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a b s t r a c t

For integers l and k with l > 0, and k ≥ 0, Ch(l, k) denotes the collection of h-edge-
connected simple graphs G on n vertices such that for every edge-cut X with 2 ≤ |X | ≤ 3,
each component of G − X has at least (n − k)/l vertices. We prove that for any integer
k > 0, there exists an integer N = N(k) such that for any n ≥ N , any graph G ∈ C2(6, k) on
n vertices is supereulerian if and only if G cannot be contracted to a member in a well-
characterized family of graphs. This extends former results in [J. Adv. Math. 28 (1999)
65–69] by Catlin and Li, in [Discrete Appl. Math. 120 (2002) 35–43] by Broersma and Xiong,
in [Discrete Appl. Math. 145 (2005) 422–428] by D. Li, Lai and Zhan, and in [Discrete Math.
309 (2009) 2937–2942] by X. Li, D. Li and Lai.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite, undirected and loopless. Graphs may have multiple edges. A graph G is nontrivial if it
contains at least one edge. We follow Bondy and Murty [2] for undefined notations and terminologies. For a graph G, κ(G)
and κ ′(G) denote the connectivity and the edge-connectivity of graph G, respectively, and O(G) denotes the set of all odd
degree vertices of G. For X ⊂ E(G), the contraction G/X is obtained from G by contracting each edge of X and deleting the
resulting loops. If H ⊂ G, we use G/H instead of G/E(H). A graph G is Eulerian if it is a connected graph with O(G) = ∅. A
graph is supereulerian if it has a spanning Eulerian subgraph. In particular, K1 is both Eulerian and supereulerian.

Throughout this paper, we denote by S the family of all supereulerian graphs. For integers h, l and kwith l > 0, 0 < h ≤ 3
and k ≥ 0, let Ch(l, k) denote the family of h-edge-connected graphs G such that for every bond X with two or three edges,
each component of G − X has at least (|V (G)| − k)/l vertices.

The supereulerian problem of a graph G is to determine whether G is a supereulerian graph. This problemwas first raised
by Boesch et al. [1]. They pointed out in [1] that this problem is very difficult. Pulleyblank [17] showed that determining
if a graph is supereulerian is NP-complete. For the literature concerning the problem, see Catlin’s survey [4] and its
complement [10]. Catlin and Li [9] are the first pioneers who considered the problem of characterizing supereulerian graphs
in the family Ch(l, k). Their study was followed by several researchers.

Definition 1.1. Let K2,3(e) denote the graph obtained from K2,3 by replacing an edge e ∈ E(K2,3) by a path of length 2. Let
m, l, t be natural numbers with t ≥ 2 andm, l ≥ 1. Let K2,t(u, u′) be K2,t with u, u′ being the nonadjacent vertices of degree
t . Let K ′

2,t(u, u
′, u′′) be the graph obtained from K2,t(u, u′) by adding a new vertex u′′ that joins to u′ only. Hence, u′′ has

degree 1 and u has degree t in K ′

2,t(u, u
′, u′′). Let K ′′

2,t(u, u
′, u′′) be the graph obtained from K2,t(u, u′) by adding a new vertex

u′′ that joins to a vertex of degree 2 of K2,t . Hence, u′′ has degree 1 and both u and u′ have degree t in K ′′

2,t(u, u
′, u′′). Let S(m, l)

be the graph obtained from K2,m(u, u′) and K ′

2,l(w, w′, w′′) by identifying u with w, and w′′ with u′; let J(m, l) denote the
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Fig. 1. The graphs in F ′ .

graph obtained from K2,m+1 and a K ′

2,l(w, w′, w′′) by identifying w with 2-vertex and w′′ with an (m + 1)-vertex in K2,m+1,
respectively.

Let F ′
= {S(1, 2), S(2, 3), S(1, 4), J(2, 2), K2,3, K2,5} (see Fig. 1).

Theorem 1.2 (Catlin and Li, Theorem 6 of [9]). If G ∈ C2(5, 0), then G ∈ S if and only if G cannot be contracted to K2,3.

Theorem 1.3 (Broersma and Xiong, Theorem 7 of [3]). Suppose that G ∈ C2(5, 2) and n ≥ 13. Then G ∈ S if and only if G
cannot be contracted to K2,3 or to K2,5.

Theorem 1.4 (Li et al. Theorem 1.3 of [13]). Suppose that G ∈ C2(6, 0). Then G ∈ S if and only if G cannot be contracted to a
member in {K2,3, K2,5 or K2,3(e)}.

Theorem 1.5 (Li et al. Theorem 14 of [14]). Let G ∈ C2(6, 5) be a graph with n = |V (G)| > 35. Then G ∈ S if and only if G
cannot be contracted to a member in F ′.

Chen [10] and Xiong et al. [16] also studied the supereulerian problem for graphs in C3(l, k). Jeager [12] and Catlin [5]
proved that every 4-edge-connected graph is supereulerian, and so the study is of interest only when h < 4.

The supereulerian problem for graphs in C2(6, k), for an arbitrary positive integer k, remains open [14]. Themain purpose
of this paper is to answer this question. The attempt to answer this question leads us to prove an associate result which is
of interest on its own. We prove the following.

Theorem 1.6. Let k > 0 be an integer. Then there exists an integer N(k) ≤ 7k such that, for any graph G ∈ C2(6, k) with
|V (G)| > N(k), G ∈ S if and only if G cannot be contracted to a member in F ′.

2. Preliminaries

A graph G is collapsible if for any even subset R ⊆ V (G), G has a spanning connected subgraph H such that O(H) = R.
The reduction of G is the graph obtained from G by contracting each maximal collapsible subgraph of G to a distinct vertex.
If G is the reduction of itself, then G is reduced.

By definition, the 3-cycle C3 is collapsible, and any collapsible graph is supereulerian.
Define F(G) to be the minimum number of edges that must be added to G so that the resulting graph has two edge-

disjoint spanning trees. The edge arboricity a(G) of a graph G is the minimum number of forests in Gwhose union contains
G. Nash-Williams [15] proved

a(G) = max
H⊆G


|E(H)|

|V (H)| − 1


. (1)

Theorem 2.1 (Catlin). Let G be a graph.
(i) (Theorem 2 in [5]) If F(G) = 0, then G is collapsible.
(ii) (Theorem 3 in [5]) If H is a collapsible subgraph of G, then G ∈ S if and only if G/H ∈ S.
(iii) (Theorem 8(iv) in [5]) If H is a collapsible subgraph of G, then G is collapsible if and only if G/H is collapsible.
(iv) (Theorems 5 and 8(iii) in [5]) If G is reduced, then any subgraph of G is reduced and a(G) ≤ 2.
(v) (Theorem 8(iv) in [5]) If a(G) ≤ 2, then F(G) = 2|V (G)| − |E(G)| − 2. In particular, if G is a reduced graph, then

F(G) = 2|V (G)| − |E(G)| − 2.
(vi) (Lemma 1 in [6]) For any e ∈ E(K3,3), K3,3 − e is collapsible.

Theorem 2.2 (Catlin et al., Theorem 6 in [7]). For a graph G, if maxK⊆G
|E(K)|

|V (K)|−1 ≥ 2, then G has a nontrivial induced subgraph
H that has two edge-disjoint spanning trees, i.e. F(H) = 0.

The following corollary derives from the above two theorems directly.

Corollary 2.3. If G is reduced, then |E(H)|/(|V (H)| − 1) < 2 for any nontrivial induced subgraph H of G.

Proof. By Theorem 2.1(iv) and Eq. (1), |E(H)|/(|V (H)| − 1) ≤ 2 for any nontrivial induced subgraph H of G. Assume there
existsH such that |E(H)|/(|V (H)|−1) = 2. Then by Theorems 2.2 and 2.1(i),G has a nontrivial collapsible subgraph, contrary
to that G is reduced. Hence, |E(H)|/(|V (H)| − 1) < 2. �
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Theorem 2.4 (Catlin, Theorem 7 in [5]). If F(G) ≤ 1, then G is collapsible if and only if κ ′(G) ≥ 2.

Theorem 2.5 (Catlin et al., Theorem 1.3 in [8]). If G is connected and if F(G) ≤ 2, then G is collapsible or the reduction of G is
either K2 or K2,t for some t ≥ 1.

Notation 2.6. For a graph G and an integer i, Di(G) denotes the set of all vertices of degree i in G. Let dG(v) denote the degree of v
in G and di(G) = |Di(G)|. When the graph G is understood in the context, we use the following short-hand notations: Di = Di(G),
d(v) = dG(v) and di = di(G). Moreover, for an integer k ≥ 0, a vertex of degree k in a graph G is sometimes referred as a k-vertex
of G.

Theorem 2.7 (Catlin, Theorem 8 and Lemma 5 of [5]). If G is reduced, then G is simple and has no K3. Moreover, if κ ′(G) ≥ 2,
then

∑3
i=2 |Di(G)| ≥ 4, and when

∑3
i=2 |Di(G)| = 4, G must be Eulerian.

3. An associate result

The main purpose of this section is to prove the following associate result, which plays a key role in the proof of
Theorem 1.6.

Theorem 3.1. If G is a 2-edge-connected reduced graph which satisfies
(i) d2 + d3 ≤ 6,
(ii) d3 + d5 ≤ 2,
then either G ∈ S or G ∈ F ′.

Definition 3.2. Let A = {G : G is a 2-edge-connected reduced graph which satisfies d2 + d3 ≤ 6 and d3 + d5 ≤ 2} and
A3 = {G ∈ A : G ∉ S and F(G) = 3}. Then by the following Lemma 3.3, for any G ∈ A3, we have d2 + d3 = 6, d3 + d5 = 2
and dj = 0 for all j ≥ 6.

We first prove some needed lemmas.

Lemma 3.3. If G ∈ A, then either G is Eulerian or F(G) ≤ 3. Furthermore, if F(G) = 3, then either G is Eulerian or d2 +d3 = 6,
d3 + d5 = 2 and dj = 0 for all j ≥ 6.
Proof. Note that F(G) ≤ 4 since

2F(G) = 4|V (G)| − 2|E(G)| − 4 = 4
−
i≥2

di −
−
i≥2

idi − 4

= 2(d2 + d3) − (d3 + d5) −

−
i≥6

(i − 4)di − 4

≤ 8 − (d3 + d5) −

−
i≥6

(i − 4)di ≤ 8.

If F(G) = 4, then d3 + d5 = 0 and dj = 0 for all j ≥ 6. Since G has no odd-degree vertices, G is Eulerian.
Suppose F(G) = 3. If there exists some j ≥ 6 such that dj > 0, then j = 6, d6 = 1 and d3 + d5 = 0. Therefore, G is

Eulerian. If dj = 0 for all j ≥ 6, then d2 + d3 = 6, d3 + d5 = 2. �

Lemma 3.4. If G ∈ A3, then we must have (d2, d3, d5) ∈ {(4, 2, 0), (5, 1, 1), (6, 0, 2)}.
Proof. If d3 = 2, then d2 = 4 and d5 = 0. If d3 = 1, then d2 = 5 and d5 = 1. If d3 = 0, then d2 = 6 and d5 = 2. �

Lemma 3.5. If a 2-edge-connected graph G ∉ S and |O(G)| = 2, then O(G) is an independent set.
Proof. G has two odd vertices, say u and v. If u and v are adjacent, then G − uv is Eulerian. Therefore, G ∈ S, a
contradiction. �

Lemma 3.6. If G is reduced and e = uv where u, v ∈ D2(G), then the following statements hold.
(i) If G/e ∈ S, then G ∈ S.
(ii) F(G/e) = F(G) − 1.
Proof. Part (i) follows from Lemma 3 of [5]. To prove Part (ii), we first show that the a(G/e) ≤ 2.

By Corollary 2.3, |E(H)|

|V (H)|−1 < 2, for any nontrivial induced subgraph H of G. We now argue by contradiction to show that

a(G/e) ≤ 2, and assume that G/e has a nontrivial induced subgraph L′ with |E(L′)|
|V (L′)|−1 > 2. Let L be the induced subgraph of G

such that either L = L′, or e ∈ E(L) and L/e = L′. Since |E(H)|

|V (H)|−1 < 2, for any nontrivial induced subgraph H of G, we must
have e ∈ E(L).

Since e ∈ E(L), both |E(L)| = |E(L′)| + 1 and |V (L)| ≤ |V (L′)| + 1 hold. Since |E(L′)|
|V (L′)|−1 > 2, |E(L′)| ≥ 2|V (L′)| − 1, which

implies that
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|E(L)|
|V (L)| − 1

≥
|E(L′)| + 1

|V (L′)|
≥

2|V (L′)|

|V (L′)|
= 2,

contrary to |E(L)|
|V (L)|−1 < 2.

Thus a(G/e) ≤ 2. By Theorem 2.1(v),

2F(G/e) = 4|V (G/e)| − 2|E(G/e)| − 4 = 4(|V (G)| − 1) − 2(|E(G)| − 1) − 4
= 4|V (G)| − 2|E(G)| − 4 − 2 = 2F(G) − 2,

and so Part (ii) holds. �

Notation 3.7. Suppose that H is a subgraph of a graph L. Let di,L(H) denote the number of vertices of H of degree i in L, and vH
the vertex in L/H onto which H is contracted.

Lemma 3.8. Let H be a subgraph of a graph L. Then each of the following statement holds:
(i) 4|V (H)|− 2|E(H)|− 4 =

∑
i>0(4− i)di,L(H)+ d(vH)− 4. In particular, if di,L(v) = 0 for all i ≥ 6, i = 1 and H is reduced,

then 2F(H) = 2d2,L(H) + d3,L(H) − d5,L(H) + d(vH) − 4.
(ii) For any H, F(H − e) ≤ F(H) + 1.

Proof. First notice that

2|E(H)| =

−
v∈H

dL(v) − d(vH) =

−
i>0

idi,L(H) − d(vH).

Therefore,

4|V (H)| − 2|E(H)| − 4 = 4
−
i>0

di,L(H) −

−
i>0

idi,L(H) − d(vH)


− 4

=

−
i>0

(4 − i)di,L(H) + d(vH) − 4.

So part (i) holds.
For anyH , suppose X is a set of edges not inH , but adding X toH will result in a graphwith 2 edge disjoint spanning trees.

Then adding X


e to H − ewill also result in a graph with 2 edge-disjoint spanning trees. Therefore, part (ii) holds. �

Lemma 3.9. If G ∈ A3, then either G ∈ {S(1, 2), S(1, 4)} or D2(G) is an independent set.

Proof. Suppose there exist u, v ∈ D2(G) such that e = uv ∈ E(G).
Let G′

= G/e. By Lemma 3.6(i), G′
∉ S. By Lemmas 3.3 and 3.6(ii), F(G′) ≤ F(G) − 1 ≤ 3 − 1 = 2. Since κ ′(G′) ≥ 2, the

reduction of G′ is not K2 or K2,1. Since G′
∉ S, G′ is not collapsible. Let G0 denote the reduction of G′. By Theorem 2.1(ii) and

Theorem 2.5,

G0 = K2,t , for some t ≥ 3, where t is odd. (2)

Let ve denote the new vertex obtained from contracting the edge e of G. Then G′ has at most one nontrivial collapsible
subgraph, as any nontrivial collapsible subgraphmust contain ve. Since d2(G)+d3(G) = 6, d3(G)+d5(G) = 2 and dj(G) = 0
for all j ≥ 6, we have t = 3 or 5, and so G0 ∈ {K2,3, K2,5} by (2). Let H ′ denote the collapsible subgraph of G′ containing ve,
and H denote the preimage of H ′ from contraction.

Suppose H = K2. Then H ′ contains only one vertex ve. Therefore, H = {e} and G/e = G′. If G/e = K2,3, then G = S(1, 2).
If G/e = K2,5, then G = S(1, 4).

Next we will show that H = K2. By contradiction, suppose that H ≠ K2. Then H ′ is a nontrivial collapsible subgraph
of G′. Therefore, κ ′(H ′) ≥ 2. So κ ′(H) ≥ 2. By Theorem 2.4, since H is not a collapsible subgraph of G, F(H) > 1. Then
G/H = G′/H ′

= G0 ∈ {K2,3, K2,5}.
Suppose G0 = K2,3. Since u, v ∈ H , d2,G(H) ≥ 2. Note that d2(G) + d3(G) = 6 and d3(G) + d5(G) = 2. So there are two

possibilities (see Table 1). Computing F(H) by using Lemma 3.8(i), we have F(H) = 1, contrary to F(H) > 1.
Suppose G0 = K2,5. Note that d2,G(H) ≥ 2, d2(G) + d3(G) = 6 and d3(G) + d5(G) = 2. Then there is only one possibility

(see Table 2). Computing F(H) by using Lemma 3.8(i), F(H) = 1, contrary to F(H) > 1.
Thus, if G ∉ S, then either G ∈ {S(1, 2), S(1, 4)} or D2(G) is an independent set. �

Lemma 3.10. If K is an induced subgraph of a graph L, then each of the following holds:
(i) If d3(L) + d5(L) ≤ 2, d2(L) + d3(L) ≤ 6 and L/K ∈ F ′, then 2|V (K)| − |E(K)| − 2 ≤ 1.
(ii) If L ∈ A and L/K ∈ F ′, then we have F(K) ≤ 1. Moreover, F(K) = 1 only if L/K ∈ {K2,3, K2,5} and d2(L) + d3(L) = 6.

Proof. First we prove part (i). Since L/K ∈ F ′, we have d3(L) + d5(L) = 2. If d2(L) + d3(L) = 6, then we have the following
possibilities (see Table 3. The last column of Table 3 defines the Type of the subgraphs arising from contraction, which will
be used in the proof of Lemma 3.13).
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Table 1
The table for computing F(H) when G0 = K2,3 .

d(vH ) d2,G(H) d3,G(H) d5,G(H) F(H)

2 2 0 0 1
3 2 0 1 1

Table 2
The table for computing F(H) when G0 = K2,5 .

d(vH ) d2,G(H) d3,G(H) d5,G(H) F(H)

2 2 0 0 1

Table 3
The table in the proof of Lemma 3.10.

L/K d(vK ) d2,L(K) d3,L(K) d5,L(K) 2|V (K)|− |E(K)|−2 ≤ Type

K2,3 2 2 0 0 1 A
3 1 1 0 1 B

2 0 1 1 C

K2,5 2 2 0 0 1 D
5 0 1 0 1 E

1 0 1 1 F

S(1, 2) 2 1 0 0 0 G
3 0 1 0 0 H

1 0 1 0 I

S(1, 4) 2 1 0 0 0 J
5 0 0 1 0 K

S(2, 3) 2 1 0 0 0 L
3 0 1 0 0 M

1 0 1 0 N
4 0 0 0 0 O
5 0 0 1 0 P

J(2, 2) 2 1 0 0 0 Q
3 0 1 0 0 R

1 0 1 0 S
4 0 0 0 0 T

Fig. 2. The operator T on a graph G.

If d2(L) + d3(L) < 6, then d2,L(K) decreases at least by one. Computing 2|V (K)| − |E(K)| − 2 by using Lemma 3.8(i),
2|V (K)| − |E(K)| − 2 decreases at least by one. So 2|V (K)| − |E(K)| − 2 ≤ 0. Hence part (i) holds.

If L ∈ A, then K is reduced. So F(K) = 2|V (K)| − |E(K)| − 2 ≤ 1. From the proof of part (i), the equality holds only if
L/K ∈ {K2,3, K2,5} and d2(L) + d3(L) = 6. �

Definition 3.11. Let u ∈ D2(G) and v ∈ D4(G). Suppose N(u) = {v, w} and N(v) = {u, x, y, z}. Define T (G) = (G − v) +

{yz, ux} (see Fig. 2).

Lemma 3.12. Let G be a 2-edge-connected reduced graph, and let e = uv ∈ E(G) such that u ∈ D2(G) and v ∈ D4(G). Let
N(u) = {v, w} and N(v) = {u, x, y, z}. Then

(i) T (G) is 2-edge-connected (relabelling the vertices if needed).
(ii) a(T (G)) ≤ 2. Therefore, F(K) = 2|V (K)| − |E(K)| − 2 for any induced subgraph K of T (G).
(iii) If T (G) ∈ S, then G ∈ S.
(iv) T (G) has at most two nontrivial collapsible subgraphs which must contain yz or ux.
(v) Any two vertices in N(v) = {u, x, y, z} are not adjacent.
(vi) If G ∈ A, then the reduction of T (G) is also in A.
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Proof. Part (i) follows from the Splitting Lemma (see [11], on page III. 29).
By contradiction, assume there exists an induced subgraph K of T (G) such that |E(K)|/(|V (K)| − 1) > 2, i.e. |E(K)| ≥

2|V (K)| − 1. Suppose H is the subgraph of G corresponding to K . By Corollary 2.3, |E(H)|/(|V (H)| − 1) < 2. So v ∈ H .
If both ux and yz are in K , then |E(H)|/(|V (H)| − 1) = (|E(K)| + 2)/|V (K)| ≥ (2|V (K)| + 1)/|V (K)| > 2, contrary
to |E(H)|/(|V (H)| − 1) < 2. If exactly one of ux and yz is in K , then |E(H)|/(|V (H)| − 1) = (|E(K)| + 1)/|V (K)| ≥

2|V (K)|/|V (K)| = 2, a contradiction. Thus a(T (G)) ≤ 2 by (1). Hence, by Theorem 2.1(v), F(K) = 2|V (K)| − |E(K)| − 2, for
any induced subgraph K of T (G). Part (ii) holds.

If T (G) ∈ S, suppose H is an spanning Eulerian subgraph of T (G). Then H must contain ux since dT (G)(u) = 2. If yz ∉ H ,
then H − ux+ uv + vx is an Eulerian subgraph of G. If yz ∈ H , then H − ux− yz + uv + vx+ vy+ vz is an Eulerian subgraph
of G. Thus G ∈ S. Part (iii) holds.

Any collapsible subgraph of T (G)must contain the edge yz or ux. Otherwise, it is also a collapsible subgraph of G, contrary
to that G is reduced. So T (G) has at most two nontrivial collapsible subgraphs. Part (iv) holds.

Note that G is reduced, so there is no C3 in G. It implies that part (v) holds.
Nowwe prove part (vi). SupposeH ′ is amaximum collapsible subgraph of T (G). It suffices to prove that T (G)/H ′, denoted

by G1, still satisfies d2(G1) + d3(G1) ≤ 6 and d3(G1) + d5(G1) ≤ 2. First, note that the number of odd degree vertices will
not increase by contracting a subgraph. Otherwise, if after the contraction, the number of odd degree vertices increases by
1, then the number of odd vertices of the new graph obtained by contraction will be odd, contrary to that the number of odd
vertices of a graph must be even. And since G ∈ A, by Lemma 3.3, either G has no odd vertices or F(G) ≤ 3. If F(G) ≤ 2,
then either G has no odd vertices or G = K2,t by Theorem 2.5. Since d2(G) + d3(G) ≤ 6, t ≤ 6. Hence the odd degree of G is
at most 5. If F(G) = 3, by Lemma 3.3, either G has no odd vertices or dj = 0 for all j ≥ 6. Thus if G ∈ A, then the odd degree
vertices of G must be of degree 3 or 5. After the contraction, we still have d3(G1) + d5(G1) ≤ 2.

If d2(G1) + d3(G1) > d2(G) + d3(G), then d(vH ′) = 2 or 3. In each case, we will prove H ′
− yz is a collapsible subgraph

of G, contrary to that G is reduced.
Case 1. d(vH ′) = 3.

Since d2(G1) + d3(G1) > d2(G) + d3(G), H ′ contains a 5-vertex of G and no 2 or 3-vertices of G. Therefore, u ∉ H ′ and
yz ∈ H ′. By part (ii) and computing F(H ′) by using Lemma 3.8(i), 2F(H ′) = 2d2,G(H ′) + d3,G(H ′) − d5,G(H ′) + 3 − 4 = −2.
By Lemma 3.8(ii), F(H ′

− yz) ≤ F(H ′) + 1 = 0. Thus H ′
− yz is a collapsible subgraph of G, contrary to that G is reduced.

Case 2. d(vH ′) = 2.
Then H ′ contains no vertex of degree 2 or 3 in G. Since the number of odd degree vertices of T (G)/H ′ must be even, H ′

contains no 5-vertex of G. Therefore, 2F(H ′) = 2d2,G(H ′) + d3,G(H ′) − d5,G(H ′) + 2 − 4 = −2. So again, F(H ′
− yz) = 0, a

contradiction.
Hence, d2(G1) + d3(G1) ≤ d2(G) + d3(G) ≤ 6. �

Lemma 3.13. If G is a counterexample of Theorem 3.1with |V (G)| minimized, then no vertex in D2(G) is adjacent to a vertex in
D4(G).
Proof. By the hypothesis, G is a 2-edge-connected reduced graph which satisfies d2(G)+ d3(G) ≤ 6 and d3(G)+ d5(G) ≤ 2,
and G is neither supereulerian nor in F ′. Since G is reduced,

G has no nontrivial collapsible subgraphs. (3)

Therefore, by Lemma 2.1(vi),

G has no K3,3 − e. (4)

By contradiction, we assume that there exist u ∈ D2(G) and v ∈ D4(G) such that uv ∈ E(G). We use notations in
Lemma 3.12, and denote G′

= T (G). Then G′
∉ S by Lemma 3.12(iii) and a(G′) ≤ 2 by Lemma 3.12(ii). We will prove that

either G ∈ S or G ∈ F ′.
Suppose G1 is the reduction of G′. Then G1 ∉ S, and by Lemma 3.12(vi) G1 ∈ A. Since G is minimized and |V (G1)| ≤

|V (G′)| = |V (G)| − 1, G1 ∈ F ′. There are three cases, depending on the number of nontrivial collapsible subgraphs in G′ by
Lemma 3.12(iv).
Case 1. G′ does not have a nontrivial collapsible subgraph, i.e. G1 = G′.

If G′
∈ {K2,3, K2,5, S(1, 2), S(2, 3), S(1, 4)}, no matter how we choose y and z, the vertices u, x, y, z will be in a C4 or C5

in G′. Then in G, at least two of them are adjacent, contrary to Lemma 3.12(v).
Suppose G′

= J(2, 2). A trail in G′ with first edge e1 and last edge e2 is called an (e1, e2)-trail. Note that the cycle of G′ is of
length 4 or 6. If the shortest (ux, yz)-trail in G′ is of length 3 or less, then at least two of u, x, y, z are adjacent in G, contrary
to Lemma 3.12(v). So the shortest (ux, yz)-trail is of length 4. Therefore, ux and yz are in a C6. By symmetry, there are two
possibilities (see Fig. 3(a) and (b)). But both of them are supereulerian, contrary to G ∉ S.

The proof for the cases when G′ has one or two nontrivial collapsible subgraphs are similar butmore complicated. Details
can be found in the Appendix. �

Proof of Theorem 3.1. By contradiction, suppose G satisfies (i) and (ii), but G ∉ S and G ∉ F ′ with |V (G)| minimized. By
Lemma 3.3, Theorem 2.5 and G ∉ {K2,3, K2,5}, F(G) = 3. Therefore, G ∈ A3. By Lemma 3.4, (d2, d3, d5) ∈ {(4, 2, 0), (5, 1, 1),
(6, 0, 2)}. By Lemmas 3.5, 3.9 and 3.13, each vertex in D2(G) must be adjacent to two odd degree vertices which are not
adjacent. But this is impossible when (d2, d3, d5) ∈ {(4, 2, 0), (5, 1, 1), (6, 0, 2)}.

Thus the theorem holds.
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Fig. 3. The graphs in the proof of Case 1.

4. Proof of the main result

In this section, we are now ready to prove our main result Theorem 1.6.

Proof. Let G ∈ C2(6, k) be a graphwith n = |V (G)| > 7k. Thenwewill prove that G ∈ S if and only if G cannot be contracted
to a member in F ′. Clearly, if G can be contracted to a member in F ′, then G ∉ S.

Let G′ be the reduction of G. By Theorem 2.1(ii), it suffices to show if G′
∉ S, then G′

∈ F ′, which implies that G can be
contracted to a member in F ′. As G′

= K1 implies that G ∈ S, we may assume that G′ is 2-edge-connected and nontrivial.
Let d′

i = |di(G′)|.
By Theorem 2.7, if d′

2 + d′

3 = 4, then G′
∈ S. Therefore, we only consider the case when d′

2 + d′

3 ≥ 5. We shall assume
that G′

∉ S to find a contradiction or to get G′
∈ F ′.

Case 1. d′

2 + d′

3 = 5.
Subcase 1.1. F(G′) ≤ 2.

By Theorem 2.5, since κ ′(G′) ≥ 2 and G′
∉ S, G′

= K2,t with t odd. Since d′

2 + d′

3 = 5, we have t = 3 or t = 5 and so
G′

∈ {K2,3, K2,5} ⊂ F ′.
Subcase 1.2. F(G′) ≥ 3.

By Theorem 2.1(v), we have

6 ≤ 2F(G′) = 4|V (G′)| − 2|E(G′)| − 4

= 4
−
j≥2

d′

j −
−
j≥2

jd′

j − 4

= (d′

2 + d′

3) + d′

2 +

−
j≥5

(4 − j)d′

j − 4

= 1 + d′

2 +

−
j≥5

(4 − j)d′

j.

Note that d′

2 + d′

3 = 5 and (4 − j)d′

j ≤ 0 for any j ≥ 5. It follows that d′

2 = 5, d′

3 = 0, and d′

j = 0(j ≥ 5). Thus G′ is
Eulerian contrary to that G′

∉ S.
Case 2. d′

2 + d′

3 = 6.
If F(G′) ≤ 2, then by κ ′(G′) ≥ 2 and by Theorem2.5,G′

= K2,t with t ≥ 3 odd sinceG′ is not supereulerian. As d′

2+d′

3 = 6,
this is impossible. Therefore, we must have F(G′) ≥ 3.
Subcase 2.1. F(G′) = 3.

6 = 2F(G′) = 4|V (G′)| − 2|E(G′)| − 4

= 4
−
j≥2

d′

j −
−
j≥2

d′

j − 4

= 2(d′

2 + d′

3) − (d′

3 + d′

5) +

−
j≥6

(4 − j)d′

j − 4

= 8 − (d′

3 + d′

5) +

−
j≥6

(4 − j)d′

j.

It follows that (d′

3 + d′

5) ≤ 2. By Theorem 3.1, since G′
∉ S, we have G′

∈ F ′.
Subcase 2.2. F(G′) ≥ 4.

Since d′

2 + d′

3 = 6,

8 ≤ 2F(G′) = (d′

2 + d′

3) + d′

2 +

−
j≥5

(4 − j)d′

j − 4

= 2 + d′

2 +

−
j≥5

(4 − j)d′

j.

It follows that d′

2 = 6, d′

3 = 0 and d′

j = 0 (j ≥ 5). Hence G′ is Eulerian, contrary to G′
∉ S.
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a b c d e

Fig. 4. The graphs in the proof of Subcases 2.1.1 and 2.1.4.

Case 3. d′

2 + d′

3 ≥ 7.
Let c = d′

2 + d′

3, and H1,H2, . . . ,Hc denote the subgraphs of Gwhose contraction images in G′ are the vertices of degree
at most 3 in G′. Since G ∈ C2(6, k), for each i with 1 ≤ i ≤ c , |V (Hi)| ≥ (n − k)/6. It follows any c ≥ 7 that

n = |V (G)| ≥

7−
i=1

|V (Hi)| ≥
7(n − k)

6
.

Therefore, n ≤ 7k, a contradiction.
This completes the proof of Theorem 1.6. �

Appendix. Proof for the other two cases of Lemma 3.13

Case 2. G′ has only one collapsible subgraph, say H ′.
Let H be the subgraph of G corresponding to H ′, i.e. T (G[E(H)]) = H ′. Then ux and yz are not both in H ′. Otherwise,

G/H ∈ F ′. By Lemma 3.10(ii), F(H) ≤ 1. Since κ ′(H) ≥ 2, by Theorem 2.4, H is collapsible, contrary to (3).
Since G1 = G′/H ′

∈ F ′, by Lemma 3.10(i) and Lemma 3.12(ii), F(H ′) = 2|V (H ′)| − |E(H ′)| − 2 ≤ 1. We consider two
subcases.
Subcase 2.1. yz ∈ H ′.

Then ux is not in H ′. Since κ ′(H ′) ≥ 2 and d(u) = 2, u is not in H ′. But x may or may not be in H ′. If x is in H ′, then
|V (H)| = |V (H ′)| + 1 and |E(H)| = |E(H ′)| + 2. So F(H) = 2|V (H)| − |E(H)| − 2 = 2|V (H ′)| − |E(H ′)| − 2 ≤ 1. As
κ ′(H) ≥ 2, by Theorem 2.4, H is collapsible, contrary to (3).

Then x is not in H ′. Then |V (H)| = |V (H ′)| + 1 and |E(H)| = |E(H ′)| + 1. So F(H) = (2|V (H ′)| − |E(H ′)| − 2) + 1 ≤ 2.
SinceH is not collapsible and κ ′(H) ≥ 2, F(H) = 2. It implies thatH = K2,t for some t . Therefore,H ′

= H−{yv, vz}+yz. By
the definition of F(H ′), F(H ′) = 1. By Lemma 3.10(i), H ′ must be of Type A, B, C, D, E or F (see Table 3) and G1 ∈ {K2,3, K2,5}.
Since x and u are not in H , v is of degree 2 in H . Then both y and z are t-vertices in H with 2 ≤ t ≤ 5.

Notice that t ≠ 5. Otherwise, dG(y) = dG(z) = 5 since dG = 0 for all j ≥ 6. That G′/H ′
∈ {K2,3, K2,5} and y, z ∈ H ′ implies

that there is at least another 3 or 5-vertex except y and z, contrary to d3(G) + d5(G) ≤ 2. Hence, 2 ≤ t ≤ 4.
Subcase 2.1.1. H ′ is of Type A.

Notice that d2,G(H) = d2,G′(H ′), d3,G(H) = d3,G′(H ′) and d5,G(H) = d5,G′(H ′), so H has two vertices of degree 2 in G and
other vertices of H are of degree 4 in G. Since dG(u) = 2 and ux ∈ G1, x is a vertex of degree 3 in both G1 and G. If H = K2,2,
then by Lemma 3.12(v), dG(y) = dG(z) = 2, so G ∈ S (see Fig. 4(a) and (b)). If H = K2,3, then one of y and z is adjacent to x
(see Fig. 4(c)), contrary to Lemma 3.12(v). If H = K2,4, then G[s, t, v, x, y, z] is K3,3 − e (see Fig. 4(d) and (e)), contrary to (4).
Subcase 2.1.2. H ′ is of Type B.

Then H has one 2-vertex, one 3-vertex and other vertices are of degree 4 in G. If H = K2,2, then G ∈ S (see Fig. 5(a)
and (b)) or G = J(2, 2) (see Fig. 5(c) and (d)). If H = K2,3 (see Fig. 5(e) and (f)), since H ′ is of type B, H ′ has a 2-vertex in G.
Let this vertex be t . Then t is adjacent to y, z. So t is not adjacent to u. Without loss of generality, assume y is the 3-vertex
in G, and so z is a 4-vertex in G. Let s ∈ N(y) ∩ N(z) be another 2-vertex in H ′. By Lemma 3.12(v), y, z, are not adjacent to u.
Since vH ′ is adjacent to u, but y, z, t are not adjacent to u, we have that s is adjacent to u. Moreover, v is also adjacent to u
in G. Therefore, G[s, t, u, v, y, z] is K3,3 − e, contrary to (4). If H = K2,4 (see Fig. 5(g)), then exactly one of s and t is adjacent
to u. So G[s, t, u, v, y, z] is K3,3 − e, contrary to (4).
Subcase 2.1.3. H ′ is of Type C.

Then H has two 2-vertices, one 5-vertex and other vertices are of degree 4 in G. If H = K2,2, by Lemma 3.12(v), dG(s) = 5
(see Fig. 6(a)), thenG = S(2, 3) (see Fig. 6(b)). IfH = K2,3 (see Fig. 6(c)), then yor z is adjacent tou, contrary to Lemma3.12(v).
If H = K2,4 (see Fig. 6(d)), since s is adjacent to u, G[s, t, u, v, y, z] is K3,3 − e, contrary to (4).
Subcase 2.1.4. H ′ is of Type D.

Similar to Subcase 2.1.1, if H = K2,2 (see Fig. 4(a)), then G ∈ S (see Fig. 7(a)). If H = K2,3, then one of y and z is adjacent
to x (see Fig. 4(c)), contrary to Lemma 3.12(v). If H = K2,4 (see Fig. 4(d)), then G[s, t, v, x, y, z] is K3,3 − e, contrary to (4).
Subcase 2.1.5. H ′ is of Type E.
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a b c d

e f g

Fig. 5. The graphs in the proof of Subcase 2.1.2.

a b c d

Fig. 6. The graphs in the proof of Subcase 2.1.3.

a

e f g h

b c d

Fig. 7. The graphs in the proof of Subcases 2.1.4 and 2.1.5.

If H = K2,2, then there are two possibilities (see Fig. 7(b) and (d)). In either case, G ∈ S (see Fig. 7(c) and (e)). If H = K2,3
(see Fig. 7(f) and (g)), then u is adjacent to exactly one of s and t . Therefore, G[s, t, u, v, y, z] is K3,3 − e, contrary to (4).
If H = K2,4 (see Fig. 7(h)), then u is adjacent to exactly one of s, t andw. Assume that u is adjacent to s. Then G[s, t, u, v, y, z]
is K3,3 − e, contrary to (4).

Subcase 2.1.6. H ′ is of Type F.
If H = K2,2 (see Fig. 8(a) and (c)), then G ∈ S (see Fig. 8(b) and (d)). If H = K2,3 (see Fig. 8(e)) or H = K2,4 (see Fig. 8(f)),

then G[s, t, u, v, y, z] is K3,3 − e, contrary to (4).

Subcase 2.2. ux ∈ H ′.
Similar to Subcase 2.1, if y or z is in H ′, then |V (H)| = |V (H ′)| + 1 and |E(H)| = |E(H ′)| + 2. Therefore, F(H) ≤ 1. So y

and z are not in H ′, F(H ′) = 1 and H = K2,t . Since u is a 2-vertex, d2(H ′) > 1 and t = 2. So H ′ must be of Type A, B, C, D or F
and H is K2,2. Use the same argument to conclude that G ∈ S or G ∈ {J(2, 2), S(2, 3)}.
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a b c d

e f

Fig. 8. The graphs in the proof of Subcase 2.1.6.

Table 4
The table in the proof of Case 3.

G1 {d(vH ′
1
), d(vH ′

2
)} d′

2 d′

3 d′

5 F(H1)+F(H2)

K2,3 {2, 2} 3 0 0 3
{2, 3} 2 1 0 3

3 0 1 3
{3, 3} 1 2 0 3

2 1 1 3
3 0 2 3

K2,5 {2, 2} 3 0 0 3
{2, 5} 1 1 0 3

2 0 1 3
{5, 5} 1 0 2 3

S(2, 3) {2, 2} 2 0 0 2
{2, 3} 1 1 0 2

2 0 1 2
{2, 4} 1 0 0 2
{2, 5} 1 0 1 2
{3, 4} 1 0 1 2
{3, 5} 1 0 2 2

J(2, 2) {2, 2} 2 0 0 2
{2, 3} 1 1 0 2

2 0 1 2
{2, 4} 1 0 0 2
{3, 3} 1 1 1 2

2 0 2 2
{3, 4} 1 0 1 2

Case 3. G′ has two nontrivial maximal collapsible subgraphs, say H ′

1 and H ′

2, such that yz ∈ H ′

1 and ux ∈ H ′

2.
Let H1 and H2 be the subgraphs of G corresponding to H ′

1 and H ′

2, respectively, i.e. T (G[E(H1)]) = H ′

1 and T (G[E(H2)]) =

H ′

2. Then G′/(H ′

1 ∪ H ′

2) is in F ′. Notice that vH ′
1

≠ vH ′
2
. Otherwise, there exists a vertex t such that t ∈ V (H ′

1)


V (H ′

2). Then
H ′

1 ∪ H ′

2 is a connected collapsible subgraph of G′, contrary to that H ′

1 and H ′

2 are maximal.
Let n′ denote the number of vertices of H1 ∪ H2, d′

i denote the number of vertices of H1 ∪ H2 of degree i in G. Then
2|E(H1 ∪ H2)| =

∑
id′

i − d(vH ′
1
) − d(vH ′

2
). Since v is in both H1 and H2, |V (H1)| + |V (H2)| = n′

+ 1.

2F(H1) + 2F(H2) = 4|V (H1)| − 2|E(H1)| − 4 + 4|V (H2)| − 2|E(H2)| − 4
= 4(|V (H1)| + |V (H2)|) − 2(|E(H1)| + |E(H2)|) − 8
= 4(n′

+ 1) − 2|E(H1 ∪ H2)| − 8

= 4
−

d′

i + 1


−

−
id′

i − d(vH ′
1
) − d(vH ′

2
)


− 8

≤ 2d′

2 + d′

3 − d′

5 + d(vH ′
1
) + d(vH ′

2
) − 4.

By Lemma 3.3 and G ∉ S, F(G) = 2 or F(G) = 3 with d2(G) + d3(G) = 6 and d3(G) + d5(G) = 2. If F(G) = 2, by
Theorem 2.5, since d2(G) + d3(G) ≤ 6, κ ′(G) ≥ 2 and G ∉ S, G = K2,3 or K2,5, contrary to G ∉ F ′. Thus F(G) = 3
with d2(G) + d3(G) = 6 and d3(G) + d5(G) = 2. We have the following Table 4, where {d(H ′

1), d(H
′

2)} is a multi-set and
G1 = G′/(H ′

1


H ′

2) ∈ F ′. Note that H ′

2 contains a 2-vertex u, so d′

2 ≥ 1. It helps us get rid of some cases.
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If G1 = S(1, 2), then since S(1, 2) has one more 2-vertex than K2,3, the number of 2-vertices in H1 ∪ H2 will decrease
by 1 comparing to the case G1 = K2,3. Therefore, F(H1) + F(H2) decreases by 1. Hence, F(H1) + F(H2) ≤ 3 − 1 = 2. If
G1 = S(1, 4), then since S(1, 4) has one more 2-vertex than K2,5, F(H1) + F(H2) will decrease by 1 compared to the case
G1 = K2,5. Thus, F(H1) + F(H2) ≤ 3 − 1 = 2. So we have F(H1) + F(H2) ≤ 3 (see Table 4). Thus F(H1) ≤ 1 or F(H2) ≤ 1.
Since κ ′(Hi) ≥ 2 for i = 1, 2, then H1 or H2 is a collapsible subgraph of G, contrary to (3).

This completes the proof of Lemma 3.13.
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