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For an integer l � 2, the l-connectivity κl(G) of a graph G is defined to be the minimum
number of vertices of G whose removal produces a disconnected graph with at least l
components or a graph with fewer than l vertices. Let k � 1, a graph G is called (k, l)-
connected if κl(G) � k. A graph G is called minimally (k, l)-connected if κl(G) � k but ∀e ∈
E(G), κl(G −e) � k−1. In this paper, we present a structural characterization for minimally
(2, l)-connected graphs and classify extremal results. These extend former results by Dirac
(1967) [6] and Plummer (1968) [14] on minimally (2,2)-connected graphs.
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1. Introduction

In this paper, we consider finite graphs, and follow
the notations and terms of [3], unless otherwise defined.
In particular, ω(G) is the number of components of a
graph G . The connectivity κ(G) of a graph G is the mini-
mum number of vertices whose removal produces a dis-
connected graph or the trivial graph. For an integer l � 2,
Chartrand et al. in [4] defined the l-connectivity κl(G) of
a graph G to be the minimum number of vertices of G
whose removal produces a disconnected graph with at
least l components or a graph with fewer than l vertices.
Thus κl(G) = 0 if and only if ω(G) � l or |V (G)| � l − 1.
Note that κ2(G) = κ(G).

For an integer l � 2, l-edge-connectivity can be simi-
larly defined. In [1], Boesch and Chen defined the l-edge-
connectivity λl(G) of a connected graph G to be the mini-
mum number of edges whose removal leaves a graph with
at least l components if |V (G)| � l, and λl(G) = |E(G)| if
|V (G)| < l. Note that λ2(G) = λ(G).
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The generalized connectivity and edge-connectivity
have been studied by many. See [1,4,7–13,15], among
others. Let k � 1, a graph G is called (k, l)-connected if
κl � k. A graph G is called minimally (k, l)-connected if
κl(G) � k but ∀e ∈ E(G), κl(G − e) � k − 1. Let G be a
(k, l)-connected graph, and e ∈ E(G). An edge e ∈ E(G) is
essential if G − e is not (k, l)-connected. A graph G is called
(k, l)-edge-connected if λl(G) � k. A graph G is minimally
(k, l)-edge-connected if λl(G) � k but for any edge e ∈ E(G),
λl(G −e) � k−1. Therefore, a (2,2)-connected graph is just
a 2-connected graph, and a (2,2)-edge-connected graph is
a 2-edge-connected graph.

Let F (n,k, l) be the set of all connected and mini-
mally (k, l)-connected graphs with n vertices. We define
F (n,k, l) = max{|E(G)|: G ∈ F (n,k, l)} and f (n,k, l) =
min{|E(G)|: G ∈ F (n,k, l)}. Let I (n,k, l) = {i ∈ N:
f (n,k, l) � i � F (n,k, l) and ∃G ∈ F (n,k, l) such that
|E(G)| = i}, which is referred as the (n,k, l)-spectrum
of F (n,k, l). We further define Ex(n,k, l) = {G: G ∈
F (n,k, l), |E(G)| = F (n,k, l)} and Sat(n,k, l) = {G: G ∈
F (n,k, l), |E(G)| = f (n,k, l)}.

Chaty and Chein presented a structural characterization
of minimally (2,2)-edge-connected graphs [5]. Hennayake

http://dx.doi.org/10.1016/j.ipl.2011.09.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:xgu@math.wvu.edu
http://dx.doi.org/10.1016/j.ipl.2011.09.012


X. Gu et al. / Information Processing Letters 111 (2011) 1124–1129 1125
et al. [9] then generalized it to minimally (k,k)-edge-
connected graphs by presenting a structural characteriza-
tion of all minimally (k,k)-edge-connected graphs. A struc-
tural characterization of minimally (2,2)-connected graphs
was obtained independently by Dirac [6] and by Plummer
[14]. A purpose of this paper is to give a characterization
of minimally (2, l)-connected graphs when l > 2 (Theo-
rem 3.2 and Theorem 3.5) by presenting the structures of
such graphs.

The value of F (n,2,2) was discovered independently by
Dirac [6] and by Plummer [14] (Theorem 2.1 in this paper).
Another purpose of this paper is to determine F (n,2, l)
and f (n,2, l) when l > 2. The families Ex(n,2, l), Sat(n,2, l)
and I (n,2, l) will also be determined in the paper. These
extend former results by Dirac [6] and Plummer [14] on
minimally (2,2)-connected graphs.

In Section 2, we will present some preliminaries as
preparations for the proofs. Sections 3 and 4 are devoted to
the investigations of the structural characterization of min-
imally (2, l)-connected graphs, and of F (n,2, l), f (n,2, l),
Ex(n,2, l), Sat(n,2, l) and I (n,2, l), respectively.

2. Preliminaries

We start with a theorem by Dirac and Plummer. These
results were obtained by Dirac and by Plummer indepen-
dently. A chord of a cycle C in a graph G is an edge in
E(G) \ E(C) both of whose ends lie on C .

Theorem 2.1. (Dirac [6] and Plummer [14], see also [2].)

(i) A 2-connected graph is minimally 2-connected if and only
if no cycle has a chord.

(ii) A minimally 2-connected graph of order n � 4 has the
size at most 2n − 4. Furthermore, F (n,2,2) = 2n − 4 and
Ex(n,2,2) = {K2,n−2} for n � 4.

A divalent path P in a graph G is a path all of whose
internal vertices have degree 2 in G . A lane of a graph G is
a maximal divalent path in G . For convenience, a cycle is
considered as a lane of itself. Let L be a lane in graph G ,
we define L0 to be the set of all internal vertices of L if L
is not an edge of G . If L is an edge e of G , then L0 = {e}.

By definition, every edge of a graph G is in a divalent
path of G . Hence, we have the following observation:

Observation 1. Every edge of a graph G lies in a lane in G .

A graph is acyclic if it does not contain a cycle. Other-
wise, the graph is called cyclic. A cyclic block of a graph is
a block which is not isomorphic to K2. Let G be a con-
nected graph with blocks B1, B2, . . . , Bs and cut vertices
c1, c2, . . . , ct , where s � 1 and t � 0. The block-cutvertex
graph of G , denoted by bc(G), is the graph with vertex set
{B1, B2, . . . , Bs} ∪ {c1, c2, . . . , ct} and edge set {Bic j: c j ∈
V (Bi)} for 1 � i � s and 0 � j � t . By definition, the block-
cutvertex graph of graph G is a tree, and so it is also called
the block tree of G .

The distance dG(x, y) of two vertices x and y in a graph
G is the length of a shortest (x, y)-path in G , and if no
such path exists, then the distance is set to be ∞. Let G be
a graph and U ⊆ V (G). The diameter of U in G , denoted by
diamG(U ), is the greatest distance dG(x, y) for ∀x, y ∈ U . If
U = V (G), then the diameter of G is simply denoted as
diam(G).

The local connectivity κG(x, y) of two non-adjacent ver-
tices x and y in a graph G is the minimum number of
vertices separating x from y. If x and y are adjacent ver-
tices, their local connectivity is defined as κH (x, y) + 1,
where H = G − xy.

3. Minimally (2, l)-connected graphs

In this section, we shall present a characterization of
minimally (2, l)-connected graphs.

Lemma 3.1. Let G be a (k, l)-connected graph. Then

(i) |V (G)| � k + l − 1.
(ii) Suppose that l′ > l � 2 and |V (G)| � k + l′ − 1. If G is

(k, l)-connected, then G is (k, l′)-connected, but cannot be
minimally (k, l′)-connected.

Proof. (i) Suppose that |V (G)| < k + l − 1. Let X ⊆ V (G)

with |X | = k − 1. Then |V (G − X)| < l, and so κl(G) � k − 1,
contrary to the fact that G is (k, l)-connected.

(ii) Suppose that G is not (k, l′)-connected. Then κl′ (G)

� k−1, and so there exists X ⊂ V (G) with |X | � k−1 such
that either ω(G − X) � l′ > l, whence κl(G) � κl′ (G) � k−1,
contrary to κl(G) � k; or |V (G − X)| � l′ − 1, whence
|V (G)| < k + l′ − 1, contrary to the assumption. Hence
κl′ (G) � k.

To prove that G is not minimally (k, l′)-connected, we
argue by contradiction and assume that G is minimally
(k, l′)-connected. Then ∀e ∈ E(G), κl′ (G − e) � k − 1. There
exists an X ⊂ V (G − e) = V (G) with |X | � k − 1. If ω(G −
e− X) � l′ , then ω(G − X) � l′−1 � l, whence κl(G) � k−1,
contrary to κl(G) � k. If |V (G − e − X)| � l′ − 1, then since
|V (G − X)| = |V (G − e − X)|, we have |V (G)| < k + l′ − 1,
contrary to |V (G)| � k + l′ − 1. Thus, G is (k, l′)-connected,
but not minimally (k, l′)-connected. �

Suppose that l � 3 and H is a tree such that there are
at least two non-adjacent vertices u, v ∈ V (H) satisfying
d(u) = d(v) = l − 1 = �(G). Let T (l − 1) be the set of all
such trees, and let Tn(l − 1) = {H ∈ T (l − 1): |V (H)| = n}.

Theorem 3.2. Let G be a tree and l � 3. Then G is minimally
(2, l)-connected if and only if G ∈ T (l − 1).

Proof. First we assume that G ∈ T (l − 1). Since �(G) =
l − 1, κl(G) � 2. To prove that G is minimally (2, l)-
connected, we need to show that ∀e ∈ E(G), κl(G − e) � 1.
By assumption, G has at least one vertex v which is not
incident with edge e, such that d(v) = l − 1. Since G is
a tree, both ω(G − v) = l − 1 and each component of
G − v is a tree. As e must be in a component of G − v ,
ω(G − e − v) = l, whence κl(G − e) = 1.

We now assume that G is minimally (2, l)-connected to
prove the necessity. Since G is a tree and κl(G) � 2, we
have �(G) � l − 1.



1126 X. Gu et al. / Information Processing Letters 111 (2011) 1124–1129
Claim 1. Let e ∈ E(G). Then ∃u ∈ V (G) which is not incident
with e such that d(u) = l − 1.

Proof of Claim 1. Since G is minimally (2, l)-connected,
κl(G − e) = 1, and so ∃u ∈ V (G) such that ω(G − e − u) � l.
Thus ω(G − u) � l − 1 and d(u) � l − 1. Since �(G) � l − 1,
�(G) = d(u) = l − 1. Note that u is not incident with e, as
otherwise, ω(G −u) = ω(G −e −u) � l, contrary to the fact
that G is (2, l)-connected. Thus Claim 1 must hold. �

By Claim 1, �(G) = l − 1 and so ∃u ∈ V (G),d(u) = l − 1.
Let e′ ∈ E(G) be an edge incident with u. By Claim 1, there
exists a vertex u′ ∈ V (G) such that d(u′) = l − 1 and e′ is
not incident with u′ . Thus u′ �= u. If u′ is not adjacent to u,
then the theorem holds. Hence we assume that e′′ = uu′ ∈
E(G). By Claim 1, there exists a vertex u′′ ∈ V (G) such that
d(u′′) = l − 1 and u′′ /∈ {u, u′}. Thus G has 3 vertices with
degree l − 1. Since G is a tree, at least 2 of these vertices
of degree l − 1 are non-adjacent. Hence G ∈ T (l − 1). �
Corollary 3.3. Let G be a tree. Then G is minimally (2,3)-
connected if and only if G is a path Pn (a path with n vertices),
where n � 5.

Let G be a graph, and k � 1, l � 2 be integers. A (k, l)-
cut of G is a set F ⊆ V (G) such that |F | = k and
ω(G − F ) � l. As any (1, l)-cut consists of a single vertex, a
(1, l)-cut is also called a (1, l)-cut-vertex. We shall use the
notation J l(G) to denote the set of all (1, l)-cut-vertices
of G .

Lemma 3.4. Let l � 3. Suppose that G is a connected, minimally
(2, l)-connected graph. Let B be a cyclic block of G. Then ∀e ∈
E(B), ∃u ∈ V (B) such that u ∈ J l−1(G) and such that u is not
incident with e.

Proof. Since G is minimally (2, l)-connected and e ∈
E(B) ⊆ E(G), κl(G − e) = 1. Thus ∃u ∈ V (G − e) = V (G)

such that ω(G − e − u) � l. Hence ω(G − u) � l − 1. Since
G is (2, l)-connected, it must be the case that ω(G − u) =
l − 1, and so u is a (1, l − 1)-cut-vertex of graph G . We
claim that u ∈ V (B). If not, then u /∈ V (B) = V (B − e),
and so B − e is contained in a component of G − e − u.
Hence ω(G − u) = ω((G − e − u) + e) = ω(G − e − u) � l,
contrary to the fact that G is (2, l)-connected. We also
claim that u is not incident with edge e. If not, then
ω(G − u) = ω(G − e − u) � l, contrary to the fact that G is
(2, l)-connected. Thus the lemma must hold. �
Theorem 3.5. Let l � 3. A connected graph G is minimally
(2, l)-connected if and only if each of the following holds.

(i) Each cut vertex of G has degree no more than l − 1 in the
block-cutvertex graph of G.

(ii) If G is a tree, then G ∈ T (l − 1).
(iii) For each cyclic block B not isomorphic to K3 and for each

lane L of B, if J (B − L0) denotes the set of all cut vertices
of B − L0 and S = V (L)∩ J l−1(G), then either |S| � 2 and
diamL(S) � 2, or J (B − L0) ∩ J l−1(G) �= ∅.
(iv) If a block B of G is isomorphic to K3 , then ∀v ∈ V (B), v ∈
J l−1(G).

Proof. Assume that G is connected and minimally (2, l)-
connected.

(i) Since G is (2, l)-connected, G has no (1, l)-cut-
vertices. Thus each cut vertex of G has degree at most l −1
in the block-cutvertex graph of G .

(ii) It follows from Theorem 3.2.
(iii) Since G is connected and minimally (2, l)-con-

nected, ∀e ∈ E(L) ⊆ E(G), κl(G − e) = 1, and so ∃u ∈ V (G −
e) = V (G) such that ω(G −e −u) � l. Thus ω(G −u) � l −1
and u is a (1, l − 1)-cut-vertex of G . Suppose first that u /∈
V (L). If B − L0 is contained in a component of G − u − L,
then ω(G − u) = ω(G − u − L) = ω(G − u − e) � l, contrary
to the fact that G is (2, l)-connected. Thus u must be a cut
vertex of B − L0, and so J (B − L0) ∩ J l−1(G) �= ∅, and (iii)
holds.

Now assume that u ∈ V (L). Let e′ ∈ E(L) be an edge
incident with u. By Lemma 3.4, ∃v ∈ V (B) which is not
incident with e′ such that v ∈ J l−1(G). Thus v �= u. If
v /∈ V (L), then J (B − L0) ∩ J l−1(G) �= ∅, and (iii) holds.
Thus we may assume that v ∈ V (L). If u and v are non-
adjacent, then |S| � 2 and diamL(S) � 2, and (iii) holds. If
u and v are adjacent in L, then let e′′ = uv . By Lemma 3.4,
∃x ∈ V (B) such that x ∈ J l−1(G) and such that x is not
incident with e′′. Thus x /∈ {u, v}. If x /∈ V (L), then J (B −
L0) ∩ J l−1(G) �= ∅, and (iii) holds. Hence we assume that
x ∈ V (L). Then u, v, x ∈ V (L). Now we claim that L is not
isomorphic to K3. Otherwise, if L is isomorphic to K3, and
by the definition of a lane, there is at most one vertex in
L whose degree is greater than 2 in B . If V (B − L) �= ∅
then κ(B) = 1, contrary to the fact that B is a cyclic block.
if V (B − L) = ∅, which means L is B itself, contrary to
the fact that B is not isomorphic to K3. Hence L is not
isomorphic to K3 and so at least one of vertices u, v is
non-adjacent to x. Hence (iii) must hold.

(iv) By Lemma 3.4, ∀e ∈ E(K3), the non-adjacent vertex
is in J l−1(G). Thus, ∀v ∈ V (K3), v ∈ J l−1(G).

We now prove the sufficiency. By Theorem 3.2, we may
assume that G is not a tree. By (i), G has no (1, l)-cut-
vertices. Thus κl(G) � 2 and so G is (2, l)-connected. We
need to prove

∀e ∈ E(G), κl(G − e) � 1. (1)

Pick an edge e ∈ E(G). There are 3 cases:

Case 1. The edge e lies in a cyclic block B which is isomor-
phic to K3.

Let v be the vertex in B such that v is not incident
with e. By (iv), v is a (1, l −1)-cut-vertex of G . Thus ω(G −
v) � l − 1. Since B is isomorphic to K3, e must be a cut
edge of a component H of G − v . Hence ω(G − e − v) � l,
and so κl(G − e) = 1. Thus (1) holds.

Case 2. Edge e lies in a cyclic block B which is not isomor-
phic to K3.

Let L be the lane in B such that e ∈ E(L). Then ei-
ther J (B − L0) ∩ J l−1(G) �= ∅, or |S| � 2 and diamL(S) � 2.
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Assume first that |S| � 2 and diamL(S) � 2. Then L has
at least 2 non-adjacent vertices which are (1, l − 1)-cut-
vertices of G . Hence there is a vertex v ∈ V (L) such that
v ∈ J l−1(G) and such that v is not incident with e. Thus
ω(G − v) � l − 1. Since e ∈ E(L) and L is a lane in B , by
the definition of a lane, e must be a cut edge of a com-
ponent of G − v . Thus ω(G − e − u) � l, and so κl(G −
e) = 1. Hence (1) holds. Therefore, by (iii), we assume that
J (B − L0) ∩ J l−1(G) �= ∅. Let v ∈ J (B − L0) ∩ J l−1(G). Since
v ∈ J l−1(G), ω(G − v) � l − 1 and e is in a component H
of G − v . Let x and y be the end vertices of lane L. Since
v is a cut vertex of B − L0, κG(x, y) = 2, whence e is a cut
edge of the component H in G − v . Then ω(G − e − v) � l,
whence κl(G − e) = 1, and so (1) holds.

Case 3. The edge e does not lie in any cyclic block of G .

Since G is not a tree, G must have a cyclic block B . By
(iii) and (iv), whether B is isomorphic to K3 or not, G has a
(1, l − 1)-cut-vertex v which is not incident with e. Hence
ω(G − v) � l − 1 and e lies in a component H of G − v .
Since e does not lie in any cyclic block of G , e must be a
cut edge of H . Thus ω(G −e − v) � l, whence κl(G −e) = 1,
and so (1) holds. �
Corollary 3.6. Let G be a connected, minimally (2, l)-connected
graph. Then every cyclic block of G is minimally 2-connected.

Proof. Let B be a cyclic block of G . By Theorem 2.1, to
prove B is minimally 2-connected, it suffices to show that
each cycle in B has no chords. Assume that there is a cy-
cle C in B with a chord e = xy. By the definition of a lane,
e is a lane of B . By Theorem 3.5 (iii), it must be the case
that J (B − e)∩ J l−1(G) �= ∅, and let v ∈ J (B − e)∩ J l−1(G).
Since B is 2-connected and v is a cut vertex of B − e,
x and y must be in different components of B − e − v ,
whence κB−e(x, y) = 1. But since e is a chord of cycle C
in B , κB−e(x, y) � 2. We get a contradiction. Hence, every
cyclic block of G is minimally 2-connected. �
4. F (n,2, l), f (n,2, l), Ex(n,2, l), Sat(n,2, l)
and III (n,2, l)

In this section, we shall determine the value of F (n,2, l)
and f (n,2, l), and discover the family of Ex(n,2, l),
Sat(n,2, l) and I (n,2, l).

Lemma 4.1. Let G be a connected, minimally (2, l)-connected
graph. Let l � 3 and |V (G)| = n.

(i) If G is acyclic, then 2l − 1 � n;
(ii) If G is cyclic, then 2l � n.

Proof. (i) By Theorem 3.2, there are two non-adjacent
vertices u and v such that d(u) = d(v) = l − 1. Hence
2(l − 1) − 1 + 2 � n, that is 2l − 1 � n.

(ii) By Corollary 3.6, there must be a cyclic block which
is minimally 2-connected. There are two cases here. If the
cyclic block is a K3, then by Theorem 3.5, all the three
vertices of K3 are (1, l − 1)-cut-vertices, and hence there
are at least 3(l−2)+3 vertices. Thus n � 3(l−2)+3 = 3l−
3 � 2l, since l � 3. If the cyclic block is not a K3, then the
block has at least 4 vertices, and by Theorem 3.5, at least
2 of them are (1, l − 1)-cut-vertices. Hence n � 2(l − 2)+ 4,
that is 2l � n. �
Lemma 4.2. Let G be a connected, minimally (2, l)-connected
graph with |V (G)| = n and |E(G)| = m. Then

(i) n − 1 � m � 2n − 2l.
(ii) m = 2n − 2l holds if and only if one of the following holds:

(a) G is a tree and n = 2l − 1; or
(b) G has only one cyclic block, the cyclic block is isomor-

phic to K2,n−2l+2 , and G has exactly two non-adjacent
(1, l − 1)-cut-vertices; or

(c) l = 3, n = 6 and the only cyclic block of G is isomorphic
to K3 .

Proof. If G is a tree, then m = n − 1. By Lemma 4.1,
2l − 1 � n. Hence m = n − 1 � n − 1 +n − (2l − 1) � 2n − 2l,
where equality holds if and only if n = 2l − 1. Thus the
lemma must hold.

Now we assume that G is cyclic. Since G is connected,
m � n. We still need to prove m � 2n − 2l. Suppose that
G has t cyclic blocks which are not isomorphic to K3,
denoted by H1, H2, . . . , Ht , and s cyclic blocks which are
isomorphic to K3. Let n′ be the total number of vertices
of all cyclic blocks, ans so n′ = 3s + (n1 + n2 + · · · + nt).
Each Hi has ni vertices and mi edges, for i = 1,2, . . . , t . By
Corollary 3.6, each cyclic block is a minimally 2-connected
graph. By Theorem 2.1, mi � 2ni −4 for i = 1,2, . . . , t . Then
m = 3s + m1 + m2 + · · · + mt + (t + s − 1) + n − (3s + n1 +
n2 + · · · + nt) � 3s + (n1 + n2 + · · · + nt) + n − 3t − 2s − 1 =
n′ + n − 3t − 2s − 1. Let M = n′ + n − 3t − 2s − 1. We have
the following claim.

Claim. When M reaches the maximum value, there is exactly
one cyclic block in the graph.

Proof of the claim. Without loss of generality, we may as-
sume that n′ � 4. If the number of cyclic blocks is 1, then
by Corollary 3.6 and Theorem 2.1, the maximum value of
M is 2n′ − 4 + (n − n′) = n′ + n − 4. If the number of cyclic
blocks is at least 2, then t + s � 2. The maximum value of
M is n′ +n−3t −2s−1 = n′ +n−2(t +s)−t −1 < n′ +n−4.
This completes the proof of the claim. �
Case 1. t �= 0. By the claim, when M reaches the maximum
value, t = 1, s = 0 and M = n′ + n − 4 = n1 + n − 4. By
Theorem 3.5, there are at least two (1, l−1)-cut-vertices in
a minimally (2, l)-connected graph. Hence n1 � n−2(l−2).
Thus m � 2n − 2l, and (i) must hold. The equality holds if
and only if t = 1, s = 0, n1 = n − 2(l − 2) and m1 = 2n1 − 4.
By Theorem 2.1, m1 = 2n1 −4 if and only the cyclic block is
isomorphic to K2,n−2l+2. And n1 = n − 2(l − 2) holds if and
only if there are exactly two vertices which are not in the
cyclic block, i.e., G has exactly two non-adjacent (1, l − 1)-
cut-vertices, by Theorem 3.5. Thus (ii) must hold.

Case 2. t = 0. By the claim, when M reaches the maximum
value, t = 0, s = 1 and M = n′ + n − 3 = n. By Lemma 4.1,
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Fig. 1. Some classes of graphs.

Fig. 2. Extremal graphs for F (6,2,3).
M = n � 2n − 2l, and the equality holds if and only if n =
2l. Since the only cyclic block is a K3, by Theorem 3.5, each
vertex of the cyclic block is a (1, l −1)-cut-vertex, and thus
the number of vertices in the graph is n = 3 + 3(l − 2) =
3l − 3. Hence M = 2n − 2l holds if and only if n = 2l and
n = 3l − 3, i.e., l = 3 and n = 6. �

Let K2,s be a complete bipartite graph with bipartition
(A, B) such that |A| = 2 and |B| = s. Let G2,s,t denote the
graph obtained from K2,s by joining each vertex in set A to
t new vertices, respectively, as shown in Fig. 1(a). Let u and
v be two non-adjacent vertices of P3. Let T3,t denote the
graph obtained from P3 by joining each of u, v to t new
vertices, respectively, as shown in Fig. 1(b). Graph G3,3 is
shown in Fig. 2(a).

Theorem 4.3.

(i) F (n,2, l) = 2n − 2l.
(ii) Ex(5,2,3) = {P5}; Ex(6,2,3) = {G3,3, G2,2,1};

Ex(n,2,3) = {G2,n−4,1} for n � 7.
(iii) When l � 4 and n = 2l − 1, Ex(n,2, l) = {T3,l−2}.
(iv) When l � 4 and n � 2l, Ex(n,2, l) = {G2,n−2l+2,l−2}.

Proof. When l = 2, by Theorem 2.1, F (n,2,2) = 2n − 4
and Ex(n,2,2) = {K2,n−2}. So we assume that l � 3.
By Lemma 4.2, F (n,2, l) � 2n − 2l. In order to prove
F (n,2, l) = 2n − 2l, it suffices to show that there exists
a connected, minimally (2, l)-connected graph with n ver-
tices and 2n − 2l edges. When l = 3, by Lemma 4.1, n � 5
and G is tree if n = 5. By Corollary 3.3, Ex(5,2,3) = {P5}.
If n = 6, G is cyclic and by Lemma 4.2, Ex(6,2,3) =
{G3,3, G2,2,1}. If n � 7, ∀G ∈ Ex(n,2,3), by Lemma 4.2, the
only cyclic block of G is K2,n−2l+2, and G has exactly two
non-adjacent (1, l − 1)-cut-vertices. Hence, Ex(n,2,3) =
{G2,n−4,1}.

When l � 4, by Lemma 4.1, n � 2l − 1. If n = 2l − 1,
then G is a tree, and by Theorem 3.2, ∀G ∈ Ex(n,2, l), G ∈
T (l − 1). Then there are two non-adjacent vertices with
degree l − 1. Since n = 2l − 1, G must be T3,l−2. If n � 2l,
then by Lemma 4.2, Ex(n,2, l) = {G2,n−2l+2,l−2}. Thus, the
theorem holds. �
Theorem 4.4.

(i) f (n,2, l) = n − 1.
(ii) Sat(n,2, l) = Tn(l − 1).

Proof. By Lemma 4.2, f (n,2, l) � n − 1. In order to prove
f (n,2, l) = n − 1, it suffices to show that there’s a con-
nected, minimally (2, l)-connected graph G such that
|V (G)| = n and |E(G)| = n − 1. Graph g must be a tree,
since |E(G)| = |V (G)| − 1. By Theorem 3.2, G ∈ T (l − 1).
Thus (i) holds. Since G has n vertices, Sat(n,2, l) =
Tn(l − 1). (ii) must hold. �
Theorem 4.5. I (n,2, l) = {i ∈ N: n − 1 � i � 2n − 2l}.

Proof. It suffices to show that for each m ∈ N ∩ [n − 1,

2n − 2l], there is a graph G ∈ F (n,2, l) such that
|E(G)| = m. For each m, we will construct a minimally
(2, l)-connected graph with n vertices and m edges. When
m = n − 1, G = Pn . When n � m � 2n − 2l, we construct a
minimally (2, l)-connected graph G as follows: Let C be a
cycle with 2n − m − 2(l − 2) vertices, and u1, u2 are two
non-adjacent vertices in C . Let V 1 and V 2 be two sets
of (l − 2) vertices, and V 1 ∩ V 2 = ∅. Then G is the graph
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Fig. 3. An example when l = 5, n = 14 and m = 16 in the proof of Theo-
rem 4.5.

obtained from C by joining ui to each vertex in V i respec-
tively for i = 1,2, and joining u1 and u2 by m − n disjoint
paths. These disjoint paths are m − n copies of P3. Obvi-
ously, |E(G)| = m and |V (G)| = n. By Theorem 3.5, G is a
minimally (2, l)-connected graph. An example is shown in
Fig. 3 when l = 5, n = 14 and m = 16. �
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