Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Volume 25, Number 10, October 2012

Applied Mathematics
 Letters

an international journal of rapid publication

Editor-in-Chief: Alan Tucker

SciVerse ScienceDirect

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Multigraphic degree sequences and supereulerian graphs, disjoint spanning trees

Xiaofeng Gu ${ }^{\text {a,*, }}$, Hong-Jian Lai ${ }^{\mathrm{b}, \mathrm{a}}$, Yanting Liang ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\mathrm{b}}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\text {c }}$ Department of Mathematics, University of Wisconsin-Fond du Lac, Fond du Lac, WI 54935, USA

A R T I CLE INFO

Article history:

Received 18 May 2011
Received in revised form 8 December 2011
Accepted 9 December 2011

Keywords:

Multigraphic degree sequence
Hamiltonian line graphs
Supereulerian graphs
Edge-disjoint spanning trees

Abstract

A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is multigraphic if there is a multigraph G with degree sequence d, and such a graph G is called a realization of d. In this paper, we prove that a nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a realization with a spanning eulerian subgraph if and only if either $n=1$ and $d_{1}=0$, or $n \geq 2$ and $d_{n} \geq 2$, and that d has a realization G such that $L(G)$ is hamiltonian if and only if either $d_{1} \geq n-1$, or $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$. Also, we prove that, for a positive integer k, d has a realization with k edge-disjoint spanning trees if and only if either both $n=1$ and $d_{1}=0$, or $n \geq 2$ and both $d_{n} \geq k$ and $\sum_{i=1}^{n} d_{i} \geq 2 k(n-1)$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies finite and undirected graphs without loops, but multiple edges are allowed. When we say "graph" in this paper, it always means "multigraph", unless otherwise stated. Undefined terms can be found in [1]. In particular, for a graph $G, L(G)$ denotes its line graph. Let X be a set of vertices, $G-X$ denotes the graph obtained from G by deleting X, and if $X=\{v\}$, we often use $G-v$ for $G-\{v\}$. Let S be a set of edges, $G-S$ and $G+S$ denote the graphs obtain from G by deleting S and adding S, respectively. Particularly if $S=\{e\}$, we often use $G-e$ for $G-\{e\}$ and $G+e$ for $G+\{e\}$. A vertex $v \in V(G)$ is called a pendent vertex if $d(v)=1$. Let $D_{1}(G)$ denote the set of all pendent vertices of G. An edge $e \in E(G)$ is called a pendent edge if one of its ends is a pendent vertex. A path in a graph G is called a pendent path if one end is a pendent vertex, all internal vertices have degree 2 and the other end has degree more than 2 . If $v \in V(G)$, then $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$; and if $T \subseteq V(G)$, then $N_{G}(T)=\{u \in V(G) \backslash T: u v \in E(G)$ and $v \in T\}$. When the graph G is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. The notation $t K_{2}$ is defined to be the graph with 2 vertices and t multiple edges. In this paper, $2 K_{2}$ is considered as a circuit, which is also denoted as C_{2}. An even subgraph of G is a spanning eulerian subgraph of G if it is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph.

If a graph G has vertices $v_{1}, v_{2}, \ldots, v_{n}$, the sequence $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ is called a degree sequence of G. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with degree sequence d, and it is multigraphic if there is a multigraph G with degree sequence d. In either case, such a graph G is called a realization of d, or a d-realization. A multigraphic degree sequence d is line-hamiltonian if d has a realization G such that $L(G)$ is hamiltonian, and d is supereulerian if it has a realization with a spanning eulerian subgraph.

[^0]Hakimi [2] gave a characterization for multigraphic degree sequences as follows.
Theorem 1.1 (Hakimi, Theorem 1 in [2]). If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing sequence with $n \geq 2$ and d_{i} nonnegative integers for $1 \leq i \leq n$, then it is a multigraphic sequence if and only if $\sum_{i=1}^{n} d_{i}$ is even and $d_{1} \leq d_{2}+\cdots+d_{n}$.

Boesch and Harary presented in [3] the following theorem which is due to Butler.
Theorem 1.2 (Butler (Boesch and Harary, Theorem 5 in [3])). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence with $n \geq 2$ and d_{i} nonnegative integers for $1 \leq i \leq n$. Let j be an index with $2 \leq j \leq n$. Then the sequence $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ is multigraphic if and only if the sequence $\left\{d_{1}-1, d_{2}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right\}$ is multigraphic.

The following characterizations of supereulerian degree sequences, line-hamiltonian degree sequences, and the degree sequences with realization having k edge-disjoint spanning trees have been obtained for simple graphs.

Theorem 1.3 (Fan et al. [4]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence. Then d has a supereulerian realization if and only if either $n=1$ and $d_{1}=0$, or $n \geq 3$ and $d_{n} \geq 2$.

Theorem 1.4 (Fan et al. [4]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence with $n \geq 3$. The following are equivalent.
(i) d is line-hamiltonian.
(ii) either $d_{1}=n-1$, or $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$.
(iii) d has a realization G such that $G-D_{1}(G)$ is supereulerian.

Theorem 1.5 (Lai et al. [5]). A nonincreasing graphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a realization with k edge-disjoint spanning trees if and only if either $n=1$ and $d_{1}=0$, or $n \geq 2$ and both of the following hold:
(i) $d_{n} \geq k$.
(ii) $\sum_{i=1}^{n} d_{i} \geq 2 k(n-1)$.

In this paper, we investigate multigraphic sequences and prove the multigraphic versions for Theorems $1.3-1.5$, as follows.

Theorem 1.6. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence. Then d has a supereulerian realization if and only if either $n=1$ and $d_{1}=0$, or $n \geq 2$ and $d_{n} \geq 2$.

Theorem 1.7. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence with $n \geq 3$. Then the following are equivalent.
(i) d is line-hamiltonian.
(ii) either $d_{1} \geq n-1$, or $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$.
(iii) d has a realization G such that $G-D_{1}(G)$ is supereulerian.

Theorem 1.8. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence. Then d has a realization G with k edge-disjoint spanning trees if and only if either $n=1$ and $d_{1}=0$, or $n \geq 2$ and both of the following hold:
(i) $d_{n} \geq k$.
(ii) $\sum_{i=1}^{n} d_{i} \geq 2 k(n-1)$.

In Sections 2-4, we present proofs for Theorems 1.6-1.8, respectively.

2. The Proof of Theorem 1.6

Proof of Theorem 1.6. If a nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a supereulerian realization, then we must have $d_{n} \geq 2$ as every supereulerian graph is 2-edge-connected for $n \geq 2$.

We prove the sufficiency by induction on $m=\sum_{i=1}^{n} d_{i}$. Without loss of generality, we may assume that $n \geq 2$. If $n=2$ and $d=(2,2)$, then $m=4$ and $2 K_{2}$ is a supereulerian realization of d.

Suppose that the theorem holds for all such multigraphic sequences with smaller value of m. We have the following cases.
Case 1: $d_{1}=d_{2}=2$. Then $d=(2, \ldots, 2)$. Therefore, C_{n} is a supereulerian realization of d (when $n=2, C_{n}$ is defined to be $2 K_{2}$).
Case 2: $d_{1}>2$ and $d_{2}=2$. Then $d=\left(d_{1}, 2, \ldots, 2\right)$. By Theorem 1.1, d_{1} must be even and so $d_{1} \geq 4$. Since $d_{1} \leq d_{2}+\cdots+d_{n}$, we have $n \geq 3$. Suppose $d_{1}=2 k$ with $k \geq 2$. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and circuit $C=v_{1} v_{k+1} v_{k+2} \cdots v_{n} v_{1}$. And let $E=\bigcup_{i=2}^{k}\left\{v_{1} v_{i}, v_{i} v_{1}\right\} \bigcup E(C)$. Then $G=(V, E)$ is a supereulerian realization of d.
Case 3: $d_{1} \geq d_{2} \geq 3$. By Theorem 1.2, $\left(d_{1}-1, d_{2}-1, \ldots, d_{n}\right)$ is multigraphic. Since $d_{1}-1 \geq d_{2}-1 \geq 2$, by induction, there is a supereulerian realization, say G^{\prime}, of $\left(d_{1}-1, d_{2}-1, \ldots, d_{n}\right)$. By adding an edge $v_{1} v_{2}$ in G^{\prime}, we obtain a supereulerian realization of d.

3. The Proof of Theorem 1.7

We need a theorem, which is due to Harary and Nash-Williams. The theorem shows the relationship between hamiltonian circuits in the line graph $L(G)$ and eulerian subgraph in G, and it is also true for multigraphs. A subgraph H of G is dominating if $E(G-V(H))=\emptyset$.

Theorem 3.1 (Harary and Nash-Williams, [6]). Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.
Proof of Theorem 1.7. (i) \Rightarrow (ii) Let G be a realization of d such that $L(G)$ is hamiltonian. By Theorem 3.1, G has a dominating eulerian subgraph H. If $d_{1} \geq n-1$, then we are done. Suppose that $d_{1} \leq n-2$. Then $|V(H)| \geq 2$. For any v_{i} with $d\left(v_{i}\right)=1$, v_{i} must be adjacent to a vertex v_{j} in H and so $d_{G-E(H)}\left(v_{j}\right)$ is no less than the number of degree 1 vertices adjacent to v_{j}. Furthermore, since H is eulerian and nontrivial, $d_{H}\left(v_{j}\right) \geq 2$ and so $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$ holds.
(ii) \Rightarrow (iii) Suppose that d is a nonincreasing multigraphic sequence satisfying (ii). If there exists a d-realization G that is a simple graph (in this case, d_{1} cannot be greater than $n-1$), then d is also a nonincreasing graphic sequence. By Theorem 1.4, (iii) must hold. Hence, we may assume that every d-realization has multiple edges. If $d_{n} \geq 2$, then by Theorem $1.6, d$ has a supereulerian realization. So we also assume that $d_{n}=1$. We will show that there is a d-realization G such that $\delta\left(G-D_{1}(G)\right) \geq 2$.

Suppose, to the contrary, that for each d-realization $G, \delta\left(G-D_{1}(G)\right)<2$. As G contains multiple edges, $E\left(G-D_{1}(G)\right)$ is not empty. Let $S=N\left(D_{1}(G)\right)$. Then there exists $s \in S,\left|N_{G-D_{1}(G)}(s)\right|=1$. Let $P(G)=\left\{s \in S:\left|N_{G-D_{1}(G)}(s)\right|=1\right\}$ and choose G to be a graph such that $|P(G)|$ is minimized. Let $x \in P(G)$ and $d_{G}(x)=d_{t}$. Then x is not incident with multiple edges.

Since $d_{G}(x)=d_{t}$ and $\left|N_{G-D_{1}(G)}(x)\right|=1$, there must be $d_{t}-1$ pendent edges incident with vertex x in G. We delete these $d_{t}-1$ pendent edges of x, and denote the resulting graph by G^{\prime}. Then there is a pendent path P_{x} of x in G^{\prime}, and let l be the length and v_{x} be the other end vertex. Let $G^{\prime \prime}$ be the graph obtained from G^{\prime} by deleting x and the internal vertices of P_{x}. Choose a multiple edge $e \in E\left(G^{\prime \prime}\right)$, replace e with a path of length $l+1$ and let v_{e} be an internal vertex. Then add $d_{t}-2$ pendent edges to v_{e}, add one pendent edge to v_{x} and denote the resulting graph G_{x}. Then $d_{G_{x}}\left(v_{e}\right)=2+d_{t}-2=d_{t}$, and G_{x} is also a d-realization. Let $N_{1}(x)$ be the set of pendent vertices adjacent to x in G. Then $\left|D_{1}\left(G_{x}\right)\right|=\left|\left(D_{1}(G)-N_{1}(x)\right) \cup\{x\}\right|+d_{t}-2=$ $\left|D_{1}(G)\right|-\left(d_{t}-1\right)+1+d_{t}-2=\left|D_{1}(G)\right|$ but $\left|P\left(G_{x}\right)\right|<|P(G)|$, contradicting the choice of G (Note here, if G_{x} does not have multiple edges, then it is contrary to the assumption that every d-realization has multiple edges). By Theorem 1.6, there is a d-realization G such that $G-D_{1}(G)$ is supereulerian.
(iii) \Rightarrow (i) If G is a realization of d such that $G-D_{1}(G)$ is supereulerian, then by Theorem 3.1, $L(G)$ is hamiltonian. Thus (i) holds.

4. The Proof of Theorem 1.8

Let $\tau(G)$ be the maximum number of edge-disjoint spanning trees in a connected graph G.
Lemma 4.1. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence. If d has a realization G with $\tau(G) \geq k$, then either $n=1$ and $d_{1}=0$, or $n \geq 2$ and both $d_{n} \geq k$ and $\sum_{i=1}^{n} d_{i} \geq 2 k(n-1)$ hold.
Proof. The case when $n=1$ is trivial and so we shall assume that $n>1$. Since G has k edge-disjoint spanning trees, $2 k(|V(G)|-1) \leq 2|E(G)|=\sum_{i=1}^{n} d_{i}$ and each vertex has degree at least k.

Corollary 4.2. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence with $n>2$. If d has a realization G with $\tau(G) \geq k$, then $d_{1}>k$.
Proof. Suppose not, by Lemma 4.1, $d_{i}=k$ for each $i, 1 \leq i \leq n$. Hence $2 k(n-1) \leq \sum_{i=1}^{n} d_{i}=k n$, whence $n \leq 2$, contrary to $n>2$. Thus $d_{1}>k$.

Lemma 4.3. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence with $n>2$. If d has a realization G with $\tau(G) \geq k$, then $d^{\prime}=\left(d_{1}-1, d_{2}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right)$ has a realization G^{\prime} with $\tau\left(G^{\prime}\right) \geq k$ for any j with $2 \leq j \leq n$.
Proof. Let v_{i} be the vertex with degree d_{i} in G, for $1 \leq i \leq n$. Then there must be a vertex v_{s} adjacent to v_{1} where $s \neq j$. If not, then all edges incident with v_{1} are between v_{1} and v_{j}, and since G is connected, $d_{j}>d_{1}$, contrary to $d_{1} \geq d_{j}$. Thus there is an edge e between v_{1} and v_{s}. Let $T_{1}, T_{2}, \ldots, T_{k}$ be edge-disjoint spanning trees of G.
Case 1: v_{1} is a leaf in T_{i} for each $i, 1 \leq i \leq k$. Let e^{\prime} be a new edge between v_{s} and v_{j}, and $G^{\prime}=G-e+e^{\prime}$. Then G^{\prime} is a realization of d^{\prime}. If $e \notin \cup_{i=1}^{k} E\left(T_{i}\right)$, then $T_{1}, T_{2}, \ldots, T_{k}$ are edge-disjoint spanning trees of G^{\prime}. If $e \in E\left(T_{l}\right)$ where $1 \leq l \leq k$, by Corollary 4.2, $d_{1}>k$, and there must be an edge $e^{\prime \prime}$ incident with v_{1} such that $e^{\prime \prime} \notin \cup_{i=1}^{k} E\left(T_{i}\right)$, then $T_{1}, T_{2}, \ldots, T_{l-1}, T_{l}-e+e^{\prime \prime}, T_{l+1}, \ldots, T_{k}$ are edge-disjoint spanning trees of G^{\prime}.
Case 2: v_{1} is not a leaf in T_{l} for some $l, 1 \leq l \leq k$. Then there exists $v_{t} \in V(G)$ and there exists $e_{t}=v_{1} v_{t} \in E\left(T_{l}\right)$ such that v_{1} and v_{j} are in one component of $T_{l}-e_{t}$ while v_{t} is in the other component. Let e_{t}^{\prime} be a new edge between v_{j} and v_{t}, and $G_{t}=G-e_{t}+e_{t}^{\prime}$. Then G_{t} is a d^{\prime}-realization, and $T_{1}, T_{2}, \ldots, T_{l-1}, T_{l}-e_{t}+e_{t}^{\prime}, T_{l+1}, \ldots, T_{k}$ are edge-disjoint spanning trees of G_{t}.

Lemma 4.4. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence. If d has a realization G with $\tau(G) \geq k$, then $d^{\prime}=\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right)$ has a realization G^{\prime} with $\tau\left(G^{\prime}\right) \geq k, \forall i, j$ with $1 \leq i<j \leq n$.

Proof. Let v_{i}, v_{j} be the vertices with degree d_{i} and d_{j} in G, respectively, and e be a new edge between v_{i} and v_{j}. Let $G^{\prime}=G+e$, then G^{\prime} is a d^{\prime}-realization with $\tau\left(G^{\prime}\right) \geq k$.
Proof of Theorem 1.8. Lemma 4.1 proves the necessity. To prove the sufficiency, we prove a claim first.
Claim. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence with $d_{n} \geq k$ and $\sum_{i=1}^{n} d_{i} \geq 2 k(n-1)$. If any nonincreasing multigraphic sequence $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)$ with $d_{n}^{\prime} \geq k$ and $\sum_{i=1}^{n} d_{i}^{\prime}=2 k(n-1)$ has a realization with k edge-disjoint spanning trees, then d has a realization with k edge-disjoint spanning trees.
Proof of the claim: Without loss of generality, we may assume that $\sum_{i=1}^{n} d_{i}>2 k(n-1)$. Noticing that $\sum_{i=1}^{n} d_{i}$ is always even, we define an operation $(*)$ for d as follows: $(*)$: If $\sum_{i=1}^{n} d_{i}>2 k(n-1)$ and $\exists i \geq 2$ such that $d_{i}>k$, then let $d^{(*)}=\left(d_{1}-1, d_{2}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{n}\right)$, and reorder $d^{(*)}$ to be a nonincreasing sequence $\left(d_{1}^{(*)}, d_{2}^{(*)}, \ldots, d_{n}^{(*)}\right)$.

By Theorem 1.2, $d^{(*)}$ is still a multigraphic sequence. We keep on doing operation $(*)$ for $d^{(*)}$ until $\sum_{i=1}^{n} d_{i}^{(*)}=2 k(n-1)$ or $d_{i}^{(*)}=k$ for each $i=2,3, \ldots, n$. For the latter case, $d^{(*)}=\left(d_{1}^{(*)}, k, k, \ldots, k\right)$ and $d_{1}^{(*)}+k(n-1) \geq 2 k(n-1)$, i.e., $d_{1}^{(*)} \geq k(n-1)$. Since $d^{(*)}=\left(d_{1}^{(*)}, k, k, \ldots, k\right)$ is still a multigraphic sequence, by Theorem $1.1, d_{1}^{(*)} \leq k(n-1)$. Thus $d_{1}^{(*)}=k(n-1)$. Hence, in both cases, $\sum_{i=1}^{n} d_{i}^{(*)}=2 k(n-1)$, and by the assumption, $d^{(*)}$ has a realization with k edgedisjoint spanning trees. By Lemma 4.4, d has a realization with k edge-disjoint spanning trees, which completes the proof of the claim.

By the claim, it suffices to show that any multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{n} \geq k$ and $\sum_{i=1}^{n} d_{i}=2 k(n-1)$ has a realization G with $\tau(G) \geq k$. If $n=2$, then $t K_{2}$ is such a d-realization where $t=k$. If $n>2$, then by Lemma 4.3, it suffices to show that $d^{0}=(k(n-1), k, k, \ldots, k)$ has such a realization. Let $k K_{1, n-1}$ be the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that for each $i, 2 \leq i \leq n$, there are k multiple edges between v_{1} and v_{i}, but there are no edges between v_{i} and v_{j} for $2 \leq i<j \leq n$. Then $k K_{1, n-1}$ is a d^{0}-realization with $\tau\left(k K_{1, n-1}\right)=k$. This completes the proof of the theorem.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[2] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) 496-506.
[3] F. Boesch, F. Harary, Line removal algorithms for graphs and their degree lists, IEEE Trans. Circuits Syst. 23 (1976) 778-782.
[4] S. Fan, H.-J. Lai, Y. Shao, T. Zhang, J. Zhou, Degree sequence and supereulerian graphs, Discrete Math. 308 (2008) 6626-6631.
[5] H.-J. Lai, Yanting Liang, Ping Li, Jinquan Xu, Degree sequences and graphs with disjoint spanning trees, Discrete Appl. Math. 159 (2011) $1447-1452$.
[6] F. Harary, C. St, J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709.

[^0]: * Corresponding author.

 E-mail address: xgu@math.wvu.edu (X. Gu).

