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a b s t r a c t

The design of an n processor network with a given number of connections from each
processor and with a desirable strength of the network can be modeled as a degree
sequence realization problem with certain desirable graphical properties. A nonincreasing
sequence d = (d1, d2, . . . , dn) is graphic if there is a simple graph Gwith degree sequence
d. In this paper, it is proved that for a positive integer k, a graphic sequence d has a simple
realization G which has k edge-disjoint spanning trees if and only if either both n = 1 and
d1 = 0, or n ≥ 2 and both dn ≥ k and

∑n
i=1 di ≥ 2k(n − 1).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of designing networks with n processors v1, v2, . . . , vn such that, for a given sequence of
positive integers d1, d2, . . . , dn, it is expected that each processor vi will be connected to other processors by di connections.
It is further expected that such networks will have certain levels of strengths. This problem can be modeled as the problem
of determining whether a (graphical) degree sequence has realizations with certain graphical properties. Motivated by the
research in [4], we shall consider the strength of the graph as the property of having k edge-spanning trees.

This paper studies finite and undirected graphs without loops. Undefined terms can be found in [2]. In particular, ω(G)
denotes the number of components of a graph G. For a vertex v ∈ V (G) and a subgraph K of G, dK (v) is the number of
vertices in K that are adjacent to v in G. If X ⊆ E(G), then G[X] is the subgraph of G induced by the edge subset X , and
G(X) is the spanning subgraph of G with edge set X . A graph G is nontrivial if E(G) ≠ ∅. A sequence d = (d1, d2, . . . , dn) is
nonincreasing if d1 ≥ d2 ≥ · · · ≥ dn. A sequence d = (d1, d2, . . . , dn) is graphic if there is a simple graph G with degree
sequence d. In this case, this graph G is a realization of d. We will also call G a d-realization.

Many researchers have been investigating graphic degree sequences that have a realization with certain graphical
properties. See [1,5–7,12–14], among others. An excellent and resourceful survey by Li can be found in [10].

In this paper, we focus on the investigation of graphic sequences that have realizationswithmany edge-disjoint spanning
trees.

In Section 2,we develop some useful properties related to graphswith at least k edge-disjoint spanning trees. In Section 3,
we present a proof for the following characterization of graphic sequenceswith realizations having k edge-disjoint spanning
trees.
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Theorem 1.1. A nonincreasing graphic sequence d = (d1, d2, . . . , dn) has a realization G with k edge-disjoint spanning trees if
and only if either n = 1 and d1 = 0, or n ≥ 2 and both of the following hold:

(i) dn ≥ k.
(ii)

∑n
i=1 di ≥ 2k(n − 1).

2. Properties of graphs with k edge-disjoint spanning trees

Let G be a graph, and k ≥ 2 be an integer. Let τ(G) denote the number of edge-disjoint spanning trees of G, and Tk the set
of all graphs with τ(G) ≥ k. By definition, K1 ∈ Tk, for any integer k > 0. In this section, we summarize and develop some
useful properties on Tk, some of which were first introduced in [11], and are later extended to matroids in [8,9].

For an edge subset X ⊂ E(G), a contraction of G, denoted by G/X , is the graph obtained first from G by identifying the two
ends of each edge in X , and then deleting all the resulting loops. When X = {e}, we use G/e for G/{e}. Moreover, we define
G/∅ = G.

Proposition 2.1 (Liu et al., Lemma 2.1 in [11]). For any integer k, Tk is a family of connected graphs such that each of the following
holds.

(C1) K1 ∈ Tk.
(C2) If e ∈ E(G) and if G ∈ Tk, then G/e ∈ Tk.
(C3) If H is a subgraph of G, and if H,G/H ∈ Tk, then G ∈ Tk.
(C4) If H1 and H2 are two subgraphs of G such that H1,H2 ∈ Tk and V (H1) ∩ V (H2) ≠ ∅, then H1 ∪ H2 ∈ Tk.

Define the density of a subgraph H of Gwith |V (H)| > 1 as follows:

d(H) =
|E(H)|

|V (H)| − 1
, if |V (H)| > 1.

Theorem 2.2 (Yao et al., Theorem 2.4 in [15]). Let G be a multigraph. If d(G) ≥ k, then G has a nontrivial subgraph H such that
H ∈ Tk.

Let G be a nontrivial connected graph. For any positive integer r , a nontrivial subgraphH of G is Tr -maximal if bothH ∈ Tr
and H has no proper subgraph K of G, such that K ∈ Tr . A Tr -maximal subgraph H of G is called an r-region if r = τ(H).
Define τ(G) = max{r : G has a subgraph as an r-region}.

Lemma 2.3 (Liu et al., Lemma 2.3 in [11]). Let r, r ′ > 0 be integers, H,H ′ be an r-region and an r ′-region of G, respectively.
Then exactly one of the following must hold:

(i) V (H) ∩ V (H ′) = ∅,
(ii) r ′

= r and H = H ′,
(iii) r ′ > r and H is a nonspanning subgraph of H ′,
(iv) r ′ < r and H contains H ′ as a non-spanning subgraph.

Theorem 2.4 (Theorem 2.4 in [11]). Let G be a nontrivial connected graph. Then

(a) there exists a positive integer m, and an m-tuple (i1, i2, . . . , im) of positive integers with

τ(G) = i1 < i2 < · · · < im = τ(G),

and a sequence of edge subsets

Em ⊂ · · · ⊂ E2 ⊂ E1 = E(G),

such that each component of the induced subgraphs G[Ej] is an r-region of G for some r with r ≥ ij, (1 ≤ j ≤ m), and such
that at least one component H in G[Ej] is an ij-region of G;

(b) if H is a subgraph of G with τ(H) ≥ ij, then E(H) ⊆ Ej;
(c) the integer m and the sequence of edge subsets are uniquely determined by G.

Lemma 2.5. Let k ≥ 1 be an integer, G be a graph with τ(G) ≥ k. Then each of the following statements holds.

(i) The graph G has a unique edge subset Xk ⊆ E(G), such that every component H of G[Xk] is a Tk-maximal subgraph. In
particular, G ∉ Tk if and only if E(G) ≠ Xk.

(ii) If G ∉ Tk, then G/Xk contains no nontrivial subgraph H ′ with τ(H ′) ≥ k. (G/Xk is called the (τ ≥ k)-reduction of G.)
(iii) If G ∉ Tk, then d(H ′) < k for any nontrivial subgraph H ′ of G/Xk.

Proof. If G ∈ Tk, then Xk = E(G). Hence we assume that G ∉ Tk. Since τ(G) < k ≤ τ(G), there exists an integer j such that
ij−1 < k ≤ ij by Theorem 2.4(a). Let Xk = Eij . Then each component H of G[Xk] is a Tk-maximal subgraph. By Theorem 2.4(c),
Xk is unique. Thus part (i) holds.
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To prove part (ii), we argue by contradiction. We assume G/Xk contains nontrivial subgraph H ′ with τ(H ′) ≥ k and
V (H ′) = {v1, v2, . . . , vh} with h ≥ 2. Without loss of generality, suppose the pre-image of vi in G is Hi, and Hi is nontrivial
for 1 ≤ i ≤ t and is trivial for t + 1 ≤ i ≤ h. We will prove that τ(G′) ≥ k, where G′

= G[∪
h
i=1 V (Hi)]. By induction, if t = 1,

then G′/H1 = H ′, and H ′,H1 ∈ Tk. Therefore, G′
∈ Tk by Proposition 2.1(C3). Assume it’s true for all t ≤ s. For t = s + 1,

consider G′/Hs+1. Then G′/Hs+1 ∈ Tk by induction hypothesis. Thus G′
∈ Tk by Proposition 2.1(C3), and so part (ii) holds.

We argue by contradiction to prove (iii). Assume that d(H ′) ≥ k. Then |E(H ′)| ≥ k(|V (H ′)| − 1). By Theorem 2.2, H ′ has
a nontrivial subgraph H ′′ such that H ′′

∈ Tk. Note that H ′′ is also a nontrivial subgraph of G/Xk, contrary to part (ii). �

Notice that d(G) ≥ k implies τ(G) ≥ k by Theorem 2.2. Therefore if d(G) ≥ k, then the unique edge subset Xk defined in
Lemma 2.5(i) exists.

Lemma 2.6. Let G be a graph satisfying d(G) ≥ k and let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5 (i). If G[Xk] has
at least two components, then for any nontrivial component H of G[Xk], both d(H) ≥ k, and G[Xk] has at least one component H
with d(H) > k.

Proof. For any nontrivial component H of G[Xk], by Lemma 2.5(i), H ∈ Tk. Thus |E(H)| ≥ k(|V (H)| − 1), and so d(H) ≥ k.
Suppose G[Xk] has c components H1, H2, . . . ,Hc with c ≥ 2. By contradiction, assume d(H) = k for any nontrivial

component H of G[Xk]. Let x = |E(G) − Xk|. Then |E(Hi)| = k(|V (Hi)| − 1) for any 1 ≤ i ≤ c and

|E(G)| =

c−
i=1

|E(Hi)| + x =

c−
i=1

(k|V (Hi)| − k) + x = k
c−

i=1

|V (Hi)| − kc + x = k|V (G)| − kc + x.

Therefore, x = |E(G)| − k|V (G)| + kc ≥ k(|V (G)| − 1) − k|V (G)| + kc = k(c − 1).
Let G′

= G/G[Xk]. Then G′ is a multigraph with |V (G′)| = c > 1 and |E(G′)| = x. Therefore, d(G′) ≥ k, contrary to
Lemma 2.5 (iii). Hence G[Xk] has at least one component Hi such that d(Hi) > k. �

Let H1,H2 be two subgraphs of a graph G. Define

E(H1,H2) = {e = uv ∈ E(G) : u ∈ V (H1), v ∈ V (H2)}.

Let α′(G) denote the size of a maximum matching of G and χ ′(G) the edge chromatic number of G. Then we have the
well-known Vizing Theorem.

Theorem 2.7 (Theorem 17.4 of [2]). For any simple graph G on n vertices, ∆(G) ≤ χ ′(G) ≤ ∆(G) + 1 ≤ n.

Since the set of edges of each color is a matching of G, we have the following observation.

Observation 2.8. For any graph G, |E(G)| ≤ χ ′(G)α′(G).

Lemma 2.9. For any simple graph G with |E(G)| ≥ 1, α′(G) ≥


τ(G)

2


.

Proof. We argue by induction on n = |V (G)|. It is trivial if n = 2. Assume that lemma holds for smaller n and n ≥ 3.
Suppose τ(G) = k > 0. Then for any v ∈ V (G), d(v) ≥ k. Assume first that G has a vertex v0 of degree k. Let G′

= G− v0.
Since dG(v0) = k and τ(G) = k, v0 is not a cut-vertex of G. Therefore, G′ is connected and τ(G′) ≥ τ(G) = k. By induction,

α′(G) ≥ α′(G′) ≥


k
2


=


τ(G)

2


.

Hence now we assume that δ(G) ≥ k + 1. Then by Observation 2.8 and Theorem 2.7,

nα′(G) ≥ χ ′(G′)α′(G) ≥ |E(G)| ≥
n
2
(k + 1).

Therefore, α′(G) ≥
k+1
2 ≥

 k
2


. �

Following the terminology in [3], the strength η(G) is defined as

η(G) = min{d(G/X) : |V (X)| < |V (G)|}.

As indicated in Corollary 5 of [3], τ(G) = ⌊η(G)⌋.
A subgraph H of G is η-maximal if for any subgraph H ′ of G that properly contains H, η(H ′) < η(H).

Theorem 2.10 (Theorem 6 in [3], Corollary 3.6 in [9]). For any integer k with d(G) ≥ k, either E(G) is the union of k edge-disjoint
spanning trees, or G has a unique edge subset X such that H = G[X] is η-maximal with η(H) > k.

For a connected graph Gwith τ(G) ≥ k, define Ek(G) = {e ∈ E(G) : τ(G − e) ≥ k}.

Theorem 2.11 (Theorem 4.2 in [9]). Let G be a connected graph with τ(G) ≥ k. Then Ek(G) = E(G) if and only if η(G) > k.
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Lemma 2.12. Let G be a simple graph and let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5 (i). If H ′ and H ′′ are two
components of G(Xk), then each of the following holds.
(i) |E(H ′,H ′′)| < k.
(ii) If d(H ′) > k, then there exists K ⊆ H ′ such that d(K) > k and τ(K − e) ≥ k for any e ∈ E(K).
(iii) If d(H ′) > k, then there exists e′

∈ E(H ′) such that τ(H ′
− e′) ≥ k, and E(G) − Xk has at most one edge joining the ends of

e′ to H ′′.

Proof. By Lemma 2.5(i), both H ′ and H ′′ are Tk-maximal subgraphs of G.
Let v′, v′′ denote the two vertices in G/(H ′

∪ H ′′) onto which H ′ and H ′′ are contracted, respectively. Let G′
= G[V (H ′) ∪

V (H ′′)]. If |E(H ′,H ′′)| = h ≥ k, then L′
= G′/(H ′

∪H ′′)[{v′, v′′
}] ∼= hK2 ∈ Tk. As H ′, L′

∈ Tk, it follows by Proposition 2.1(C3)
that G′/H ′′

∈ Tk. Note that H ′′
∈ Tk, it follows by Proposition 2.1(C3) again that G′

= G[V (H ′) ∪ V (H ′′)] ∈ Tk, contrary to
the assumption that H ′ and H ′′ are Tk-maximal subgraphs of G. Hence we must have |E(H ′,H ′′)| < k, and so (i) follows.

Part (ii) follows from Theorems 2.10 and 2.11 directly.
By Lemma 2.9 and part (ii), α′(K) ≥

 k
2


. Let M be a matching of K of size

 k
2


. Then for any e′

∈ M , K − e′
∈ Tk

by (ii). Since e′
∈ E(K), (H ′

− e′)/(K − e′) = H ′/K . By Proposition 2.1(C2), (H ′
− e′)/(K − e′) ∈ Tk. Therefore,

H ′
− e′

∈ Tk by Proposition 2.1(C3). If for any e′
∈ M ⊂ E(H ′) there are at least two edges joining the ends of e′ to H ′′,

then |E(H ′,H ′′)| ≥ |E(K ,H ′′)| ≥ 2
 k

2


≥ k, contrary to (i). Hence this proves (iii). �

Lemma 2.13. Let G be a nontrivial graph with τ(G) ≥ k. If d(G) = k, then for any nontrivial subgraph H of G, d(H) ≤ k.
Moreover, if τ(H) ≥ k, then d(H) = k.

Proof. Since τ(G) ≥ k and |E(G)| = k(|V (G)| − 1), τ(G) = k and E(G) is a union of k edge-disjoint spanning trees. Let
T1, T2, . . . , Tk be edge-disjoint spanning trees ofG. Then for any nontrivial subgraphH ofG, |E(H)∩E(Ti)| ≤ |V (H)|−1, 1 ≤

i ≤ k. Therefore,

|E(H)| = |E(H) ∩ (∪k
i=1 E(Ti))| =

k−
i=1

|E(H) ∩ E(Ti)| ≤ k(|V (H)| − 1).

Thus d(H) ≤ k. If τ(H) ≥ k, then |E(H)| ≥ k(|V (H)| − 1) and so d(H) ≥ k. This, together with d(H) ≤ k, implies
d(H) = k. �

3. Characterizations of graphic sequences with realizations having k edge-disjoint spanning trees

We present the main result of the paper in this section, which is Theorem 1.1 restated here.

Theorem 3.1. Let d = (d1, d2, . . . , dn) be a nonincreasing graphic sequence. Then d has a realization G in Tk if and only if either
n = 1 and d1 = 0, or n > 1 and each of the following statements holds.
(i) dn ≥ k,
(ii)

∑n
i=1 di ≥ 2k(n − 1).

Proof. The case when n = 1 is trivial and so we shall assume that n > 1. If G ∈ Tk, 2k(|V (G)| − 1) ≤ 2|E(G)| =
∑n

i=1 di
and each vertex has degree at least k. This proves the necessity.

We now prove the sufficiency. Assume d is a nonincreasing graphic sequence satisfying both Theorem 3.1 (i) and (ii). We
argue by contradiction and assume that

every d-realization G is not in Tk. (1)

Suppose G is a d-realization. By (1), G ∉ Tk, and so by Lemma 2.5 (i), G has a unique edge subset Xk ⊆ E(G) such that each
component of G[Xk] is a Tk-maximal subgraph. Let X = E(G) − Xk. Since G ∉ Tk, X ≠ ∅. Suppose G − X has c components,
H1, H2, . . . ,Hc , which are so labeled that d(H1) ≥ d(H2) ≥ · · · ≥ d(Ht) ≥ k, and that Hj = K1 for j = t + 1, . . . , c. Define

F1(G) = {Hi : d(Hi) > k} and F2(G) = {Hi : d(Hi) = k}.

Then |F1(G)| + |F2(G)| = t .
Claim 1: If every d-realization is not in Tk, then there exists a d-realization G such that |F1(G)| = 1.

By contradiction, suppose that for any d-realization G, |F1(G)| ≥ 2. Choose a d-realization G such that

ω(G − X) is minimized, (2)

and among all the d-realizations G satisfying (2), we further choose G so that

|X | is maximized. (3)

As |F1(G)| ≥ 2, we have d(H1), d(H2) > k. By Lemma 2.12(iii), there exist e1 = u1v1 ∈ E(H1) and e2 = u2v2 ∈ E(H2)
such that H1 − e1, H2 − e2 ∈ Tk, and there exists at most one edge in X joining the ends of e1 and e2. Without loss of
generality, assume u1u2, v1v2 ∉ E(G) and let

G1 = (G − {u1v1, u2v2}) ∪ {u1u2, v1v2} and X1 = X ∪ {u1u2, v1v2}. (4)
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Then by the choice of these edges u1u2, v1v2,G1 is also a d-realization. By assumption, G1 ∉ Tk and |F1(G1)| ≥ 2. Since
G1 − X1 = (H1 − u1v1) ∪ (H2 − u2v2) ∪ H3 ∪ · · · ∪ Hc and since each component of G1 − X1 is in Tk, it follows by (2) that X1
is the unique subset of E(G1) such that ω(G1 − X1) = ω(G − X) = c with each component of G1 − X1 being a Tk-maximal
subgraph. Now we have |X1| = |X | + 2, contrary to (3). Thus Claim 1 holds.

By Lemma 2.6, for any graph G′, either G′
∈ Tk or |F1(G′)| ≥ 1. Nowwe prove the theorem by contradiction. Suppose for

every d-realization G,G ∉ Tk. Then by Claim 1, there exists G such that |F1(G)| = 1. Thus we can choose a d-realization G
satisfying

|F1(G)| = 1 with |V (H1)| maximized. (5)

And subject to (5), we further choose G such that

|X | is maximized. (6)

We consider the following cases.
Case 1: t ≥ 2. Thus H2 ≠ K1.

By Lemma 2.12 (iii), there exist e1 ∈ E(H1), e2 ∈ E(H2) such that there is at most one edge in G joining e1 and e2 and
H1 − e1 ∈ Tk. Define G1 and X1 as in (4).

Since d(H2 − e2) < k,H2 − e2 is no longer in Tk. Let Tk-maximal subgraphs of G1[(H1 − e1) ∪ (H2 − e2)] be
H1,2,H2,1, . . . ,H2,t2 where H1 − e1 ⊆ H1,2 and H2,1 · · ·H2,t2 ⊆ H2 − e2. For each H2,i, since d(H2) = k and H2,i ⊆ H2,
by Lemma 2.13 either d(H2,i) = k or H2,i = K1. Notice that G/(H1 ∪ H2) = G1/[(H1 − e1) ∪ (H2 − e2)]. Therefore,
H1,2,H2,1, . . . ,H2,t2 ,H3, . . . ,Hc are Tk-maximal subgraphs of G1. By (5) and F1(G1) = {H1,2},H1,2 = H1 − e1.

Let X ′ be the edge subset of G1 such that G1 − X ′
= H1,2 ∪H2,1 ∪ · · · ∪H2,t2 ∪H3 ∪ · · ·Hc . Then X ≠ X1 and X ⊂ X1 ⊂ X ′,

contrary to (6).
Case 2: t = 1, and so H2 = K1.

In this case, if c = 2, then by Theorem 3.1(i), there must be at least k edges between H1 and H2. Since H1 ∈ Tk, it follows
that G ∈ Tk, contrary to (1). Hence we must have c ≥ 3.

For i ≥ 2, denote V (Hi) = {xi}. Note that for any Hi = K1, there exists an Hj = K1 such that e = xixj ∈ X . For otherwise,
xi must only be adjacent to the vertices in H1. By Theorem 3.1 (i), |E(Hi,H1)| ≥ k, contrary to Lemma 2.12 (i). Without loss
of generality, we assume x2x3 ∈ X . By Lemma 2.12 (ii), there exists a nontrivial subgraph K ⊆ H1 such that K − e ∈ Tk for
any e ∈ E(K).
Claim 2: There exists e′

= uv ∈ E(K) such that ux2, vx3 ∉ E(G).
In order to present the proof, we define

B1 = {v ∈ V (K) : vx2, vx3 ∉ E(G)}, B2 = {v ∈ V (K) : vx2 ∈ E(G), vx3 ∉ E(G)},

B3 = {v ∈ V (K) : vx2 ∉ E(G), vx3 ∈ E(G)}, B4 = {v ∈ V (K) : vx2, vx3 ∈ E(G)}

and let N(B1) = {v ∈ V (K) : ∃u ∈ B1 such that uv ∈ E(K)}. Note that by definition, we have

V (K) = B1 ∪ B2 ∪ B3 ∪ B4. (7)

If B1 = ∅, then N(B2) ∪ N(B3) ⊆ B4, forcing |B4| ≥ k − 1, and so x2 will have at least k edges joining K , contrary to
x2 ∉ V (H1). Hence B1 ≠ ∅. If E(G[B1]) ≠ ∅, then Claim 2 holds. Thus we may assume that E(G[B1]) = ∅. It follows that
N(B1) ∩ B1 = ∅.

Firstly, we shall show that

N(B1) ∩ [B2 ∪ B3] ≠ ∅. (8)

If (8) fails, then by (7), N(B1) ⊆ B4. Since K ∈ Tk, for any vertex v ∈ B1, dK (v) ≥ k. Therefore, |B4| ≥ |N(B1)| ≥ k. But then
by definition of B4, |E(H1,H2)| ≥ |E(B4, x2)| = |B4| ≥ k, contrary to Lemma 2.12 (i). This verifies (8).

By (8), we first assume that there exists v ∈ N(B1) ∩ B2. Thus there exists u ∈ B1 such that uv ∈ E(K). By the definitions
of B2 and B1, both vx3 ∉ E(G) and ux2 ∉ E(G), and so Claim 2 follows.

Next, we assume that there exists u ∈ N(B1) ∩ B3. Thus there exists v ∈ B1 such that uv ∈ E(K). By the definitions of B3
and B1, ux2 ∉ E(G) and vx3 ∉ E(G). Thus, Claim 2 must hold. This completes the proof for Claim 2.

By Claim 2, define

G2 = (G − x2x3 − uv) ∪ {ux2, vx3} and X2 = X − x2x3 ∪ {ux2, vx3}.

Then by the choice of u, v, x2 and x3,G2 is also a d-realization.We shall show that |F1(G2)| = 1. Assume, on the contrary,
that |F1(G2)| ≥ 2. Then there exists S ∈ F1(G2) and S ≠ H1 − uv. By Proposition 2.1(C4), V (S) ∩ V (H1) = ∅. But then S is a
subgraph of G other than H1, contrary to the assumption that |F1(G)| = 1.

By (5), H1 − uv is a Tk-maximal subgraph of G2. Since G2[H2 ∪ · · · ∪ Hc] = G[H2 ∪ · · · ∪ Hc] − x2x3,H2, . . . ,Hc are
Tk-maximal subgraphs of G2. But now |X2| = |X1| + 1, contrary to (6).

This completes the proof of the theorem. �
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