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Abstract 
 
For a graph G, let    max :  is an edge cut of b G D D G . For graphs G and H, a map    :V G V H   

is a graph homomorphism if for each  e uv E G  ,      u v E H   . In 1979, Erdös proved by prob-

abilistic methods that for p ≥ 2 with  
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if there is a graph homomorphism from G onto  then ,pK       .b G f p E G  In this paper, we obtained 

the best possible lower bounds of  for graphs G with a graph homomorphism onto a Kneser graph or a 

circulant graph and we characterized the graphs G reaching the lower bounds when G is an edge maximal 
graph with a graph homomorphism onto a complete graph, or onto an odd cycle. 

 b G
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1. Introduction 
 
In this paper, the graphs we consider are finite, simple 
and connected. Undefined notation and terminology will 
follow those in [1]. Let G be a graph. For disjoint non-
empty subsets  ,X Y V G , let  ,X Y  denote the set 
of edges of G with one end in X and the other end in Y. 
For a subset , let  S V G  S V G \ .S  An edge cut 
of G is an edge subset of the form ,S S

G
  for some 

nonempty proper subset . Define  S V
   t of Gmaxb G  : is an edgeD D  cu . 
For graphs G and H, a map    :V G V H   is a 

graph homomorphism if for each  Ge uv E  , 
. If there is a graph homomorphism 

from  to 
     u v E H  

G H , then  is called H-colorable. Sup-
pose that  is H-colorable. Then every graph homo-
morphism  also induces a map 

 If for any graph homomorphism 

G

V
G

:V G
  :e E G E H 

   H
.

   :V G V H  , and for any 1 , e  2e E H , we 
always have    1 1

1 2e e  e e , then G is called 
edge-uniformly H-colorable. 

Throughout this paper, we use Kp to denote the com-
plete graph with p vertices and 2 1pC   to denote an odd 
cycle with    2 1p 2 1 ,p iV C v i Z   and  
   1 1, .i i iv v N v   
Theorem 1.1 (Erdös [2]) Let p ≥ 2 be an integer and  
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If there is a graph homomorphism from G onto Kp, then 
      .b G f p E G   
Let p and q be two positive integers with p ≥ 2q. The 

Kneser graph :p qK  is the graph whose vertices repre-
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sent the q-subsets of  where two vertices 
are connected if and only if they correspond to disjoint 
subsets. 

0,1, , 1 ,p 

p qTheorem 1.2 Let ,  be two positive integers 
with p ≥ 2q. If there is a graph homomorphism from G  

onto :p qK , then    2
.

q
b G E G

p
  

Let p and q be two positive integers with p ≥ 2q. The 
circulant graph /p qK  is the graph with vertex set 

 and the neighbors of vertex v 
are  
   0,1,2,V G  

v q v q v 
p

, 1p
, 1, 


. , p q 

qTheorem 1.3 Let ,  be two positive integers 
with p ≥ 2q. If there is a graph homomorphism from G  

onto /p qK , then    2
.

q
b G E G

p
   

Theorem 1.4 Let ,  be two positive integers 
with p ≥ 2q and let 

p q

 
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2 2

4 4
if is even,

2 2 1
,

4 4 1
if is odd.

2 2 1

p q q
p

p p q
f p q

p q q
p

p p q

  
   

  
  

 

If G is an edge-uniformly /p qK -colorable, then  
     , .b G f p q E G  
A graph G is edge-maximal H-colorable if G is 

H-colorable but for any graph  such that GG   con-
tains G as a spanning subgraph with    E G E G  , 
G is not H-colorable. 

In Section 2, we prove an associate Theorem which 
will be used in the proofs of other theorems. In Subsec-
tion 3.1, we give an alternative proof of Theorem 1.1 and 
characterize the graphs G reaching the lower bound in 
Theorem 1.1 when G is edge-maximal Kp-colorable. In 
Subsection 3.2, we show the validity and sharpness of 
Theorem 1.2. In Subsection 3.3, we show the validity of 
Theorem 1.3 and Theorem 1.4 and characterize the 
graphs G reaching the lower bound in Theorem 1.4 when 
G is edge-maximal /p qK -colorable. In Subsection 3.5, 
we show a best possible lower bound for  when G 
has a graph homomorphism onto an odd cycle 2 1

 b G

pC   
and characterize the graphs reaching the lower bound 
among all edge-maximal 2 1pC  -colorable graphs. There 
are a lot of researches about graph homomorphism can 
be found in [3-7]. 
 
2. An Associate Theorem 
 
In this section, we shall prove an associate Theorem 
which will be used in the proofs of other theorems. 
Throughout this section, we assume that G and H are two 
graphs and   is an onto graph homomorphism from G 

to H. Note that we can also view   as a map from 
 E G  to  E H  such that for each  e uv E G  , 
       e u v E H   

S X

. 
Lemma 2.1 Let g be a function between sets X and Y. 

Then 
1) For any ,    1 1g S g  S

D Y
. 

2) For any sets  and ,  if and 
only if 

C Y  C D
   1 1 .g C g D   

Lemma 2.2 If ,D S S     is an edge cut of H, then  

    1 1 ,D S   1 S     is an edge cut of G. Con- 

sequently,      1, .1 1 D S S      

Proof. For each  1x S ,  1y  S  with  

 xy E G , by the definition of inverse image,  x S  , 
and  y S  . Hence,     xy x y   D , and so  

 1xy  D . It follows that     1 1 1,D S S   
 

1

  .  

Conversely, for each  xy D  ,  
      ,x y x y D S S        . We may assume that 
 x S   and  y S  . Then  1x S  and  

 S1y  . This proves      1 1  1,D S S 
  



. 

Therefore,     1 1 1,D S S   
 


 is an edge cut of  

G. By Lemma 2.1 1),     1 1 1, .D S
D D

S        1 2, , , kD 
 

Lemma 2.3 Suppose that  is an 
edge cut cover of H. Then  

      D1 1   1
1 2, , , kD D  

l

 is an edge cut 
cover of G. Moreover, if an edge e of H lies in exactly 
  members of  , then every edge in  1 e  lies in 

exactly l  members of  . 
Proof. By the definition of graph homomorphism, for 

each  , e x Gy E        xy x y E H    . Since 
is an edge cut cover of H, then  
      ixy x  y  D   for some i . It follows 

that 
D 

 1 ,ixy  D  and so  is an edge cut cover of 
G. By Lemma 2.1 2), ie  if and only if 


D

   1
i1 e D

l
, and so if an edge e of H lies in ex-

actly   members of , then every edge of   1 e  
lies in exactly l  members of . 

Let k, l be two positive integers. A k-edge cut at least 
l-cover of a graph H is a collection  
of k edge cuts of H such that every edge of H lies in at 
least l members of . A k-edge cut l-cover of a graph 
H is a collection 

 1 2, , , kD D D


 1 2  of k edge cuts of 

H such that every edge of H lies in exactly l members of 
. A k-edge cut average l-cover of a graph H is a col-

lection 

, ,D D , kD


 , kD1 2, ,D D

 H

  of edge cuts of H such that  

1

k

ii D E  and  1 ii
D l H


k

E . 

Lemma 2.4 Suppose that   is an onto graph homo-
morphism from G to H and  is a k   , , , kD 

 
1 2D D

edge cut cover of H such that  1
1 ii

D l E G


k
. 
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Then     .
l

b G E G
k

  

Proof. By Lemma 2,  

      1 1 1
1 2, , , kD D D        

is an edge cut cover of G and for any edge e of H, if e 
lies in exactly -members of , then every edge of 

 lies in exactly  members of . Therefore,  
l 

 1 e l 

   l
b G E G

k
  follows from  

     1

1
.

k

ii
l E G D kb G


   

Theorem 2.5 If one of the following is true, then  

    .
l

b G E G
k

   

1) There is a graph homomorphism from G onto H and 
H has a k-edge cut l-cover. 

2) There is a graph homomorphism from G onto H and 
H has a k-edge cut at least l-cover. 

3) G is edge-uniformly H-colorable and H has a 
k-edge cut average l-cover. 
 
3. Main Results 
 
3.1. Graphs with a Graph Homomorphism onto 

a Complete Graph 
 
In this section, we present an alternative proof for Theo-
rem 1.1 and determine all graphs G reaching the lower 
bound in Theorem 1.1 when G is edge-maximal 
Kp-colorable. 

Lemma 3.1 Let p ≥ 2 be an integer and let 

2

p

p

 
    
    

, 

2 2

2

p p
k

l
p

   
      
 
 
 

. Then the graph Kp has a k-edge cut 

l-cover. 

Proof. Let  , : is 
2

\p

p
X V K X X

         
 a -subset 

of  Then   is an edge cut cover of Kp with   .pV K




.k   

2

p

p

 
    
    

 Since every \, pX V K X     

has size  \ X, p

p
X V K

        2 2

p 
  

, and since  

  ,
2p

p
E K

 
  
 

 every edge of Kp must be in exactly 

2 2

2

p p
k

l
p

   
       
 
 
 

 members of .  

Thus, Theorem 1.3 follows from Theorem 2.5 1) and 
Lemma 3.1. 

The lower bound of Theorem 1.1 is best possible, in 
the sense that there exists a family of graphs such that the 
lower bound of Theorem 1.1 is reached. 

Let G and H be two graphs. The composition of G and 
H, denoted by  G H , is the graph obtained from G by 
replacing each vertex of  by Hi, a copy of H, 
and joining every vertex in Hk to every vertex in Hl if 

 i Gv V

 .k lv v E G  
Theorem 3.2 Suppose that there is an onto graph ho-

momorphism from G to Kp and G is edge maximal  
Kp-colorable. 

Then each of the following holds. 
1)       ,b G f p E G  where equality holds only if 

G is edge-uniformly Kp-colorable. 
2) Among all edge-maximal Kp-colorable graph G, 
     b G f p E G  if and only if .p sG K K     
Proof. 1) By Theorem 1.1,      b G f p E G . Sup-

pose that      b G . Let f p E G    : pV G V K   

be an arbitrarily given graph homomorphism and let  

   1 2, , ,p pV K v v v   be labelled such that if  

 1
iV  iv , then 1 2 .pV V V    For any subset  

  ,pX V K  let   \pY V K X  and let   also de-
note the induced map  Then   E G   : .pE K

   1 1

i i
i iv X v X

X v V    
 

  and  

     \Y V G X 

 

1 1  . Since G is an edge-maximal  

Kp-colorable,      
 

1 1 1, ,
pK V G

X Y X Y         is 

a complete bipartite graph. There are 

2

p

k p

 
    
    

 parti-  

tions of  pV K  into two parts  , , 1,2, ,i i ,X Y i k    
such that 0 1i iY X   . Set  ,D X Yi i i . Label 

them so that      1 1 1
1 2 .kD D D       By 

Lemma 2.2 and Lemma 2.3 and the assumption that 

      ,b G f p E G       1
k

l
E G b G D

k
   and 

so        1 1kl
k E G k D D l E G      , 

1k iik 
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2 2

2

p p
k

l
p

   
      
 
 
 

lities and so 

. Therefore all the inequalities are  

equa      1 1 1 
1 2 .kD D D       

Let 
1 2

1
2

1,X v v  
 

, , ,
pi i iv v

   

    with


 pv X  , Y     

 pK \V X   and  ,D X Y  .  Let    1\pX X v  , v

 pY V K  \ X  and  , .D X Y     Then  1 D   

 1 D  . Since  

     

 

1
1

2

1
1

2

1 1 1

1

1

p

p

i i

p i i

D X Y

V V V

V K V V V

  

   

   

    

 
    
 
 
 
     







 





 

and 




     

 

1
1

2

1
1

2

1 1 1

,

p

p

p i i

p p i i

D X Y

V V V

V K V V V

  

   

   

    

 
    
 
 
  
     

  





 




it follows from    1 1D D      that 1 pV V , 
and so 1 2 pV V V     s for some positive inte-

s G is edge uniformly lorable. 
se that G is an ed

ger s, which implie  Kp-co
2) Suppo ge-maximal Kp-colorable 

graph such that       .b G f p E G  By the proof of
1)

 
, there is some positive integer s such that  

spG K K     

Conversely, suppose that spG K K   . B  y Theorem  

1.1,      .p p sKb K s f p K     It remains to show 

 any partition that for  ,X Y  of  spK K  ,  



V

  , pX Y p K Kf   .s   

Let 1 2, , , pV V V  denote the partition of  spK KV     

suc ndent set ofh th , , ,  iV  is an indepe  at for 1, 2i p

spK K   . Let  ,X Y  be an edge cut of  pK s  such  

that 1)  ,X Y  is maximized   and subject to 1), 2) 

 :i X Y  is m0 inimized, where i i i iX X V   and  

i iY Y V  n we have the following claims: . The
Claim 1. For each i, 1 i p  , 0.i iX Y   

Otherwise, there is i such that 0.i iX Y   Let  

i  and m X X  it Y Y  , If m = t, let iX X Y     

and \ iY Y Y   Then  ,X Y   is an edge cut of spK K    

such that    , ,X Y X Y   and  

   : : 0 1,i i0i i i iX Y X Y       contrary  
choic

 to the
e of  ,X Y . Then t . Without less of -m   general

y assume ity, we ma m t . Let iX X Y   and  
.\ iY Y Y   Then  ,X Y   is an edge cut of spK K     

such that        X , , , ,iY X Y

 

t m Y X Y      con-

trary to the choice of  X Y . ,

Claim 2.    : : 1.i V i V Y   i iX 

Otherwise,    : ii V
V X  and set 

: 2X i V Y    . Choose  i

i \ iX X V   and . Then   iY Y V  
 ,X Y   is an ed at  ge cut such th

         
 

2, 1

, ,

, : :i iX Y X Y m

X Y

   



Y i V X i V   
 

contrary to the choice of  ,X Y . 

By Claim 1 and Claim 2, we have  
2 2

,
4

p s
X Y   

when p is even and  
 2

,X Y
21p s

  when p is odd, 

that is, 

4

     , .p sKX Y f p E K     

 

a K
3.2. Graphs with a Graph Homomorphism onto 

neser Graph 

 

T  q be two positive integers with 

 
In this section, we shall show the validity and sharpness
of Theorem 1.2. 

heorem 3.3 Let p and
p ≥ 2q. Then :p qK  has a p-edge cut 2q-cover. 

Proof. For 0,1, , 1i p  , let  
  0,1,2, , 1 : andX p X q i X    and  iV  

, .li iD V V    n  The
1

.i

p
V

 
    By the def

1q 
inition of 

:p qK , iV  is an independent sets of :p qK  and an 

f si
q

 iD  is 

edge cut o ze 
1p p

1q q

  
   

.

  Then  





 1 1, , , pD D D   is an edge c cover of :ut 0 p qK . 

Since :p qK  has nd each of t
p

q

 
 
 

 

p

q

vertices a hem is of 

degree 
q 

 
 

,  : .p q

p p q

q q
K

  

    
2

  

Since each edge of 

E

:p qK  is contained in  
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1

1
2

2

p p q
p

q q
q

p p q

q q
   

   

    
    
 


 edges cuts, :p q

 has a p-edge cut average  

  
  

K  has a p-edge 

cut 2q-cover.  
Proof of Theorem 1 .2 

Theorem 2.5 and Theorem 3.3. 
Theorem 3.4 (Poljak and Tuza, Theorem 2 in [8]). If  

aximum edge cut of 

.2 Theorem 1 follows from 

p ≤ 3q, then the m :p qK  is induced 
by the maximum independent set of :p qK  and is of size 

1
.

p p q

q q

    
   


 

 

is
u

oof of Theorem 4.1 are u

1   
Theorem 3.5 The bound in Theorem 1.2  best possible. 
Proof. By Theorem 3.4, the edge c ts we choose in 

the pr  the maxim m edge cuts of 

:p qK  when p ≤ 3q herefore, the bound in Theorem 1.2 . T
is reached by :p qK  when p ≤ 3q.  
 
3.3. Graphs with a Graph Homomorphism onto 

a Circulant Graph 
 
In this section, we verify the validity and sharpness of 

 
 ≥ 2 old. 

Theorem 1.3 and Theorem 1.4. 
Theorem 3.6 Let p and q be two positive integers with

q. Then the following hp
1) /p qK  has a p-edge cut at least 2q-cover. 
2) /p qK  has a p-edge cut average  

 

 

2

1 

of. F

1
2 2

p p
q q              -cover.  

2 1p q 

 

Pro or 0,1, , 1i p  , let  

, 1, , 1
2i

p 
V i i

       
  and let ,i i iD V V    . Then 

is an e ut cover of  0 1 1, , , pD D D    dge c /p qK  with 

 1 .
2 2iD q

       
 

p p  
q 

1) Notice that for any edge /p q

  0 1 1, , , pD D D   , t  /

e uv K  , e lies in at 
least 2q members of hen p qK  
has a p-edge cut at least 2

2) Since 

q-cover. 

  1 2 1

2p

q
 
 

p p q
E K
    

  ,  

 

 

   

0

/

1
2 2

2 1
2 2

1 2 1

p p p
D q q

         

/p qK

ii

p q

p

p p
q q

E K
p q






    
              

  

 

and so 

 

 

2 1
2 2

1 2 1

p p
q q

p q

              
  

-cover.  

Proof of Theorem 1.3 Theorem 1.3 follows from 
 2.5

f of Theo 1.4 follows from 
Theorem 2.5 and Theorem 3.6 2). 

Theorem 3.7 Let aximal graph such 
that  is edge unifo

Theorem  and Theorem 3.6 1). 
Proo rem 1.4 Theorem 

G
rm

 be an edge-m
ly G /p qK -colorable. Then  

/ sp q KG K     and      , .b G f p q E G  

Proof. Suppose that G is an edge-maximal graph such 
that G is edge-uniformly /p qK -colorable. Then,  

/ sp q KG K     for s e positive integer s. By Theorem 

1.4, we have 

om

     / /qp q ,s sb K pK Kq E K   
pf   . 

Now we prove that  

     / /,sq sp p qb K f pK Kq E      . K

For   /, 10,1, p qp V K  , let i   1
iV h i , where 

   /: p qh V G V K  is an onto graph homomorphi  sm
from G to ch that for any edge xy of , /p qK  su  G

   q h x h y p q    . By the definition of graph 
homomorphism, is an independent set. Let iV   ,X Y   

be an edge cut of / sp q KK     such th )at 1   ,X Y  is  

ma ized and subjexim ct to 1), 2)  : 0i ii X Y   is mi-
nimized, whe i iX X Vre    and .Y Y V   i i

Cla m 1. F h i, i or eac 0i iX Y  . 
Proof. Otherwis here is i such that e, t 0i iX Y  .  

Since for each iv Vi  , either    i

or 

iv N v X N Y  

   i iN v X N  e former is truv Y . If th e, then 

   \ ,i i ,X X Y X X  contra  oice of Y , cting the chdi

 ,    , \ ,X Y ; if the latter is tr Xue, then i iY Y Y X Y , 
contradicting th e of e choic ,X Y . 

ume that Ass
1

mj

ii j
X V


  and let  1 2, , , mj j j J .  

we can assume that Without loss of generality, 
2

p
J

    
Let 

. 

pC  be the cycle with vertex set  

   /0,1,2, , 1 p qp V K  e  wher i is adjacent to j if  ,
and only if   i p  . Let e  1j mod  be th 

pCdist J

length of the shortest path of pC  which contain
elements in J. Then 

s all the 
  1.Cdist J m   

Cl  1. aim   1.Cdist J m   
Proof. Suppose, to the contrary, that   1dist J m 

pC .  

Let P be a path of pC  which contains all the elements 
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in J and assu  are the endpoints of P.  1j , mj

eThen there is   \ .k V P J  L     \
m

 j mX X V V    

and  \  .mJ J j   m  Then    
pC Cdist J dist J   

p

and , ,X X X X        , a contradiction. 

Claim 2. .
2

p
m

   
 



e, to the co hat Proof. Suppos ntrary, t .
2

p
m

    
 Let P  

path of

 

be a  pC  
 that 

\V

which contai  elements in J
assume , ts of P. Let 

suc hat

ns all the  
and  are the endpoin1j

 P
mj

 be  m pj V C1 h t   1m m pj j E C 
 1j  . Then  

. Let 
X V   1mX  and mJ J  

    1
2C CJ dist J   

 and 
p dist    , ,X X X     

a contradiction. 
e d

X   , 

By the abov iscussion, we can calculate that  

      /p q s sf pK    

 
3.4. Graphs with a Gra morphism onto 

an Odd Cycle 

In bound 
for 

/, .p qb K q E KK s   

ph Homo

 
 this section, we will show a best possible lower 

 b G  when G has a g  homomorphism onto an raph
odd cycle 2 1pC   

ound a
and ch  the graphs reaching 

e mong all edge-maximal  
aracterize

th lower b

2 1pC  -colorable graphs. 
eorem 3.8 SuppTh ose t at there is an onto graph ho-

omorphism from G to 
h

m 2 1pC  . Then each of the fol-
lowing holds. 

1)    2
,

1

p
b G E G


 where equality holds only 

if G is edge-uniformly 2 1

2 p

pC  -colorable. 

2) Among all edge-maximal 2 1pC  -colorable graph G, 

   2

2 1

p
b G E G

p



 if an ly if d on 2 1 .spG C K

    

Pro 1 (2 1)/(2 )of. 1) Notice that 2 p p pK C  ,  

   2

2 1
b G E G

p



 s from The

p
follo orem 1.3. Now 

su

w

ppose that    2

2 1

p
b G E

p



Let  

be an arbitrar ho

G . 

 ily given graph -
ach

   2 1: pV G V C   
momorphism and for e  2 1pi Z  , let  1 . iV iv
Set  1,i i iW V V  , for each 2 1pi Z  . Since   is a  
graph homomorphism, we have  E G W . It 

follows that 

2 1p
ii Z 

  2

0

p

ii
E G W


  . W  assume te may hat 

 0 2 1min :i pW W i Z   . Then - 

cut of , and so by

  0E G W  is an edge

G  the assumption on G , we have 

      2

1

2

2
p

ii

p
E G b G E G W

p 
  

  . It fol-01
W

lows that      2
2 2

p

i ip W p E G
 

 2

0 1
2 1

p

i i
p W   . 

Hence 0 1 212 W W    .pp W W  By the choice of 

0X , we must have 0 1 2 pW W   . LW  et 0m W . 

Then fo any edge r  e E C ,  2 1p
1 e m . Since 

  is arbitrarily, then G is edge-uniformly  

2 1pC  -colo

2) Su al 2 1

rable. 

ppose that G is an edge-maxim pC  -color-  

 graph with able    2

2 1

p
b et W - 

fined as in 1). Since G ax

2 1

G E G
p




. L  be de

 is an edge-m imal 

i

pC  -colorable graph, the subgraph induces
mplete bipartite graph. Since  

 by iW  is a 
co

   2 p

2 1
G E G

p



, by 1), G is edge-uniform 2 1b pC  -  ly 

colorable, which 0 1 2 pW W W  There-means,  
fore, 0 1 2 pV V V s     for some positive integer  

s and so 2 1 .sp KG C 
    

Conversely, suppose 2 pG C  1 .sK    Note that  

  2 1 2sp KE C 
     21 m .p   Then  

  2
2 2 pmp sKb C 

   and so it suffices to show that for 1  

t any subse  2 p 1 sX KV C       and  

 2 1 \p sKV CY X
   , the edge cut  ,X Y  of 2 1p sKC 

   

satisfies   2, 2 pmX Y  . 

 ,X Y  Let be an edge cut of 2 1p sKC 
    such that 

1)  ,X Y  ct to 1), is maximized and subje 2)  

 : 0i ii X Y   is minimized, where i iX X V   and 

i .Y Y V  Since 
2

,i ii I i I
V V

 i  
1

 
   , where  

 1 2 1 : is oddpI i Z i 
is an edge cut 

 and  2 2 1 : is evenpI i Z i  , 
2, then  with cardinality 2 pm

 
1 2

2, 2 pm .i ii I i I
X V V

 
 
    Then we ,Y   have the 

following claim
Claim 1. For e

s: 
ach i, 0.i iX Y   

Proof. O  there is i such ththerwise, at 0i iX Y . Let  

1 1i is X X    and 1i 1it Y Y  . If s t , let  

iX X Y    and \ iY Y Y  . Then  ,X Y   is an edge 
h tcut of mG  suc hat    , ,Y X Y   and  X
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$   : 0 : 0i i i ii X Y i X Y      1  , contrary to the 

choice of  ,X Y . Then s t . 
. Let 

Without loss of general-
tity, we may assume s < iX X Y   and \ iY Y Y . 

Then  ,X Y   is an edge cut of mG  such that  

       , , ,iX Y  X Y s Y Y ontr

choice of 

t  , c ary to X  the  

 ,X Y . 
Clai 2. There is  of consecutive m exactly one pair
mber nu  , 1i i 

pair of c
 in  (w

 as a o be
 0,1, , 2 p

nsecutive num
e consider 0 and 

2p rs, too) such that 

1i iX X 
Proof. By Claim 1 and the of 

. 
structure  2 1p sKC 

  
xist som e 

,  
there e e pair of consecutiv numbers  1,i i   in  

 0,1, , 2 p  such that 1i iX X   Since   2, 2 pmX Y  , 
then there m is at ost one pair of consecutive number 
 , 1i   in i  0,1, , 2 p  such that 1i iX X   and so 
Claim 2 

By Claim 1 and Claim 2, 
follows. 

 2, 2 pmX Y  . 
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