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Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod (2p + 1)-
orientation. It has also been conjectured that every (4p + 1)-edge-connected graph is mod
(2p + 1)-contractible. In [Z.-H. Chen, H.-J. Lai, H. Lai, Nowhere zero flows in line graphs,
Discrete Math. 230 (2001) 133–141], it has been proved that if G has a nowhere-zero 3-
flow and the minimum degree of G is at least 4, then L(G) also has a nowhere-zero 3-flow.
In this paper, we prove that the above conjectures on line graphs would imply the truth of
the conjectures in general, and we also prove that if G has a mod (2p + 1)-orientation and
δ(G) � 4p, then L(G) also has a mod (2p + 1)-orientation, which extends a result in Chen
et al. (2001) [2].

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Graphs in this note are finite and loopless. We follow
Bondy and Murty [1] for undefined notations and termi-
nology.

Given a graph G with E(G) �= ∅, the line graph of G ,
denoted by L(G), has E(G) as the vertex set, where two
vertices e1, e2 are adjacent in L(G) if and only if the cor-
responding edges e1, e2 are adjacent in G . Denote κ ′(G) to
be the edge connectivity of G .

Let D = D(G) be an orientation of an undirected
graph G . If an edge e ∈ E(G) is directed from a vertex u
to a vertex v , then define tail(e) = u and head(e) = v . For
vertex sets U , V ⊂ V (G) with U ∩ V = ∅, denote

EG(U , V ) = {
uv ∈ E(G): u ∈ U , v ∈ V

}
,
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E−
D (U , V )

= {
e = uv ∈ E(D): head(e) = u ∈ U , tail(e) = v ∈ V

}
,

E+
D (U , V )

= {
e = uv ∈ E(D): tail(e) = u ∈ U , head(e) = v ∈ V

}
.

Let d−
D (U , V ) = |E−

D (U , V )| and d+
D (U , V ) = |E+

D (U , V )|.
If U = {v} and V = V (G) − {v}, then we use EG(v),
E−

D (v) and E+
D (v) to denote the subsets of edges incident

with v in G , directed into v and directed from v under
orientation D , respectively, and let d−

D (v) = |E−
D (v)| and

d+
D (v) = |E+

D (v)|. The subscript D may be omitted when
D(G) is understood from the context. Let Di(G) = {v ∈
V (G): dG(v) = i}, for any integer i � 0.

For some positive integer m, denote Zm to be the set of
integers modulo m. For a graph G with an orientation D ,
if f : E 	→ Zm , then ∀v ∈ V (G), define

∂ f (v) ≡
∑

e∈E+
D (v)

f (e) −
∑

e∈E−
D (v)

f (e) (mod m).

Thus ∂ f : V (G) 	→ Zm is a map, called the boundary of f .
A nowhere-zero k-flow (abbreviated as a k-NZF) of G is an
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orientation D of G together with a map f : E 	→ Zk such
that ∂ f (v) = 0 at every vertex v of G and f (e) �= 0 for
every edge e of G .

The well-known Tutte’s 3-NZF conjecture is still open,
to the best of our knowledge.

Conjecture 1.1. (See Tutte [8].) Every 4-edge-connected graph
has a 3-NZF.

In [2], the following theorem is proved.

Theorem 1.2. (See Chen et al., Theorem 1.4 in [2].) If G has a
3-NZF and the minimum degree of G is at least 4, then L(G)

also has a 3-NZF.

For a graph G , if G has an orientation D such that at ev-
ery vertex v ∈ V (G), d+

D (v)−d−
D (v) ≡ 0 (mod 2p +1), then

we say that G admits a mod (2p + 1)-orientation. The set
of all graphs which have mod (2p + 1)-orientations is de-
noted by M2p+1. It can be proved that G has a 3-NZF if
and only if G ∈ M3 by letting f : E 	→ {1,−1} with ∂ f = 0
and then reversing the orientation of e for every e ∈ E(G)

with f (e) = −1 to obtain a mod 3-orientation.
Jaeger extended Tutte’s 3-NZF conjecture to M2p+1.

Conjecture 1.3. (See Jaeger [3] and [4].) Every (4p)-edge-
connected graph is in M2p+1 .

A function b : V (G) 	→ Zm is a zero sum function in Zm
if

∑
v∈V (G) b(v) ≡ 0 (mod m). The set of all zero sum func-

tions in Zm of G is denoted by Z(G,Zm). Define Mo
2p+1 to

be the collection of graphs such that G ∈ Mo
2p+1 if and only

if ∀b ∈ Z(G,Z2p+1), there exists an orientation D of G such
that d+

D (v) − d−
D (v) ≡ b(v) (mod 2p + 1).

Several characterizations of graphs in Mo
2p+1 have been

obtained in [6]. Some investigations on M2p+1 and Mo
2p+1

are performed in [5], [7] and [6]. In particular, a similar
conjecture is also proposed for Mo

2p+1.

Conjecture 1.4. (See [5] and [7].) Every (4p +1)-edge-connect-
ed graph is in Mo

2p+1 .

In this paper, we prove that the Conjectures 1.3 and 1.4
on line graphs would imply the truth of the conjectures in
general.

Theorem 1.5. Let k be an integer. Then the following statements
are equivalent:

(i) For every graph G, if κ ′(G) � k, then G ∈ M2p+1 .
(ii) For every graph G, if κ ′(L(G)) � k, then L(G) ∈ M2p+1 .

Theorem 1.6. Let k be an integer. Then the following statements
are equivalent:

(i) For every graph G, if κ ′(G) � k, then G ∈ Mo
2p+1 .

(ii) For every graph G, if κ ′(L(G)) � k, then L(G) ∈ Mo
2p+1 .

We also extend Theorem 1.2 to the following.
Theorem 1.7. Let G be a graph. If G ∈ M2p+1 and δ(G) � 4p,
then L(G) ∈ M2p+1 .

2. Preliminaries

In this section, we review some useful results needed
in the arguments.

Proposition 2.1. (See Proposition 2.2 in [5].) For any integer
p � 1, Mo

2p+1 is a family of connected graphs such that each of
the following holds:

(C1) K1 ∈ Mo
2p+1 .

(C2) If e ∈ E(G) and if G ∈ Mo
2p+1 , then G/e ∈ Mo

2p+1 .
(C3) If H is a subgraph of G, and if H, G/H ∈ Mo

2p+1 , then
G ∈ Mo

2p+1 .

Proposition 2.2. For any integer p � 1, M2p+1 is a family of
connected graphs such that each of the following holds:

(C1) K1 ∈ M2p+1 .
(C2) If e ∈ E(G) and if G ∈ M2p+1 , then G/e ∈ M2p+1 .
(C3) If H is a subgraph of G with H ∈ Mo

2p+1 , then G/H ∈
M2p+1 if and only if G ∈ M2p+1 .

The proofs of Proposition 2.2 (C2) and (C3) are similar
to those for Proposition 2.1 (C2) and (C3), and so they are
omitted.

Lemma 2.3. (See Lai et al., Proposition 2.3(v) and Example 2.5
in [6].) A complete graph Km ∈ Mo

2p+1 if and only if m = 1 or
m � 4p + 1.

The following lemma follows from the definition of line
graph.

Lemma 2.4. Let G be a graph with E(G) �= ∅ and let e ∈ E(G)

such that the two ends of e are u and v. Let G(e) be the
graph obtained from G by replacing e by a (u, v)-path uve v
of length 2. Let e′ denote the edge in L(G(e)) that has uve and
ve v as its ends. Then

L
(
G(e)

)
/
{

e′} = L(G).

Let G be a graph and let S(G), the subdivided graph
of G , be the graph obtained from G by replacing each
edge e of G by a path of length 2 with a newly added
internal vertex ve . Note that the correspondence e ↔ e′
defined in Lemma 2.4 is a bijection between E(G) and
{e′ | e ∈ E(G)} ⊂ E(L(S(G))). Define

E ′(G) = {
e′ ∈ E

(
L
(

S(G)
)) ∣∣ e ∈ E(G)

}
.

Then clearly,

L(G) = L
(

S(G)
)
/E ′(G) (1)

and

E
(
L
(

S(G)
)) − E ′(G) =

⋃
E
(
L
(

E S(G)(v)
))

, (2)

v∈V (G)
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Fig. 1. Graphs L(G), S(G) and L(S(G)) for a given G .

so we have

L
(

S(G)
)
/
[

E
(
L
(

S(G)
)) − E ′(G)

] = G. (3)

Example 1. Let G be the graph shown in Fig. 1. And L(G),
S(G) and L(S(G)) are also shown here. Note that E ′(G) =
{e′

i: 1 � i � 5}. It’s easy to check that Eqs. (1), (2) and (3)
hold from the graphs.

3. Main results

Lemma 3.1. Let T be a connected spanning subgraph of G. If
for each edge e ∈ E(T ), G has a subgraph He ∈ Mo

2p+1 with
e ∈ E(He), then G ∈ Mo

2p+1 .

Proof. We argue by induction on |V (G)|. The lemma holds
trivially if |V (G)| = 1. Assume that |V (G)| > 1 and pick an
edge e′ ∈ E(T ). Then G has a subgraph H ′ ∈ Mo

2p+1 such
that e′ ∈ E(H ′). Let G ′ = G/H ′ and let T ′ = T /(E(H ′) ∩
E(T )). Since T is a connected spanning subgraph of G ,
T ′ is a connected spanning subgraph of G ′ . For each e ∈
E(T ′), e ∈ E(T ), and so by assumption, G has a subgraph
He ∈ Mo

2p+1 with e ∈ E(He). By Proposition 2.1(C2), H ′
e =

He/(E(He) ∩ E(H ′)) ∈ Mo
2p+1 and e ∈ H ′

e . Therefore by in-
duction G ′ ∈ Mo

2p+1. Then by Proposition 2.1(C3), and by
the assumption that H ′ ∈ Mo

2p+1, G ∈ Mo
2p+1. �

Lemma 3.2. Let G be a graph. If δ(G) � 4p + 1, then L(G) ∈
Mo

2p+1 .

Proof. Since δ(G) � 4p + 1, for any e ∈ L(G), e ∈ Km with
m � 4p + 1. By Lemma 2.3, Km ∈ Mo

2p+1. Therefore, L(G) ∈
Mo

2p+1 by Lemma 3.1. �
Lemma 3.3. Let G be a graph and k be an integer. If κ ′(G) � k,
then

κ ′(L
(

S(G)
))

� k.

Proof. By contradiction, suppose X is an edge cut of
L(S(G)) satisfies: (1) |X | < k and |X | is minimized; and
(2) |X ∩ E ′(G)| is maximized subject to (1). Since κ ′(G) � k,
δ(G) � k. Note that for any x ∈ V (L(S(G))), x ∈ Km with
m � k and |Ex| = 1 where Ex = {e = xy ∈ L(S(G)) | y /∈
V (Km)}. Therefore, δ(L(S(G))) � k.

If X ⊆ E ′(G), by Eq. (3), X is also an edge cut of G .
Therefore, |X | � k, contrary to |X | < k.

Suppose there exists e = uv ∈ X − E ′(G), then e is in
some Km and is adjacent to some e′ = uv ′ with v ′ /∈
V (Km). Let H be one of the components of L(S(G)) − X .
If H contains only one vertex, then |X | � δ(L(S(G))) � k. If
H contains at least 2 vertices, let

X ′ = (
X − E(Km)

)

∪ {
ui vi ∈ E ′(G): ui ∈ Km ∩ H, vi /∈ Km

}

then |X ′| � |X | and |X ′ ∩ E ′(G)| > |X ∩ E ′(G)| and X ′ is also
an edge cut of L(S(G)), contrary to that |X | is minimized
and |X ∩ E ′(G)| is maximized.

Hence, κ ′(L(S(G))) � k. �
Proof of Theorem 1.5. (i) ⇒ (ii) It is trivial.

(ii) ⇒ (i) Since κ ′(G) � k, κ ′(L(S(G))) � k by Lemma 3.3.
Then by the assumption of part (ii), L(S(G)) ∈ M2p+1.
Note that G is a contraction of L(S(G)) by Eq. (3). Thus
G ∈ M2p+1 by Proposition 2.2(C2). �
Corollary 3.4. To prove Conjecture 1.3, it suffices to prove that
if κ ′(L(G)) � 4p, then L(G) ∈ M2p+1 , for any graph G.

The proof of Theorem 1.6 is similar to that of Theo-
rem 1.5.

Proof of Theorem 1.6. (i) ⇒ (ii) It is trivial.
(ii) ⇒ (i) Since κ ′(G) � k, κ ′(L(S(G))) � k by Lemma 3.3.

Then by the assumption of part (ii), L(S(G)) ∈ M0
2p+1.

Note that G is a contraction of L(S(G)) by Eq. (3). Thus
G ∈ M0

2p+1 by Proposition 2.1(C2). �
Corollary 3.5. To prove Conjecture 1.4, it suffices to prove that
if κ ′(L(G)) � 4p + 1, then L(G) ∈ Mo

2p+1 , for any graph G.

Lemma 3.6. If G ∈ M2p+1 and δ(G) = 4p, then L(G) ∈ M2p+1 .

Proof. By Proposition 2.2(C2) and Eq. (1), it suffices to
prove that L(S(G)) ∈ M2p+1.

Since G ∈ M2p+1, G has an orientation D such that at
every vertex v ∈ V (G),

d+
D (v) − d−

D (v) ≡ 0 (mod 2p + 1). (4)

Note that by Eq. (3), D is an orientation of a subgraph of
L(S(G)). By Eq. (2), E(L(S(G))) − E ′(G) is a disjoint union
of Kd(v) with v ∈ V (G). By Eqs. (2) and (4), under the ori-
entation D ,

d+
D

(
Kd(v), L

(
S(G)

) − Kd(v)

) − d−
D

(
Kd(v), L

(
S(G)

) − Kd(v)

)

≡ 0 (mod 2p + 1), (5)

and for any vertex u ∈ Kd(v)

∣∣EG
(
u, L

(
S(G)

) − Kd(v)

)∣∣ = 1. (6)
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If d(v) � 4p + 1, then by Lemma 2.3, Kd(v) ∈ Mo
2p+1,

and so there exists an orientation D v of Kd(v) such that
d+

D v
(u) − d−

D v
(u) ≡ 0 (mod 2p + 1) in L(S(G)) at every ver-

tex u ∈ Kd(v) .
Now suppose d(v) = 4p and let H = Kd(v) = K4p . By

Eqs. (5) and (6), there exists partition (U , V ) of H where
U = {u1, u2, . . . , u2p} and V = {v1, v2, . . . , v2p}, such that
under the orientation D ,

d+
D

(
ui, L

(
S(G)

) − H
) − d−

D

(
ui, L

(
S(G)

) − H
) = 1

and

d+
D

(
vi, L

(
S(G)

) − H
) − d−

D

(
vi, L

(
S(G)

) − H
) = −1.

Let M(v) = {ui vi | ui ∈ U , vi ∈ V } be a perfect match-
ing of H = Kd(v) . Then H − M(v) is a (4p − 2)-regular
graph, and so H − M(v) is Eulerian. Therefore, H − M(v)

has an orientation DM(v) such that for any x ∈ V (H),
d+

DM(v)
(x) − d−

DM(v)
(x) = 0 (mod 2p + 1) in H − M(v). Then

we define an orientation D ′
M(v) for M(v) as head(ui vi) = ui

and tail(ui vi) = vi . Let D v be the disjoint union of DM(v)

and D ′
M(v)

.
Thus the disjoint union of D and all D v with v ∈ V (G)

gives an orientation D ′ of L(S(G)). It is routine to ver-
ify that d+

D ′ (x) − d−
D ′ (x) ≡ 0 (mod 2p + 1) at every vertex

x ∈ V (L(S(G))).
Hence, L(S(G)) ∈ M2p+1. �
Theorem 1.7 now follows from Lemmas 3.6 and 3.2.

When p = 1, we obtain Theorem 1.2, restated as the fol-
lowing corollary.

Corollary 3.7. If G ∈ M3 and δ(G) � 4, then L(G) ∈ M3 .
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