Characterization of minimally $(2, l)$-connected graphs

Xiaofeng $\mathrm{Gu}^{\mathrm{a}, *}$, Hong-Jian Lai ${ }^{\mathrm{b}, \mathrm{a}}$, Senmei Yao ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {b }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China

A R T I C L E I N F O

Article history:

Received 18 October 2010
Received in revised form 19 September 2011
Accepted 20 September 2011
Available online 22 September 2011
Communicated by J. Torán

Keywords:

Combinatorial problems
Connectivity
Minimally k-connected graphs
l-Connectivity
(k, l)-Connected graphs
Minimally ($2, l$-connected graphs

Abstract

For an integer $l \geqslant 2$, the l-connectivity $\kappa_{l}(G)$ of a graph G is defined to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Let $k \geqslant 1$, a graph G is called (k, l)connected if $\kappa_{l}(G) \geqslant k$. A graph G is called minimally (k, l)-connected if $\kappa_{l}(G) \geqslant k$ but $\forall e \in$ $E(G), \kappa_{l}(G-e) \leqslant k-1$. In this paper, we present a structural characterization for minimally ($2, l$)-connected graphs and classify extremal results. These extend former results by Dirac (1967) [6] and Plummer (1968) [14] on minimally (2, 2)-connected graphs.

© 2011 Published by Elsevier B.V.

1. Introduction

In this paper, we consider finite graphs, and follow the notations and terms of [3], unless otherwise defined. In particular, $\omega(G)$ is the number of components of a graph G. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal produces a disconnected graph or the trivial graph. For an integer $l \geqslant 2$, Chartrand et al. in [4] defined the l-connectivity $\kappa_{l}(G)$ of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices. Thus $\kappa_{l}(G)=0$ if and only if $\omega(G) \geqslant l$ or $|V(G)| \leqslant l-1$. Note that $\kappa_{2}(G)=\kappa(G)$.

For an integer $l \geqslant 2$, l-edge-connectivity can be similarly defined. In [1], Boesch and Chen defined the l-edgeconnectivity $\lambda_{l}(G)$ of a connected graph G to be the minimum number of edges whose removal leaves a graph with at least l components if $|V(G)| \geqslant l$, and $\lambda_{l}(G)=|E(G)|$ if $|V(G)|<l$. Note that $\lambda_{2}(G)=\lambda(G)$.

[^0]The generalized connectivity and edge-connectivity have been studied by many. See [1,4,7-13,15], among others. Let $k \geqslant 1$, a graph G is called (k, l)-connected if $\kappa_{l} \geqslant k$. A graph G is called minimally (k, l)-connected if $\kappa_{l}(G) \geqslant k$ but $\forall e \in E(G), \kappa_{l}(G-e) \leqslant k-1$. Let G be a (k, l)-connected graph, and $e \in E(G)$. An edge $e \in E(G)$ is essential if $G-e$ is not (k, l)-connected. A graph G is called (k, l)-edge-connected if $\lambda_{l}(G) \geqslant k$. A graph G is minimally (k, l)-edge-connected if $\lambda_{l}(G) \geqslant k$ but for any edge $e \in E(G)$, $\lambda_{l}(G-e) \leqslant k-1$. Therefore, a $(2,2)$-connected graph is just a 2 -connected graph, and a (2,2)-edge-connected graph is a 2-edge-connected graph.

Let $\mathscr{F}(n, k, l)$ be the set of all connected and minimally (k, l)-connected graphs with n vertices. We define $F(n, k, l)=\max \{|E(G)|: \quad G \in \mathscr{F}(n, k, l)\}$ and $f(n, k, l)=$ $\min \{|E(G)|: \quad G \in \mathscr{F}(n, k, l)\}$. Let $\mathscr{I}(n, k, l)=\{i \in \mathbb{N}$: $f(n, k, l) \leqslant i \leqslant F(n, k, l)$ and $\exists G \in \mathscr{F}(n, k, l)$ such that $|E(G)|=i\}$, which is referred as the (n, k, l)-spectrum of $\mathscr{F}(n, k, l)$. We further define $E x(n, k, l)=\{G: G \in$ $\mathscr{F}(n, k, l),|E(G)|=F(n, k, l)\}$ and $\operatorname{Sat}(n, k, l)=\{G: G \in$ $\mathscr{F}(n, k, l),|E(G)|=f(n, k, l)\}$.

Chaty and Chein presented a structural characterization of minimally (2,2)-edge-connected graphs [5]. Hennayake
et al. [9] then generalized it to minimally (k, k)-edgeconnected graphs by presenting a structural characterization of all minimally (k, k)-edge-connected graphs. A structural characterization of minimally $(2,2)$-connected graphs was obtained independently by Dirac [6] and by Plummer [14]. A purpose of this paper is to give a characterization of minimally ($2, l$)-connected graphs when $l>2$ (Theorem 3.2 and Theorem 3.5) by presenting the structures of such graphs.

The value of $F(n, 2,2)$ was discovered independently by Dirac [6] and by Plummer [14] (Theorem 2.1 in this paper). Another purpose of this paper is to determine $F(n, 2, l)$ and $f(n, 2, l)$ when $l>2$. The families $\operatorname{Ex}(n, 2, l), \operatorname{Sat}(n, 2, l)$ and $\mathscr{I}(n, 2, l)$ will also be determined in the paper. These extend former results by Dirac [6] and Plummer [14] on minimally $(2,2)$-connected graphs.

In Section 2, we will present some preliminaries as preparations for the proofs. Sections 3 and 4 are devoted to the investigations of the structural characterization of minimally $(2, l)$-connected graphs, and of $F(n, 2, l), f(n, 2, l)$, $E x(n, 2, l), \operatorname{Sat}(n, 2, l)$ and $\mathscr{I}(n, 2, l)$, respectively.

2. Preliminaries

We start with a theorem by Dirac and Plummer. These results were obtained by Dirac and by Plummer independently. A chord of a cycle C in a graph G is an edge in $E(G) \backslash E(C)$ both of whose ends lie on C.

Theorem 2.1. (Dirac [6] and Plummer [14], see also [2].)

(i) A 2-connected graph is minimally 2-connected if and only if no cycle has a chord.
(ii) A minimally 2-connected graph of order $n \geqslant 4$ has the size at most $2 n-4$. Furthermore, $F(n, 2,2)=2 n-4$ and $\operatorname{Ex}(n, 2,2)=\left\{K_{2, n-2}\right\}$ for $n \geqslant 4$.

A divalent path P in a graph G is a path all of whose internal vertices have degree 2 in G. A lane of a graph G is a maximal divalent path in G. For convenience, a cycle is considered as a lane of itself. Let L be a lane in graph G, we define L_{0} to be the set of all internal vertices of L if L is not an edge of G. If L is an edge e of G, then $L_{0}=\{e\}$.

By definition, every edge of a graph G is in a divalent path of G. Hence, we have the following observation:

Observation 1. Every edge of a graph G lies in a lane in G.

A graph is acyclic if it does not contain a cycle. Otherwise, the graph is called cyclic. A cyclic block of a graph is a block which is not isomorphic to K_{2}. Let G be a connected graph with blocks $B_{1}, B_{2}, \ldots, B_{s}$ and cut vertices $c_{1}, c_{2}, \ldots, c_{t}$, where $s \geqslant 1$ and $t \geqslant 0$. The block-cutvertex graph of G, denoted by $b c(G)$, is the graph with vertex set $\left\{B_{1}, B_{2}, \ldots, B_{s}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$ and edge set $\left\{B_{i} c_{j}: c_{j} \in\right.$ $\left.V\left(B_{i}\right)\right\}$ for $1 \leqslant i \leqslant s$ and $0 \leqslant j \leqslant t$. By definition, the blockcutvertex graph of graph G is a tree, and so it is also called the block tree of G.

The distance $d_{G}(x, y)$ of two vertices x and y in a graph G is the length of a shortest (x, y)-path in G, and if no
such path exists, then the distance is set to be ∞. Let G be a graph and $U \subseteq V(G)$. The diameter of U in G, denoted by $\operatorname{diam}_{G}(U)$, is the greatest distance $d_{G}(x, y)$ for $\forall x, y \in U$. If $U=V(G)$, then the diameter of G is simply denoted as $\operatorname{diam}(G)$.

The local connectivity $\kappa_{G}(x, y)$ of two non-adjacent vertices x and y in a graph G is the minimum number of vertices separating x from y. If x and y are adjacent vertices, their local connectivity is defined as $\kappa_{H}(x, y)+1$, where $H=G-x y$.

3. Minimally (2,l)-connected graphs

In this section, we shall present a characterization of minimally $(2, l)$-connected graphs.

Lemma 3.1. Let G be $a(k, l)$-connected graph. Then

(i) $|V(G)| \geqslant k+l-1$.
(ii) Suppose that $l^{\prime}>l \geqslant 2$ and $|V(G)| \geqslant k+l^{\prime}-1$. If G is (k, l)-connected, then G is $\left(k, l^{\prime}\right)$-connected, but cannot be minimally $\left(k, l^{\prime}\right)$-connected.

Proof. (i) Suppose that $|V(G)|<k+l-1$. Let $X \subseteq V(G)$ with $|X|=k-1$. Then $|V(G-X)|<l$, and so $\kappa_{l}(G) \leqslant k-1$, contrary to the fact that G is (k, l)-connected.
(ii) Suppose that G is not $\left(k, l^{\prime}\right)$-connected. Then $\kappa_{l^{\prime}}(G)$ $\leqslant k-1$, and so there exists $X \subset V(G)$ with $|X| \leqslant k-1$ such that either $\omega(G-X) \geqslant l^{\prime}>l$, whence $\kappa_{l}(G) \leqslant \kappa_{l^{\prime}}(G) \leqslant k-1$, contrary to $\kappa_{l}(G) \geqslant k$; or $|V(G-X)| \leqslant l^{\prime}-1$, whence $|V(G)|<k+l^{\prime}-1$, contrary to the assumption. Hence $\kappa_{l^{\prime}}(G) \geqslant k$.

To prove that G is not minimally $\left(k, l^{\prime}\right)$-connected, we argue by contradiction and assume that G is minimally $\left(k, l^{\prime}\right)$-connected. Then $\forall e \in E(G), \kappa_{l^{\prime}}(G-e) \leqslant k-1$. There exists an $X \subset V(G-e)=V(G)$ with $|X| \leqslant k-1$. If $\omega(G-$ $e-X) \geqslant l^{\prime}$, then $\omega(G-X) \geqslant l^{\prime}-1 \geqslant l$, whence $\kappa_{l}(G) \leqslant k-1$, contrary to $\kappa_{l}(G) \geqslant k$. If $|V(G-e-X)| \leqslant l^{\prime}-1$, then since $|V(G-X)|=|V(G-e-X)|$, we have $|V(G)|<k+l^{\prime}-1$, contrary to $|V(G)| \geqslant k+l^{\prime}-1$. Thus, G is $\left(k, l^{\prime}\right)$-connected, but not minimally $\left(k, l^{\prime}\right)$-connected.

Suppose that $l \geqslant 3$ and H is a tree such that there are at least two non-adjacent vertices $u, v \in V(H)$ satisfying $d(u)=d(v)=l-1=\Delta(G)$. Let $\mathscr{T}(l-1)$ be the set of all such trees, and let $\mathscr{T}_{n}(l-1)=\{H \in \mathscr{T}(l-1):|V(H)|=n\}$.

Theorem 3.2. Let G be a tree and $l \geqslant 3$. Then G is minimally $(2, l)$-connected if and only if $G \in \mathscr{T}(l-1)$.

Proof. First we assume that $G \in \mathscr{T}(l-1)$. Since $\Delta(G)=$ $l-1, \kappa_{l}(G) \geqslant 2$. To prove that G is minimally $(2, l)-$ connected, we need to show that $\forall e \in E(G), \kappa_{l}(G-e) \leqslant 1$. By assumption, G has at least one vertex v which is not incident with edge e, such that $d(v)=l-1$. Since G is a tree, both $\omega(G-v)=l-1$ and each component of $G-v$ is a tree. As e must be in a component of $G-v$, $\omega(G-e-v)=l$, whence $\kappa_{l}(G-e)=1$.

We now assume that G is minimally $(2, l)$-connected to prove the necessity. Since G is a tree and $\kappa_{l}(G) \geqslant 2$, we have $\Delta(G) \leqslant l-1$.

Claim 1. Let $e \in E(G)$. Then $\exists u \in V(G)$ which is not incident with e such that $d(u)=l-1$.

Proof of Claim 1. Since G is minimally ($2, l$)-connected, $\kappa_{l}(G-e)=1$, and so $\exists u \in V(G)$ such that $\omega(G-e-u) \geqslant l$. Thus $\omega(G-u) \geqslant l-1$ and $d(u) \geqslant l-1$. Since $\Delta(G) \leqslant l-1$, $\Delta(G)=d(u)=l-1$. Note that u is not incident with e, as otherwise, $\omega(G-u)=\omega(G-e-u) \geqslant l$, contrary to the fact that G is $(2, l)$-connected. Thus Claim 1 must hold.

By Claim 1, $\Delta(G)=l-1$ and so $\exists u \in V(G), d(u)=l-1$. Let $e^{\prime} \in E(G)$ be an edge incident with u. By Claim 1, there exists a vertex $u^{\prime} \in V(G)$ such that $d\left(u^{\prime}\right)=l-1$ and e^{\prime} is not incident with u^{\prime}. Thus $u^{\prime} \neq u$. If u^{\prime} is not adjacent to u, then the theorem holds. Hence we assume that $e^{\prime \prime}=u u^{\prime} \in$ $E(G)$. By Claim 1, there exists a vertex $u^{\prime \prime} \in V(G)$ such that $d\left(u^{\prime \prime}\right)=l-1$ and $u^{\prime \prime} \notin\left\{u, u^{\prime}\right\}$. Thus G has 3 vertices with degree $l-1$. Since G is a tree, at least 2 of these vertices of degree $l-1$ are non-adjacent. Hence $G \in \mathscr{T}(l-1)$.

Corollary 3.3. Let G be a tree. Then G is minimally $(2,3)-$ connected if and only if G is a path P_{n} (a path with n vertices), where $n \geqslant 5$.

Let G be a graph, and $k \geqslant 1, l \geqslant 2$ be integers. A (k, l) cut of G is a set $F \subseteq V(G)$ such that $|F|=k$ and $\omega(G-F) \geqslant l$. As any ($1, l$)-cut consists of a single vertex, a ($1, l$)-cut is also called a ($1, l$)-cut-vertex. We shall use the notation $J^{l}(G)$ to denote the set of all $(1, l)$-cut-vertices of G.

Lemma 3.4. Let $l \geqslant 3$. Suppose that G is a connected, minimally $(2, l)$-connected graph. Let B be a cyclic block of G. Then $\forall e \in$ $E(B), \exists u \in V(B)$ such that $u \in J^{l-1}(G)$ and such that u is not incident with e.

Proof. Since G is minimally $(2, l)$-connected and $e \in$ $E(B) \subseteq E(G), \kappa_{l}(G-e)=1$. Thus $\exists u \in V(G-e)=V(G)$ such that $\omega(G-e-u) \geqslant l$. Hence $\omega(G-u) \geqslant l-1$. Since G is $(2, l)$-connected, it must be the case that $\omega(G-u)=$ $l-1$, and so u is a ($1, l-1$)-cut-vertex of graph G. We claim that $u \in V(B)$. If not, then $u \notin V(B)=V(B-e)$, and so $B-e$ is contained in a component of $G-e-u$. Hence $\omega(G-u)=\omega((G-e-u)+e)=\omega(G-e-u) \geqslant l$, contrary to the fact that G is $(2, l)$-connected. We also claim that u is not incident with edge e. If not, then $\omega(G-u)=\omega(G-e-u) \geqslant l$, contrary to the fact that G is ($2, l$)-connected. Thus the lemma must hold.

Theorem 3.5. Let $l \geqslant 3$. A connected graph G is minimally ($2, l$)-connected if and only if each of the following holds.
(i) Each cut vertex of G has degree no more than $l-1$ in the block-cutvertex graph of G.
(ii) If G is a tree, then $G \in \mathscr{T}(l-1)$.
(iii) For each cyclic block B not isomorphic to K_{3} and for each lane L of B, if $J\left(B-L_{0}\right)$ denotes the set of all cut vertices of $B-L_{0}$ and $S=V(L) \cap J^{l-1}(G)$, then either $|S| \geqslant 2$ and $\operatorname{diam}_{L}(S) \geqslant 2$, or $J\left(B-L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$.
(iv) If a block B of G is isomorphic to K_{3}, then $\forall v \in V(B), v \in$ $J^{l-1}(G)$.

Proof. Assume that G is connected and minimally ($2, l$)connected.
(i) Since G is $(2, l)$-connected, G has no ($1, l$)-cutvertices. Thus each cut vertex of G has degree at most $l-1$ in the block-cutvertex graph of G.
(ii) It follows from Theorem 3.2.
(iii) Since G is connected and minimally $(2, l)$-connected, $\forall e \in E(L) \subseteq E(G), \kappa_{l}(G-e)=1$, and so $\exists u \in V(G-$ $e)=V(G)$ such that $\omega(G-e-u) \geqslant l$. Thus $\omega(G-u) \geqslant l-1$ and u is a $(1, l-1)$-cut-vertex of G. Suppose first that $u \notin$ $V(L)$. If $B-L_{0}$ is contained in a component of $G-u-L$, then $\omega(G-u)=\omega(G-u-L)=\omega(G-u-e) \geqslant l$, contrary to the fact that G is $(2, l)$-connected. Thus u must be a cut vertex of $B-L_{0}$, and so $J\left(B-L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$, and (iii) holds.

Now assume that $u \in V(L)$. Let $e^{\prime} \in E(L)$ be an edge incident with u. By Lemma 3.4, $\exists v \in V(B)$ which is not incident with e^{\prime} such that $v \in J^{l-1}(G)$. Thus $v \neq u$. If $v \notin V(L)$, then $J\left(B-L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$, and (iii) holds. Thus we may assume that $v \in V(L)$. If u and v are nonadjacent, then $|S| \geqslant 2$ and $\operatorname{diam}_{L}(S) \geqslant 2$, and (iii) holds. If u and v are adjacent in L, then let $e^{\prime \prime}=u v$. By Lemma 3.4, $\exists x \in V(B)$ such that $x \in J^{l-1}(G)$ and such that x is not incident with $e^{\prime \prime}$. Thus $x \notin\{u, v\}$. If $x \notin V(L)$, then $J(B-$ $\left.L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$, and (iii) holds. Hence we assume that $x \in V(L)$. Then $u, v, x \in V(L)$. Now we claim that L is not isomorphic to K_{3}. Otherwise, if L is isomorphic to K_{3}, and by the definition of a lane, there is at most one vertex in L whose degree is greater than 2 in B. If $V(B-L) \neq \emptyset$ then $\kappa(B)=1$, contrary to the fact that B is a cyclic block. if $V(B-L)=\emptyset$, which means L is B itself, contrary to the fact that B is not isomorphic to K_{3}. Hence L is not isomorphic to K_{3} and so at least one of vertices u, v is non-adjacent to x. Hence (iii) must hold.
(iv) By Lemma 3.4, $\forall e \in E\left(K_{3}\right)$, the non-adjacent vertex is in $J^{l-1}(G)$. Thus, $\forall v \in V\left(K_{3}\right), v \in J^{l-1}(G)$.

We now prove the sufficiency. By Theorem 3.2, we may assume that G is not a tree. By (i), G has no ($1, l$)-cutvertices. Thus $\kappa_{l}(G) \geqslant 2$ and so G is $(2, l)$-connected. We need to prove
$\forall e \in E(G), \quad \kappa_{l}(G-e) \leqslant 1$.
Pick an edge $e \in E(G)$. There are 3 cases:
Case 1. The edge e lies in a cyclic block B which is isomorphic to K_{3}.

Let v be the vertex in B such that v is not incident with e. By (iv), v is a ($1, l-1$)-cut-vertex of G. Thus $\omega(G-$ $v) \geqslant l-1$. Since B is isomorphic to K_{3}, e must be a cut edge of a component H of $G-v$. Hence $\omega(G-e-v) \geqslant l$, and so $\kappa_{l}(G-e)=1$. Thus (1) holds.

Case 2. Edge e lies in a cyclic block B which is not isomorphic to K_{3}.

Let L be the lane in B such that $e \in E(L)$. Then either $J\left(B-L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$, or $|S| \geqslant 2$ and $\operatorname{diam}_{L}(S) \geqslant 2$.

Assume first that $|S| \geqslant 2$ and $\operatorname{diam}_{L}(S) \geqslant 2$. Then L has at least 2 non-adjacent vertices which are ($1, l-1$)-cutvertices of G. Hence there is a vertex $v \in V(L)$ such that $v \in J^{l-1}(G)$ and such that v is not incident with e. Thus $\omega(G-v) \geqslant l-1$. Since $e \in E(L)$ and L is a lane in B, by the definition of a lane, e must be a cut edge of a component of $G-v$. Thus $\omega(G-e-u) \geqslant l$, and so $\kappa_{l}(G-$ $e)=1$. Hence (1) holds. Therefore, by (iii), we assume that $J\left(B-L_{0}\right) \cap J^{l-1}(G) \neq \emptyset$. Let $v \in J\left(B-L_{0}\right) \cap J^{l-1}(G)$. Since $v \in J^{l-1}(G), \omega(G-v) \geqslant l-1$ and e is in a component H of $G-v$. Let x and y be the end vertices of lane L. Since v is a cut vertex of $B-L_{0}, \kappa_{G}(x, y)=2$, whence e is a cut edge of the component H in $G-v$. Then $\omega(G-e-v) \geqslant l$, whence $\kappa_{l}(G-e)=1$, and so (1) holds.

Case 3. The edge e does not lie in any cyclic block of G.
Since G is not a tree, G must have a cyclic block B. By (iii) and (iv), whether B is isomorphic to K_{3} or not, G has a ($1, l-1$)-cut-vertex v which is not incident with e. Hence $\omega(G-v) \geqslant l-1$ and e lies in a component H of $G-v$. Since e does not lie in any cyclic block of G, e must be a cut edge of H. Thus $\omega(G-e-v) \geqslant l$, whence $\kappa_{l}(G-e)=1$, and so (1) holds.

Corollary 3.6. Let G be a connected, minimally ($2, l$)-connected graph. Then every cyclic block of G is minimally 2-connected.

Proof. Let B be a cyclic block of G. By Theorem 2.1, to prove B is minimally 2 -connected, it suffices to show that each cycle in B has no chords. Assume that there is a cycle C in B with a chord $e=x y$. By the definition of a lane, e is a lane of B. By Theorem 3.5 (iii), it must be the case that $J(B-e) \cap J^{l-1}(G) \neq \emptyset$, and let $v \in J(B-e) \cap J^{l-1}(G)$. Since B is 2-connected and v is a cut vertex of $B-e$, x and y must be in different components of $B-e-v$, whence $\kappa_{B-e}(x, y)=1$. But since e is a chord of cycle C in $B, \kappa_{B-e}(x, y) \geqslant 2$. We get a contradiction. Hence, every cyclic block of G is minimally 2-connected.

4. $F(n, 2, l), f(n, 2, l), E x(n, 2, l), \operatorname{Sat}(n, 2, l)$ and $\mathscr{I}(n, 2, l)$

In this section, we shall determine the value of $F(n, 2, l)$ and $f(n, 2, l)$, and discover the family of $E x(n, 2, l)$, $\operatorname{Sat}(n, 2, l)$ and $\mathscr{I}(n, 2, l)$.

Lemma 4.1. Let G be a connected, minimally ($2, l$)-connected graph. Let $l \geqslant 3$ and $|V(G)|=n$.
(i) If G is acyclic, then $2 l-1 \leqslant n$;
(ii) If G is cyclic, then $2 l \leqslant n$.

Proof. (i) By Theorem 3.2, there are two non-adjacent vertices u and v such that $d(u)=d(v)=l-1$. Hence $2(l-1)-1+2 \leqslant n$, that is $2 l-1 \leqslant n$.
(ii) By Corollary 3.6, there must be a cyclic block which is minimally 2 -connected. There are two cases here. If the cyclic block is a K_{3}, then by Theorem 3.5, all the three vertices of K_{3} are ($1, l-1$)-cut-vertices, and hence there
are at least $3(l-2)+3$ vertices. Thus $n \geqslant 3(l-2)+3=3 l-$ $3 \geqslant 2 l$, since $l \geqslant 3$. If the cyclic block is not a K_{3}, then the block has at least 4 vertices, and by Theorem 3.5, at least 2 of them are ($1, l-1$)-cut-vertices. Hence $n \geqslant 2(l-2)+4$, that is $2 l \leqslant n$.

Lemma 4.2. Let G be a connected, minimally $(2, l)$-connected graph with $|V(G)|=n$ and $|E(G)|=m$. Then
(i) $n-1 \leqslant m \leqslant 2 n-2 l$.
(ii) $m=2 n-2 l$ holds if and only if one of the following holds:
(a) G is a tree and $n=2 l-1$; or
(b) G has only one cyclic block, the cyclic block is isomorphic to $K_{2, n-2 l+2}$, and G has exactly two non-adjacent (1,l-1)-cut-vertices; or
(c) $l=3, n=6$ and the only cyclic block of G is isomorphic to K_{3}.

Proof. If G is a tree, then $m=n-1$. By Lemma 4.1, $2 l-1 \leqslant n$. Hence $m=n-1 \leqslant n-1+n-(2 l-1) \leqslant 2 n-2 l$, where equality holds if and only if $n=2 l-1$. Thus the lemma must hold.

Now we assume that G is cyclic. Since G is connected, $m \geqslant n$. We still need to prove $m \leqslant 2 n-2 l$. Suppose that G has t cyclic blocks which are not isomorphic to K_{3}, denoted by $H_{1}, H_{2}, \ldots, H_{t}$, and s cyclic blocks which are isomorphic to K_{3}. Let n^{\prime} be the total number of vertices of all cyclic blocks, ans so $n^{\prime}=3 s+\left(n_{1}+n_{2}+\cdots+n_{t}\right)$. Each H_{i} has n_{i} vertices and m_{i} edges, for $i=1,2, \ldots, t$. By Corollary 3.6 , each cyclic block is a minimally 2 -connected graph. By Theorem 2.1, $m_{i} \leqslant 2 n_{i}-4$ for $i=1,2, \ldots, t$. Then $m=3 s+m_{1}+m_{2}+\cdots+m_{t}+(t+s-1)+n-\left(3 s+n_{1}+\right.$ $\left.n_{2}+\cdots+n_{t}\right) \leqslant 3 s+\left(n_{1}+n_{2}+\cdots+n_{t}\right)+n-3 t-2 s-1=$ $n^{\prime}+n-3 t-2 s-1$. Let $M=n^{\prime}+n-3 t-2 s-1$. We have the following claim.

Claim. When M reaches the maximum value, there is exactly one cyclic block in the graph.

Proof of the claim. Without loss of generality, we may assume that $n^{\prime} \geqslant 4$. If the number of cyclic blocks is 1 , then by Corollary 3.6 and Theorem 2.1, the maximum value of M is $2 n^{\prime}-4+\left(n-n^{\prime}\right)=n^{\prime}+n-4$. If the number of cyclic blocks is at least 2 , then $t+s \geqslant 2$. The maximum value of M is $n^{\prime}+n-3 t-2 s-1=n^{\prime}+n-2(t+s)-t-1<n^{\prime}+n-4$. This completes the proof of the claim.

Case 1. $t \neq 0$. By the claim, when M reaches the maximum value, $t=1, s=0$ and $M=n^{\prime}+n-4=n_{1}+n-4$. By Theorem 3.5, there are at least two ($1, l-1$)-cut-vertices in a minimally ($2, l$)-connected graph. Hence $n_{1} \leqslant n-2(l-2)$. Thus $m \leqslant 2 n-2 l$, and (i) must hold. The equality holds if and only if $t=1, s=0, n_{1}=n-2(l-2)$ and $m_{1}=2 n_{1}-4$. By Theorem 2.1, $m_{1}=2 n_{1}-4$ if and only the cyclic block is isomorphic to $K_{2, n-2 l+2}$. And $n_{1}=n-2(l-2)$ holds if and only if there are exactly two vertices which are not in the cyclic block, i.e., G has exactly two non-adjacent ($1, l-1$)-cut-vertices, by Theorem 3.5. Thus (ii) must hold.

Case 2. $t=0$. By the claim, when M reaches the maximum value, $t=0, s=1$ and $M=n^{\prime}+n-3=n$. By Lemma 4.1,

Fig. 1. Some classes of graphs.

Fig. 2. Extremal graphs for $F(6,2,3)$.
$M=n \leqslant 2 n-2 l$, and the equality holds if and only if $n=$ $2 l$. Since the only cyclic block is a K_{3}, by Theorem 3.5, each vertex of the cyclic block is a ($1, l-1$)-cut-vertex, and thus the number of vertices in the graph is $n=3+3(l-2)=$ $3 l-3$. Hence $M=2 n-2 l$ holds if and only if $n=2 l$ and $n=3 l-3$, i.e., $l=3$ and $n=6$.

Let $K_{2, s}$ be a complete bipartite graph with bipartition (A, B) such that $|A|=2$ and $|B|=s$. Let $G_{2, s, t}$ denote the graph obtained from $K_{2, s}$ by joining each vertex in set A to t new vertices, respectively, as shown in Fig. 1(a). Let u and v be two non-adjacent vertices of P_{3}. Let $T_{3, t}$ denote the graph obtained from P_{3} by joining each of u, v to t new vertices, respectively, as shown in Fig. 1(b). Graph $G_{3,3}$ is shown in Fig. 2(a).

Theorem 4.3.

(i) $F(n, 2, l)=2 n-2 l$.
(ii) $\operatorname{Ex}(5,2,3)=\left\{P_{5}\right\} ; E x(6,2,3)=\left\{G_{3,3}, G_{2,2,1}\right\}$; $\operatorname{Ex}(n, 2,3)=\left\{G_{2, n-4,1}\right\}$ for $n \geqslant 7$.
(iii) When $l \geqslant 4$ and $n=2 l-1, \operatorname{Ex}(n, 2, l)=\left\{T_{3, l-2}\right\}$.
(iv) When $l \geqslant 4$ and $n \geqslant 2 l, E x(n, 2, l)=\left\{G_{2, n-2 l+2, l-2}\right\}$.

Proof. When $l=2$, by Theorem 2.1, $F(n, 2,2)=2 n-4$ and $\operatorname{Ex}(n, 2,2)=\left\{K_{2, n-2}\right\}$. So we assume that $l \geqslant 3$. By Lemma 4.2, $F(n, 2, l) \leqslant 2 n-2 l$. In order to prove $F(n, 2, l)=2 n-2 l$, it suffices to show that there exists a connected, minimally ($2, l$)-connected graph with n vertices and $2 n-2 l$ edges. When $l=3$, by Lemma $4.1, n \geqslant 5$ and G is tree if $n=5$. By Corollary 3.3, $E x(5,2,3)=\left\{P_{5}\right\}$. If $n=6, G$ is cyclic and by Lemma 4.2, $\operatorname{Ex}(6,2,3)=$ $\left\{G_{3,3}, G_{2,2,1}\right\}$. If $n \geqslant 7, \forall G \in \operatorname{Ex}(n, 2,3)$, by Lemma 4.2, the only cyclic block of G is $K_{2, n-2 l+2}$, and G has exactly two
non-adjacent ($1, l-1$)-cut-vertices. Hence, $\operatorname{Ex}(n, 2,3)=$ $\left\{G_{2, n-4,1}\right\}$.

When $l \geqslant 4$, by Lemma $4.1, n \geqslant 2 l-1$. If $n=2 l-1$, then G is a tree, and by Theorem 3.2, $\forall G \in \operatorname{Ex}(n, 2, l), G \in$ $\mathscr{T}(l-1)$. Then there are two non-adjacent vertices with degree $l-1$. Since $n=2 l-1, G$ must be $T_{3, l-2}$. If $n \geqslant 2 l$, then by Lemma 4.2, $\operatorname{Ex}(n, 2, l)=\left\{G_{2, n-2 l+2, l-2}\right\}$. Thus, the theorem holds.

Theorem 4.4.

(i) $f(n, 2, l)=n-1$.
(ii) $\operatorname{Sat}(n, 2, l)=\mathscr{T}_{n}(l-1)$.

Proof. By Lemma 4.2, $f(n, 2, l) \geqslant n-1$. In order to prove $f(n, 2, l)=n-1$, it suffices to show that there's a connected, minimally $(2, l)$-connected graph G such that $|V(G)|=n$ and $|E(G)|=n-1$. Graph g must be a tree, since $|E(G)|=|V(G)|-1$. By Theorem 3.2, $G \in \mathscr{T}(l-1)$. Thus (i) holds. Since G has n vertices, $\operatorname{Sat}(n, 2, l)=$ $\mathscr{T}_{n}(l-1)$. (ii) must hold.

Theorem 4.5. $\mathscr{I}(n, 2, l)=\{i \in \mathbb{N}: n-1 \leqslant i \leqslant 2 n-2 l\}$.

Proof. It suffices to show that for each $m \in \mathbb{N} \cap[n-1$, $2 n-2 l]$, there is a graph $G \in \mathscr{F}(n, 2, l)$ such that $|E(G)|=m$. For each m, we will construct a minimally ($2, l$)-connected graph with n vertices and m edges. When $m=n-1, G=P_{n}$. When $n \leqslant m \leqslant 2 n-2 l$, we construct a minimally $(2, l)$-connected graph G as follows: Let C be a cycle with $2 n-m-2(l-2)$ vertices, and u_{1}, u_{2} are two non-adjacent vertices in C. Let V_{1} and V_{2} be two sets of $(l-2)$ vertices, and $V_{1} \cap V_{2}=\emptyset$. Then G is the graph

Fig. 3. An example when $l=5, n=14$ and $m=16$ in the proof of Theorem 4.5.
obtained from C by joining u_{i} to each vertex in V_{i} respectively for $i=1,2$, and joining u_{1} and u_{2} by $m-n$ disjoint paths. These disjoint paths are $m-n$ copies of P_{3}. Obviously, $|E(G)|=m$ and $|V(G)|=n$. By Theorem 3.5, G is a minimally ($2, l$)-connected graph. An example is shown in Fig. 3 when $l=5, n=14$ and $m=16$.

References

[1] F.T. Boesch, S. Chen, A generalization of line connectivity and optimally invulnerable graphs, SIAM J. Appl. Math. 34 (1978) 657-665.
[2] B. Bollobás, Extremal Graph Theory, Dover Publications, New York, 2004.
[3] J.A. Bondy, U.S. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[4] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[5] G. Chaty, M. Chein, Minimally 2-edge-connected graphs, J. Graph Theory 3 (1979) 15-22.
[6] G.A. Dirac, Minimally 2-connected graphs, J. Reine Angew. Math. 228 (1967) 204-216.
[7] D.L. Goldsmith, On the second order edge-connectivity of a graph, Congr. Numer. 29 (1980) 479-484.
[8] D.L. Goldsmith, On the nth order edge-connectivity of a graph, Congr. Numer. 32 (1981) 375-382.
[9] K. Hennayake, H.-J. Lai, D. Li, J. Mao, Minimally (k, k)-edge-connected graphs, J. Graph Theory 44 (2003) 116-131.
[10] K. Hennayake, H.-J. Lai, L. Xu, The strength and the l-edgeconnectivity of a graph, Bull. Inst. Combin. Appl. 26 (1999) 55-70.
[11] O.R. Oellermann, Explorations into graph connectivity, Not. South African Math. Soc. 20 (1988) 117-151.
[12] O.R. Oellermann, Generalized connectivity in graphs, Ph.D. dissertation, Western Michigan University, 1986.
[13] O.R. Oellermann, On the l-connectivity of a graph, Graphs Combin. 3 (1987) 285-291.
[14] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85-94.
[15] L. Zhang, K. Hennayake, H.-J. Lai, Y. Shao, A lower bound of the l-edge-connectivity and optimal graphs, J. Combin. Math. Combin. Comput. 66 (2008) 79-95.

[^0]: * Corresponding author.

 E-mail address: xgu@math.wvu.edu (X. Gu).

