Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright

Group connectivity in line graphs

Hong-Jian Lai ${ }^{\text {a,b,* }}$, Hao Li ${ }^{\text {c }}$, Ping Li ${ }^{\text {b }}$, Yanting Liang ${ }^{\mathrm{b}}$, Senmei Yao ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {c }}$ Department of Mathematics, Renmin University of China, Beijing 100872, PR China

ARTICLE INFO

Article history:

Received 13 September 2010
Received in revised form 11 July 2011
Accepted 12 July 2011

Keywords:

Nowhere zero flows
Group connectivity
Line graphs
Claw-free graphs
Triangular graphs

Abstract

Tutte introduced the theory of nowhere zero flows and showed that a plane graph G has a face k-coloring if and only if G has a nowhere zero A-flow, for any Abelian group A with $|A| \geq k$. In 1992, Jaeger et al. [9] extended nowhere zero flows to group connectivity of graphs: given an orientation D of a graph G, if for any $b: V(G) \mapsto A$ with $\sum_{v \in V(G)} b(v)=0$, there always exists a map $f: E(G) \mapsto A-\{0\}$, such that at each $v \in V(G)$,

$$
\sum_{e=v w \text { is directed from } v \text { to } w} f(e)-\sum_{e=u v \text { is directed from } u \text { to } v} f(e)=b(v)
$$

in A, then G is A-connected. Let Z_{3} denote the cyclic group of order 3 . In [9], Jaeger et al. (1992) conjectured that every 5-edge-connected graph is Z_{3}-connected. In this paper, we proved the following.
(i) Every 5-edge-connected graph is Z_{3}-connected if and only if every 5-edge-connected line graph is Z_{3}-connected.
(ii) Every 6-edge-connected triangular line graph is Z_{3}-connected.
(iii) Every 7-edge-connected triangular claw-free graph is Z_{3}-connected.

In particular, every 6-edge-connected triangular line graph and every 7-edge-connected triangular claw-free graph have a nowhere zero 3-flow.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. Undefined terms and notations can be found in [2]. In particular, the minimum degree, the connectivity and the edge-connectivity of a graph G are denoted by $\delta(G), \kappa(G)$ and $\kappa^{\prime}(G)$, respectively, and a subgraph H of G is a clique if H is isomorphic to a complete graph. If $X \subseteq V(G)$ (or $X \subseteq E(G)$), then $G[X]$ denotes the subgraph of G induced by X. However, a nontrivial 2-regular connected graph will be called a circuit instead of a cycle. A circuit of n edges is also referred as an n-circuit. For a vertex $v \in V(G), N_{G}(v)=\left\{v^{\prime} \in V(G) \mid v v^{\prime} \in E(G)\right\}$ is the neighborhood of v in G, and $N_{G}[v]=N_{G}(v) \cup\{v\}$ is the closed neighborhood of v in G. Define

$$
E_{G}(v)=\{e \in E(G) \mid e \text { is incident with } v \text { in } G\} .
$$

When G is understood from the context, the subscript G in $E_{G}(v)$ might be omitted. For graphs G and H, by $H \subseteq G$ we mean that H is a subgraph of G.

Let G be a graph with an orientation $D=D(G)$. If an edge $e \in E(G)$ is directed from a vertex u to a vertex v, then define tail $(e)=u$ and head $(e)=v$. For a vertex $v \in V(G)$, let

$$
E_{D}^{+}(v)=\{e \in E(G) \mid v=\operatorname{tail}(e)\}, \quad \text { and } \quad E_{D}^{-}(v)=\{e \in E(G) \mid v=\operatorname{head}(e)\} .
$$

[^0]Throughout this paper, \mathbf{Z} denotes the set of all integers, A denotes an (additive) Abelian group with identity 0 , and $A^{*}=A-\{0\}$. For $m \in \mathbf{Z}$ with $m \geq 2, Z_{m}$ denotes the cyclic group of order m, as well as the set of all integers modulo m. For a graph G, define $F(G, A)=\{f \mid f: E(G) \mapsto A\}$ and $F^{*}(G, A)=\left\{f \mid f: E(G) \mapsto A^{*}\right\}$. For an $f \in F(G, A)$, let $\partial f: V(G) \mapsto A$ be given by, for all $v \in V(G)$,

$$
\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e)
$$

where " \sum " refers to the addition in A.
A map $b: V(G) \mapsto A$ is an A-valued zero sum map on G if $\sum_{v \in V(G)} b(v)=0$. The set of all A-valued zero sum maps on G is denoted by $Z(G, A)$. An $f \in F(G, A)$ is an A-flow of G if $\partial f=0$. An A-flow is a nowhere zero A-flow (A-NZF for short) if $f \in F^{*}(G, A)$. If f is a Z-NZF satisfying for all $e \in E(G),|f(e)|<k$, then f is a nowhere zero k-flow (k-NZF for short). Tutte [20] indicated that, for a finite Abelian group A, a graph G has an $A-$ NZF if and only if G has an $|A|-$ NZF.

Given a $b \in Z(G, A)$, an $f \in F^{*}(G, A)$ is a nowhere zero (A, b)-flow $((A, b)$-NZF for short) if $\partial f=b$. A graph G is A connected if for all $b \in Z(G, A), G$ always has an $(A, b)-N Z F$. Let $\langle A\rangle$ denote the family of graphs that are A-connected. The group connectivity number of a graph G is defined as

$$
\Lambda_{g}(G)=\min \{k \mid G \in\langle A\rangle \text { for every Abelian group } A \text { with }|A| \geq k\}
$$

In [8,9], it is shown that whether G has an A-NZF or whether $G \in\langle A\rangle$ is independent of the choice of the orientation of G. These are undirected graph properties.

In 1950s, Tutte initiated the theory of nowhere zero flows as a mechanism to attack the then 4 -color-conjecture. The following fascinating conjectures of Tutte and Jaeger on nowhere zero flows remain open as of today.

Conjecture 1.1 (Tutte [20,21], See Also [8]).
(i) (Tutte) Every graph G with $\kappa^{\prime}(G) \geq 2$ has a $5-N Z F$.
(ii) (Tutte) Every graph G with $\kappa^{\prime}(G) \geq 2$ and without a subgraph contractible to the Petersen graph has a 4-NZF.
(iii) (Tutte) Every graph G with $\kappa^{\prime}(G) \geq 4$ has a $3-N Z F$.
(iv) (Jaeger) There exists an integer $k \geq 4$ such that every k-edge-connected graph has 3-NZF.

As the nowhere zero flow problem is the corresponding homogeneous case of the group connectivity problem, Jaeger et al. [9] proposed the following conjectures, which, as suggested by a result of Kochol [10], are stronger than the corresponding conjectures above.

Conjecture 1.2 (Jaeger et al., [9]). Let G be a graph.
(i) If $\kappa^{\prime}(G) \geq 3$, then $\Lambda_{g}(G) \leq 5$.
(ii) If $\kappa^{\prime}(G) \geq 5$, then $\Lambda_{g}(G) \leq 3$.
(iii) There exists an integer $k \geq 5$ such that if $\kappa^{\prime}(G) \geq k$, then $\Lambda_{g}(G) \leq 3$.

In [22], Xu and Zhang proposed a triangulated version of the 3-flow conjecture. Let J_{3} denote the family of all connected graphs such that $G \in J_{3}$ if and only if every edge of G lies in a K_{3} of G. A graph in J_{3} will also be referred as a J_{3} graph.
Conjecture 1.3 (Xu and Zhang, [22]). If $\kappa^{\prime}(G) \geq 4$ and if $G \in J_{3}$, then G has a 3-NZF.
Devos (Problem 1 in [15]) suggested that if $\kappa^{\prime}(G) \geq 4$ and if $G \in J_{3}$, then $\Lambda_{g}(G) \leq 3$. But a counterexample to this stronger version was given in [15], where a modified version of the conjecture is proposed: If $\kappa^{\prime}(G) \geq 5$ and if $G \in J_{3}$, then G has a $3-N Z F$.

There have been lots of researches conducted to attack Conjectures 1.1 and 1.2. See [8,23] for literature surveys. Jaeger [7] was the first to show that every 2-edge-connected graph has an 8-NZF, and that every 4-edge-connected graph has a 4-NZF. Later Seymour [18] proved that every 2-edge-connected graph has a 6-NZF. Jaeger et al. [9] further showed that if G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 6$. More recently, Sudakov [19] showed that almost every random graph with minimum degree at least 2 has a 3-NZF. As for highly connected graphs, Lai and Zhang [16] first proved that every $4 \log _{2}|V(G)|$-edge-connected graph has a 3-NZF. More recently in [14], it is proved that every $3 \log _{2}|V(G)|$-edge-connected graph is Z_{3}-connected. In this paper, we proved the following:
Theorem 1.4. (i) Every 5-edge-connected graph is Z_{3}-connected if and only if every 5-edge-connected line graph is Z_{3} connected.
(ii) Every 6-edge-connected triangular line graph is Z_{3}-connected.
(iii) Every 7-edge-connected triangular claw-free graph is Z_{3}-connected.

In particular, every 6-edge-connected triangular line graph has a nowhere zero 3-flow, and every 7-edge-connected triangular claw-free graph has a nowhere zero 3-flow.

This paper is organized as follows: In Section 2, we present some of the backgrounds and mechanisms to be used in the proofs. Theorem 1.4(i) is proved in Section 3. In order to prepare a proof for Theorem 1.4(iii), we also show that Ryjáček's line graph closure [17] can also be applied to convert the study of the group connectivity of claw-free graphs into that of line graphs. In Section 4, we shall assume the truth of a technical theorem to prove Theorem 1.4(ii) and (iii). The last section is devoted to the proof of the technical theorem.

2. Preliminaries

Let G be a graph and let $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. For convenience, we use G / e for $G /\{e\}$ and $G / \emptyset=G$; and if H is a subgraph of G, we write G / H for $G / E(H)$.

Proposition 2.1 (Proposition 3.2 of [11]). Let A be an Abelian group with $|A| \geq 3$. Then $\langle A\rangle$ satisfies each of the following:
(C1) $K_{1} \in\langle A\rangle$,
(C2) if $G \in\langle A\rangle$ and if $e \in E(G)$, then $G / e \in\langle A\rangle$,
(C3) if H is a subgraph of G and if both $H \in\langle A\rangle$ and $G / H \in\langle A\rangle$, then $G \in\langle A\rangle$.
Let H_{1} and H_{2} be two subgraphs of a connected graph G. We say that G is a parallel connection of H_{1} and H_{2}, denoted by $H_{1} \oplus_{2} H_{2}$, if $E\left(H_{1}\right) \cup E\left(H_{2}\right)=E(G),\left|V\left(H_{1}\right) \cap V\left(H_{2}\right)\right|=2$, and $\left|E\left(H_{1}\right) \cap E\left(H_{2}\right)\right|=1$.

For $k \in \mathbf{Z}$ with $k \geq 3$, a wheel W_{k} is the simple graph obtained from a k-circuit by adding a new vertex v, referred as the center of the wheel, and by joining the center to every vertex of the k-circuit. A fan \mathbf{F}_{k} is the graph obtained from W_{k} by deleting an edge not incident with the center. Define F_{2} to be the 3 -circuit. The family $\mathcal{W} \mathcal{F}$ can now be recursively constructed as follows:
(WF1) For all $k \geq 1$, and $n \geq 2, W_{2 k+1}, F_{n} \in \mathcal{W} \mathcal{F}$.
(WF2) If $G, H \in \mathcal{W F}$, then any parallel connection of G and H is also in $\mathcal{W F}$.
Lemma 2.2. Let G be a graph and A be an Abelian group with $|A| \geq 3, K_{n}$ be a complete graph of order n, and let C_{n} denote the circuit on n vertices (also referred as an n-circuit).
(i) (Lemma 2.1 of [12]) If for every edge e in a spanning tree of G, G has a subgraph $H_{e} \in\langle A\rangle$ with $e \in E\left(H_{e}\right)$, then $G \in\langle A\rangle$.
(ii) ([9] and Lemma 3.3 of [11]) $\Lambda_{g}\left(C_{n}\right)=n+1$.
(iii) (Lemma 2.8 of [3], Lemma 2.6 of [5]) For any integer $k>1, \Lambda_{g}\left(W_{2 k}\right)=3$.
(iv) (Corollary 3.5 of [11]) Let $n \geq 5$ be an integer. Then $K_{n} \in\langle A\rangle$.

A J_{3} graph G is triangularly connected if for all $e, e^{\prime} \in E(G), G$ has a sequence of circuits $C^{1}, C^{2}, \ldots, C^{m}$ in G such that each of the following holds.
(TC1) $e \in E\left(C^{1}\right)$ and $e^{\prime} \in E\left(C^{m}\right)$,
(TC2) for all $1 \leq i \leq m,\left|E\left(C^{i}\right)\right| \leq 3$, and
(TC3) for all $1 \leq i \leq m-1,\left|E\left(\overline{C^{i}}\right) \cap E\left(C^{i+1}\right)\right|>0$.
The sequence $\left\{C^{1}, C^{2}, \ldots, C^{m}\right\}$ will be referred as an $\left(e, e^{\prime}\right)$-triangle-path in G. Graphs in $\mathcal{W} \mathcal{F}$ are usually referred as $W F$ graphs. By definition, every $W F$-graph is triangularly connected.

Theorem 2.3 (Fan et al., [5]). Let G be a triangularly connected graph with $|V(G)| \geq 2$. Each of the following holds.
(i) (Theorem 1.4 of [5]) G is Z_{3}-connected if and only if $G \notin \mathcal{W F}$.
(ii) (Lemma 2.4 of [5]) G is Z_{3}-connected if and only if G contains a nontrivial Z_{3}-connected subgraph.

The following is an immediate corollary of Theorem 2.3 and Lemma 2.2(ii) and (iii).
Corollary 2.4. If $G \in \mathcal{W} \mathcal{F}$, then G does not contain any even wheel or 2-circuit.
Given an $f \in F(G, A)$ and a subset $X \in E(G),\left.f\right|_{X}$ denotes the restriction of f to X. For $b \in Z(G, A)$, a graph G is (A, b)extensible from v, if for all $f_{1}: E(v) \mapsto A^{*}$ satisfying $\partial f_{1}(v)=b(v)$, there exists an $f \in F^{*}(G, A)$ with $\partial f=b$ such that $\left.f\right|_{E(v)}=f_{1}$. If for any $b \in Z(G, A), G$ is (A, b)-extensible from v, then G is called A-extensible from v. By definition, if G is A-extensible from v, then $G \in\langle A\rangle$.

Lemma 2.5 (Lemma 2.3, [13]). Let G be a graph and $H \cong K_{4}$ be a subgraph of G and $v \in V(H)$ (see Fig. 1(a) and Fig. 2(a)). If $d_{G}(v)=6$ and if G has another subgraph $H^{\prime} \cong K_{4}$ such that $V(H) \bigcap V\left(H^{\prime}\right)=\{v\}, N_{H}(v)=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $N_{H^{\prime}}(v)=$ $\left\{y_{1}, y_{2}, y_{3}\right\}$, then let G_{v} be the graph obtained from G by splitting the vertex $v \in V(G)$ into v_{1}, v_{2} (as depicted in Fig. 1(b)), and by first deleting $x_{3} v_{1}, y_{3} v_{2}$ and then contracting $v_{1} x_{1}, v_{2} y_{1}$ (depicted in Fig. $1(\mathrm{c})$); and if $d_{G}(v)>6$, then let G_{v} be the graph obtained from G by splitting the vertex $v \in V(G)$ into v_{1}, v_{2}, deleting the edge $v_{1} x_{3}$, and then contracting $v_{1} x_{1}$ (depicted in Fig. 2(c)).
(i) If $G_{v} \in\left\langle Z_{3}\right\rangle$, then $G \in\left\langle Z_{3}\right\rangle$.
(ii) If for some $u \in V(G)-v, G_{v}$ is Z_{3}-extensible from u, then G is also Z_{3}-extensible from u.

Proof. The proof for (i) is given in [13]. The proof for (ii) is similar to that for (i) and so omitted.
Definition 2.6. Suppose that $N_{G}(v)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and let $Y=\left\{v v_{1}, v v_{2}\right\}$. As in [15], define $G_{[v, Y]}$ to be the graph obtained from $G-\left\{v v_{1}, v v_{2}\right\}$ by adding a new edge that joins v_{1} and v_{2}.

Fig. 1. Reduction in Lemma 2.5.

Fig. 2. Reduction in Lemma 2.5.
Lemma 2.7 (Lemma 6, [15]). For any Abelian group A and $b \in Z(G, A)$, if $G_{[v, Y]}$ has an $(A, b)-N Z F$, then G has an ($\left.A, b\right)$-NZF. Moreover, if $G_{[v, Y]}$ is A-extensible from a vertex u with $u \neq v$, then G is also A-extensible from u.

Lemma 2.8 (Lemma 7, [15]). Let A be an Abelian group, G be a graph and $H \in\langle A\rangle$ be a connected subgraph of G. We define $G^{*}=G / H$ and denote by v_{H} the vertex in G^{*} onto which H is contracted. For any $b \in Z(G, A)$, define $b^{\prime}: V\left(G^{*}\right) \mapsto A$ by $b^{\prime}\left(v_{H}\right)=\sum_{u \in V(H)} b(u)$ and $b^{\prime}(v)=b(v)$ for $v \neq v_{H}$. If G^{*} admits an $\left(A, b^{\prime}\right)$-NZF f^{*}, then f^{*} can be extended to an (A, b)-NZF of G.

3. Line graphs and claw-free graphs

We shall follow [4] to define a line graph. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where for an integer $k \in\{0,1,2\}$, two vertices in $L(G)$ are joined by k edges in $L(G)$ if and only if the corresponding edges in G are sharing k common vertices in G. In other words, if e_{1} and e_{2} are adjacent but not parallel in G, then e_{1} and e_{2} are joined by one edge in $L(G)$; if e_{1} and e_{2} are parallel edges in G, then e_{1} and e_{2} are joined by two (parallel) edges in $L(G)$. Note that our definition for line is slightly different from the one defined in [2] (called an edge graph there). But when G is a simple graph, both definitions are the same. The main reason for us to adopt this definition in [4] instead of the traditional definition of a line graph is explained in the introduction section of [13].

For an integer $i>0$ and for a graph G, define

$$
D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\} .
$$

A vertex $v \in V(G)$ is locally connected if $G\left[N_{G}(v)\right]$ is connected. A graph G is claw-free if G does not have an induced subgraph isomorphic to $K_{1,3}$. It is well known ([1,6]) that every line graph is a claw-free graph.

Following the definition given by Ryjácěk ([17]), a graph H is the closure of a claw-free graph G, denoted by $H=\operatorname{cl}(G)$, if
(CL1) there is a sequence of graphs G_{1}, \ldots, G_{t} such that $G_{1}=G, G_{t}=H, V\left(G_{i+1}\right)=V\left(G_{i}\right)$ and $E\left(G_{i+1}\right)=E\left(G_{i}\right) \bigcup\{u v$: $\left.u, v \in N_{G_{i}}\left(x_{i}\right), u v \notin E\left(G_{i}\right)\right\}$ for some $x_{i} \in V\left(G_{i}\right)$ with connected non-complete $G_{i}\left[N_{G_{i}}\left(x_{i}\right)\right]$, for $i=1, \ldots, t-1$, and
(CL2) No vertex of H has a connected non-complete neighborhood.
Lemma 3.1. Let G be a claw-free graph.
(i) For any $v \in V(G)$, either $G\left[N_{G}(v)\right]$ is an edge disjoint union of two cliques or v is a locally connected vertex.
(ii) If v is a locally connected vertex of G, then $G\left[N_{G}[v]\right]$ is triangularly connected.

Proof. (i) follows from the definition of claw-free graphs immediately.
(ii) Let $e=x y, e^{\prime}=u w \in E\left(G\left[N_{G}[v]\right]\right)$, where $y, w \in N_{G}(v)$ and e and e^{\prime} are not contained in the same triangle. Since v is locally connected, there is a path $P=v_{1} v_{2} \ldots v_{s}$ joining $y=v_{1}$ and $w=v_{s}$, where $v_{i} \in N_{G}(v)$, for $i=2, \ldots, s-1$,

Fig. 3. The graph L_{1} in Lemma 3.5.
in such a way that if $x \neq v$, then $x=v_{2}$, and if $u \neq v$, then $u=v_{s-1}$. Since $v v_{i} \in E(G)$, and since e is in the 3-circuit $G\left[\left\{v, v_{1}, v_{2}\right\}\right]$ and e^{\prime} is in the 3-circuit $G\left[\left\{v, v_{s-1}, v_{s}\right\}\right]$, the 3 -circuits $G\left[\left\{v, v_{i}, v_{i+1}\right\}\right], 1 \leq i \leq s-1$, is an $\left(e, e^{\prime}\right)$-trianglepath. Therefore $G\left[N_{G}(v)\right]$ is triangularly connected.

Theorem 3.2. The following are equivalent.
(i) Every 5-edge-connected graph is Z_{3}-connected.
(ii) Every 5-edge-connected line graph is Z_{3}-connected.

Proof. As (i) trivially implies (ii), it suffices to show that (ii) implies (i). Let G be a graph with $\kappa^{\prime}(G) \geq 5$ and let $S(G)$, the subdivided graph of G, be the graph obtained from G by replacing each edge $e=u v$ of G by a 2 -path $u v_{e} v$, where v_{e} is a new vertex. Let e^{\prime} be the edge in $L(S(G))$ that has $u v_{e}$ and $v_{e} v$ as its ends, and let $E^{\prime}=\left\{e^{\prime} \in E(L(S(G))) \mid e \in E(G)\right\}$. It then follows that $L(S(G)) /\left[E(L(S(G)))-E^{\prime}\right]=G$. (See Claims 1 and 2 within the proof of Theorem 3.4 in [4]). Moreover, If $\kappa^{\prime}(G) \geq 5$, then $\kappa^{\prime}(L(S(G))) \geq 5$, and so $L(S(G)) \in\left\langle Z_{3}\right\rangle$ follows by (ii). As $L(S(G)) /\left[E(L(S(G)))-E^{\prime}\right]=G$, by Proposition $2.1(C 2), G \in\left\langle Z_{3}\right\rangle$, and so (i) must hold.

Theorem 3.3. Let A be an Abelian group with $|A| \geq 4$ and G be a claw-free graph with $\delta(G) \geq 3$. Each of the following holds:
(i) Suppose that a vertex $v \in V(G)$ is locally connected, and $x, y \in N_{G}(v)$ are not adjacent. If $G+x y$ is A-connected, then G is A-connected.
(ii) If $\operatorname{cl}(G)$ is A-connected, then G is A-connected.

Proof. By the definition of the closure of a claw-free graph, $c l(G)$ contains G as a spanning connected subgraph. Thus Theorem 3.3(ii) follows from Theorem 3.3(i) and Lemma 2.2(i). Therefore, it suffices to prove Theorem 3.3(i).

Let G be a claw-free graph and let $v \in V(G)$ be a locally connected vertex. By Lemma 3.1(ii), every edge in the graph $G\left[N_{G}[v]\right]$ lies in a 3-circuit. As $|A| \geq 4$, by Lemma 2.2(ii) with $n=3$, every edge of $G\left[N_{G}[v]\right]$ lies in an A-connected subgraph of $G\left[N_{G}[v]\right]$. It follows by Lemma $2.2(\mathrm{i})$ that $G\left[N_{G}[v]\right] \in\langle A\rangle$. Let $G^{\prime}=G+x y$. Then $G^{\prime}\left[N_{G^{\prime}}[v]\right]=G\left[N_{G}[v]\right]+x y$. As $G\left[N_{G}[v]\right] \in\langle A\rangle$, it follows by Lemma 2.2(i) that $G^{\prime}\left[N_{G^{\prime}}[v]\right] \in\langle A\rangle$. Hence if $G^{\prime} \in\langle A\rangle$, then by Proposition 2.1(C2), $G^{\prime} / G^{\prime}\left[N_{G^{\prime}}[v]\right] \in\langle A\rangle$. As $G / G\left[N_{G}[v]\right]=G^{\prime} / G^{\prime}\left[N_{G^{\prime}}[v]\right] \in\langle A\rangle$, and as $G\left[N_{G}[v]\right] \in\langle A\rangle$, it follows by Proposition 2.1(C3) that $G \in\langle A\rangle$.

Lemma 3.4. Let G be a claw-free graph with $\delta(G) \geq 3$ and $v \in V(G)$ be locally connected. Then $G\left[N_{G}(v)\right]$ has a Hamilton path.
Proof. Arguing by contradiction, we assume that $G\left[N_{G}(v)\right]$ does not have a Hamilton path. As every connected graph on 3 vertices has a Hamilton path, we assume $d_{G}(v) \geq 4$.

Let $P=x_{1} x_{2} \ldots x_{p}$ be a longest path in $G\left[N_{G}(v)\right]$. As $V(P) \neq N_{G}(v)$, we can pick $x \in N_{G}(v)-V(P)$. As P is longest, $x x_{1}, x x_{p} \notin E(G)$. Since $G\left[\left\{x, x_{1}, x_{p}, v\right\}\right] \neq K_{1,3}$, we must have $x_{1} x_{p} \in E(G)$. Since $G\left[N_{G}(v)\right]$ is connected, $G\left[N_{G}(v)\right]$ has a path P^{\prime} from x to a vertex $x_{i_{0}} \in V(P)$, internally disjoint from $V(P)$. It follows that $x P^{\prime} x_{i_{0}} x_{i_{0}+1} \ldots x_{p} x_{1} x_{2} \ldots x_{i_{0}-1}$ is a longer path, contrary to the assumption that P is a longest path in $G\left[N_{G}(v)\right]$.

Lemma 3.5. Let G be a claw-free graph with $\delta(G) \geq 6$ and $v \in V(G)$ be a locally connected vertex. Each of the following holds.
(i) If $d_{G}(v) \geq 6$ and if $G\left[N_{G}[v]\right] \in \mathcal{W F}$, then $G\left[N_{G}[v]\right]$ contains the graph L_{1} depicted in Fig. 3 as an induced subgraph. Moreover, if $d_{G}(v)=6$, then $G\left[N_{G}[v]\right]=L_{1}$.
(ii) If $d_{G}(v) \geq 7$, then $G\left[N_{G}[v]\right]$ is Z_{3}-connected.

Proof. (i) Suppose $d_{G}(v)=m \geq 6$. By Lemma 3.4, $G\left[N_{G}(v)\right]$ has a path $P=v_{1} v_{2} \ldots v_{m}$, where $v_{i} \in N_{G}(v), 1 \leq i \leq m$.
We claim that $G\left[N_{G}[v]\right]$ has a K_{4} with $v \in V\left(K_{4}\right)$. If not, then $L=G\left[\left\{v, v_{1}, v_{3}, v_{5}\right\}\right] \neq K_{4}$, and so both $v_{1} v_{3} \notin E(G)$ and $v_{3} v_{5} \notin E(G)$. Since $G\left[\left\{v, v_{1}, v_{3}, v_{5}\right\}\right] \neq K_{1,3}$, we must have $v_{1} v_{5} \in E(G)$. Similarly, $v_{2} v_{6} \in E(G)$ as $G\left[\left\{v, v_{2}, v_{4}, v_{6}\right\}\right] \neq K_{4}$. It follows that $G\left[\left\{v, v_{1}, v_{2}, v_{5}, v_{6}\right\}\right]$ consists a W_{4}, contrary to Corollary 2.4 as $G\left[N_{G}[v]\right] \in \mathcal{W} \mathcal{F}$. Thus $G\left[N_{G}[v]\right]$ must have a K_{4}.

Let $H_{1} \cong K_{4}$ be a subgraph of $G\left[N_{G}[v]\right]$ with $v \in V\left(H_{1}\right)$. Let $W=N_{G}(v)-V\left(H_{1}\right)$. Note that for all $w \in W$, if w is adjacent to two vertices in $V\left(H_{1}\right)-\{v\}$, then $W_{4} \subseteq G\left[V\left(H_{1}\right) \cup\{w\}\right]$, contrary to Corollary 2.4. Since $|W| \geq 3$, and since every $w \in W$ is adjacent to at most one vertex in $V\left(H_{1}\right)$, it follows from the fact that P is a Hamilton path that there must be $x, y, z \in W$ such that $x z, y z \in E(G)$. Let $V\left(H_{1}\right)-\{v\}=\left\{u_{1}, u_{2}, u_{3}\right\}$. With these notations, we further claim that $K_{3} \subseteq G[W]$.

Assume that $G[W]$ contains no K_{3} 's. Then $x y \notin E(G)$. Since for all $u_{i} \in V\left(H_{1}\right)-\{v\}, G\left[\left\{v, x, y, u_{i}\right\}\right] \neq K_{1,3}, u_{i}$ must be adjacent to x or y. Hence we may assume that there are two $u_{i}^{\prime} \mathrm{s}$, say u_{1}, u_{2}, that are adjacent to the same vertex in $\{x, y\}$, say
x. It follows that $G\left[\left\{v, u_{1}, u_{2}, u_{3}, x\right\}\right]$ contains a W_{4}, contrary to Corollary 2.4. Thus we must have both $G[\{x, y, z\}] \cong K_{3}$ and $G[\{v, x, y, z\}] \cong K_{4}$. Let $H_{2}=G[\{v, x, y, z\}]$.

Now assume that $d_{G}(v)=6$, and so $N_{G}(v)=V\left(H_{1}\right) \cup W$. Since v is locally connected, $G\left[N_{G}(v)\right]$ has an edge e, say $e=u_{1} x$, joining H_{1} and H_{2}. Let $G^{\prime}=G\left[E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup\{e\}\right]$. Then $G^{\prime} \subseteq G\left[N_{G}[v]\right]$. By the definition of $\mathcal{W} \mathcal{F}, G^{\prime} \in \mathcal{W} \mathcal{F}$. Let $e^{\prime} \in E\left(G\left[N_{G}[v]\right]\right)-E\left(G^{\prime}\right)$. If e and e^{\prime} are not adjacent, say $e^{\prime}=u_{2} y$, then $W_{4} \subseteq G\left[\left\{v, u_{1}, u_{2}, x, y\right\}\right]$; if e and e^{\prime} are adjacent, say $e^{\prime}=u_{2} x$, then $W_{4} \subseteq G\left[\left\{v, u_{1}, u_{2}, u_{3}, x\right\}\right]$, contrary to Corollary 2.4 in either case. Thus we must have $G\left[N_{G}[v]\right]=G^{\prime}$, as desired.
(ii) By contradiction, assume that $G\left[N_{G}[v]\right] \notin\left\langle Z_{3}\right\rangle$. By Lemma 3.1(ii), $G\left[N_{G}[v]\right]$ is triangularly connected. By Theorem 2.3, $G\left[N_{G}[v]\right] \in \mathcal{W F}$.

By (i), $G\left[N_{G}[v]\right]$ contains a subgraph L_{1} as depicted in Fig. 3. Define H_{1} and H_{2} as the two 4-cliques above in $G\left[N_{G}[v]\right]$ with $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{v\}$, and let $W^{\prime}=N_{G}(v)-\left(V\left(H_{1}\right) \cup V\left(H_{2}\right)\right)$. Again since $G\left[N_{G}[v]\right]$ contains no W_{4}, every vertex $w^{\prime} \in W^{\prime}$ is adjacent to at most one vertex in $V\left(H_{i}\right), i \in\{1,2\}$. It follows that $G\left[N_{G}[v]\right]$ contains an induced subgraph $G\left[\left\{v, w^{\prime}, z_{1}, z_{2}\right\}\right] \cong K_{1,3}$, for some $z_{i} \in V\left(H_{i}\right)-\{v\},(1 \leq i \leq 2)$, contrary to the assumption that G is claw-free. Thus $G\left[N_{G}[v]\right]$ must be Z_{3}-connected if $d_{G}(v) \geq 7$.

Theorem 3.6. Let G be a claw-free graph with $\delta(G) \geq 7$. If $\operatorname{cl}(G) \in\left\langle Z_{3}\right\rangle$, then $G \in\left\langle Z_{3}\right\rangle$.
Proof. For any locally connected $v \in V(G)$ with $d_{G}(v) \geq 7$, by Lemma 3.5(ii), $G\left[N_{G}[v]\right]$ is Z_{3}-connected. Let H_{1}, \ldots, H_{m} be all the maximal Z_{3}-connected subgraphs of G. Suppose $G_{1}=G, G_{2}, \ldots, G_{m}, G_{m+1}$ is a sequence of graphs such that, for $i=1,2,3, \ldots, m, G_{i+1}=G_{i} / H_{i}$. Suppose $G_{1}^{\prime}=c l(G), G_{2}^{\prime}, \ldots, G_{m}^{\prime}, G_{m+1}^{\prime}$ is a sequence of graphs such that, for $i=1,2,3, \ldots, m, G_{i+1}^{\prime}=G_{i}^{\prime} / H_{i}^{\prime}$, where H_{i}^{\prime} is the subgraph induced by $V\left(H_{i}\right)$ in $\operatorname{cl}(G)$. Note that $H_{i} \subseteq H_{i}^{\prime}$.

Now we claim that $G_{m+1}^{\prime}=G_{m+1}$. By the construction of G_{m} and G_{m}^{\prime}, we have $V\left(G_{m+1}^{\prime}\right)=V\left(G_{m+1}\right)$ and $E\left(G_{m+1}\right) \subseteq$ $E\left(G_{m+1}^{\prime}\right)$. We only need to show $E\left(G_{m+1}^{\prime}\right) \subseteq E\left(G_{m+1}\right)$. Let $e \in E\left(G_{m+1}^{\prime}\right)$ and $e \notin E\left(G_{m+1}\right)$. Assume $e=v_{1} v_{2}$ in $c l(G)$. By the definition of closure, there is a locally connected vertex $v \in V(G)$ such that $v_{1}, v_{2} \in N_{G}(v)$ and v_{1} and v_{2} are not adjacent. By Lemma 3.5(ii) $G\left[N_{G}[v]\right]$ is Z_{3}-connected, then $G[N[v]]$ will be contained in some H_{i}, and $e \in E\left(H_{i}^{\prime}\right)$, contrary to the fact that $e \in G_{m+1}^{\prime}$.

Therefore $G_{m+1}=G_{m+1}^{\prime}$. Since $c l(G)=G_{1}^{\prime} \in\left\langle Z_{3}\right\rangle$, by Proposition 2.1 $(C 2) G_{2}^{\prime} \in\left\langle Z_{3}\right\rangle$. Inductively, we conclude that $G_{i}^{\prime} \in\left\langle Z_{3}\right\rangle, 1 \leq i \leq m+1$. It follows that $G_{m+1}=G_{m+1}^{\prime} \in\left\langle Z_{3}\right\rangle$. Since $H_{m} \in\left\langle Z_{3}\right\rangle$, by Proposition 2.1(C3) $G_{m} \in\left\langle Z_{3}\right\rangle$. Inductively, we conclude that $G_{i} \in\left\langle Z_{3}\right\rangle, 1 \leq i \leq m-1$. In particular, $G=G_{1} \in\left\langle Z_{3}\right\rangle$.

4. Group connectivity of J_{3} line graphs and J_{3} claw-free graphs

The main result of this section is the following.
Theorem 4.1. Each of the following holds.
(i) Every 6-edge-connected J_{3} line graph is Z_{3}-connected.
(ii) Every 7-edge-connected J_{3} claw-free graph is Z_{3}-connected.

An edge cut X of G is essential if $G-X$ has at least two nontrivial components. For any integer $k>0$, a graph is essentially k-edge-connected if G has no essential edge cut X with $|X|<k$. By this definition, if a graph G is k-edge-connected, then G is also essentially k-edge-connected. An edge cut X of G is a cyclical edge cut if neither side of $G-X$ is acyclic; G is cyclically k-edge-connected if G has no cyclical edge cut of size less than k.

By the definition of a line graph, for all $v \in V(G), E(v)$ induce a complete subgraph H_{v} in $L(G)$. When $u, v \in V(G)$ with $u \neq v$, if G is simple, then H_{v} and H_{u} are edge disjoint complete subgraphs of $L(G)$. Such an observation motivates the following definition.

For a connected graph G, a partition $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ of $E(G)$ is a clique partition of G if $G\left[E_{i}\right]$ is spanned by a maximal complete subgraph of G for each $i \in\{1,2, \ldots, k\}$. Furthermore, $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ is a (≥ 3)-clique partition of G, if for each $i \in\{1,2, \ldots, k\}, G\left[E_{i}\right]$ is spanned by a $K_{n_{i}}$ with $n_{i} \geq 3$; and a $\left(K_{3}, K_{4}\right)$-partition if for each $i \in\{1,2, \ldots, k\}, G\left[E_{i}\right]$ is spanned by a maximal subgraph of G isomorphic to a K_{3} or a K_{4}. Note that if G is simple, and if $\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ of $E(G)$ is a clique partition of G, then $\left|V\left(G\left[E_{i}\right]\right) \cap V\left(G\left[E_{j}\right]\right)\right| \leq 1$ where $i \neq j$ and $i, j \in\{1,2, \ldots, k\}$. By the definition of a line graph, every J_{3} line graph must have a $\left(\geq 3\right.$)-clique partition. By Proposition 2.1 and Lemma 2.2 (iv), it suffices to study the Z_{3}-connectedness of graphs with a $\left(K_{3}, K_{4}\right)$-partition.

For an integer $m>0, m K_{2}$ denotes the graph with 2 vertices and m parallel edges. Define $\mathcal{F}^{0}=\left\{G: G\right.$ has a $\left(K_{3}, K_{4}\right)-$ partition\}, and \mathcal{F} to be the family of graphs such that $G \in \mathcal{F}$ if and only if either $G \in \mathcal{F}_{0}$, or G is obtained from a member $G^{\prime} \in \mathcal{F}_{0}$ by contracting some edges in $E\left(G^{\prime}\right)$.

Let $H_{1} \cong K_{4}$ and H_{0}, H_{2}, H_{3} be contractions of H_{1}, where $H_{0}=4 K_{2}$. Let $H_{4} \cong 2 K_{2}$ be the graph obtained from K_{3} by contracting an edge (see Fig. 4 for $H_{i}, 0 \leq i \leq 4$). Then for every graph $G \in \mathcal{F}, E(G)$ is partitioned into E_{1}, E_{2}, \ldots, E_{k}, such that $G\left[E_{j}\right] \in\left\{H_{0}, H_{1}, H_{2}, H_{3}, K_{3}, H_{4}\right\}$, for $j=1,2, \ldots, k$.

We shall prove the following stronger result, which implies Theorem 4.1.

Fig. 4. $H_{0}, H_{1}, H_{2}, H_{3}, H_{4}$.
Theorem 4.2. Let $G \in \mathcal{F}$ be an essentially 6-edge-connected graph with $\left|D_{3}(G) \cup D_{4}(G) \cup D_{5}(G)\right| \leq 1$. Each of the following holds.
(i) For any $u \in D_{6}(G) \cup D_{7}(G) \cup D_{8}(G), G$ is Z_{3}-extensible from u.
(ii) If $D_{6}(G) \cup D_{7}(G) \cup D_{8}(G)=\emptyset$, then G is Z_{3}-connected.

Assuming the truth of Theorem 4.2, we can derive the following results. A graph G is Z_{3}-reduced if G does not have a nontrivial subgraph in $\left\langle Z_{3}\right\rangle$.

Theorem 4.3. Every 6-edge-connected graph with $a(\geq 3)$-clique partition is Z_{3}-connected.
Proof. Let G be a counterexample with $|V(G)|$ minimized. As the theorem holds trivially if $|V(G)| \leq 6$, we assume that $|V(G)| \geq 7$. By the minimality of G, G is Z_{3}-reduced. By Lemma 2.2 (iv), G must have a (K_{3}, K_{4})-partition, and so $G \in \mathscr{F}$. Thus $G \in\left\langle Z_{3}\right\rangle$ by Theorem 4.2.
Proof of Theorem 4.1. (i) Let G be a 6 -edge-connected J_{3} line graph. By the definition of a line graph, and since G is a J_{3} graph, G is a 6-edge-connected graph with a (≥ 3)-clique partition. It follows by Theorem 4.3 that G is Z_{3}-connected.
(ii) Let G be a 7-edge-connected J_{3} claw-free graph, and let $c l(G)$ be its closure. Then $\mathrm{cl}(G)$ is a 7 -edge-connected J_{3} line graph. By Theorem 4.1(i), $c l(G)$ is Z_{3}-connected. By Theorem 3.6, G is Z_{3}-connected. This completes the proof of Theorem 4.1.

5. The proof of Theorem 4.2

Throughout this section, for a graph G and for $W \subseteq E(G)$, any map $g: W \mapsto Z_{3}$ is viewed as a map $g: E(G) \mapsto Z_{3}$ such that $g(e)=0$, for all $e \in E(G)-W$.

By contradiction, assume that there exists a graph $G \in \mathcal{F}$ such that
G is a counterexample to Theorem 4.2 with $|V(G)|+|E(G)|$ minimized.
Thus either

$$
\begin{equation*}
D_{6}(G) \cup D_{7}(G) \cup D_{8}(G)=\emptyset, \quad \text { and } \quad G \notin\left\langle Z_{3}\right\rangle, \tag{2}
\end{equation*}
$$

or
there exists $u \in D_{6}(G) \cup D_{7}(G) \cup D_{8}(G)$ such that G is not Z_{3}-extensible from u.
For a graph Γ, let $N(\Gamma)=|V(\Gamma)|+|E(\Gamma)|$. We have the following claims.
Claim 1. If (2) holds, then G is Z_{3}-reduced; if (3) holds, then $G-u$ is Z_{3}-reduced.
Assume (3) holds. Suppose $G-u$ has a nontrivial subgraph H with $H \in\left\langle Z_{3}\right\rangle$. Since $G \in \mathcal{F}, G / H \in \mathcal{F}$. As H is nontrivial, $N(G / H)<N(G)$. Since G is essentially 6-edge-connected, G / H is also essentially 6-edge connected. By (1), G / H satisfies (i). It follows by Lemma 2.8 that G is A-extensible from u, contrary to (1). The proof for the case when (2) holds is similar. This proves Claim 1.

By Lemma 2.2(ii) and Proposition 2.1, any Z_{3}-reduced graph does not have H_{0}, H_{2}, H_{3} and H_{4} as a subgraph. Thus by Claim 1,
G (when (2) holds) or $G-u$ (when (3) holds) does not have H_{0}, H_{2}, H_{3}, or H_{4} as a subgraph.
Claim 2. G is cyclically 9-edge-connected.
Suppose that G has a minimal cyclical edge-cut X with $|X|<9$. Let G_{1} and G_{2} be the two components of $G-X$. Since G is essentially 6 -edge connected and since both G_{1} and G_{2} are nontrivial, we have $6 \leq|X| \leq 8$. Let $v_{G_{i}}$ be the new vertex in G / G_{i} onto which G_{i} is contracted, for $i=1,2$. Then

$$
E_{G / G_{1}}\left(v_{G_{1}}\right)=E_{G / G_{2}}\left(v_{G_{2}}\right)=X .
$$

Case 1. (2) holds.

Let $b \in Z\left(G, Z_{3}\right)$. Define $b_{2}: V\left(G / G_{2}\right) \mapsto Z_{3}$ by

$$
b_{2}(v)= \begin{cases}\sum_{z \in V\left(G_{2}\right)} b(z), & \text { if } v=v_{G_{2}} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $b_{2} \in Z\left(G / G_{2}, Z_{3}\right)$ as $b \in Z\left(G, Z_{3}\right)$. By (1) and since $N\left(G / G_{2}\right)<N(G), G / G_{2}$ has a $\left(Z_{3}, b\right)$-NZF f_{2}. Now define $b_{1}: V\left(G / G_{1}\right) \mapsto Z_{3}$ by

$$
b_{1}(v)= \begin{cases}\sum_{z \in V\left(G_{1}\right)} b(z), & \text { if } v=v_{G_{1}} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $b_{1} \in Z\left(G / G_{1}, Z_{3}\right)$ as $b \in Z\left(G, Z_{3}\right)$. Define $g=\left.f_{2}\right|_{X}: X \mapsto Z_{3}^{*}$. Then

$$
\partial g\left(v_{G_{1}}\right)=-\partial f_{2}\left(v_{G_{2}}\right)=-b_{2}\left(v_{G_{2}}\right)=-\sum_{z \in V\left(G_{2}\right)} b(z)=\sum_{z \in V\left(G_{1}\right)} b(z)=b_{1}\left(v_{G_{1}}\right)
$$

Since $6 \leq d_{G / G_{1}}\left(v_{G_{1}}\right) \leq 8$, and by (1), G/G G_{1} is Z_{3}-extensible from $v_{G_{1}}$. Therefore there is a $\left(Z_{3}, b\right)$-NZF f_{1} of G / G_{1} such that $\left.f_{1}\right|_{X}=g=\left.f_{2}\right|_{X}$. Then $f=f_{1}+f_{2}-\left.f_{2}\right|_{X}$ is a $\left(Z_{3}, b\right)$-NZF of G, contrary to (1).
Case 2. (3) holds.
Let $b \in Z\left(G, Z_{3}\right)$. Assume $u \in V\left(G_{1}\right)$ and $f_{0}: E(u) \mapsto Z_{3}^{*}$ such that $\partial f_{0}(u)=b(u)$.
Define $b_{2}: V\left(G / G_{2}\right) \mapsto Z_{3}$ by

$$
b_{2}(v)= \begin{cases}\sum_{z \in V\left(G_{2}\right)} b(z), & \text { if } v=v_{G_{2}} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $b_{2} \in Z\left(G / G_{2}, Z_{3}\right)$ as $b \in Z\left(G, Z_{3}\right)$. By (1) and since $N\left(G / G_{2}\right)<N(G), G / G_{2}$ is Z_{3}-extensible from u, and so G / G_{2} has a $\left(Z_{3}, b\right)-N Z F f_{2}$ such that $\left.f_{2}\right|_{E(u)}=f_{0}$.

Now define $b_{1}: V\left(G / G_{1}\right) \mapsto Z_{3}$ by

$$
b_{1}(v)= \begin{cases}\sum_{z \in V\left(G_{1}\right)} b(z), & \text { if } v=v_{G_{1}} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $b_{1} \in Z\left(G / G_{1}, Z_{3}\right)$ as $b \in Z\left(G, Z_{3}\right)$. For $v_{G_{1}}$, define $g=\left.f_{2}\right|_{X}: X \mapsto Z_{3}^{*}$. Then

$$
\partial g\left(v_{G_{1}}\right)=-\partial f_{2}\left(v_{G_{2}}\right)=-b_{2}\left(v_{G_{2}}\right)=-\sum_{z \in V\left(G_{2}\right)} b(z)=\sum_{z \in V\left(G_{1}\right)} b(z)=b_{1}\left(v_{G_{1}}\right)
$$

$\operatorname{By}(1)$, by $N\left(G / G_{1}\right)<N(G)$, and since $6 \leq d_{G / G_{1}}\left(v_{G_{1}}\right) \leq 8, G / G_{1}$ is Z_{3}-extensible from $v_{G_{1}}$. Therefore G / G_{1} has a $\left(Z_{3}, b_{1}\right)$-NZF f_{1} satisfying $\left.f_{1}\right|_{X}=g=\left.f_{2}\right|_{X}$. Thus $f=f_{1}+f_{2}-\left.f_{2}\right|_{X}$ is a $\left(Z_{3}, b\right)$-NZF of G such that $\left.f\right|_{E(u)}=\left.f_{2}\right|_{E(u)}=f_{0}$, contrary to (1). This proves Claim 2.

Let $\mathscr{H}=\left\{H_{0}, H_{1}, H_{2}, H_{3}, K_{3}, H_{4}\right\}$. For a graph $G \in \mathcal{F}$, a subgraph $H \subseteq G$ is \mathscr{H}-maximal if $H \in\left\{H_{0}, H_{1}, H_{2}, H_{3}, K_{3}, H_{4}\right\}$ and H is not properly contained in another subgraph of G that is also a member in $\left\{H_{0}, H_{1}, H_{2}, H_{3}, K_{3}, H_{4}\right\}$. By the definition of \mathcal{F}, if $G \in \mathcal{F}$, then every edge must be in an \mathscr{H}-maximal subgraph of G.

Claim 3. $D_{3}(G) \cup D_{4}(G) \cup D_{5}(G) \neq \emptyset$.
By contradiction, assume that

$$
\begin{equation*}
D_{3}(G) \cup D_{4}(G) \cup D_{5}(G)=\emptyset \tag{5}
\end{equation*}
$$

Let $v \in V(G)$ such that if (3) holds, then choose v so that u and v are not in the same \mathscr{H}-maximal subgraph of G. Thus $d_{G}(v) \geq 6$. Since $G \in F$ and by (4), v must be in an \mathscr{H}-maximal subgraph H of G such that $H \in\left\{K_{3}, K_{4}\right\}$.
Case 1 . Suppose $v \in V(H)$ where $H \cong K_{4}$ with $V(H)=\left\{v, x_{1}, x_{2}, x_{3}\right\}$. Let G_{v} be the graph as defined in Lemma 2.5 , and we shall use the notations in Figs. 1 and 2.

By the definition of $G_{v}, N\left(G_{v}\right)<N(G)$ and $G_{v} \in \mathcal{F}$. If G_{v} is essentially 6-edge-connected, then by (1), G_{v} satisfies (i) or (ii). By Lemma 2.5, G satisfies (i) or (ii) respectively, contrary to (1).

Thus G_{v} has a minimal essential edge cut X with $|X|<6$. Let G_{1}, G_{2} be the two components of $G-X$. Since G is essentially 6-edge-connected, $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $N_{G}(v)-\left\{x_{1}, x_{2}, x_{3}\right\}$ must be in distinct components of $G_{v}-X$. By the assumption that $G \in \mathcal{F}$ and by (4), neither G_{1} nor G_{2} is acyclic. It follows that in $G, X \cup\left\{v x_{1}, v x_{2}, v x_{3}\right\}$ is a cyclical edge-cut with at most 8 edges, contrary to Claim 2. This precludes Case 1 of Claim 3.
Case 2. Suppose $v \in V(H)$ where $H \cong K_{3}$ with $V(H)=\left\{v, v_{1}, v_{2}\right\}$. Let $Y=\left\{v v_{1}, v v_{2}\right\}$ and $G_{[v, Y]}$ be the graph defined in Definition 2.6. Then $N\left(G_{[v, Y]}\right)<N(G)$. By the choice of $H, G_{[v, Y]} \in \mathcal{F}$. If $G_{[v, Y]}$ is essentially 6-edge-connected, then by (1), $G_{[v, Y]}$ satisfies (i) or (ii). By Lemma 2.7, G satisfies (i) or (ii) respectively, contrary to (1).

G

$G_{v_{0}}$

Fig. 5. Case 1a in the proof of Theorem 4.2.

Thus $G_{[v, Y]}$ must have a minimal essential edge cut X with $|X|<6$. Let G_{1}, G_{2} be the two components of $G_{[v, Y]}-X$. Using the notation in Definition 2.6, since G is essentially 6-edge-connected, v and $\left\{v_{1}, v_{2}\right\}$ must be separated by X in $G_{[v, Y]}$. We may assume that $\left\{v_{1}, v_{2}\right\} \subseteq V\left(G_{1}\right)$ and $N_{G}[v]-\left\{v_{1}, v_{2}\right\} \subseteq V\left(G_{2}\right)$. Note that $G_{1}\left[\left\{v_{1}, v_{2}\right\}\right]$ is a 2-circuit, and by (4) and since $d_{G}(v) \geq 6, G_{2}$ cannot be acyclic. It follows that $X \cup\left\{v v_{1}, v v_{2}\right\}$ is a cyclical 7-edge-cut of G, contrary to Claim 2. This precludes Case 2 of Claim 3, and completes the proof for Claim 3.

Claim 4. $\kappa(G) \geq 2$.
By contradiction, assume that G has two subgraphs G_{1}, G_{2} with $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{w\}$. Without loss of generality, if (3) holds, we may further assume that $u \in V\left(G_{1}\right)$. By (1), $G_{2} \in\left\langle Z_{3}\right\rangle$, contrary to Claim 1. This proves Claim 4.

By Claim 3, we assume that

$$
D_{3}(G) \cup D_{4}(G) \cup D_{5}(G)=\left\{v_{0}\right\}
$$

Let $b \in Z\left(G, Z_{3}\right)$ and $f_{0}: E(u) \mapsto Z_{3}^{*}$ be such that $\partial f_{0}(u)=b(u)$. Without loss of generality, we assume that all edges in $E_{G}(u)$ are oriented away from u.

In the rest of the proof, we shall assume the existence of $u \in D_{6}(G) \cup D_{7}(G) \cup D_{8}(G)$ to prove that G is Z_{3}-extensible from u. We shall also show that no matter whether the degree of v_{0} in G is 3,4 or 5 , a contradiction will be obtained. The proof for the case when $D_{6}(G) \cup D_{7}(G) \cup D_{8}(G)=\emptyset$ is similar.

By (3), in each of the cases below, we always assume that there exists a $b \in Z\left(G, Z_{3}\right)$ and an $f_{0}: E_{G}(u) \mapsto Z_{3}^{*}$ with $\partial f_{0}(u)=b(u)$, such that Theorem 4.2(i) fails.
Case 1. $v_{0} \in D_{3}(G)$.
Since $v_{0} \in D_{3}(G), G$ has an \mathscr{H}-maximal subgraph H with $v_{0} \in V(H)$. By Claim 4 and by $v_{0} \in D_{3}(G), H \in\left\{H_{1}, H_{2}\right\}$. By (4), if $H=H_{2}$, then u must be the degree 4 vertex in H_{2}.
Case 1a. $\mathrm{H} \cong \mathrm{H}_{2}$.
Denote $V(H)=\left\{v_{0}, u, v_{1}\right\}$ where $u \in D_{4}(H)$ and $G_{v_{0}}=G /\left\{v_{0} v_{1}\right\}$ (see Fig. 5). Then $N\left(G_{v_{0}}\right)<N(G)$. Since $G \in \mathcal{F}$ and G is essentially 6-edge-connected, $G_{v_{0}} \in F$ and $G_{v_{0}}$ is essentially 6-edge connected. By (1), $G_{v_{0}}$ satisfies (i).

Define $b^{\prime}: V\left(G_{v_{0}}\right) \mapsto Z_{3}$ by

$$
b^{\prime}(v)= \begin{cases}b\left(v_{0}\right)+b\left(v_{1}\right), & \text { if } v=v_{1} \\ b(v), & \text { otherwise }\end{cases}
$$

As $\sum_{v \in V\left(G_{0}\right)} b^{\prime}(v)=\sum_{v \in V(G)} b(v)=0, b^{\prime} \in Z\left(G_{v_{0}}, Z_{3}\right)$. Since $G_{v_{0}}$ is Z_{3}-extensible from u, there exists $g \in F^{*}\left(G_{v_{0}}, Z_{3}\right)$ such that $\partial g=b^{\prime}$ and $\left.g\right|_{E(u)}=f_{0}$. Assume that the edge $v_{0} v_{1}$ is oriented from v_{0} to v_{1}. Define $f: E(G) \mapsto Z_{3}^{*}$ by

$$
f(e)= \begin{cases}b\left(v_{0}\right)+g\left(e_{1}\right)+g\left(e_{2}\right), & \text { if } e=v_{0} v_{1} \\ g(e), & \text { otherwise }\end{cases}
$$

Then for all $v \in V(G)$,

$$
\partial f(v)= \begin{cases}b\left(v_{0}\right)+g\left(e_{1}\right)+g\left(e_{2}\right)-g\left(e_{1}\right)-g\left(e_{2}\right)=b\left(v_{0}\right) & \text { if } v=v_{0} \\ \left(b^{\prime}\left(v_{1}\right)+g\left(e_{1}\right)+g\left(e_{2}\right)\right)-\left(b\left(v_{0}\right)+g\left(e_{1}\right)+g\left(e_{2}\right)\right)=b\left(v_{1}\right) & \text { if } v=v_{1} \\ b^{\prime}(v)=b(v), & \text { otherwise }\end{cases}
$$

It follows that $\partial f=b$, and $\left.f\right|_{E(u)}=\left.g\right|_{E(u)}=f_{0}$. Therefore G is Z_{3}-extensible from u, contrary to (1). This completes the proof for Case 1a.
Case 1b. $H=H_{1} \cong K_{4}$ and $u \in V(H)$.
Let $V(H)=\left\{v_{0}, u, v_{2}, v_{3}\right\}$. Define $G_{v_{0}}$ to be the graph obtained from $G-v_{0} v_{2}$ by replacing $u v_{0} v_{3}$ by one edge e_{0} (see Fig. 6). Then $N\left(G_{v_{0}}\right)<N(G)$.

Fig. 6. Case 1b in the proof of Theorem 4.2.
Suppose that $G_{v_{0}}$ has an essential edge-cut X with $|X|<6$. Since G is essentially 6-edge-connected, X must separate v_{0} and v_{2}. It follows by (4) that $X \cup\left\{v_{0} v_{2}\right\}$ is a cyclical edge-cut of G with $\left|X \cup\left\{v_{0} v_{2}\right\}\right| \leq 6$, contrary to Claim 2 . Thus $G_{v_{0}}$ is essentially 6-edge-connected and so by (1),
$G_{v_{0}}$ is Z_{3}-extensible from u.
We shall show that f_{0} can be extended to $f \in F^{*}\left(G, Z_{3}\right)$ to find a contradiction to (1).
Case 1b1. $b\left(v_{0}\right)=0$. Define $b^{\prime}: V\left(G_{v_{0}}\right) \mapsto Z_{3}$ by

$$
b^{\prime}(v)= \begin{cases}b\left(v_{2}\right)-f_{0}\left(u v_{0}\right), & \text { if } v=v_{2} \\ b\left(v_{3}\right)+f_{0}\left(u v_{0}\right), & \text { if } v=v_{3} \\ b(v), & \text { otherwise }\end{cases}
$$

Since $\sum_{v \in V\left(G_{v_{0}}\right)} b^{\prime}(v)=\sum_{v \in V(G)} b(v)=0, b^{\prime} \in Z\left(G_{v_{0}}, Z_{3}\right)$. By (6), there exists $g \in F^{*}\left(G_{v_{0}}, Z_{3}\right)$ such that $\partial g=b^{\prime}$, and $\left.g\right|_{E(u)}=f_{0}$. Assume that $v_{0} v_{2}$ is oriented from v_{0} to v_{2} and $v_{0} v_{3}$ is oriented from v_{0} to v_{3}. Define $f: E(G) \mapsto Z_{3}$ by

$$
f(e)= \begin{cases}g\left(u v_{0}\right), & \text { if } e=v_{0} u \\ -g\left(u v_{0}\right), & \text { if } e=v_{0} v_{2} \\ 2 g\left(u v_{0}\right), & \text { if } e=v_{0} v_{3} \\ g(e), & \text { otherwise }\end{cases}
$$

Since $g \in F^{*}\left(G_{v_{0}}, Z_{3}\right), f \in F^{*}\left(G, Z_{3}\right)$. For each $v \in V(G)$,

$$
\partial f(v)= \begin{cases}2 g\left(u v_{0}\right)-g\left(u v_{0}\right)-g\left(u v_{0}\right)=0=b\left(v_{0}\right), & \text { if } v=v_{0} \\ \partial g\left(v_{2}\right)-\left(-g\left(u v_{0}\right)\right)=b^{\prime}\left(v_{2}\right)+g\left(u v_{0}\right)=b\left(v_{2}\right), & \text { if } v=v_{2} \\ b^{\prime}\left(v_{3}\right)+g\left(u v_{0}\right)-2 g\left(u v_{0}\right)=b\left(v_{3}\right), & \text { if } v=v_{3} \\ \partial g(v)=b^{\prime}(v)=b(v), & \text { otherwise }\end{cases}
$$

Thus $\partial f=b$ and $\left.f\right|_{E(u)}=\left.g\right|_{E(u)}=f_{0}$. Hence G is Z_{3}-extensible from u, contrary to (1).
Case 1b2. $b\left(v_{0}\right) \neq 0$.
Define $b^{\prime}: V\left(G_{v_{0}}\right) \mapsto Z_{3}$ by

$$
b^{\prime}(v)= \begin{cases}b\left(v_{2}\right)+b\left(v_{0}\right), & \text { if } v=v_{2} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $b^{\prime} \in Z\left(G_{v_{0}}, Z_{3}\right)$. By (6), $G_{v_{0}}$ has an $g: E\left(G_{v_{0}}\right) \mapsto Z_{3}^{*}$ such that $\partial g=b^{\prime}$ and $\left.g\right|_{E(u)}=f_{0}$. Assume that $v_{0} v_{2}$ and $v_{0} v_{3}$ are oriented away from v_{0}. Define $f: E(G) \mapsto Z_{3}^{*}$ by

$$
f(e)= \begin{cases}b\left(v_{0}\right), & \text { if } e=v_{0} v_{2} \\ g\left(v_{0} u\right), & \text { if } e=v_{0} u, v_{0} v_{3} \\ g(e), & \text { otherwise }\end{cases}
$$

Since $g \in F^{*}\left(G_{v_{0}}, Z_{3}\right)$ and since $b\left(v_{0}\right) \neq 0, f \in F^{*}\left(G, Z_{3}\right)$. For each $v \in V(G)$,

$$
\partial f(v)= \begin{cases}b\left(v_{0}\right)+g\left(v_{0} u\right)-g\left(v_{0} u\right)=b\left(v_{0}\right), & \text { if } v=v_{0} \\ \partial g\left(v_{2}\right)-b\left(v_{0}\right)=b^{\prime}\left(v_{2}\right)-b\left(v_{0}\right)=b\left(v_{2}\right), & \text { if } v=v_{2} \\ \partial g(v)=b^{\prime}(v)=b(v), & \text { otherwise }\end{cases}
$$

Therefore $\partial f=b$ and $\left.f\right|_{E(u)}=\left.g\right|_{E(u)}=f_{0}$. Thus G is Z_{3}-extensible from u, contrary to (1).
Case 1c. $H=H_{1} \cong K_{4}$ and $u \notin V(H)$.
Let $V(H)=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. Then $d_{G}\left(v_{i}\right) \geq 6$ for $i=1,2,3$. Let $G_{v_{1}}$ be the graph obtained from G by first splitting the vertex $v_{1} \in V(G)$ into v_{1}, v_{1}^{\prime} (where v_{1}^{\prime} is adjacent to v_{0}, v_{2}, v_{3}), deleting the edge $v_{1}^{\prime} v_{2}$, and then contracting $v_{1}^{\prime} v_{3}$

Fig. 7. Case 1c in the proof of Theorem 4.2.

Fig. 8. Case 2a.
(see Fig. 7). As before, if $G_{v_{1}}$ has an essential edge cut X with $|X|<6$, then X must separate v_{1} and $\left\{v_{0}, v_{2}, v_{3}\right\}$, and so $X \cup\left\{v_{1} v_{0}, v_{1} v_{2}, v_{1} v_{3}\right\}$ is a cyclical edge cut of G. It follows by Claim 2 that $G_{v_{1}}$ is essentially 6-edge-connected.

Let $L^{\prime}=G_{v_{1}}\left[\left\{v_{0}, v_{2}, v_{3}\right\}\right]$. As L^{\prime} is a 3 vertex graph with 4 edges, $L^{\prime} \in\left\langle Z_{3}\right\rangle$. Let $G^{\prime}=G_{v_{1}} / L^{\prime}$ with a new vertex $v_{L^{\prime}}$. Define $b_{1}: V\left(G_{v_{1}}\right) \mapsto Z_{3}$ such that $b_{1}(v)=b(v)$, for all $v \in V\left(G_{v_{1}}\right)$. As $b \in Z\left(G, Z_{3}\right), b_{1} \in Z\left(G_{v_{1}}, Z_{3}\right)$. Define $b^{\prime}: V\left(G^{\prime}\right) \mapsto Z_{3}$ to be

$$
b^{\prime}(v)= \begin{cases}b_{1}\left(v_{0}\right)+b_{1}\left(v_{2}\right)+b_{1}\left(v_{3}\right), & \text { if } v=v_{L^{\prime}} \\ b_{1}(v), & \text { otherwise }\end{cases}
$$

Then as $b_{1} \in Z\left(G_{v_{1}}, Z_{3}\right), b^{\prime} \in Z\left(G^{\prime}, Z_{3}\right)$.
As $G_{v_{1}}$ is essentially 6-edge-connected, so is G^{\prime}. By (1), G^{\prime} satisfies (i). For any (Z_{3}, b^{\prime})-NZF g of G^{\prime}, by Lemma $2.8, g$ can be extended to a $\left(Z_{3}, b_{1}\right)$-NZF f_{1} of $G_{v_{1}}$, and by Lemma $2.5, f_{1}$ can be extended to a ($\left.Z_{3}, b\right)$-NZF f of G. Therefore G satisfies (i), a contrary to (1).
Case 2. $v_{0} \in D_{4}(G)$.
Since $G \in \mathcal{F}$, either G has two \mathscr{H}-maximal subgraphs $H^{\prime}, H^{\prime \prime}$ isomorphic to K_{3}, with $v_{0} \in V\left(H^{\prime}\right) \cap V\left(H^{\prime \prime}\right)$, or G has an \mathscr{H}-maximal subgraph $H \cong H_{2}$ with $v_{0} \in V(H)$, as by Claim $4, H \cong H_{0}$ is impossible.
Case 2a. Suppose $v_{0} \in V\left(H^{\prime}\right) \cap V\left(H^{\prime \prime}\right)$ for two maximal subgraph $H^{\prime} \cong H^{\prime \prime} \cong K_{3}$ (see Fig. 8).
Let $N_{G}\left(v_{0}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Without loss of generality, we may assume that $V\left(H^{\prime \prime}\right)=\left\{v_{0}, v_{3}, v_{4}\right\}$ and $u \notin V\left(H^{\prime \prime}\right)$. Let $Y=\left\{v_{4} v_{0}, v_{4} v_{3}\right\}$ and define $G_{\left[v_{4}, Y\right]}$ as in Definition 2.6. Denote the two parallel edges joining v_{0} and v_{3} by e_{1}, e_{2}. Let $G_{v_{4}}=G_{\left[v_{4}, Y\right]} /\left\{e_{1}, e_{2}\right\}$. Then $N\left(G_{v_{4}}\right)<N(G)$. As before, if $G_{v_{4}}$ has an essential edge cut X with $|X|<6$, then X must separate v_{4} and v_{0} in $G_{v_{4}}$, and so $X \cup\left\{v_{4} v_{0}, v_{4} v_{3}\right\}$ is a cyclical edge cut of G. It follows by Claim 2 that $G_{v_{4}}$ is essentially 6-edge-connected. By (1), $G_{v_{4}}$ satisfies Theorem 4.2(i). By Lemma 2.7, G also satisfies Theorem 4.2(i), contrary to (1).
Case 2 b . Suppose v_{0} is contained in a subgraph $H \cong H_{2}$.
Since $G \in \mathcal{F}, d_{G}\left(v_{0}\right)=d_{H}\left(v_{0}\right)=4, G$ must have a 2 -circuit which does not contain u as a vertex, contrary to (4). This precludes Case 2.
Case 3. $v_{0} \in D_{5}(G)$.
Since $G \in \mathcal{F}$, by the definition of \mathcal{F}, G must have two \mathscr{H}-maximal subgraphs $H^{\prime}, H^{\prime \prime}$ such that $H^{\prime} \in\left\{K_{3}, H_{4}\right\}$ and $H^{\prime \prime} \in\left\{H_{1}, H_{2}, H_{3}\right\}$ with $v_{0} \in V\left(H^{\prime}\right) \cap D_{3}\left(H^{\prime \prime}\right)$. By (4), H^{\prime} and $H^{\prime \prime}$ cannot both have multiple edges, and so

$$
\begin{equation*}
\left(H^{\prime}, H^{\prime \prime}\right) \in\left\{\left(K_{3}, H_{1}\right),\left(H_{4}, H_{1}\right),\left(K_{3}, H_{2}\right),\left(K_{3}, H_{3}\right)\right\} . \tag{7}
\end{equation*}
$$

If $\left(H^{\prime}, H^{\prime \prime}\right)=\left(K_{3}, H_{3}\right)$, (see Fig. 9), then let $V\left(K_{3}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$ and $V\left(H_{3}\right)=\left\{v_{0}, v_{3}\right\}$. By (4), $u=v_{3}$. Let $V_{1}=\left\{v_{0}, u\right\}$, $V_{2}=V(G)-V_{1}$, and W be the set of edges with one end in V_{1} and the other in V_{2}. Since $d_{G}(u) \leq 8,|W| \leq 2+d_{G}(u)-3<8$, and so X is a cyclical edge cut of G with at most 7 edges, contrary to Claim 2.

Assume that $\left(H^{\prime}, H^{\prime \prime}\right)=\left(K_{3}, H_{1}\right)$. Let $V\left(K_{3}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$, and define $Y=\left\{v_{0} v_{1}, v_{0} v_{2}\right\}$. Define $G_{\left[v_{0}, Y\right]}$ as in Definition 2.6. Then $N\left(G_{\left[v_{0}, Y\right]}\right)<N(G)$. If $G_{\left[v_{0}, Y\right]}$ has an essential edge cut X with $|X|<6$, then X must separate $V\left(K_{3}\right)-\left\{v_{0}\right\}$ and $V\left(H_{1}\right)-\left\{v_{0}\right\}$ in $G_{\left[v_{0}, Y\right]}$, and so $X \cup\left\{v_{0} v_{1}, v_{0} v_{2}\right\}$ is a cyclical edge cut of G. It follows by Claim 2 that $G_{\left[v_{0}, Y\right]}$ is essentially 6-edge-connected. By (1), $G_{\left[v_{0}, Y\right]}$ satisfies (i). By Lemma 2.7, G also satisfies (i) of Theorem 4.2, contrary to (1).

Fig. 9. $\left(H^{\prime}, H^{\prime \prime}\right)=\left(K_{3}, H_{3}\right)$ in Case 3.

Fig. 10. $\left(H^{\prime}, H^{\prime \prime}\right)=\left(H_{4}, H_{1}\right)$ in Case 3.

Fig. 11. $\left(H^{\prime}, H^{\prime \prime}\right)=\left(K_{3}, H_{2}\right)$ in Case 3.
Next, we assume that $\left(H^{\prime}, H^{\prime \prime}\right)=\left(H_{4}, H_{1}\right)$. Then by (4), we denote $V\left(H_{1}\right)=\left\{v_{0}, z_{1}, z_{2}, z_{3}\right\}$ and $V\left(H_{4}\right)=\left\{v_{0}, u\right\}$ (see Fig. 10). Let $G_{z_{1}}$ be the graph obtained from G by first splitting the vertex $z_{1} \in V(G)$ into z_{1}, z_{1}^{\prime} (where z_{1}^{\prime} is adjacent to v_{0}, z_{2}, z_{3}), deleting the edge $z_{1}^{\prime} z_{2}$, and then contracting $z_{1}^{\prime} z_{3}$. If $G_{z_{1}}$ has an essential edge cut X with $|X|<6$, then X must separate z_{1} and v_{0}, z_{2}, z_{3} in $G_{z_{1}}$, and so $X \cup\left\{z_{1} v_{0}, z_{1} z_{2}, z_{1} z_{3}\right\}$ is a cyclical edge cut of G. It follows by Claim 2 that $G_{z_{1}}$ is essentially 6 -edge-connected. Let $L^{\prime}=G_{z_{1}}\left[\left\{v_{0}, z_{2}, z_{3}\right\}\right]$. As L^{\prime} is a 3 vertex graph with 4 edges, $L^{\prime} \in\left\langle Z_{3}\right\rangle$. Let $G^{\prime}=G_{z_{1}} / L^{\prime}$. As $G_{z_{1}}$ is essentially 6-edge-connected, so is G^{\prime}. By (1), G^{\prime} satisfies (i). By Lemma 2.8, $G_{z_{1}}$ satisfies (i). It follows by Lemma 2.5 that G satisfies (i), a contrary to (1).

Therefore, we must have $\left(H^{\prime}, H^{\prime \prime}\right)=\left(K_{3}, H_{2}\right)$. Since $v_{0} \in V\left(H^{\prime}\right) \cap V\left(H^{\prime \prime}\right)$, we may assume that $V\left(H^{\prime}\right)=\left\{v_{0}, v_{1}, v_{2}\right\}$. By (4), u must be the only vertex of degree 4 in $H^{\prime \prime}$. Let e_{1} and e_{2} denote the two parallel edges joining v_{0} and u (see Fig. 11).

Note that $d_{G}\left(v_{1}\right) \geq 6$. Let $Y=\left\{v_{1} v_{0}, v_{1} v_{2}\right\}$. Define $G_{\left[v_{1}, Y\right]}$ as in Definition 2.6. By the definition of $\mathcal{F}, G_{\left[v_{1}, Y\right]} \in \mathcal{F}$. If $G_{\left[v_{1}, Y\right]}$ has an essential edge cut X with $|X|<6$, then X must separate v_{1} and v_{0} (see Fig. 10) in $G_{\left[v_{1}, Y\right]}$, and so $X \cup\left\{v_{1} v_{0}, v_{1} v_{2}\right\}$ is a cyclical edge cut of G. It follows by Claim 2 that $G_{\left[v_{1}, Y\right]}$ is essentially 6-edge-connected.

Let $L^{\prime}=G_{\left[v_{1}, Y\right]}\left[\left\{v_{0}, v_{2}\right\}\right]$, which is a 2-circuit, and so $L^{\prime} \in\left\langle Z_{3}\right\rangle$. Let $G^{\prime}=G_{\left[v_{1}, Y\right]} / L^{\prime}$. As $G_{\left[v_{1}, Y\right]}$ is essentially 6-edgeconnected, so is G^{\prime}. By (1), G^{\prime} satisfies (i). By Lemma 2.8, $G_{\left[v_{1}, Y\right]}$ satisfies (i). It follows by Lemma 2.7 that G satisfies (i), contrary to (1). This completes the proof for Case 3.

As all the cases lead to contradictions, the theorem is established.

References

[1] L. Beineke, Derived Graphs and Digraphs, Beiträge zur Graphentheorie, Teubner, Leipzig, 1968.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[3] J.J. Chen, E. Eschen, H.J. Lai, Group connectivity of certain graphs, Ars Combin. 89 (2008) 141-158.
[4] Z.-H. Chen, H.-J. Lai, H.Y. Lai, Nowhere zero flows in line graphs, Discrete Math. 230 (2001) 133-141.
[5] G. Fan, H.-J. Lai, R. Xu, C.Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory, Ser. B 98 (2008) $1325-1336$.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.
[7] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory, Ser. B 26 (1979) 205-216.
[8] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, R. Wilson (Eds.), in: Selected Topics in Graph Theory, vol. 3, Academic Press, London, New York, 1988, pp. 91-95.
[9] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs - a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory, Ser. B 56 (1992) 165-182.
[10] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combin. Theory, Ser. B 83 (2001) 258-261.
[11] H.-J. Lai, Group connectivity in 3-edge-connected chordal graph, Graphs Combin. 16 (2000) 165-176.
[12] H.-J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory 42 (2003) 211-219.
[13] H.-J. Lai, L. Miao, Y.H. Shao, Every line graph of a 4-edge-connected graph is Z_{3}-connected, European J. Combin. 30 (2009) 595-601.
[14] H.-J. Lai, Y.H. Shao, H. Wu, J. Zhou, On mod $(2 p+1)$-orientations of graphs, J. Combin. Theory, Ser. B 99 (2009) 399-406.
[15] H.-J. Lai, R. Xu, J. Zhou, On Group connectivity of graphs, Graphs Combin. 24 (2008) 1-9.
[16] H.-J. Lai, C.Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete Math. 110 (1992) 179-183.
[17] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory, Ser. B 70 (1997) 217-224.
[18] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981) 130-135.
[19] B. Sudakov, Nowhere zero flows in random graphs, J. Combin. Theory, Ser. B 81 (2001) 209-223.
[20] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80-91.
[21] W.T. Tutte, On the algebraic theory of graph colourings, J. Combin. Theory 1 (1966) 15-50.
[22] R. Xu, C.Q. Zhang, Nowhere-zero 3-flows in squares of graphs, Electron. J. Combin. 10 (R5) (2003).
[23] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

[^0]: * Corresponding author at: Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.

 E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

