Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Characterization of minimally (2, l)-connected graphs

Xiaofeng Gu^{a,*}, Hong-Jian Lai^{b,a}, Senmei Yao^a

^a Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
 ^b College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

ARTICLE INFO

Article history: Received 18 October 2010 Received in revised form 19 September 2011 Accepted 20 September 2011 Available online 22 September 2011 Communicated by J. Torán

Keywords: Combinatorial problems Connectivity Minimally k-connected graphs *l*-Connectivity (k, *l*)-Connected graphs Minimally (2, *l*)-connected graphs

1. Introduction

In this paper, we consider finite graphs, and follow the notations and terms of [3], unless otherwise defined. In particular, $\omega(G)$ is the number of components of a graph *G*. The *connectivity* $\kappa(G)$ of a graph *G* is the minimum number of vertices whose removal produces a disconnected graph or the trivial graph. For an integer $l \ge 2$, Chartrand et al. in [4] defined the *l*-connectivity $\kappa_l(G)$ of a graph *G* to be the minimum number of vertices of *G* whose removal produces a disconnected graph with at least *l* components or a graph with fewer than *l* vertices. Thus $\kappa_l(G) = 0$ if and only if $\omega(G) \ge l$ or $|V(G)| \le l - 1$. Note that $\kappa_2(G) = \kappa(G)$.

For an integer $l \ge 2$, *l*-edge-connectivity can be similarly defined. In [1], Boesch and Chen defined the *l*-edge-connectivity $\lambda_l(G)$ of a connected graph *G* to be the minimum number of edges whose removal leaves a graph with at least *l* components if $|V(G)| \ge l$, and $\lambda_l(G) = |E(G)|$ if |V(G)| < l. Note that $\lambda_2(G) = \lambda(G)$.

ABSTRACT

For an integer $l \ge 2$, the *l*-connectivity $\kappa_l(G)$ of a graph *G* is defined to be the minimum number of vertices of *G* whose removal produces a disconnected graph with at least *l* components or a graph with fewer than *l* vertices. Let $k \ge 1$, a graph *G* is called (k, l)-connected if $\kappa_l(G) \ge k$. A graph *G* is called minimally (k, l)-connected if $\kappa_l(G) \ge k$ but $\forall e \in E(G), \kappa_l(G-e) \le k-1$. In this paper, we present a structural characterization for minimally (2, l)-connected graphs and classify extremal results. These extend former results by Dirac (1967) [6] and Plummer (1968) [14] on minimally (2, 2)-connected graphs.

© 2011 Published by Elsevier B.V.

The generalized connectivity and edge-connectivity have been studied by many. See [1,4,7–13,15], among others. Let $k \ge 1$, a graph *G* is called (k, l)-connected if $\kappa_l \ge k$. A graph *G* is called minimally (k, l)-connected if $\kappa_l(G) \ge k$ but $\forall e \in E(G)$, $\kappa_l(G - e) \le k - 1$. Let *G* be a (k, l)-connected graph, and $e \in E(G)$. An edge $e \in E(G)$ is essential if G - e is not (k, l)-connected. A graph *G* is called (k, l)-edge-connected if $\lambda_l(G) \ge k$ but for any edge $e \in E(G)$, $\lambda_l(G - e) \le k - 1$. Therefore, a (2, 2)-connected graph is just a 2-connected graph.

Let $\mathscr{F}(n, k, l)$ be the set of all connected and minimally (k, l)-connected graphs with n vertices. We define $F(n, k, l) = \max\{|E(G)|: G \in \mathscr{F}(n, k, l)\}$ and f(n, k, l) =min $\{|E(G)|: G \in \mathscr{F}(n, k, l)\}$. Let $\mathscr{I}(n, k, l) = \{i \in \mathbb{N}:$ $f(n, k, l) \leq i \leq F(n, k, l)$ and $\exists G \in \mathscr{F}(n, k, l)$ such that $|E(G)| = i\}$, which is referred as the (n, k, l)-spectrum of $\mathscr{F}(n, k, l)$. We further define $Ex(n, k, l) = \{G: G \in$ $\mathscr{F}(n, k, l), |E(G)| = F(n, k, l)\}$ and $Sat(n, k, l) = \{G: G \in$ $\mathscr{F}(n, k, l), |E(G)| = f(n, k, l)\}$.

Chaty and Chein presented a structural characterization of minimally (2, 2)-edge-connected graphs [5]. Hennayake

^{*} Corresponding author. E-mail address: xgu@math.wvu.edu (X. Gu).

^{0020-0190/\$ –} see front matter $\,\,\odot\,$ 2011 Published by Elsevier B.V. doi:10.1016/j.ipl.2011.09.012

et al. [9] then generalized it to minimally (k, k)-edgeconnected graphs by presenting a structural characterization of all minimally (k, k)-edge-connected graphs. A structural characterization of minimally (2, 2)-connected graphs was obtained independently by Dirac [6] and by Plummer [14]. A purpose of this paper is to give a characterization of minimally (2, l)-connected graphs when l > 2 (Theorem 3.2 and Theorem 3.5) by presenting the structures of such graphs.

The value of F(n, 2, 2) was discovered independently by Dirac [6] and by Plummer [14] (Theorem 2.1 in this paper). Another purpose of this paper is to determine F(n, 2, l)and f(n, 2, l) when l > 2. The families Ex(n, 2, l), Sat(n, 2, l)and $\mathscr{I}(n, 2, l)$ will also be determined in the paper. These extend former results by Dirac [6] and Plummer [14] on minimally (2, 2)-connected graphs.

In Section 2, we will present some preliminaries as preparations for the proofs. Sections 3 and 4 are devoted to the investigations of the structural characterization of minimally (2, l)-connected graphs, and of F(n, 2, l), f(n, 2, l), Ex(n, 2, l), Sat(n, 2, l) and $\mathscr{I}(n, 2, l)$, respectively.

2. Preliminaries

We start with a theorem by Dirac and Plummer. These results were obtained by Dirac and by Plummer independently. A *chord* of a cycle *C* in a graph *G* is an edge in $E(G) \setminus E(C)$ both of whose ends lie on *C*.

Theorem 2.1. (Dirac [6] and Plummer [14], see also [2].)

- (i) A 2-connected graph is minimally 2-connected if and only if no cycle has a chord.
- (ii) A minimally 2-connected graph of order $n \ge 4$ has the size at most 2n 4. Furthermore, F(n, 2, 2) = 2n 4 and $Ex(n, 2, 2) = \{K_{2,n-2}\}$ for $n \ge 4$.

A *divalent path P* in a graph *G* is a path all of whose internal vertices have degree 2 in *G*. A *lane* of a graph *G* is a maximal divalent path in *G*. For convenience, a cycle is considered as a lane of itself. Let *L* be a lane in graph *G*, we define L_0 to be the set of all internal vertices of *L* if *L* is not an edge of *G*. If *L* is an edge *e* of *G*, then $L_0 = \{e\}$.

By definition, every edge of a graph G is in a divalent path of G. Hence, we have the following observation:

Observation 1. Every edge of a graph *G* lies in a lane in *G*.

A graph is *acyclic* if it does not contain a cycle. Otherwise, the graph is called *cyclic*. A *cyclic block* of a graph is a block which is not isomorphic to K_2 . Let G be a connected graph with blocks B_1, B_2, \ldots, B_s and cut vertices c_1, c_2, \ldots, c_t , where $s \ge 1$ and $t \ge 0$. The *block-cutvertex graph* of G, denoted by bc(G), is the graph with vertex set $\{B_1, B_2, \ldots, B_s\} \cup \{c_1, c_2, \ldots, c_t\}$ and edge set $\{B_ic_j: c_j \in V(B_i)\}$ for $1 \le i \le s$ and $0 \le j \le t$. By definition, the block-cutvertex graph of graph G is a tree, and so it is also called the *block tree* of G.

The distance $d_G(x, y)$ of two vertices x and y in a graph G is the length of a shortest (x, y)-path in G, and if no

such path exists, then the distance is set to be ∞ . Let *G* be a graph and $U \subseteq V(G)$. The *diameter* of *U* in *G*, denoted by $diam_G(U)$, is the greatest distance $d_G(x, y)$ for $\forall x, y \in U$. If U = V(G), then the diameter of *G* is simply denoted as diam(G).

The local connectivity $\kappa_G(x, y)$ of two non-adjacent vertices x and y in a graph G is the minimum number of vertices separating x from y. If x and y are adjacent vertices, their local connectivity is defined as $\kappa_H(x, y) + 1$, where H = G - xy.

3. Minimally (2, *l*)-connected graphs

In this section, we shall present a characterization of minimally (2, l)-connected graphs.

Lemma 3.1. Let G be a (k, l)-connected graph. Then

- (i) $|V(G)| \ge k + l 1$.
- (ii) Suppose that $l' > l \ge 2$ and $|V(G)| \ge k + l' 1$. If G is (k, l)-connected, then G is (k, l')-connected, but cannot be minimally (k, l')-connected.

Proof. (i) Suppose that |V(G)| < k + l - 1. Let $X \subseteq V(G)$ with |X| = k - 1. Then |V(G - X)| < l, and so $\kappa_l(G) \leq k - 1$, contrary to the fact that *G* is (k, l)-connected.

(ii) Suppose that *G* is not (k, l')-connected. Then $\kappa_{l'}(G) \leq k-1$, and so there exists $X \subset V(G)$ with $|X| \leq k-1$ such that either $\omega(G-X) \geq l' > l$, whence $\kappa_l(G) \leq \kappa_{l'}(G) \leq k-1$, contrary to $\kappa_l(G) \geq k$; or $|V(G-X)| \leq l'-1$, whence |V(G)| < k + l' - 1, contrary to the assumption. Hence $\kappa_{l'}(G) \geq k$.

To prove that *G* is not minimally (k, l')-connected, we argue by contradiction and assume that *G* is minimally (k, l')-connected. Then $\forall e \in E(G)$, $\kappa_{l'}(G - e) \leq k - 1$. There exists an $X \subset V(G - e) = V(G)$ with $|X| \leq k - 1$. If $\omega(G - e - X) \geq l'$, then $\omega(G - X) \geq l' - 1 \geq l$, whence $\kappa_l(G) \leq k - 1$, contrary to $\kappa_l(G) \geq k$. If $|V(G - e - X)| \leq l' - 1$, then since |V(G - X)| = |V(G - e - X)|, we have |V(G)| < k + l' - 1, contrary to $|V(G)| \geq k + l' - 1$. Thus, *G* is (k, l')-connected, but not minimally (k, l')-connected. \Box

Suppose that $l \ge 3$ and H is a tree such that there are at least two non-adjacent vertices $u, v \in V(H)$ satisfying $d(u) = d(v) = l - 1 = \Delta(G)$. Let $\mathcal{T}(l-1)$ be the set of all such trees, and let $\mathcal{T}_n(l-1) = \{H \in \mathcal{T}(l-1): |V(H)| = n\}$.

Theorem 3.2. Let *G* be a tree and $l \ge 3$. Then *G* is minimally (2, l)-connected if and only if $G \in \mathcal{T}(l-1)$.

Proof. First we assume that $G \in \mathscr{T}(l-1)$. Since $\Delta(G) = l-1$, $\kappa_l(G) \ge 2$. To prove that *G* is minimally (2, l)-connected, we need to show that $\forall e \in E(G), \kappa_l(G-e) \le 1$. By assumption, *G* has at least one vertex *v* which is not incident with edge *e*, such that d(v) = l - 1. Since *G* is a tree, both $\omega(G - v) = l - 1$ and each component of G - v is a tree. As *e* must be in a component of G - v, $\omega(G - e - v) = l$, whence $\kappa_l(G - e) = 1$.

We now assume that *G* is minimally (2, l)-connected to prove the necessity. Since *G* is a tree and $\kappa_l(G) \ge 2$, we have $\Delta(G) \le l - 1$.

Claim 1. Let $e \in E(G)$. Then $\exists u \in V(G)$ which is not incident with e such that d(u) = l - 1.

Proof of Claim 1. Since *G* is minimally (2, l)-connected, $\kappa_l(G - e) = 1$, and so $\exists u \in V(G)$ such that $\omega(G - e - u) \ge l$. Thus $\omega(G - u) \ge l - 1$ and $d(u) \ge l - 1$. Since $\Delta(G) \le l - 1$, $\Delta(G) = d(u) = l - 1$. Note that *u* is not incident with *e*, as otherwise, $\omega(G - u) = \omega(G - e - u) \ge l$, contrary to the fact that *G* is (2, l)-connected. Thus Claim 1 must hold. \Box

By Claim 1, $\Delta(G) = l - 1$ and so $\exists u \in V(G), d(u) = l - 1$. Let $e' \in E(G)$ be an edge incident with u. By Claim 1, there exists a vertex $u' \in V(G)$ such that d(u') = l - 1 and e' is not incident with u'. Thus $u' \neq u$. If u' is not adjacent to u, then the theorem holds. Hence we assume that $e'' = uu' \in E(G)$. By Claim 1, there exists a vertex $u'' \in V(G)$ such that d(u'') = l - 1 and $u'' \notin \{u, u'\}$. Thus G has 3 vertices with degree l - 1. Since G is a tree, at least 2 of these vertices of degree l - 1 are non-adjacent. Hence $G \in \mathcal{T}(l - 1)$. \Box

Corollary 3.3. Let *G* be a tree. Then *G* is minimally (2, 3)-connected if and only if *G* is a path P_n (a path with *n* vertices), where $n \ge 5$.

Let *G* be a graph, and $k \ge 1, l \ge 2$ be integers. A (k, l)cut of *G* is a set $F \subseteq V(G)$ such that |F| = k and $\omega(G - F) \ge l$. As any (1, l)-cut consists of a single vertex, a (1, l)-cut is also called a (1, l)-cut-vertex. We shall use the notation $J^{l}(G)$ to denote the set of all (1, l)-cut-vertices of *G*.

Lemma 3.4. Let $l \ge 3$. Suppose that *G* is a connected, minimally (2, l)-connected graph. Let *B* be a cyclic block of *G*. Then $\forall e \in E(B), \exists u \in V(B)$ such that $u \in J^{l-1}(G)$ and such that *u* is not incident with *e*.

Proof. Since *G* is minimally (2, *l*)-connected and $e \in E(B) \subseteq E(G)$, $\kappa_l(G - e) = 1$. Thus $\exists u \in V(G - e) = V(G)$ such that $\omega(G - e - u) \ge l$. Hence $\omega(G - u) \ge l - 1$. Since *G* is (2, *l*)-connected, it must be the case that $\omega(G - u) = l - 1$, and so *u* is a (1, *l* - 1)-cut-vertex of graph *G*. We claim that $u \in V(B)$. If not, then $u \notin V(B) = V(B - e)$, and so B - e is contained in a component of G - e - u. Hence $\omega(G - u) = \omega((G - e - u) + e) = \omega(G - e - u) \ge l$, contrary to the fact that *G* is (2, *l*)-connected. We also claim that *u* is not incident with edge *e*. If not, then $\omega(G - u) = \omega(G - e - u) \ge l$, contrary to the fact that *G* is (2, *l*)-connected. Thus the lemma must hold. \Box

Theorem 3.5. Let $l \ge 3$. A connected graph *G* is minimally (2, *l*)-connected if and only if each of the following holds.

- (i) Each cut vertex of G has degree no more than l − 1 in the block-cutvertex graph of G.
- (ii) If G is a tree, then $G \in \mathcal{T}(l-1)$.
- (iii) For each cyclic block *B* not isomorphic to K_3 and for each lane *L* of *B*, if $J(B L_0)$ denotes the set of all cut vertices of $B L_0$ and $S = V(L) \cap J^{l-1}(G)$, then either $|S| \ge 2$ and diam_L(S) ≥ 2 , or $J(B L_0) \cap J^{l-1}(G) \ne \emptyset$.

(iv) If a block B of G is isomorphic to K_3 , then $\forall v \in V(B), v \in J^{l-1}(G)$.

Proof. Assume that G is connected and minimally (2, l)-connected.

(i) Since G is (2, l)-connected, G has no (1, l)-cutvertices. Thus each cut vertex of G has degree at most l-1 in the block-cutvertex graph of G.

(ii) It follows from Theorem 3.2.

(iii) Since *G* is connected and minimally (2, *l*)-connected, $\forall e \in E(L) \subseteq E(G)$, $\kappa_l(G-e) = 1$, and so $\exists u \in V(G - e) = V(G)$ such that $\omega(G - e - u) \ge l$. Thus $\omega(G - u) \ge l - 1$ and *u* is a (1, l - 1)-cut-vertex of *G*. Suppose first that $u \notin V(L)$. If $B - L_0$ is contained in a component of G - u - L, then $\omega(G - u) = \omega(G - u - L) = \omega(G - u - e) \ge l$, contrary to the fact that *G* is (2, l)-connected. Thus *u* must be a cut vertex of $B - L_0$, and so $J(B - L_0) \cap J^{l-1}(G) \neq \emptyset$, and (iii) holds.

Now assume that $u \in V(L)$. Let $e' \in E(L)$ be an edge incident with *u*. By Lemma 3.4, $\exists v \in V(B)$ which is not incident with e' such that $v \in J^{l-1}(G)$. Thus $v \neq u$. If $v \notin V(L)$, then $J(B - L_0) \cap J^{l-1}(G) \neq \emptyset$, and (iii) holds. Thus we may assume that $v \in V(L)$. If *u* and *v* are nonadjacent, then $|S| \ge 2$ and $diam_I(S) \ge 2$, and (iii) holds. If *u* and *v* are adjacent in *L*, then let e'' = uv. By Lemma 3.4, $\exists x \in V(B)$ such that $x \in J^{l-1}(G)$ and such that x is not incident with e''. Thus $x \notin \{u, v\}$. If $x \notin V(L)$, then J(B - I) L_0) $\cap \int^{l-1}(G) \neq \emptyset$, and (iii) holds. Hence we assume that $x \in V(L)$. Then $u, v, x \in V(L)$. Now we claim that L is not isomorphic to K_3 . Otherwise, if L is isomorphic to K_3 , and by the definition of a lane, there is at most one vertex in *L* whose degree is greater than 2 in *B*. If $V(B - L) \neq \emptyset$ then $\kappa(B) = 1$, contrary to the fact that *B* is a cyclic block. if $V(B - L) = \emptyset$, which means L is B itself, contrary to the fact that B is not isomorphic to K_3 . Hence L is not isomorphic to K_3 and so at least one of vertices u, v is non-adjacent to x. Hence (iii) must hold.

(iv) By Lemma 3.4, $\forall e \in E(K_3)$, the non-adjacent vertex is in $J^{l-1}(G)$. Thus, $\forall v \in V(K_3)$, $v \in J^{l-1}(G)$.

We now prove the sufficiency. By Theorem 3.2, we may assume that *G* is not a tree. By (i), *G* has no (1, l)-cutvertices. Thus $\kappa_l(G) \ge 2$ and so *G* is (2, l)-connected. We need to prove

$$\forall e \in E(G), \quad \kappa_l(G-e) \leqslant 1. \tag{1}$$

Pick an edge $e \in E(G)$. There are 3 cases:

Case 1. The edge e lies in a cyclic block B which is isomorphic to K_3 .

Let *v* be the vertex in *B* such that *v* is not incident with *e*. By (iv), *v* is a (1, l-1)-cut-vertex of *G*. Thus $\omega(G - v) \ge l - 1$. Since *B* is isomorphic to K_3 , *e* must be a cut edge of a component *H* of G - v. Hence $\omega(G - e - v) \ge l$, and so $\kappa_l(G - e) = 1$. Thus (1) holds.

Case 2. Edge *e* lies in a cyclic block *B* which is not isomorphic to K_3 .

Let *L* be the lane in *B* such that $e \in E(L)$. Then either $J(B - L_0) \cap J^{l-1}(G) \neq \emptyset$, or $|S| \ge 2$ and $diam_L(S) \ge 2$.

Assume first that $|S| \ge 2$ and $diam_L(S) \ge 2$. Then *L* has at least 2 non-adjacent vertices which are (1, l - 1)-cutvertices of *G*. Hence there is a vertex $v \in V(L)$ such that $v \in J^{l-1}(G)$ and such that *v* is not incident with *e*. Thus $\omega(G - v) \ge l - 1$. Since $e \in E(L)$ and *L* is a lane in *B*, by the definition of a lane, *e* must be a cut edge of a component of G - v. Thus $\omega(G - e - u) \ge l$, and so $\kappa_l(G - e) = 1$. Hence (1) holds. Therefore, by (iii), we assume that $J(B - L_0) \cap J^{l-1}(G) \ne \emptyset$. Let $v \in J(B - L_0) \cap J^{l-1}(G)$. Since $v \in J^{l-1}(G)$, $\omega(G - v) \ge l - 1$ and *e* is in a component *H* of G - v. Let *x* and *y* be the end vertices of lane *L*. Since *v* is a cut vertex of $B - L_0$, $\kappa_G(x, y) = 2$, whence *e* is a cut edge of the component *H* in G - v. Then $\omega(G - e - v) \ge l$, whence $\kappa_l(G - e) = 1$, and so (1) holds.

Case 3. The edge *e* does not lie in any cyclic block of *G*.

Since *G* is not a tree, *G* must have a cyclic block *B*. By (iii) and (iv), whether *B* is isomorphic to K_3 or not, *G* has a (1, l-1)-cut-vertex *v* which is not incident with *e*. Hence $\omega(G - v) \ge l - 1$ and *e* lies in a component *H* of G - v. Since *e* does not lie in any cyclic block of *G*, *e* must be a cut edge of *H*. Thus $\omega(G - e - v) \ge l$, whence $\kappa_l(G - e) = 1$, and so (1) holds. \Box

Corollary 3.6. *Let G be a connected, minimally (2, l)-connected graph. Then every cyclic block of G is minimally 2-connected.*

Proof. Let *B* be a cyclic block of *G*. By Theorem 2.1, to prove *B* is minimally 2-connected, it suffices to show that each cycle in *B* has no chords. Assume that there is a cycle *C* in *B* with a chord e = xy. By the definition of a lane, *e* is a lane of *B*. By Theorem 3.5 (iii), it must be the case that $J(B-e) \cap J^{l-1}(G) \neq \emptyset$, and let $v \in J(B-e) \cap J^{l-1}(G)$. Since *B* is 2-connected and *v* is a cut vertex of B - e, *x* and *y* must be in different components of B - e - v, whence $\kappa_{B-e}(x, y) = 1$. But since *e* is a chord of cycle *C* in *B*, $\kappa_{B-e}(x, y) \ge 2$. We get a contradiction. Hence, every cyclic block of *G* is minimally 2-connected. \Box

4. F(n, 2, l), f(n, 2, l), Ex(n, 2, l), Sat(n, 2, l)and $\mathcal{I}(n, 2, l)$

In this section, we shall determine the value of F(n, 2, l)and f(n, 2, l), and discover the family of Ex(n, 2, l), Sat(n, 2, l) and $\mathscr{I}(n, 2, l)$.

Lemma 4.1. Let *G* be a connected, minimally (2, l)-connected graph. Let $l \ge 3$ and |V(G)| = n.

(i) If *G* is acyclic, then $2l - 1 \leq n$;

(ii) If G is cyclic, then $2l \leq n$.

Proof. (i) By Theorem 3.2, there are two non-adjacent vertices u and v such that d(u) = d(v) = l - 1. Hence $2(l-1) - 1 + 2 \le n$, that is $2l - 1 \le n$.

(ii) By Corollary 3.6, there must be a cyclic block which is minimally 2-connected. There are two cases here. If the cyclic block is a K_3 , then by Theorem 3.5, all the three vertices of K_3 are (1, l - 1)-cut-vertices, and hence there are at least 3(l-2) + 3 vertices. Thus $n \ge 3(l-2) + 3 = 3l - 3 \ge 2l$, since $l \ge 3$. If the cyclic block is not a K_3 , then the block has at least 4 vertices, and by Theorem 3.5, at least 2 of them are (1, l-1)-cut-vertices. Hence $n \ge 2(l-2) + 4$, that is $2l \le n$. \Box

Lemma 4.2. Let *G* be a connected, minimally (2, l)-connected graph with |V(G)| = n and |E(G)| = m. Then

- (i) $n-1 \leq m \leq 2n-2l$.
- (ii) m = 2n 2l holds if and only if one of the following holds:
 (a) G is a tree and n = 2l 1; or
 - (b) G has only one cyclic block, the cyclic block is isomorphic to K_{2,n−2l+2}, and G has exactly two non-adjacent (1, l − 1)-cut-vertices; or
 - (c) l = 3, n = 6 and the only cyclic block of G is isomorphic to K_3 .

Proof. If *G* is a tree, then m = n - 1. By Lemma 4.1, $2l - 1 \le n$. Hence $m = n - 1 \le n - 1 + n - (2l - 1) \le 2n - 2l$, where equality holds if and only if n = 2l - 1. Thus the lemma must hold.

Now we assume that *G* is cyclic. Since *G* is connected, $m \ge n$. We still need to prove $m \le 2n - 2l$. Suppose that *G* has *t* cyclic blocks which are not isomorphic to K_3 , denoted by H_1, H_2, \ldots, H_t , and *s* cyclic blocks which are isomorphic to K_3 . Let *n'* be the total number of vertices of all cyclic blocks, ans so $n' = 3s + (n_1 + n_2 + \cdots + n_t)$. Each H_i has n_i vertices and m_i edges, for $i = 1, 2, \ldots, t$. By Corollary 3.6, each cyclic block is a minimally 2-connected graph. By Theorem 2.1, $m_i \le 2n_i - 4$ for $i = 1, 2, \ldots, t$. Then $m = 3s + m_1 + m_2 + \cdots + m_t + (t + s - 1) + n - (3s + n_1 + n_2 + \cdots + n_t) \le 3s + (n_1 + n_2 + \cdots + n_t) + n - 3t - 2s - 1 = n' + n - 3t - 2s - 1$. Let M = n' + n - 3t - 2s - 1. We have the following claim.

Claim. When *M* reaches the maximum value, there is exactly one cyclic block in the graph.

Proof of the claim. Without loss of generality, we may assume that $n' \ge 4$. If the number of cyclic blocks is 1, then by Corollary 3.6 and Theorem 2.1, the maximum value of M is 2n' - 4 + (n - n') = n' + n - 4. If the number of cyclic blocks is at least 2, then $t + s \ge 2$. The maximum value of M is n' + n - 3t - 2s - 1 = n' + n - 2(t + s) - t - 1 < n' + n - 4. This completes the proof of the claim. \Box

Case 1. $t \neq 0$. By the claim, when M reaches the maximum value, t = 1, s = 0 and $M = n' + n - 4 = n_1 + n - 4$. By Theorem 3.5, there are at least two (1, l-1)-cut-vertices in a minimally (2, l)-connected graph. Hence $n_1 \leq n - 2(l-2)$. Thus $m \leq 2n - 2l$, and (i) must hold. The equality holds if and only if t = 1, s = 0, $n_1 = n - 2(l-2)$ and $m_1 = 2n_1 - 4$. By Theorem 2.1, $m_1 = 2n_1 - 4$ if and only the cyclic block is isomorphic to $K_{2,n-2l+2}$. And $n_1 = n - 2(l-2)$ holds if and only if there are exactly two vertices which are not in the cyclic block, i.e., G has exactly two non-adjacent (1, l - 1)-cut-vertices, by Theorem 3.5. Thus (ii) must hold.

Case 2. t = 0. By the claim, when M reaches the maximum value, t = 0, s = 1 and M = n' + n - 3 = n. By Lemma 4.1,

Fig. 1. Some classes of graphs.

Fig. 2. Extremal graphs for *F*(6, 2, 3).

 $M = n \le 2n - 2l$, and the equality holds if and only if n = 2l. Since the only cyclic block is a K_3 , by Theorem 3.5, each vertex of the cyclic block is a (1, l - 1)-cut-vertex, and thus the number of vertices in the graph is n = 3 + 3(l - 2) = 3l - 3. Hence M = 2n - 2l holds if and only if n = 2l and n = 3l - 3, i.e., l = 3 and n = 6. \Box

Let $K_{2,s}$ be a complete bipartite graph with bipartition (A, B) such that |A| = 2 and |B| = s. Let $G_{2,s,t}$ denote the graph obtained from $K_{2,s}$ by joining each vertex in set A to t new vertices, respectively, as shown in Fig. 1(a). Let u and v be two non-adjacent vertices of P_3 . Let $T_{3,t}$ denote the graph obtained from P_3 by joining each of u, v to t new vertices, respectively, as shown in Fig. 1(b). Graph $G_{3,3}$ is shown in Fig. 2(a).

Theorem 4.3.

- (i) F(n, 2, l) = 2n 2l.
- (ii) $Ex(5, 2, 3) = \{P_5\}; Ex(6, 2, 3) = \{G_{3,3}, G_{2,2,1}\};$
- $Ex(n, 2, 3) = \{G_{2,n-4,1}\}$ for $n \ge 7$.
- (iii) When $l \ge 4$ and n = 2l 1, $Ex(n, 2, l) = \{T_{3, l-2}\}$.
- (iv) When $l \ge 4$ and $n \ge 2l$, $Ex(n, 2, l) = \{G_{2,n-2l+2,l-2}\}$.

Proof. When l = 2, by Theorem 2.1, F(n, 2, 2) = 2n - 4and $Ex(n, 2, 2) = \{K_{2,n-2}\}$. So we assume that $l \ge 3$. By Lemma 4.2, $F(n, 2, l) \le 2n - 2l$. In order to prove F(n, 2, l) = 2n - 2l, it suffices to show that there exists a connected, minimally (2, *l*)-connected graph with *n* vertices and 2n - 2l edges. When l = 3, by Lemma 4.1, $n \ge 5$ and *G* is tree if n = 5. By Corollary 3.3, $Ex(5, 2, 3) = \{P_5\}$. If n = 6, *G* is cyclic and by Lemma 4.2, Ex(6, 2, 3) = $\{G_{3,3}, G_{2,2,1}\}$. If $n \ge 7$, $\forall G \in Ex(n, 2, 3)$, by Lemma 4.2, the only cyclic block of *G* is $K_{2,n-2l+2}$, and *G* has exactly two non-adjacent (1, l - 1)-cut-vertices. Hence, $Ex(n, 2, 3) = \{G_{2,n-4,1}\}$.

When $l \ge 4$, by Lemma 4.1, $n \ge 2l - 1$. If n = 2l - 1, then *G* is a tree, and by Theorem 3.2, $\forall G \in Ex(n, 2, l)$, $G \in \mathcal{T}(l-1)$. Then there are two non-adjacent vertices with degree l - 1. Since n = 2l - 1, *G* must be $T_{3,l-2}$. If $n \ge 2l$, then by Lemma 4.2, $Ex(n, 2, l) = \{G_{2,n-2l+2,l-2}\}$. Thus, the theorem holds. \Box

Theorem 4.4.

(i) f(n, 2, l) = n - 1. (ii) $Sat(n, 2, l) = \mathcal{T}_n(l - 1)$.

Proof. By Lemma 4.2, $f(n, 2, l) \ge n - 1$. In order to prove f(n, 2, l) = n - 1, it suffices to show that there's a connected, minimally (2, l)-connected graph *G* such that |V(G)| = n and |E(G)| = n - 1. Graph *g* must be a tree, since |E(G)| = |V(G)| - 1. By Theorem 3.2, $G \in \mathcal{T}(l - 1)$. Thus (i) holds. Since *G* has *n* vertices, $Sat(n, 2, l) = \mathcal{T}_n(l - 1)$. (ii) must hold. \Box

Theorem 4.5. $\mathscr{I}(n, 2, l) = \{i \in \mathbb{N}: n - 1 \le i \le 2n - 2l\}.$

Proof. It suffices to show that for each $m \in \mathbb{N} \cap [n - 1, 2n - 2l]$, there is a graph $G \in \mathscr{F}(n, 2, l)$ such that |E(G)| = m. For each m, we will construct a minimally (2, l)-connected graph with n vertices and m edges. When m = n - 1, $G = P_n$. When $n \leq m \leq 2n - 2l$, we construct a minimally (2, l)-connected graph G as follows: Let C be a cycle with 2n - m - 2(l - 2) vertices, and u_1, u_2 are two non-adjacent vertices in C. Let V_1 and V_2 be two sets of (l - 2) vertices, and $V_1 \cap V_2 = \emptyset$. Then G is the graph

Fig. 3. An example when l = 5, n = 14 and m = 16 in the proof of Theorem 4.5.

obtained from *C* by joining u_i to each vertex in V_i respectively for i = 1, 2, and joining u_1 and u_2 by m - n disjoint paths. These disjoint paths are m - n copies of P_3 . Obviously, |E(G)| = m and |V(G)| = n. By Theorem 3.5, *G* is a minimally (2, *l*)-connected graph. An example is shown in Fig. 3 when l = 5, n = 14 and m = 16. \Box

References

- F.T. Boesch, S. Chen, A generalization of line connectivity and optimally invulnerable graphs, SIAM J. Appl. Math. 34 (1978) 657–665.
- [2] B. Bollobás, Extremal Graph Theory, Dover Publications, New York, 2004.

- [3] J.A. Bondy, U.S. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [4] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1–6.
- [5] G. Chaty, M. Chein, Minimally 2-edge-connected graphs, J. Graph Theory 3 (1979) 15–22.
- [6] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204–216.
- [7] D.L. Goldsmith, On the second order edge-connectivity of a graph, Congr. Numer. 29 (1980) 479–484.
- [8] D.L. Goldsmith, On the nth order edge-connectivity of a graph, Congr. Numer. 32 (1981) 375–382.
- [9] K. Hennayake, H.-J. Lai, D. Li, J. Mao, Minimally (k, k)-edge-connected graphs, J. Graph Theory 44 (2003) 116–131.
- [10] K. Hennayake, H.-J. Lai, L. Xu, The strength and the *l*-edgeconnectivity of a graph, Bull. Inst. Combin. Appl. 26 (1999) 55–70.
- [11] O.R. Oellermann, Explorations into graph connectivity, Not. South African Math. Soc. 20 (1988) 117–151.
- [12] O.R. Oellermann, Generalized connectivity in graphs, Ph.D. dissertation, Western Michigan University, 1986.
- [13] O.R. Oellermann, On the *l*-connectivity of a graph, Graphs Combin. 3 (1987) 285–291.
- [14] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85–94.
- [15] L. Zhang, K. Hennayake, H.-J. Lai, Y. Shao, A lower bound of the *l*-edge-connectivity and optimal graphs, J. Combin. Math. Combin. Comput. 66 (2008) 79–95.