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a b s t r a c t

A sequence d = (d1, d2, . . . , dn) is multigraphic if there is a multigraph G with degree
sequence d, and such a graph G is called a realization of d. In this paper, we prove that
a nonincreasing multigraphic sequence d = (d1, d2, . . . , dn) has a realization with a
spanning eulerian subgraph if and only if either n = 1 and d1 = 0, or n ≥ 2 and dn ≥ 2,
and that d has a realization G such that L(G) is hamiltonian if and only if either d1 ≥ n− 1,
or


di=1 di ≤


dj≥2(dj−2). Also, we prove that, for a positive integer k, d has a realization

with k edge-disjoint spanning trees if and only if either both n = 1 and d1 = 0, or n ≥ 2
and both dn ≥ k and

n
i=1 di ≥ 2k(n − 1).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies finite and undirected graphs without loops, but multiple edges are allowed. When we say ‘‘graph’’ in
this paper, it always means ‘‘multigraph’’, unless otherwise stated. Undefined terms can be found in [1]. In particular, for
a graph G, L(G) denotes its line graph. Let X be a set of vertices, G − X denotes the graph obtained from G by deleting X ,
and if X = {v}, we often use G − v for G − {v}. Let S be a set of edges, G − S and G + S denote the graphs obtain from
G by deleting S and adding S, respectively. Particularly if S = {e}, we often use G − e for G − {e} and G + e for G + {e}.
A vertex v ∈ V (G) is called a pendent vertex if d(v) = 1. Let D1(G) denote the set of all pendent vertices of G. An edge
e ∈ E(G) is called a pendent edge if one of its ends is a pendent vertex. A path in a graph G is called a pendent path if one
end is a pendent vertex, all internal vertices have degree 2 and the other end has degree more than 2. If v ∈ V (G), then
NG(v) = {u ∈ V (G) : uv ∈ E(G)}; and if T ⊆ V (G), then NG(T ) = {u ∈ V (G) \ T : uv ∈ E(G) and v ∈ T }. When the graph G
is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. The notation tK2 is defined to be the graph with 2 vertices and t multiple edges.
In this paper, 2K2 is considered as a circuit, which is also denoted as C2. An even subgraph of G is a spanning eulerian
subgraph of G if it is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph.

If a graph G has vertices v1, v2, . . . , vn, the sequence (d(v1), d(v2), . . . , d(vn)) is called a degree sequence of G. A
sequence d = (d1, d2, . . . , dn) is graphic if there is a simple graph G with degree sequence d, and it is multigraphic if
there is a multigraph Gwith degree sequence d. In either case, such a graph G is called a realization of d, or a d-realization.
A multigraphic degree sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and d is
supereulerian if it has a realization with a spanning eulerian subgraph.
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Hakimi [2] gave a characterization for multigraphic degree sequences as follows.

Theorem 1.1 (Hakimi, Theorem 1 in [2]). If d = (d1, d2, . . . , dn) is a nonincreasing sequence with n ≥ 2 and di nonnegative
integers for 1 ≤ i ≤ n, then it is a multigraphic sequence if and only if

n
i=1 di is even and d1 ≤ d2 + · · · + dn.

Boesch and Harary presented in [3] the following theorem which is due to Butler.

Theorem 1.2 (Butler (Boesch and Harary, Theorem 5 in [3])). Let d = (d1, d2, . . . , dn) be a nonincreasing sequence with n ≥ 2
and di nonnegative integers for 1 ≤ i ≤ n. Let j be an index with 2 ≤ j ≤ n. Then the sequence {d1, d2, . . . , dn} is multigraphic
if and only if the sequence {d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn} is multigraphic.

The following characterizations of supereulerian degree sequences, line-hamiltonian degree sequences, and the degree
sequences with realization having k edge-disjoint spanning trees have been obtained for simple graphs.

Theorem 1.3 (Fan et al. [4]). Let d = (d1, d2, . . . , dn) be a nonincreasing graphic sequence. Then d has a supereulerian
realization if and only if either n = 1 and d1 = 0, or n ≥ 3 and dn ≥ 2.

Theorem 1.4 (Fan et al. [4]). Let d = (d1, d2, . . . , dn) be a nonincreasing graphic sequence with n ≥ 3. The following are
equivalent.
(i) d is line-hamiltonian.
(ii) either d1 = n − 1, or


di=1 di ≤


dj≥2(dj − 2).

(iii) d has a realization G such that G − D1(G) is supereulerian.

Theorem 1.5 (Lai et al. [5]). A nonincreasing graphic sequence d = (d1, d2, . . . , dn) has a realization with k edge-disjoint
spanning trees if and only if either n = 1 and d1 = 0, or n ≥ 2 and both of the following hold:
(i) dn ≥ k.
(ii)

n
i=1 di ≥ 2k(n − 1).

In this paper, we investigate multigraphic sequences and prove the multigraphic versions for Theorems 1.3–1.5, as
follows.

Theorem 1.6. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence. Then d has a supereulerian realization if and
only if either n = 1 and d1 = 0, or n ≥ 2 and dn ≥ 2.

Theorem 1.7. Let d = (d1, d2, . . . , dn) be a nonincreasingmultigraphic sequence with n ≥ 3. Then the following are equivalent.
(i) d is line-hamiltonian.
(ii) either d1 ≥ n − 1, or


di=1 di ≤


dj≥2(dj − 2).

(iii) d has a realization G such that G − D1(G) is supereulerian.

Theorem 1.8. Let d = (d1, d2, . . . , dn) be a nonincreasingmultigraphic sequence. Then d has a realization Gwith k edge-disjoint
spanning trees if and only if either n = 1 and d1 = 0, or n ≥ 2 and both of the following hold:
(i) dn ≥ k.
(ii)

n
i=1 di ≥ 2k(n − 1).

In Sections 2–4, we present proofs for Theorems 1.6–1.8, respectively.

2. The Proof of Theorem 1.6

Proof of Theorem 1.6. If a nonincreasing multigraphic sequence d = (d1, d2, . . . , dn) has a supereulerian realization, then
we must have dn ≥ 2 as every supereulerian graph is 2-edge-connected for n ≥ 2.

We prove the sufficiency by induction on m =
n

i=1 di. Without loss of generality, we may assume that n ≥ 2. If n = 2
and d = (2, 2), then m = 4 and 2K2 is a supereulerian realization of d.

Suppose that the theorem holds for all such multigraphic sequences with smaller value of m. We have the following
cases.
Case 1: d1 = d2 = 2. Then d = (2, . . . , 2). Therefore, Cn is a supereulerian realization of d (when n = 2, Cn is defined to be
2K2).
Case 2: d1 > 2 and d2 = 2. Then d = (d1, 2, . . . , 2). By Theorem 1.1, d1 must be even and so d1 ≥ 4. Since d1 ≤ d2+· · ·+dn,
we have n ≥ 3. Suppose d1 = 2k with k ≥ 2. Let V = {v1, v2, . . . , vn} and circuit C = v1vk+1vk+2 · · · vnv1. And let
E =

k
i=2{v1vi, viv1}


E(C). Then G = (V , E) is a supereulerian realization of d.

Case 3: d1 ≥ d2 ≥ 3. By Theorem 1.2, (d1 −1, d2 −1, . . . , dn) is multigraphic. Since d1 −1 ≥ d2 −1 ≥ 2, by induction, there
is a supereulerian realization, say G′, of (d1 − 1, d2 − 1, . . . , dn). By adding an edge v1v2 in G′, we obtain a supereulerian
realization of d. �



Author's personal copy

1428 X. Gu et al. / Applied Mathematics Letters 25 (2012) 1426–1429

3. The Proof of Theorem 1.7

Weneed a theorem,which is due toHarary andNash-Williams. The theoremshows the relationship betweenhamiltonian
circuits in the line graph L(G) and eulerian subgraph in G, and it is also true for multigraphs. A subgraphH of G is dominating
if E(G − V (H)) = ∅.

Theorem 3.1 (Harary and Nash-Williams, [6]). Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has
a dominating eulerian subgraph.

Proof of Theorem 1.7. (i)⇒ (ii) Let G be a realization of d such that L(G) is hamiltonian. By Theorem 3.1,G has a dominating
eulerian subgraph H . If d1 ≥ n − 1, then we are done. Suppose that d1 ≤ n − 2. Then |V (H)| ≥ 2. For any vi with d(vi) = 1,
vi must be adjacent to a vertex vj in H and so dG−E(H)(vj) is no less than the number of degree 1 vertices adjacent to vj.
Furthermore, since H is eulerian and nontrivial, dH(vj) ≥ 2 and so


di=1 di ≤


dj≥2(dj − 2) holds.

(ii)⇒ (iii) Suppose that d is a nonincreasingmultigraphic sequence satisfying (ii). If there exists a d-realization G that is a
simple graph (in this case, d1 cannot be greater than n−1), then d is also a nonincreasing graphic sequence. By Theorem 1.4,
(iii) must hold. Hence, we may assume that every d-realization has multiple edges. If dn ≥ 2, then by Theorem 1.6, d
has a supereulerian realization. So we also assume that dn = 1. We will show that there is a d-realization G such that
δ(G − D1(G)) ≥ 2.

Suppose, to the contrary, that for each d-realization G, δ(G − D1(G)) < 2. As G contains multiple edges, E(G − D1(G)) is
not empty. Let S = N(D1(G)). Then there exists s ∈ S, |NG−D1(G)(s)| = 1. Let P(G) = {s ∈ S : |NG−D1(G)(s)| = 1} and choose
G to be a graph such that |P(G)| is minimized. Let x ∈ P(G) and dG(x) = dt . Then x is not incident with multiple edges.

Since dG(x) = dt and |NG−D1(G)(x)| = 1, there must be dt − 1 pendent edges incident with vertex x in G. We delete these
dt−1 pendent edges of x, and denote the resulting graph byG′. Then there is a pendent path Px of x inG′, and let l be the length
and vx be the other end vertex. Let G′′ be the graph obtained from G′ by deleting x and the internal vertices of Px. Choose
a multiple edge e ∈ E(G′′), replace e with a path of length l + 1 and let ve be an internal vertex. Then add dt − 2 pendent
edges to ve, add one pendent edge to vx and denote the resulting graph Gx. Then dGx(ve) = 2 + dt − 2 = dt , and Gx is also a
d-realization. Let N1(x) be the set of pendent vertices adjacent to x in G. Then |D1(Gx)| = |(D1(G)−N1(x))∪ {x}|+ dt − 2 =

|D1(G)| − (dt − 1)+ 1+ dt − 2 = |D1(G)| but |P(Gx)| < |P(G)|, contradicting the choice of G (Note here, if Gx does not have
multiple edges, then it is contrary to the assumption that every d-realization has multiple edges). By Theorem 1.6, there is
a d-realization G such that G − D1(G) is supereulerian.

(iii) ⇒ (i) If G is a realization of d such that G − D1(G) is supereulerian, then by Theorem 3.1, L(G) is hamiltonian. Thus
(i) holds. �

4. The Proof of Theorem 1.8

Let τ(G) be the maximum number of edge-disjoint spanning trees in a connected graph G.

Lemma 4.1. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence. If d has a realization G with τ(G) ≥ k, then
either n = 1 and d1 = 0, or n ≥ 2 and both dn ≥ k and

n
i=1 di ≥ 2k(n − 1) hold.

Proof. The case when n = 1 is trivial and so we shall assume that n > 1. Since G has k edge-disjoint spanning trees,
2k(|V (G)| − 1) ≤ 2|E(G)| =

n
i=1 di and each vertex has degree at least k. �

Corollary 4.2. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence with n > 2. If d has a realization G with
τ(G) ≥ k, then d1 > k.

Proof. Suppose not, by Lemma 4.1, di = k for each i, 1 ≤ i ≤ n. Hence 2k(n − 1) ≤
n

i=1 di = kn, whence n ≤ 2, contrary
to n > 2. Thus d1 > k. �

Lemma 4.3. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence with n > 2. If d has a realization G with
τ(G) ≥ k, then d′

= (d1 − 1, d2, . . . , dj−1, dj + 1, dj+1, . . . , dn) has a realization G′ with τ(G′) ≥ k for any j with 2 ≤ j ≤ n.

Proof. Let vi be the vertex with degree di in G, for 1 ≤ i ≤ n. Then there must be a vertex vs adjacent to v1 where s ≠ j. If
not, then all edges incident with v1 are between v1 and vj, and since G is connected, dj > d1, contrary to d1 ≥ dj. Thus there
is an edge e between v1 and vs. Let T1, T2, . . . , Tk be edge-disjoint spanning trees of G.
Case 1: v1 is a leaf in Ti for each i, 1 ≤ i ≤ k. Let e′ be a new edge between vs and vj, andG′

= G−e+e′. ThenG′ is a realization
of d′. If e ∉ ∪

k
i=1 E(Ti), then T1, T2, . . . , Tk are edge-disjoint spanning trees ofG′. If e ∈ E(Tl)where 1 ≤ l ≤ k, by Corollary 4.2,

d1 > k, and theremust be an edge e′′ incidentwith v1 such that e′′
∉ ∪

k
i=1 E(Ti), then T1, T2, . . . , Tl−1, Tl−e+e′′, Tl+1, . . . , Tk

are edge-disjoint spanning trees of G′.
Case 2: v1 is not a leaf in Tl for some l, 1 ≤ l ≤ k. Then there exists vt ∈ V (G) and there exists et = v1vt ∈ E(Tl) such that
v1 and vj are in one component of Tl − et while vt is in the other component. Let e′

t be a new edge between vj and vt , and
Gt = G − et + e′

t . Then Gt is a d′-realization, and T1, T2, . . . , Tl−1, Tl − et + e′
t , Tl+1, . . . , Tk are edge-disjoint spanning trees

of Gt . �
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Lemma 4.4. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence. If d has a realization G with τ(G) ≥ k, then
d′

= (d1, . . . , di−1, di + 1, di+1, . . . , dj−1, dj + 1, dj+1, . . . , dn) has a realization G′ with τ(G′) ≥ k, ∀i, j with 1 ≤ i < j ≤ n.

Proof. Let vi, vj be the vertices with degree di and dj in G, respectively, and e be a new edge between vi and vj. Let G′
= G+e,

then G′ is a d′-realization with τ(G′) ≥ k. �

Proof of Theorem 1.8. Lemma 4.1 proves the necessity. To prove the sufficiency, we prove a claim first.

Claim. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence with dn ≥ k and
n

i=1 di ≥ 2k(n − 1). If any
nonincreasing multigraphic sequence d′

= (d′

1, d
′

2, . . . , d
′
n) with d′

n ≥ k and
n

i=1 d
′

i = 2k(n − 1) has a realization with k
edge-disjoint spanning trees, then d has a realization with k edge-disjoint spanning trees.

Proof of the claim: Without loss of generality, we may assume that
n

i=1 di > 2k(n − 1). Noticing that
n

i=1 di is always
even, we define an operation (∗) for d as follows: (∗): If

n
i=1 di > 2k(n − 1) and ∃i ≥ 2 such that di > k, then let

d(∗)
= (d1 − 1, d2, . . . , di−1, di − 1, di+1, . . . , dn), and reorder d(∗) to be a nonincreasing sequence (d(∗)

1 , d(∗)
2 , . . . , d(∗)

n ).
By Theorem 1.2, d(∗) is still a multigraphic sequence. We keep on doing operation (∗) for d(∗) until

n
i=1 d

(∗)
i = 2k(n−1)

or d(∗)
i = k for each i = 2, 3, . . . , n. For the latter case, d(∗)

= (d(∗)
1 , k, k, . . . , k) and d(∗)

1 + k(n − 1) ≥ 2k(n − 1),
i.e., d(∗)

1 ≥ k(n − 1). Since d(∗)
= (d(∗)

1 , k, k, . . . , k) is still a multigraphic sequence, by Theorem 1.1, d(∗)
1 ≤ k(n − 1). Thus

d(∗)
1 = k(n − 1). Hence, in both cases,

n
i=1 d

(∗)
i = 2k(n − 1), and by the assumption, d(∗) has a realization with k edge-

disjoint spanning trees. By Lemma 4.4, d has a realization with k edge-disjoint spanning trees, which completes the proof of
the claim.

By the claim, it suffices to show that anymultigraphic sequence d = (d1, d2, . . . , dn)with dn ≥ k and
n

i=1 di = 2k(n−1)
has a realizationGwith τ(G) ≥ k. Ifn = 2, then tK2 is such a d-realizationwhere t = k. Ifn > 2, then by Lemma4.3, it suffices
to show that d0 = (k(n − 1), k, k, . . . , k) has such a realization. Let kK1,n−1 be the graph with vertex set {v1, v2, . . . , vn}

such that for each i, 2 ≤ i ≤ n, there are k multiple edges between v1 and vi, but there are no edges between vi and vj for
2 ≤ i < j ≤ n. Then kK1,n−1 is a d0-realization with τ(kK1,n−1) = k. This completes the proof of the theorem. �
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