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a b s t r a c t

Bixby and Cunningham showed that a 3-connected binary matroid
M is graphic if and only if every element belongs to at most two
non-separating cocircuits. Likewise, Lemos showed that such a
matroid M is graphic if and only if it has exactly r(M) + 1 non-
separating cocircuits. Hence the presence inM of either an element
in at least three non-separating cocircuits, or of at least r(M) +

2 non-separating cocircuits, implies that M is non-graphic. We
provide lower bounds on the size of the set of such elements, and
on the number of non-separating cocircuits, in such non-graphic
binary matroids. A computationally efficient method for finding
such lower bounds for specific minor-closed classes of matroids
is given. Applications of this method and other results on sets of
obstructions to a binary matroid being graphic are given.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

There has been much interest in studying non-separating cocircuits in binary matroids as these
cocircuits model vertices in graphs (see, for example, [1–4,6,5,7,8,11,13]). These are cocircuits D in
a connected matroid M such that M \ D is connected. A circuit C in a connected matroid M is non-
separating or contractible if and only if the contractionM/C is connected. A circuit in a graph is called
induced if it does not have any chords in the graph. It is straightforward to check that a circuit C in
a 2-connected graph G is induced and non-separating if and only if C is a non-separating cocircuit of

E-mail addresses: hjlai@math.wvu.edu (H.-J. Lai), manoel@dmat.ufpe.br (M. Lemos), mmreid@olemiss.edu (T.J. Reid),
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M∗(G) unless M(G)/C is a loop (i.e., G is a cycle plus a single chord). We mostly follow Oxley [9] for
terminology. We use R∗(M) to denote the set of non-separating cocircuits of M . Two sets are said
to meet when their intersection is non-empty. The following result of Tutte [11] is a fundamental
characterization of 3-connected planar graphs.

Theorem 1.1. Let G be a 3-connected graph. Then G is planar if and only if every edge meets at most (in
fact, exactly) two non-separating induced circuits.

If M = M(G) is a 3-connected graphic matroid, then every edge of G belongs to exactly two non-
separating cocircuits. The next result of Bixby and Cunningham [1] generalized Tutte’s theorem.

Theorem 1.2. Let M be a 3-connected binary matroid with r(M) ≥ 3.

(i) Each element of M belongs to at least two non-separating cocircuits.
(ii) The family of non-separating cocircuits of M spans the cocycle space of M.
(iii) M is graphic if and only if each element of M belongs to exactly two non-separating cocircuits.

By (iii) above, an element of a 3-connected binary matroid M that belongs to at least three non-
separating cocircuits is an obstruction to the matroid being graphic. Denote the set of such elements
by X(M) = {e ∈ E(M) : |{C∗

∈ R∗(M) : e ∈ C∗
}| ≥ 3}. Then the last part of the theorem can be

restated as a 3-connected binary matroid M is graphic if and only if X(M) = ∅.
The next theorem is due to Lemos [4,5]. Part (ii) of the theorem was conjectured by Wu.

Theorem 1.3. Let M be a 3-connected binary matroid with r(M) ≥ 1.

(i) The family of non-separating cocircuits of M avoiding any element spans a subspace of the cocycle
space of M with dimension r(M) − 1.

(ii) M is graphic if and only if each element of M avoids exactly r(M) − 1 non-separating cocircuits.

In particular, a non-graphic 3-connected matroid M has an element e avoiding at least r(M) non-
separating cocircuits. As this element belongs to at least two non-separating cocircuits, it follows that
M has at least r(M) + 2 non-separating cocircuits. Therefore, the following result is an immediate
consequence of the last theorem.

Corollary 1.4. Let M be a 3-connected binary matroid. Then M is graphic if and only if it contains exactly
r(M) + 1 non-separating cocircuits.

An element of a 3-connected binary matroidM that avoids at least r(M) non-separating cocircuits
is an obstruction to M being graphic according to Theorem 1.3. Denote the set of such elements by
Y (M) = {e ∈ E(M) : |{C∗

∈ R∗(M) : e ∉ C∗
}| ≥ r(M)}. Thus the last part of Theorem 1.3 may be

restated as a 3-connected binary matroid M is graphic if and only if Y (M) = ∅.
In this paper, we consider the following two problems for a non-graphic 3-connected binary

matroidM .

(i) Give a lower bound on the number of non-separating cocircuits forM .
(ii) Study the sets of obstructions toM being graphic.

Next we state the main results of the paper.

Theorem 1.5. If M is a 3-connected non-regular binary matroid, then |X(M) ∩ Y (M)| ≥ 7 and
|R∗(M)| ≥ r(M) + 3.

For each integer r ≥ 4, wewill construct a 3-connected non-regular binarymatroidM having rank
r such that |X(M)| = 7. Moreover, all the matroids in this infinite family have exactly r(M) + 3 non-
separating cocircuits. For regular non-graphic matroids, it is possible that X(M) ∩ Y (M) = ∅, and M
may have exactly r(M) + 2 non-separating cocircuits. We will construct an infinite family of regular
matroidsM with exactly r(M) + 2 non-separating cocircuits.
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Theorem 1.6. If M is a 3-connected non-graphic regular matroid, then

|X(M)| ≥ 3.

We show that the bound given in this theorem is sharp in the last section of the paper. If M is a
matroid and N = M/e for some element e of M , then M is called a lift of N . Let M be a 3-connected
binarymatroid.We define δ(M) = |R∗(M)|− r(M). LetF be aminor-closed class of binarymatroids.
For N ∈ F , we define FN to be the class of 3-connected corank-preserving lifts of N belonging to F
plus the matroid N . We define ∆F (N) = min{δ(M) : M ∈ FN}. The next theorem is a general
result that allows one to compute lower bounds on the number of non-separating cocircuits in many
interesting classes of matroids.

Theorem 1.7. Let M and N be 3-connected matroids belonging to a minor-closed class of binary matroids
F such that r(N) ≥ 3. If N is a minor of M, then

δ(M) ≥ ∆F (N).

In particular, |R∗(M)| ≥ r(M) + ∆F (N).

For some subclasses of non-regular matroids, the next two results show that the bounds in
Theorem 1.5 can be improved.

Theorem 1.8. If M is a 3-connected binary matroid having a minor isomorphic to PG(r, 2)∗ for a fixed
integer r exceeding one, then

|R∗(M)| ≥ r(M) +
4
3
(2r−2

− 1)(2r+1
− 1) + r + 1.

Moreover, |X(M) ∩ Y (M)| ≥ 2r+1
− 1.

This result is also sharp. We will construct an infinite family of matroids that attain both bounds
(with X(M) ⊆ Y (M) for each matroid in this family). Moreover, for each integer s such that s ≥

r(PG(r, 2)∗), there is a matroid in this family with rank equal to s. In particular, the lower bound for
|R∗(M)| cannot be improved by any other function involving only r(M) and r .

Theorem 1.9. If M is a 3-connected cographic matroid with a minor isomorphic to M∗(Kn) for some
n ≥ 5, then

|R∗(M)| ≥ r(M) +


n − 1
3


.

Moreover, |X(M) ∩ Y (M)| ≥
 n
2


.

This result is also sharp. We will construct an infinite family of matroids that attains both bounds
(with X(M) ⊆ Y (M) for each matroid in this family).

The rest of the paper is arranged as follows. In Section 2, we give the proofs of our main results.
In Section 3, we construct several infinite families of matroids to show that the bounds in our main
results are best possible.

2. Proofs of the main results

In this section, we present the proofs of our main results. Wewill first give several lemmas needed
to prove our main results. We begin with some notation. For an element e of a 3-connected binary
matroidM , we define

γM(e) = |{C∗
∈ R∗(M) : e ∈ C∗

}| − 2.
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By Theorem 1.2, γM(e) ≥ 0. We also set

Γ (M) =

−
e∈E(M)

γM(e) =

 −
C∈R∗(M)

|C |


− 2|E(M)|.

By Theorem 1.2, M is graphic if and only if Γ (M) = 0. Observe that

Γ (M) =

−
e∈X(M)

γM(e),

and hence Γ (M) is an upper bound for |X(M)|.
Whittle [12] gave the following consequence of Seymour’s splitter theorem [10]. The

cosimplification of a matroidM is denoted by co(M).

Lemma 2.1. Suppose that N is a 3-connected minor of a 3-connected matroid M. If r∗(M) > r∗(N), then
there is an element e of E(M) such that co(M \ e) is 3-connected with an N-minor.

The next lemma is due to Lemos [4].

Lemma 2.2. Suppose that e is an element of a 3-connected binary matroid M such that co(M\e)
is 3-connected. Then it is possible to choose the ground set of co(M \ e) such that, for each C∗

∈

R∗(co(M\e)), C∗1X ∈ R∗(M), where X = ∅, X = {e}, or X = T ∗
− e, for some triad T ∗ meeting

both e and C∗.

The next lemma is a special case of Lemos [5, Lemma 3.1].

Lemma 2.3. Suppose that e is an element of a 3-connected binary matroid M such that co(M\e) is
3-connected. Then δ(M) ≥ δ(co(M\e)).

Lemma 2.4. Let M and N be 3-connected matroids belonging to a minor-closed class of binary matroids
F such that r(N) ≥ 3. If N is a minor of M, then

|X(M)| ≥ min{|X(H)| : H ∈ FN}

|X(M) ∩ Y (M)| ≥ min{|X(H) ∩ Y (H)| : H ∈ FN}

Γ (M) ≥ min{Γ (H) : H ∈ FN}.

Proof. We prove the result by induction on r∗(M). If r∗(M) = r∗(N), then M belongs to FN (see the
notation after Theorem 1.6 for the definition of FN ) and the result follows by definition. Assume that
r∗(M) > r∗(N). By Lemma 2.1, there is an element e ofM such that co(M \e) is a 3-connectedmatroid
having N as a minor.

By Lemma2.2, it is possible to choose the ground set of co(M\e) such that, for each C∗
∈ R∗(co(M\

e)), C∗1X ∈ R∗(M), where X = ∅, X = {e}, or X = T ∗
− e, for some triad T ∗ meeting both e and C∗.

For f ∈ X(co(M \ e)), let C∗

1 , C∗

2 , . . . , C∗

k be the non-separating cocircuits of co(M\e) that contain
f . For i ∈ {1, 2, . . . , k}, choose Xi as described in the previous paragraph such that C∗

i 1Xi is a non-
separating cocircuit ofM . Note that f ∈ C∗

i 1Xi unless f ∈ Xi. In this case, there is a triad T ∗ ofM such
that {e, f } ⊆ T ∗, say T ∗

= {e, f , f ′
}. Now there are two cases to consider.

Case 1. T ∗ does not exist.
Hence f ∈ X(M) and

γM(f ) ≥ γco(M\e)(f ). (1)

Moreover, by Lemos [5, Lemma 3.1], when f ∈ Y (co(M\e)), we have also that f ∈ Y (M).
Case 2. T ∗ exists.

In particular, T ∗ is unique, as is f ′. Thus C∗

i 1Xi is a non-separating cocircuit ofM that contains f or
f ′. As T ∗ is a non-separating cocircuit ofM that contains both f and f ′, it follows that

|{C∗
∈ R∗(M) : f ∈ C∗

}| + |{C∗
∈ R∗(M) : f ′

∈ C∗
}| ≥ k + 2

= |{C∗
∈ R∗

f (co(M \ e)) : f ∈ C∗
}| + 2
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and so

γM(f ) + γM(f ′) ≥ γco(M\e)(f ). (2)

As γco(M\e)(f ) ≥ 1, it follows that γM(f ) ≥ 1 or γM(f ′) ≥ 1. Thus f or f ′ belongs to X(M). Moreover,
by Lemos [5, Lemma 3.1], when f ∈ Y (co(M \ e)), we have also that {f ′, f } ⊆ Y (M).

For both of the cases, we conclude that, for each element f of X(co(M\e)) or X(co(M\e)) ∩

Y (co(M\e)), there is an element f ′′ belonging to the same series class as f in M\e such that f ′′

belongs to respectively X(M) or X(M) ∩ Y (M). Thus |X(M)| ≥ |X(co(M\e))| and |X(M) ∩ Y (M)| ≥

|X(co(M\e))∩Y (co(M\e))|. The first two inequalities follow by induction. By (1) and (2), we conclude
that, for each series class S ofM \ e,−

g∈S

γM(g) ≥ γco(M\e)(f ),

where f ∈ S ∩ E(co(M \ e)). Hence Γ (M) ≥ Γ (co(M \ e)). The third inequality also follows by
induction. �

Let B and R denote, respectively, the class of binary matroids and the class of regular matroids.

Lemma 2.5. If M is a 3-connected binary matroid having a minor isomorphic to P(r, 2)∗ for a fixed r
exceeding one, then |X(M) ∩ Y (M)| ≥ 2r+1

− 1. Moreover,

Γ (M) ≥ (2r+1
− 1)(2r

− 3).

Proof. As PG(r, 2)∗ has no 3-connected corank-preserving binary lift, it follows that BPG(r,2)∗ =

{PG(r, 2)∗}. By Lemma 2.4,

|X(M) ∩ Y (M)| ≥ |X(PG(r, 2)∗) ∩ Y (PG(r, 2)∗)| = |E(PG(r, 2)∗)| = 2r+1
− 1,

and Γ (M) ≥ Γ (PG(r, 2)∗) = (2r+1
− 1)(2r

− 3).

This completes the proof of the lemma. �

Proof of Theorem 1.5. The result holds for F7. Assume thatM is not isomorphic to F7. By [10, (7.6)], F7
is a splitter of the class of 3-connected binary matroids without an F∗

7 -minor. We deduce that M has
an F∗

7 -minor. As F7 = PG(2, 2), the result follows from Lemma 2.5. Moreover, as X(M)∩Y (M) ≠ ∅, we
conclude thatM has at least r(M) + 3 non-separating cocircuits because there is an element e that is
contained in at least three non-separating cocircuits and that avoids at least r(M) such cocircuits. �

Let A and B be the partite sets of K3,3. We use K ′

3,3, K
′′

3,3, K
′′′

3,3 to denote, respectively, the
simple graph obtained by adding one, two, or three edges connecting vertices in A. We use
K ′

3,3+, K ′′

3,3+, K ′′′

3,3+, K ′′

3,3++
to denote, respectively, the simple graphs obtained from K ′

3,3, K
′′

3,3, K
′′′

3,3,

K ′′

3,3 by adding one, one, one, and two edges connecting vertices in the set B.

Proof of Theorem 1.6. If M is isomorphic to M∗(K5), then the result follows. Assume that M is
not isomorphic to M∗(K5). By [10, (7.5)], M∗(K5) is a splitter for the class of regular matroids
without a minor isomorphic to M∗(K3,3). Therefore, M has a minor isomorphic to M∗(K3,3). It
is easily verified that the unique 3-connected regular corank-preserving lifts of M∗(K3,3) are
M∗(K ′

3,3), M∗(K ′′

3,3), M∗(K ′′′

3,3),M
∗(K ′

3,3+), M∗(K ′′

3,3+), M∗(K ′′′

3,3+), M∗(K ′′

3,3++
), R10,M(K6 \ e), and

M(K6). Thus we have that min{|X(H)| : H ∈ RM∗(K3,3)} = |X(M∗(K ′′′

3,3))| = 3. The result follows from
Lemma 2.4. �

Proposition 2.6. If M is a 3-connected cographic matroid with a minor isomorphic to M∗(Kn), for some
n ≥ 5, then

|X(M) ∩ Y (M)| ≥

n
2


.

Moreover, Γ (M) ≥
n(n−1)(n−4)

2 .
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Proof. Note that C∗ is a non-separating cocircuit of M∗(Kn) if and only if C∗ is a contractible circuit
of M(Kn), and this is true if and only if C∗ is a triangle of Kn. As M∗(Kn) has no 3-connected rank-
preserving lift in the class of cographic matroids F , it follows that FM∗(Kn) = {M∗(Kn)}. By Lemma 2.4

|X(M) ∩ Y (M)| ≥ |X(M∗(Kn)) ∩ Y (M∗(Kn))| = |E(M∗(Kn))| =

n
2


,

and Γ (M) ≥ Γ (M∗(Kn)) =
n(n − 1)(n − 4)

2
.

This completes the proof of the proposition. �

Proof of Theorem 1.7. If r∗(M) = r∗(N), then M = N , or M is a corank-preserving lift of N and
the result follows by definition. Assume that r∗(M) > r∗(N). By Lemma 2.1, M has an element
e such that co(M \ e) is a 3-connected matroid having a minor isomorphic to N . By induction,
δ(co(M \ e)) ≥ ∆F (N). The result follows by Lemma 2.3. �

Note that Theorem 1.7 and Lemma 2.4 reduces the problem of finding lower bounds for
|X(M)|, |X(M) ∩ Y (M)|, Γ (M), and δ(M) for matroids M in F having a fixed minor N in the class
to a computation of such numbers for the 3-connected corank-preserving lifts on N that are in the
class. These numbers can be computed by a computer, for example.

Proof of Theorem 1.8. By Theorem 1.7,

|R∗(M)| ≥ r(M) + ∆F (PG(r, 2)∗).

As PG(r, 2)∗ has no 3-connected lift in the class of binary matroids, it follows that ∆F (PG(r, 2)∗) =

δ(PG(r, 2)∗) = |R∗(PG(r, 2)∗)| − r(PG(r, 2)∗). But C∗ is a non-separating cocircuit of PG(r, 2)∗ if and
only if C∗ is a contractible circuit of PG(r, 2) if and only if C∗ is a triangle of PG(r, 2). Therefore,

|R∗(PG(r, 2)∗)| =
(2r

− 1)(2r+1
− 1)

3
.

The first part of the result follows because r(PG(r, 2)∗) = 2r+1
− r − 2. Now the theorem follows by

Lemma 2.5. �

Proof of Theorem 1.9. By Theorem 1.7,

|R∗(M)| ≥ r(M) + ∆F (M∗(Kn)).

As M∗(Kn) has no 3-connected lift in the class of cographic matroids, it follows that ∆F (M∗(Kn)) =

δ(M∗(Kn)) = |R∗(M∗(Kn))| − r(M∗(Kn)). But C∗ is a non-separating cocircuit ofM∗(Kn) if and only if
C∗ is a contractible circuit of M(Kn) if and only if C∗ is a triangle of Kn. Therefore,

|R∗(M∗(Kn))| =

n
3


.

The first part of the result follows because r(M∗(Kn)) = |E(Kn)| − [|V (Kn)| − 1]. Now the theorem
follows by Proposition 2.6. �

3. Extremal examples

In this section, we describe the construction of several families of extremal examples. The
construction is the same; the only difference is as regards the matroid with which we start. If the
startingmatroid has rank r , then the family contains amatroid with rank s, for each s ≥ r . The bounds
of the form r(M) + k cannot be replaced by any other function involving only r(M).

In the following example instead of using the dual of the operation of generalized parallel
connection, we consider contractible circuits. Note that a set is a non-separating cocircuit of M∗ if
and only if it is a contractible circuit ofM .
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Lemma 3.1. Let N be a 3-connected binary matroid having a contractible triangle T . Suppose that T is
also a triangle of a rank-k wheel W different from the rim, for k ≥ 3, satisfying E(N) ∩ E(W ) = T . If
M = PT (N,W ) is the generalized parallel connection of N and W along T , then

R∗(M∗) = [R∗(N∗) − {T }] ∪ {R, T1, T2, . . . , Tk−1}, (3)

where R is the rim of W and T1, T2, . . . , Tk−1 are the triangles of W different from T and R. Moreover,
|R∗(M)| − r(M) = |R∗(N)| − r(N) and

γM(e) =


γN(e) when e ∈ E(N)
0 when e ∈ E(W ) − T .

Therefore, X(M) = X(N) and Γ (M) = Γ (N).

Proof. Assume that T = {a, b, c}, where a and b are spokes ofW and c belongs to the rim ofW . First,
we consider the contractible circuits C ofM that contain an element e of E(W ) − T . We establish that
C can only be one of the circuits R, T1, T2, . . . , Tk−1. In particular, γM(e) = 0, for e ∈ E(W ) − T .

First suppose that e is a spoke of W other than a and b. We show next that e belongs to exactly
two contractible circuits of M , namely, the triangles of W that contain e. Let T ∗ be the triad of W and
so of M that contains e, say T ∗

= {e, f1, f2}. For i ∈ {1, 2}, T ′

i = {e, fi, ei} is a triangle of W and so of
M , for some spoke ei of W . If C is a contractible circuit of M that contains e, then, by orthogonality, C
contains f1 or f2, say f1. As e1 is a loop ofM/{e, f1}, it follows that e1 ∈ C and so C = T ′

1.
Nowweassume that e belongs to the rimofW and e ≠ c. Then e belongs to exactly two contractible

circuits of M , namely, R and the triangle of W different from R that contains e. Indeed, let C be a
contractible circuit of M that contains e. If C contains a spoke of W different from a and b, then, by
the previous paragraph, C is a triangle of W and so the unique triangle of W that contains e and is
different from R. Assume that C does not contain a spoke ofW different from a and b. By orthogonality,
C contains all of the rim R ofW with the possible exception of the element c . The set of spokes S ofW
is a parallel class and c is a loop of N/(R − c). Therefore, C = R.

Now,we need to find all contractible circuits C ofM such that C∩[E(W )−T ] = ∅ and so C ⊆ E(N).
In particular, C is a circuit of N . Note that C ≠ T . Otherwise,

rM/T (E(N) − T ) + rM/T (E(W ) − T ) = [rM(E(N)) − 2] + [rM(E(W )) − 2]
= [r(N) + r(W )] − 4
= [r(M) + 2] − 4
= r(M) − 2
= r(M/T ).

Therefore, {E(N) − T , E(W ) − T } is a 1-separation ofM/T ; a contradiction.
Case 1. C ∩ T = ∅.

First, we prove that rN/C (T ) = rM/C (T ) = 2. If rM/C (T ) < 2, then rM/C (T ) = 1 because no element
ofM/C is a loop ofM/C . Moreover, T is contained in a parallel class ofM/C . If X is a 2-element subset
of T , then X ∪ Y is a circuit ofM , for some Y ⊆ C . Hence (X ∪ Y )1T = (T − X) ∪ Y contains a circuit
D such that T − X ⊆ D and D − (T − X) ⊆ Y ⊆ C . Thus T − X contains a circuit of M/C . That is, the
unique element of T −X is a loop ofM/C; a contradiction. Thus rN/C (T ) = rM/C (T ) = 2. SoM/C is the
generalized parallel connection of N/C with W along T . Now it is straightforward to check that N/C
is connected if and only ifM/C is connected.
Case 2. C ∩ T ≠ ∅, say C ∩ F = {e}.

In this case,M/C is the generalized parallel connection ofN/C andW/e along the 2-element circuit
T − e. So again,M/C is connected if and only if N/C is connected.

From Cases 1 and 2, we conclude that for C ⊆ E(N), C ≠ T , C is a non-separating cocircuit ofM∗ if
and only if C is a non-separating cocircuit ofN∗. Thus (3) follows. This also implies that γM(e) = γN(e),
when e ∈ E(N). Indeed, if e ∈ T , then just one of the cocircuits R, T1, T2, . . . , Tk−1 contains e; this
compensates for the loss of T when one goes from the computation of γN(e) to the computation of
γM(e). �
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Now, we present some consequences of this lemma. We construct a family of extremal examples
having infinitely many matroids for each result listed in the introduction. We start with a small
extremal example (which is easily checked), and for each r bigger that the rank of this extremal
example, we construct another one consecutively.

If N = F7, then the dual of M is an extremal example for Theorem 1.5 because F∗

7 is an extremal
example.

If N = M(K ′′′

3,3), then M is a 3-connected graphic matroid (use for T a triangle containing a vertex
of degree 3 of K ′′′

3,3). The dual ofM is an extremal example for Theorem 1.6.
If N = PG(r, 2), for some r ≥ 2, then M is a 3-connected non-regular binary matroid. Moreover,

the dual ofM is an extremal example for Theorem 1.8 and Lemma 2.5 because PG(r, 2)∗ is an extremal
example.

If N = M(Kn), for some n ≥ 4, then M is a 3-connected graphic matroid. Moreover, the dual of M
is an extremal example for Theorem 1.9 and Proposition 2.6 becauseM∗(Kn) is an extremal example.

Thus each one of the bounds given in this paper is attained by an infinite family of non-isomorphic
matroids.
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