Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Mod (2p + 1)-orientations in line graphs

Hong-Jian Lai^{a, c}, Hao Li^b, Ping Li^c, Yanting Liang^{c,d,*}, Senmei Yao^c

^a College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China

^b Department of Mathematics, Renmin University of China, Beijing 100872, China

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

^d Mathematics and Computer Science Department, St. Mary's College of Maryland, St. Mary's City, MD 20686, United States

ARTICLE INFO

Article history:

Received 17 October 2009 Received in revised form 2 September 2011 Accepted 5 September 2011 Available online 16 September 2011 Communicated by B. Doerr

Keywords: Combinatorial problems Nowhere zero flows Mod (2p + 1)-orientation Mod (2p + 1)-contractible Line graph

ABSTRACT

Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod (2p + 1)-orientation. It has also been conjectured that every (4p + 1)-edge-connected graph is mod (2p + 1)-contractible. In [Z.-H. Chen, H.-J. Lai, H. Lai, Nowhere zero flows in line graphs, Discrete Math. 230 (2001) 133–141], it has been proved that if *G* has a nowhere-zero 3-flow and the minimum degree of *G* is at least 4, then L(G) also has a nowhere-zero 3-flow. In this paper, we prove that the above conjectures on line graphs would imply the truth of the conjectures in general, and we also prove that if *G* has a mod (2p + 1)-orientation and $\delta(G) \ge 4p$, then L(G) also has a mod (2p + 1)-orientation, which extends a result in Chen et al. (2001) [2].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this note are finite and loopless. We follow Bondy and Murty [1] for undefined notations and terminology.

Given a graph *G* with $E(G) \neq \emptyset$, the line graph of *G*, denoted by L(G), has E(G) as the vertex set, where two vertices e_1, e_2 are adjacent in L(G) if and only if the corresponding edges e_1, e_2 are adjacent in *G*. Denote $\kappa'(G)$ to be the edge connectivity of *G*.

Let D = D(G) be an orientation of an undirected graph *G*. If an edge $e \in E(G)$ is directed from a vertex *u* to a vertex *v*, then define tail(e) = u and head(e) = v. For vertex sets $U, V \subset V(G)$ with $U \cap V = \emptyset$, denote

 $E_G(U, V) = \{uv \in E(G): u \in U, v \in V\},\$

$$E_D^-(U, V)$$

$$= \left\{ e = uv \in E(D): head(e) = u \in U, tail(e) = v \in V \right\},$$

$$E_D^+(U, V)$$

$$= \left\{ e = uv \in E(D): tail(e) = u \in U, head(e) = v \in V \right\}.$$

Let $d_D^-(U, V) = |E_D^-(U, V)|$ and $d_D^+(U, V) = |E_D^+(U, V)|$. If $U = \{v\}$ and $V = V(G) - \{v\}$, then we use $E_G(v)$, $E_D^-(v)$ and $E_D^+(v)$ to denote the subsets of edges incident with v in G, directed into v and directed from v under orientation D, respectively, and let $d_D^-(v) = |E_D^-(v)|$ and $d_D^+(v) = |E_D^+(v)|$. The subscript D may be omitted when D(G) is understood from the context. Let $D_i(G) = \{v \in V(G): d_G(v) = i\}$, for any integer $i \ge 0$.

For some positive integer *m*, denote Z_m to be the set of integers modulo *m*. For a graph *G* with an orientation *D*, if $f: E \mapsto \mathbb{Z}_m$, then $\forall v \in V(G)$, define

$$\partial f(v) \equiv \sum_{e \in E_D^+(v)} f(e) - \sum_{e \in E_D^-(v)} f(e) \pmod{m}$$

Thus $\partial f: V(G) \mapsto \mathbf{Z}_m$ is a map, called the **boundary of** f. A nowhere-zero k-flow (abbreviated as a k-NZF) of G is an

^{*} Corresponding author at: Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States. Also a visiting instructor at Mathematics and Computer Science Department, St. Mary's College of Maryland, St. Mary's City, MD 20686, United States.

E-mail address: lyt814@math.wvu.edu (Y. Liang).

^{0020-0190/\$ –} see front matter $\,\,\odot\,$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2011.09.005

orientation *D* of *G* together with a map $f: E \mapsto \mathbf{Z}_k$ such that $\partial f(v) = 0$ at every vertex *v* of *G* and $f(e) \neq 0$ for every edge *e* of *G*.

The well-known Tutte's 3-NZF conjecture is still open, to the best of our knowledge.

Conjecture 1.1. (See Tutte [8].) Every 4-edge-connected graph has a 3-NZF.

In [2], the following theorem is proved.

Theorem 1.2. (See Chen et al., Theorem 1.4 in [2].) If G has a 3-NZF and the minimum degree of G is at least 4, then L(G) also has a 3-NZF.

For a graph *G*, if *G* has an orientation *D* such that at every vertex $v \in V(G)$, $d_D^+(v) - d_D^-(v) \equiv 0 \pmod{2p+1}$, then we say that *G* admits a **mod** (2p + 1)-**orientation**. The set of all graphs which have mod (2p + 1)-orientations is denoted by M_{2p+1} . It can be proved that *G* has a 3-NZF if and only if $G \in M_3$ by letting $f : E \mapsto \{1, -1\}$ with $\partial f = 0$ and then reversing the orientation of *e* for every $e \in E(G)$ with f(e) = -1 to obtain a mod 3-orientation.

Jaeger extended Tutte's 3-NZF conjecture to M_{2p+1} .

Conjecture 1.3. (See Jaeger [3] and [4].) Every (4p)-edgeconnected graph is in M_{2p+1} .

A function $b: V(G) \mapsto \mathbb{Z}_m$ is a **zero sum function** in \mathbb{Z}_m if $\sum_{v \in V(G)} b(v) \equiv 0 \pmod{m}$. The set of all zero sum functions in \mathbb{Z}_m of *G* is denoted by $Z(G, \mathbb{Z}_m)$. Define M_{2p+1}^o to be the collection of graphs such that $G \in M_{2p+1}^o$ if and only if $\forall b \in Z(G, \mathbb{Z}_{2p+1})$, there exists an orientation *D* of *G* such that $d_D^+(v) - d_D^-(v) \equiv b(v) \pmod{2p+1}$.

Several characterizations of graphs in M_{2p+1}^o have been obtained in [6]. Some investigations on M_{2p+1} and M_{2p+1}^o are performed in [5], [7] and [6]. In particular, a similar conjecture is also proposed for M_{2p+1}^o .

Conjecture 1.4. (See [5] and [7].) Every (4p + 1)-edge-connected graph is in M_{2p+1}^{0} .

In this paper, we prove that the Conjectures 1.3 and 1.4 on line graphs would imply the truth of the conjectures in general.

Theorem 1.5. Let k be an integer. Then the following statements are equivalent:

- (i) For every graph G, if $\kappa'(G) \ge k$, then $G \in M_{2p+1}$.
- (ii) For every graph G, if $\kappa'(L(G)) \ge k$, then $L(G) \in M_{2p+1}$.

Theorem 1.6. *Let k be an integer. Then the following statements are equivalent:*

- (i) For every graph G, if $\kappa'(G) \ge k$, then $G \in M_{2n+1}^{o}$.
- (ii) For every graph G, if $\kappa'(L(G)) \ge k$, then $L(G) \in M_{2n+1}^0$.

We also extend Theorem 1.2 to the following.

Theorem 1.7. Let G be a graph. If $G \in M_{2p+1}$ and $\delta(G) \ge 4p$, then $L(G) \in M_{2p+1}$.

2. Preliminaries

In this section, we review some useful results needed in the arguments.

Proposition 2.1. (See Proposition 2.2 in [5].) For any integer $p \ge 1$, M_{2p+1}^0 is a family of connected graphs such that each of the following holds:

- (C1) $K_1 \in M_{2p+1}^o$.
- (C2) If $e \in E(G)$ and if $G \in M_{2p+1}^0$, then $G/e \in M_{2p+1}^0$.
- (C3) If H is a subgraph of G, and if $H, G/H \in M^{o}_{2p+1}$, then $G \in M^{o}_{2p+1}$.

Proposition 2.2. For any integer $p \ge 1$, M_{2p+1} is a family of connected graphs such that each of the following holds:

- (C1) $K_1 \in M_{2p+1}$.
- (C2) If $e \in E(G)$ and if $G \in M_{2p+1}$, then $G/e \in M_{2p+1}$.
- (C3) If H is a subgraph of G with $H \in M_{2p+1}^{o}$, then $G/H \in M_{2p+1}$ if and only if $G \in M_{2p+1}$.

The proofs of Proposition 2.2 (C2) and (C3) are similar to those for Proposition 2.1 (C2) and (C3), and so they are omitted.

Lemma 2.3. (See Lai et al., Proposition 2.3(ν) and Example 2.5 in [6].) A complete graph $K_m \in M^o_{2p+1}$ if and only if m = 1 or $m \ge 4p + 1$.

The following lemma follows from the definition of line graph.

Lemma 2.4. Let *G* be a graph with $E(G) \neq \emptyset$ and let $e \in E(G)$ such that the two ends of *e* are *u* and *v*. Let *G*(*e*) be the graph obtained from *G* by replacing *e* by a (u, v)-path uv_ev of length 2. Let *e'* denote the edge in L(G(e)) that has uv_e and v_ev as its ends. Then

$$L(G(e))/\{e'\}=L(G).$$

Let *G* be a graph and let *S*(*G*), the subdivided graph of *G*, be the graph obtained from *G* by replacing each edge *e* of *G* by a path of length 2 with a newly added internal vertex v_e . Note that the correspondence $e \leftrightarrow e'$ defined in Lemma 2.4 is a bijection between *E*(*G*) and $\{e' \mid e \in E(G)\} \subset E(L(S(G)))$. Define

$$E'(G) = \left\{ e' \in E(L(S(G))) \mid e \in E(G) \right\}.$$

Then clearly,

$$L(G) = L(S(G))/E'(G)$$
⁽¹⁾

and

$$E(L(S(G))) - E'(G) = \bigcup_{\nu \in V(G)} E(L(E_{S(G)}(\nu))),$$
(2)

Fig. 1. Graphs L(G), S(G) and L(S(G)) for a given G.

so we have

$$L(S(G))/[E(L(S(G))) - E'(G)] = G.$$
(3)

Example 1. Let *G* be the graph shown in Fig. 1. And L(G), S(G) and L(S(G)) are also shown here. Note that $E'(G) = \{e'_i: 1 \le i \le 5\}$. It's easy to check that Eqs. (1), (2) and (3) hold from the graphs.

3. Main results

Lemma 3.1. Let *T* be a connected spanning subgraph of *G*. If for each edge $e \in E(T)$, *G* has a subgraph $H_e \in M_{2p+1}^o$ with $e \in E(H_e)$, then $G \in M_{2p+1}^o$.

Proof. We argue by induction on |V(G)|. The lemma holds trivially if |V(G)| = 1. Assume that |V(G)| > 1 and pick an edge $e' \in E(T)$. Then *G* has a subgraph $H' \in M_{2p+1}^o$ such that $e' \in E(H')$. Let G' = G/H' and let $T' = T/(E(H') \cap E(T))$. Since *T* is a connected spanning subgraph of *G*, *T'* is a connected spanning subgraph of *G'*. For each $e \in E(T')$, $e \in E(T)$, and so by assumption, *G* has a subgraph $H_e \in M_{2p+1}^o$ with $e \in E(H_e)$. By Proposition 2.1(C2), $H'_e = H_e/(E(H_e) \cap E(H')) \in M_{2p+1}^o$ and $e \in H'_e$. Therefore by induction $G' \in M_{2p+1}^o$. Then by Proposition 2.1(C3), and by the assumption that $H' \in M_{2p+1}^o$, $G \in M_{2p+1}^o$. \Box

Lemma 3.2. Let G be a graph. If $\delta(G) \ge 4p + 1$, then $L(G) \in M_{2p+1}^{0}$.

Proof. Since $\delta(G) \ge 4p + 1$, for any $e \in L(G)$, $e \in K_m$ with $m \ge 4p + 1$. By Lemma 2.3, $K_m \in M_{2p+1}^o$. Therefore, $L(G) \in M_{2p+1}^o$ by Lemma 3.1. \Box

Lemma 3.3. Let *G* be a graph and *k* be an integer. If $\kappa'(G) \ge k$, then

 $\kappa'(L(S(G))) \ge k.$

Proof. By contradiction, suppose *X* is an edge cut of L(S(G)) satisfies: (1) |X| < k and |X| is minimized; and

(2) $|X \cap E'(G)|$ is maximized subject to (1). Since $\kappa'(G) \ge k$, $\delta(G) \ge k$. Note that for any $x \in V(L(S(G)))$, $x \in K_m$ with $m \ge k$ and $|E_x| = 1$ where $E_x = \{e = xy \in L(S(G)) \mid y \notin V(K_m)\}$. Therefore, $\delta(L(S(G))) \ge k$.

If $X \subseteq E'(G)$, by Eq. (3), X is also an edge cut of G. Therefore, $|X| \ge k$, contrary to |X| < k.

Suppose there exists $e = uv \in X - E'(G)$, then e is in some K_m and is adjacent to some e' = uv' with $v' \notin V(K_m)$. Let H be one of the components of L(S(G)) - X. If H contains only one vertex, then $|X| \ge \delta(L(S(G))) \ge k$. If H contains at least 2 vertices, let

$$X' = (X - E(K_m))$$
$$\cup \{u_i v_i \in E'(G) \colon u_i \in K_m \cap H, v_i \notin E'(G) \in E'(G) \}$$

then $|X'| \leq |X|$ and $|X' \cap E'(G)| > |X \cap E'(G)|$ and X' is also an edge cut of L(S(G)), contrary to that |X| is minimized and $|X \cap E'(G)|$ is maximized.

 K_m

Hence, $\kappa'(L(S(G))) \ge k$. \Box

Proof of Theorem 1.5. (i) \Rightarrow (ii) It is trivial.

(ii) \Rightarrow (i) Since $\kappa'(G) \ge k$, $\kappa'(L(S(G))) \ge k$ by Lemma 3.3. Then by the assumption of part (ii), $L(S(G)) \in M_{2p+1}$. Note that *G* is a contraction of L(S(G)) by Eq. (3). Thus $G \in M_{2p+1}$ by Proposition 2.2(C2). \Box

Corollary 3.4. To prove Conjecture 1.3, it suffices to prove that if $\kappa'(L(G)) \ge 4p$, then $L(G) \in M_{2p+1}$, for any graph *G*.

The proof of Theorem 1.6 is similar to that of Theorem 1.5.

Proof of Theorem 1.6. (i) \Rightarrow (ii) It is trivial.

(ii) \Rightarrow (i) Since $\kappa'(G) \ge k$, $\kappa'(L(S(G))) \ge k$ by Lemma 3.3. Then by the assumption of part (ii), $L(S(G)) \in M_{2p+1}^0$. Note that *G* is a contraction of L(S(G)) by Eq. (3). Thus $G \in M_{2p+1}^0$ by Proposition 2.1(C2). \Box

Corollary 3.5. To prove Conjecture 1.4, it suffices to prove that if $\kappa'(L(G)) \ge 4p + 1$, then $L(G) \in M^o_{2p+1}$, for any graph G.

Lemma 3.6. *If* $G \in M_{2p+1}$ *and* $\delta(G) = 4p$ *, then* $L(G) \in M_{2p+1}$ *.*

Proof. By Proposition 2.2(C2) and Eq. (1), it suffices to prove that $L(S(G)) \in M_{2p+1}$.

Since $G \in M_{2p+1}$, G has an orientation D such that at every vertex $v \in V(G)$,

$$d_D^+(v) - d_D^-(v) \equiv 0 \pmod{2p+1}.$$
 (4)

Note that by Eq. (3), *D* is an orientation of a subgraph of L(S(G)). By Eq. (2), E(L(S(G))) - E'(G) is a disjoint union of $K_{d(v)}$ with $v \in V(G)$. By Eqs. (2) and (4), under the orientation *D*,

$$d_D^+(K_{d(\nu)}, L(S(G)) - K_{d(\nu)}) - d_D^-(K_{d(\nu)}, L(S(G)) - K_{d(\nu)}) \equiv 0 \pmod{2p+1},$$
(5)

and for any vertex $u \in K_{d(v)}$

$$\left|E_G\left(u, L\left(S(G)\right) - K_{d(v)}\right)\right| = 1.$$
(6)

If $d(v) \ge 4p + 1$, then by Lemma 2.3, $K_{d(v)} \in M_{2p+1}^{o}$, and so there exists an orientation D_v of $K_{d(v)}$ such that $d_{D_v}^+(u) - d_{D_v}^-(u) \equiv 0 \pmod{2p+1}$ in L(S(G)) at every vertex $u \in K_{d(v)}$.

Now suppose d(v) = 4p and let $H = K_{d(v)} = K_{4p}$. By Eqs. (5) and (6), there exists partition (U, V) of H where $U = \{u_1, u_2, \ldots, u_{2p}\}$ and $V = \{v_1, v_2, \ldots, v_{2p}\}$, such that under the orientation D,

$$d_D^+(u_i, L(S(G)) - H) - d_D^-(u_i, L(S(G)) - H) = 1$$

and

 $d_D^+(v_i, L(S(G)) - H) - d_D^-(v_i, L(S(G)) - H) = -1.$

Let $M(v) = \{u_i v_i \mid u_i \in U, v_i \in V\}$ be a perfect matching of $H = K_{d(v)}$. Then H - M(v) is a (4p - 2)-regular graph, and so H - M(v) is Eulerian. Therefore, H - M(v)has an orientation $D_{M(v)}$ such that for any $x \in V(H)$, $d_{D_{M(v)}}^+(x) - d_{D_{M(v)}}^-(x) = 0 \pmod{2p+1}$ in H - M(v). Then we define an orientation $D'_{M(v)}$ for M(v) as $head(u_i v_i) = u_i$ and $tail(u_i v_i) = v_i$. Let D_v be the disjoint union of $D_{M(v)}$ and $D'_{M(v)}$.

Thus the disjoint union of *D* and all D_v with $v \in V(G)$ gives an orientation D' of L(S(G)). It is routine to verify that $d_{D'}^+(x) - d_{D'}^-(x) \equiv 0 \pmod{2p+1}$ at every vertex $x \in V(L(S(G)))$.

Hence, $L(S(G)) \in M_{2p+1}$. \Box

Theorem 1.7 now follows from Lemmas 3.6 and 3.2. When p = 1, we obtain Theorem 1.2, restated as the following corollary.

Corollary 3.7. If $G \in M_3$ and $\delta(G) \ge 4$, then $L(G) \in M_3$.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan/Elsevier, London/New York, 1976.
- [2] Z.-H. Chen, H.-J. Lai, H. Lai, Nowhere zero flows in line graphs, Discrete Math. 230 (2001) 133-141.
- [3] F. Jaeger, On circular flows in graphs, in: Finite and Infinite Sets, Eger, 1981, in: Colloq. Math. Societatis Janos Bolyai, vol. 37, North-Holland, Amsterdam, 1984, pp. 391–402.
- [4] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, R. Wilson (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, London/New York, 1988, pp. 91–95.
- [5] H.-J. Lai, Mod (2p+1)-orientations and $K_{1,2p+1}$ -decompositions, SIAM J. Discrete Math. 21 (2007) 844–850.
- [6] H.-J. Lai, Y. Liang, J. Liu, J. Meng, Y. Shao, Z. Zhang, Contractible graphs with respect to mod (2p + 1)-orientations, submitted for publication.
- [7] H.-J. Lai, Y.H. Shao, H. Wu, J. Zhou, On mod (2p + 1)-orientations of graphs, J. Combin. Theory Ser. B 99 (2009) 399–406.
- [8] W.T. Tutte, A contribution to the theory of chromatical polynomials, Canad. J. Math. 6 (1954) 80–91.