By Lemma 3.3, R(M) is not empty. Since E(M) is
finite,

|R(M)| is a finite number. (7)

Define

spη(M) = {η(N) : N ∈ R}.

By (7), |spη(M)| is finite. SinceM ∈ R, |spη(M)| ≥ 1.
Letm = |spη(M)|. Denote

spη(M) = {l1, l2, . . . , lm}, such that l1 < l2 < · · · < lm.

By Corollary 2.5(C3), and by the definition of γ (M), we have

η(M) = l1, and γ (M) = lm. (8)

For each j ∈ {1, 2, . . . ,m}, let Nj denote the η-maximal restriction ofM with η(Nj) = lj, and define

Jj = E(Nj). (9)

By the definition of Sl,

Sl1 ⊃ Sl2 ⊃ · · · ⊃ Slm . (10)

Hence by (8)–(10),

E(M) = J1 ⊇ J2 ⊇ · · · ⊇ Jm. (11)

Since R and spη(M) are uniquely determined by M , the integer m, the m-tuple (l1, l2, . . . , lm) and the sequence (6) are
all uniquely determined byM .

(iii) This follows from Lemma 3.1. �

For a matroid M , the m-tuple (l1, l2, . . . , lm) and the sequence in (6) will be referred as the η-spectrum and the
η-decomposition ofM , respectively.

Corollary 3.6. Let M be a matroid with η-spectrum (5) and η-decomposition (6) such that m > 1. Then each of the following
holds.
(i) M/J2 is a uniformly dense matroid with η(M/J2) = γ (M/J2) = η(M).
(ii) For any integer k with l1 ≤ k < lm, E(M) has a unique subset Zk such that Zk is η-maximal and η(M|Zk) > k.

Proof. (i) Since m > 1, η(M|J2) = l2 > l1 = η(M). It follows from Lemma 2.4 that η(M/J2) = η(M). To see that M/J2
is uniformly dense, we argue by contradiction. Suppose that M/J2 is not uniformly dense, and that γ (M/J2) > η(M/J2). It
follows from the definition of γ that there is a subset J ′ ⊂ E(M/X2) such that dM/J2(J

′) = γ (M/J2). By Lemma 3.3, M/J2
has an η-maximal subset J ′′ (containing J ′) such that η((M/J2)|J ′′) = l′ > η(M) = l1. If l′ ≥ l2, then by Lemma 3.2,
η(M|(J2 ∪ J ′)) ≥ l2, and so J2 is not η-maximal, contrary to the conclusion of Theorem 3.5. Thus we may assume that
l2 > l′ > l1. Since J ′′ is η-maximal in M/J2, by Lemma 2.4(i), J2 ∪ J ′′ is also η-maximal, and so by Theorem 3.5, the η-
spectrum of M must contain l′. It follows that (l1, l2, . . . , lm) cannot be the η-spectrum of M , contrary to the assumption of
the corollary. This proves (i).

(ii) Let j < m be the smallest integer such that lj > k, and let Zk = Jlj . Then (ii) of this corollary follows from
Theorem 3.5. �

The unique subset Zk stated in Part (ii) of Corollary 3.6 will be called the η-maximal subset at level k ofM .

Corollary 3.7. Let M be a matroid with η-spectrum (5). Then M is uniformly dense if and only if m = 1.

Proof. By definition, M is uniformly dense if and only if γ (M) = η(M). Since l1 = η(M) and lm = γ (M), it follows that M
is uniformly dense if and only ifm = 1. �
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4. Characterization of the removable elements with respect to having k disjoint bases

The main purpose of this section is to investigate the behavior of the set Ek(M). We first observe that matroids M with
Ek(M) = ∅ can be characterized in terms of the density ofM .

Proposition 4.1. Let k > 0 be an integer, and M be a matroid with τ(M) ≥ k. Then Ek(M) = ∅ if and only if d(M) = k.

Proof. Since τ(M) ≥ k,M has disjoint spanning bases B1, B2, . . . , Bk, and so

kρ(M) =

k
i=1

|Bi| ≤ |E(M)| = d(M)ρ(M),

where equality holds if and only if k = d(M). It follows from Theorem 2.2(iv) (with s = k and t = 1) that k = d(M) if and
only if E(M) =

k
i=1 Bi, and so if and only if Ek(M) = ∅. �

Accordingly, when τ(M) ≥ k, Ek(M) ≠ ∅ if and only if d(M) > k. We have the following characterization.

Theorem 4.2. Let k ≥ 2 be an integer. Let M be a graph with τ(M) ≥ k. Then each of the following holds.

(i) Ek(M) = E(M) if and only if η(M) > k.
(ii) In general, if η(M) = k and if m > 1, then Ek(M) = J2, which is the η-maximal subset at level k of M.

Proof. Since τ(M) ≥ k, it follows from (1) that η(M) ≥ k.
(i) If η(M) = k, then by Theorem 3.5 or by Corollary 3.6, there exists a unique subset J ⊂ E(M) (say, J = J2 in the

η-decomposition ofM) such thatM/J is uniformly dense with η(M/J) = γ (M/J) = η(M) = k. It follows from Theorem 2.2
that d(E(M/J)) = k, and so by Proposition 4.1, for any e ∈ E(M) − J = E(M/J), τ ((M − e)/J) = τ(M/J − e) < k. Thus by
τ((M − e)|J) = τ(M|J) ≥ k and Proposition 2.3(C3), τ(M − e) < k. This proves the necessity of (i).

We shall argue by contradiction to prove the sufficiency. Assume that the sufficiency of (i) fails, and that

M is a counterexample with ρ(M) minimized. (12)

Then

η(M) > k but Ek(M) ≠ E(M). (13)

Claim 1. M does not have a restriction N with r(N) < ρ(M) and η(N) > k.

Suppose not, and thatM has such a restrictionN with η(N) > k. As r(N) < ρ(M), it follows from (12) that Ek(N) = E(N).
By Lemma 2.4, η(M/N) ≥ η(M) > k. Since η(N) > k, r(N) > 0, and so r(M/N) < ρ(M). By (12), Ek(M/N) = E(M/N). By
(1), both M/N,N ∈ Tk, and so by Lemma 2.7 Ek(M) = E(M), contrary to (13). This proves Claim 1.

The next claim follows from Claim 1 and Lemma 2.4(iv).

Claim 2. M is uniformly dense.

By (12) and (13), we may assume that

τ(M) ≥ k and η(M) > k, but ∃e ∈ E(M), τ (M − e) ≤ k − 1. (14)

Fix e ∈ E(M) so that τ(M − e) ≤ k − 1 as in (14). It follows from (2) and τ(M − e) ≤ k − 1 that η(M − e) < k. On the
other hand, by Claim 2,M is uniformly dense, and so by Theorem 2.2,

k < η(M) = d(M) =
|E(M)|

ρ(M)
.

This implies |E(M)| ≥ kρ(M) + 1. Since M has k ≥ 2 disjoint bases, e cannot be a coloop of M , and so r(M − e) = ρ(M).
Hence

d(E − e) =
|E(M − e)|
r(M − e)

≥ k.

By Lemma 2.4(v), E(M) has a subset X ⊆ E(M) with ρ(X) > 0 such that η(M|X) ≥ k. Hence τ(M|X) = ⌊η(M|X)⌋ ≥ k. By
Corollary 2.5(C2), η(M/X) ≥ η(M) > k. Since ρ(X) > 0, r(M/X) < ρ(M).

By e ∈ E(M/X), and (12), τ((M − e)/N) = τ(M/N − e) ≥ k. As τ(N) ≥ k, it follows from Proposition 2.3(C3) that
τ(M − e) ≥ k, contrary to (14). This proves the sufficiency of (i).

(ii) We assume that η(M) = k. If d(M) = k, then by Proposition 4.1, Ek(M) = ∅. On the other hand, by Theorem 2.2, M
is uniformly dense and so by Corollary 3.7, the η-maximal subset of level k of M is an empty set. Thus if d(M) = k, then (ii)
holds with Ek(M) = ∅.



Author's personal copy

P. Li et al. / Discrete Applied Mathematics 160 (2012) 2445–2451 2451

Now assume that d(M) > k. By Lemma 2.4(v), γ (M) ≥ d(M) > k = η(M), and so M is not uniformly dense. By
Corollary 3.7, ifM has (5) as its η-spectrum and sequence (6) as its η-decomposition, thenm > 1. Hence by Corollary 3.6(ii),
the η-maximal subset of level k ofM equals J2. It follows from Part (i) of this theorem that Ek(M|J2) = J2. By Lemma 2.6,

J2 = Ek(M|J2) ⊆ Ek(M). (15)

On the other hand, by Corollary 3.6(i), M/J2 is uniformly dense with η(M/J2) = η(M) = k, and so by Proposition 4.1,
Ek(M/J2) = ∅. By Theorem 3.5(iii), J2 is closed inM , and so

Ek(M) ⊆ E(M) − E(M/J2) = J2. (16)

Combining (15) and (16), we have Ek(M) = J2, which proves Part (ii) of the theorem. �

Applying Theorem 4.2 to cycle matroids of connected graphs, we obtain the corresponding theorem for graphs.

Corollary 4.3. Let k ≥ 2 be an integer, and G be a connected graph with τ(G) ≥ k. Let (5) and (6) denote the η-spectrum and
η-decomposition of M(G), respectively. Then each of the following holds.

(i) Ek(G) = E(G) if and only if η(G) > k.
(ii) In general, if η(G) = k and if m > 1, then Ek(G) = J2 equals the η-maximal subset at level k of M(G).

5. Polynomial algorithms identifying the excessive elements

We remark that there exists a polynomial algorithmwhich can identify the excessive element subset Ek(M) for any given
integer k > 0 and any matroidM .

Modifying an algorithm of Kruth (see p. 368 of [24]), Hobbs in [12] obtained an algorithm in O(|E(M)|3)(ρ(M)4) time
(referred as Hobbs’ Algorithm below) such that for any matroid M , it computes η(M) and γ (M), and finds the η-maximal
subset J ofM such that η(M|J) = γ (M). By Theorem 3.5, this η-maximal subset J ofM equals Jm in (6).

For any matroid M , Hobbs’ Algorithm outputs im = γ (M) and Jm in (6). If E(M) ≠ Jm (which means m > 1), then by
Lemma 2.4(i), we replace M by M/Jm, and run Hobbs’ Algorithm to get γ (M) = im−1 and the η-maximal subset J ′ of M/Jm,
and so Jm−1 = J ′ ∪ Jm. This process can be repeated m times to generate all subsets J1, J2, . . . , Jm in (6). In particular, by
Theorem 4.2, it also computes Ek(M).
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