Degree sum condition for Z_{3}-connectivity in graphs

Xiaoxia Zhang ${ }^{\text {a }}$, Mingquan Zhan ${ }^{\text {b }}$, Rui Xu ${ }^{\text {c }}$, Yehong Shao ${ }^{\text {d }}$, Xiangwen Li ${ }^{\text {a,* }}$, Hong-Jian Lai ${ }^{\text {e,f }}$
${ }^{\text {a }}$ Department of Mathematics, Huazhong Normal University, Wuhan 430079, China
${ }^{\mathrm{b}}$ Department of Mathematics, Millersville University, Millersville, PA 17551, USA
${ }^{\text {c }}$ Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA
${ }^{\text {d }}$ Arts and Science, Ohio University Southern, Ironton, OH 45638, USA
${ }^{e}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China
${ }^{\mathrm{f}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history:

Received 9 October 2009
Received in revised form 15 February 2010
Accepted 7 August 2010
Available online 9 September 2010

Keywords:

Z_{3}-connectivity
Nowhere-zero 3-flow
Degree sum

Abstract

Let G be a 2-edge-connected simple graph on n vertices, let A denote an abelian group with the identity element 0 , and let D be an orientation of G. The boundary of a function f : $E(G) \rightarrow A$ is the function $\partial f: V(G) \rightarrow A$ given by $\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e)$, where $E^{+}(v)$ is the set of edges with tail v and $E^{-}(v)$ is the set of edges with head v. A graph G is A-connected if for every $b: V(G) \rightarrow A$ with $\sum_{v \in V(G)} b(v)=0$, there is a function $f: E(G) \rightarrow A-\{0\}$ such that $\partial f=b$. In this paper, we prove that if $d(x)+d(y) \geq n$ for each $x y \in E(G)$, then G is not Z_{3}-connected if and only if G is either one of 15 specific graphs or one of $K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}$or $K_{3, n-3}^{+}$for $n \geq 6$, where $K_{r, s}^{+}$denotes the graph obtained from $K_{r, s}$ by adding an edge joining two vertices of maximum degree. This result generalizes the result in [G. Fan, C. Zhou, Degree sum and Nowhere-zero 3-flows, Discrete Math. 308 (2008) 6233-6240] by Fan and Zhou.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite, loopless, and may have multiple edges. Terminology and notations not defined here are from [1]. Let G be a graph, H a subgraph of G, and $v \in V(G)$. Let $d_{H}(v)$ denote the number of edges joining v to vertices of $V(H)-v$. In particular, when $H=G, d_{G}(v)$ is the degree of v and we simply write $d(v)$ for it. For two subsets $A, B \subseteq V(G)$, $e_{G}(A, B)$ (or simply $e(A, B)$) denotes the number of edges with one endpoint in A and the other endpoint in B. For simplicity, if H_{1} and H_{2} are two subgraphs of G, we write $e\left(H_{1}, H_{2}\right)$ to mean $e\left(V\left(H_{1}\right), V\left(H_{2}\right)\right)$.

A cycle is a connected 2-regular graph. An n-cycle is a cycle on n vertices. For simplicity, a 3-cycle with vertex set $\{x, y, z\}$ is denoted by $x y z$. The complete graph on n vertices is denoted by K_{n}. Let K_{n}^{-}denote the graph obtained from K_{n} by deleting an edge, and let $K_{r, s}^{+}$denote the simple graph obtained from the complete bipartite graph $K_{r, s}$ by adding an edge joining two vertices of maximum degree. Throughout this paper, when $K_{2, n-2}$ and $K_{2 . n-2}^{+}$are mentioned, we mean $n \geq 4$; when $K_{3, n-3}$ and $K_{3, n-3}^{+}$are mentioned, $n \geq 6$.

Let G be a graph, and let D be an orientation of G. If an edge $e \in E(G)$ is directed from a vertex u to a vertex v, then let tail $(e)=u$ and head $(e)=v$. For a vertex $v \in V(G)$, let $E^{+}(v)$ denote the set of edges with tail v and $E^{-}(v)$ the set of edges with head v. Let A denote an (additive) abelian group with the identity element 0 . Let A^{*} denote the set of nonzero elements of A. We define $F(G, A)$ to be the set of labelings of $E(G)$ using elements of A and define $F^{*}(G, A)$ to be the set of labelings of $E(G)$ using nonzero elements of A.

[^0]

Fig. 1. Exceptional graphs for the main theorem.
Given a function $f \in F(G, A)$, define $\partial f: V(G) \rightarrow A$ by

$$
\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A. The value $\partial f(v)$ is known as the net flow out of v under f.
For a graph G, a function $b: V(G) \rightarrow A$ is an A-valued zero-sum function on G if $\sum_{v \in V(G)} b(v)=0$. The set of all A-valued zero-sum functions on G is denoted by $\mathcal{Z}(G, A)$. Given $b \in \mathcal{Z}(G, A)$, a function $f \in F^{*}(G, A)$ is an (A, b)-nowhere-zero flow if G has an orientation D such that $\partial f=b$. A graph G is A-connected if for every $b \in \mathcal{Z}(G, A), G$ admits an (A, b)-nowhere-zero flow. A nowhere-zero A-flow is an $(A, 0)$-nowhere-zero flow, where here 0 denotes the function on $V(G)$ that is identically zero. More specifically, a nowhere-zero k-flow is a nowhere-zero Z_{k}-flow, where Z_{k} is the cyclic group of order k. Tutte [12] proved that G admits a nowhere-zero A-flow with $|A|=k$ if and only if G admits a nowhere-zero k-flow. We use group connectivity to refer to the general properties of a graph being A-connected for some particular A. Let $\langle A\rangle$ denote the family of graphs which are A-connected.

Integer flow problems were introduced by Tutte [11,13]. Group connectivity was introduced by Jaeger et al. [7] as a generalization of nowhere-zero flows. This paper is mainly motivated by the following two conjectures.

Conjecture 1.1 ([11]). Every 4-edge-connected graph admits a nowhere-zero Z_{3}-flow.
Conjecture 1.2 ([7]). Every 5-edge-connected graph is Z_{3}-connected.
Conjecture 1.2 implies Conjecture 1.1 by a result of Kochol [8] that reduces Conjecture 1.1 to a consideration of 5-edge-connected graphs. So far, both conjectures are still open. Recently, degree conditions have been used to guarantee the existence of nowhere-zero Z_{3}-flows and Z_{3}-connectivity. Let G be a graph on n vertices. If $d(u)+d(v) \geq n$ for every pair of nonadjacent vertices u and v, then G is said to satisfy Ore's condition. Throughout this paper, we say G satisfies the given degree-sum condition if $d(u)+d(v) \geq n$ for every edge $u v \in E(G)$. Fan and Zhou [5] investigated the relationship between Ore's condition and nowhere-zero Z_{3}-flows; Lou et al. [10] studied Z_{3}-connectivity in graphs satisfying Ore's condition. Fan and Zhou [5] also studied the relationship between the given degree-sum condition and nowhere-zero Z_{3}-flows. We investigate Z_{3}-connectivity in graphs satisfying the given degree-sum condition and prove the following theorem in this paper.

Theorem 1.3. Let G be a 2-edge-connected simple graph on n vertices. If $d(x)+d(y) \geq n$ for each $x y \in E(G)$, then $G \notin\left\langle Z_{3}\right\rangle$ if and only if G is one of $K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}$or one of the 15 exceptional graphs in Fig. 1.

2. Lemmas

For a subset $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting all loops generated by this process. Note that even if G is simple, G / X may have multiple edges. For convenience, we write G / e for $G /\{e\}$, where $e \in E(G)$. If H is a subgraph of G, then G / H denotes $G / E(H)$.

The wheel $W_{k}(k \geq 2)$ is the graph obtained from a k-cycle by adding a new vertex, called the center of the wheel, which is adjacent to every vertex of the k-cycle. We define W_{k} to be odd (even) if k is odd (or even, respectively). For technical reasons, we define the wheel W_{1} to be a 3-cycle.

Fig. 2. Two Z_{3}-connected graphs

In this section, we establish several lemmas. Some results in [2-4,7,9] on group connectivity are summarized as follows.
Lemma 2.1. Let A be an abelian group with $|A| \geq 3$. The following results are known:
(1) K_{n} and K_{n}^{-}are A-connected if $n \geq 5$.
(2) C_{n} is A-connected if and only if $|A| \geq n+1$.
(3) $K_{m, n}$ is A-connected if $m \geq n \geq 4$; neither $K_{2, t}(t \geq 2)$ nor $K_{3, s}(s \geq 3)$ is Z_{3}-connected.
(4) $W_{2 k} \in\left\langle Z_{3}\right\rangle$ and $W_{2 k+1} \notin\left\langle Z_{3}\right\rangle$, where k is a positive integer.
(5) If $G \notin\langle A\rangle$, then also $H \notin\langle A\rangle$ when H is a spanning subgraph of G.
(6) If $H \subseteq G, H \in\langle A\rangle$, and $G / H \in\langle A\rangle$, then $G \in\langle A\rangle$.

When H_{1} and H_{2} are two subgraphs of a graph G, we say that G is the 2-sum of H_{1} and H_{2}, denoted by $H_{1} \oplus H_{2}$, if $E\left(H_{1}\right) \cup E\left(H_{2}\right)=E(G),\left|V\left(H_{1}\right) \cap V\left(H_{2}\right)\right|=2$ and $\left|E\left(H_{1}\right) \cap E\left(H_{2}\right)\right|=1$. Note that the definition of 2-sum of two graphs here is not that of 2-sum used in graph minor theory, which allows the edge joining the two common vertices to be dropped when forming the 2 -sum.

A graph G is triangularly connected if whenever $e_{1}, e_{2} \in E(G)$, there exists a list C_{1}, \ldots, C_{k} of cycles such that $e_{1} \in E\left(C_{1}\right)$, $e_{2} \in E\left(C_{k}\right),\left|E\left(C_{i}\right)\right| \leq 3$ for $1 \leq i \leq k$, and such that $E\left(C_{j}\right) \cap E\left(C_{j+1}\right) \neq \emptyset$ for $1 \leq j \leq k-1$. For triangularly connected graphs, the following characterization of group connectivity is known.

Lemma 2.2 ([4]). If G is a triangularly connected graph on $n \geq 3$ vertices, then G is not Z_{3}-connected if and only if there is an odd wheel W and a subgraph G_{1} such that $G=W \oplus G_{1}$, where G_{1} is triangularly connected and not Z_{3}-connected.

Lemma 2.3 ([3]). If G is a triangularly connected graph with $\delta(G) \geq 4$, then G is Z_{3}-connected.
For a graph G with $u, v, w \in V(G)$ such that $v, w \in N(u)$, let $G_{[u v, u w]}$ be the graph obtained from G by deleting two edges $u v$ and $u w$ and then adding edge $v w$, that is, $G_{[u v, u w]}=G \cup\{w v\}-\{u v, u w\}$.

Lemma 2.4 ([2]). Let A be an abelian group, let G be a graph, and let u, v, w be three vertices of G such that $d(u) \geq 4$ and $v, w \in N(u)$. If $G_{[u v, u w]}$ is A-connected, then so is G.

The edge $v_{1} v_{2}$ in Fig. 2(a) is called a distinguished edge. By the result in [10, Lemma 2.2], Fig. 2(a) is Z_{3}-connected. The same is true for Fig. 2(b).

Lemma 2.5. Both graphs in Fig. 2 are Z_{3}-connected.
Proof. Let G be the graph (b) shown in Fig. 2. The graph $G_{\left[u_{1} v_{1}, u_{1} v_{2}\right]}$ has two copies of the edges $v_{1} v_{2}$. Iteratively contracting 2cycles leads eventually to K_{1}, which is Z_{3}-connected. By Lemma 2.1(2) and (6), $G_{\left[u_{1} v_{1}, u_{1} v_{2}\right]} \in\left\langle Z_{3}\right\rangle$. By Lemma $2.4, G \in\left\langle Z_{3}\right\rangle$.

By the results in [6, Proposition 1.3] and [5, Theorem 1.7], no graph in $\left\{G_{4}, G_{11}, G_{12}, G_{13}, G_{15}, K_{3, n-3}^{+}\right\}$admits a nowherezero Z_{3}-flow. By definition, every graph not admitting a nowhere-zero Z_{3}-flow is not Z_{3}-connected. We summarize this result in the following lemma (also see [10, Theorem 1.7]).

Lemma 2.6. No graph in $\left\{G_{4}, G_{11}, G_{12}, G_{13}, G_{15}, K_{3, n-3}^{+}\right\}$is Z_{3}-connected.
Lemma 2.7. No graph in Fig. 1 or in $\left\{K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}\right\}$is Z_{3}-connected.
Proof. By Lemmas 2.1 and 2.6, we only need to check the graphs $G_{1}, G_{2}, G_{3}, G_{6}, G_{7}, G_{9}, G_{10}$, and $K_{2, n-2}^{+}$, since each of the others (except $\left\{G_{4}, G_{11}, G_{12}, G_{13}, G_{15}\right\}$) is a spanning subgraph of G_{13} or $K_{3, n-3}^{+}$. It follows from Lemma 2.2 that no graph in $\left\{G_{1}, G_{2}, G_{3}, G_{6}, G_{7}, G_{9}, G_{10}, K_{2, n-2}^{+}\right\}$is Z_{3}-connected.

Since an even wheel W_{4} and the graph in Fig. 2(a) play an important role in the proof of our main theorem, we establish the following two technical lemmas.

Lemma 2.8. Suppose that G is a 2-edge-connected simple graph on $n \geq 6$ vertices such that $d(x)+d(y) \geq n$ for each $x y \in E(G)$. If G_{1} is a Z_{3}-connected subgraph of G, then
(1) if $n \in\{6,7\}$ and $\left|V\left(G_{1}\right)\right| \geq 4$, then $G \in\left\langle Z_{3}\right\rangle$.
(2) if $n=8$ and $\left|V\left(G_{1}\right)\right| \geq 5$, then $G \in\left\langle Z_{3}\right\rangle$.
(3) if $n \geq 9$ and $\left|V\left(G_{1}\right)\right| \geq n-4$, then $G \in\left\langle Z_{3}\right\rangle$.

Proof. Let G^{*} be a maximum Z_{3}-connected subgraph of G such that G^{*} contains G_{1}. Note that $\left|V\left(G^{*}\right)\right| \geq\left|V\left(G_{1}\right)\right|$. If $G^{*}=G$, we are done. Thus, assume that $G^{*} \neq G$. Let $G_{2}=G-V\left(G^{*}\right)$. By Lemma 2.1(2) and (6), $e\left(v, G^{*}\right) \leq 1$ for each vertex $v \in V\left(G_{2}\right)$. Since G is 2-edge-connected, G_{2} has no isolated vertex. Thus, G_{2} has an edge $v_{1} v_{2}$. When $n=6$ and $\left|V\left(G_{1}\right)\right| \geq 4$, $\left|V\left(G_{2}\right)\right| \leq 2$. Since $G^{*} \neq G,\left|V\left(G_{2}\right)\right|=2$ and G_{2} contains only one edge $v_{1} v_{2}$. Since for each vertex $v \in V\left(G_{2}\right), e\left(v, G^{*}\right) \leq 1$. Thus, $d\left(v_{1}\right)+d\left(v_{2}\right)=4<6$. Similarly, when $n=7$ and $\left|V\left(G_{1}\right)\right| \geq 4,\left|V\left(G_{2}\right)\right| \leq 3$ and $d\left(v_{1}\right)+d\left(v_{2}\right) \leq 6<7$; when $n=8$ and $\left|V\left(G_{1}\right)\right| \geq 5,\left|V\left(G_{2}\right)\right| \leq 3$ and thus $d\left(v_{1}\right)+d\left(v_{2}\right) \leq 6<8$; when $n \geq 9$ and $\left|V\left(G_{1}\right)\right| \geq n-4,\left|V\left(G_{2}\right)\right| \leq 4$ and thus $d\left(v_{1}\right)+d\left(v_{2}\right) \leq 8<n$. This contradicts the given degree-sum condition.

Corollary 2.9. Suppose that G is a 2-edge-connected simple graph on $n \geq 6$ vertices such that $d(x)+d(y) \geq n$ for all $x y \in E(G)$. If u is a vertex of G such that $d(u)=\delta(G)=3$ and $N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$, then the following hold:
(1) if G contains an even wheel W_{4} with $\left\{u, u_{1}, u_{2}, u_{3}\right\} \subseteq V\left(W_{4}\right)$, then $G \in\left\langle Z_{3}\right\rangle$.
(2) if G contains the subgraph H in Fig. 2(a) with $\left\{u, u_{1}, u_{2}, u_{3}\right\} \subseteq V(H)$, then $G \in\left\langle Z_{3}\right\rangle$.

Proof. (1) Let the vertex set of the non-central 4-cycle in the wheel be $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, with $u=v_{1}$, and let v_{5} be the central vertex. Let $M=V(G)-V\left(W_{4}\right)$. When $n \in\{6,7,8\}$, the wheel is a Z_{3}-connected subgraph of G with 5 vertices. By Lemma 2.8, G is Z_{3}-connected. Thus, let $n \geq 9$. Applying the given degree-sum condition to $v_{1} v_{2}$ and $v_{1} v_{4}$, respectively, $e\left(v_{2}, M\right) \geq n-6$ and $e\left(v_{4}, M\right) \geq n-7$. On the other hand, $|M|=n-5$. Thus $\left|N\left(v_{2}\right) \cap N\left(v_{4}\right) \cap M\right| \geq n-8$. By Lemma 2.1(2) and (6), G has a Z_{3}-connected subgraph G_{1} containing an even wheel W_{4} and all the vertices of $N\left(v_{1}\right) \cap N\left(v_{4}\right) \cap M$. This means $\left|V\left(G_{1}\right)\right| \geq 5+n-8-1=n-4$. Lemma 2.8 shows that G is Z_{3}-connected.
(2) The proof is similar.

Lemma 2.10. Let G be a 2-edge-connected simple graph on n vertices with $\delta(G)=2$. If $d(x)+d(y) \geq n$ for each $x y \in E(G)$, then $G \notin\left\langle Z_{3}\right\rangle$ if and only if G is $K_{2, n-2}$ or $K_{2, n-2}^{+}$or G_{i} in Fig. 1 with $1 \leq i \leq 10$.

Proof. The sufficiency follows immediately from Lemma 2.7. Conversely, suppose that $G \notin\left\langle Z_{3}\right\rangle$. We shall prove that G must be $K_{2, n-2}$ or $K_{2, n-2}^{+}$or G_{i}, where $1 \leq i \leq 10$ in Fig. 1 . Since G is a 2-edge-connected simple graph, we have that $n \geq 3$. If $n=3$, then $G=G_{1}$. If $n=4$, then G must be $K_{2,2}$ or $K_{2,2}^{+}$, since $\delta(G)=2$. Suppose therefore that $n \geq 5$. Let $d(u)=\delta(G)=2, N(u)=\left\{u_{1}, u_{2}\right\}$, and $N=N\left(u_{1}\right) \cap N\left(u_{2}\right)$. By applying the given degree-sum condition to $u u_{1}$ and $u u_{2}$, respectively, $d\left(u_{1}\right) \geq n-2$ and $d\left(u_{2}\right) \geq n-2$. It follows that $n-4 \leq|N| \leq n-2$. In the remainder of the proof we shall use two claims.

Claim 1. $G[N]$ does not contain a pair of incident edges.
Proof of Claim 1. Suppose, to the contrary, that $v_{1} v_{2} \in E(G)$ and $v_{2} v_{3} \in E(G)$, where $v_{1}, v_{2}, v_{3} \in N$. The subgraph induced by $u_{1}, u_{2}, v_{1}, v_{2}$ and v_{3} contains an even wheel W_{4} with the center at v_{2}. Since $|N| \geq n-4, G$ has a Z_{3}-connected subgraph G_{1} containing an even wheel W_{4} and all the vertices in N. Obviously, $\left|V\left(G_{1}\right)\right| \geq n-2$. By Lemma $2.8, G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Claim 2. If $v_{0} \in N\left(u_{1}\right)-\left(N\left(u_{2}\right) \cup\left\{u_{2}\right\}\right)$, then $e\left(v_{0}, N\right) \leq 1$.
Proof of Claim 2. Suppose otherwise that v_{0} has two neighbors v_{1} and v_{2} in N. In this case, applying the given degree sum condition to $u u_{2}$, we get $u_{1} u_{2} \in E(G)$. It follows that G contains an even wheel W_{4} induced by $v_{0}, v_{1}, v_{2}, u_{1}$, and u_{2} with the center at u_{1}. As in Claim 1, G has a Z_{3}-connected subgraph G_{1} containing an even wheel W_{4} and all the vertices in N, and $\left|V\left(G_{1}\right)\right| \geq n-2$. Lemma 2.8 proves that $G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Now we are ready to complete the proof of our lemma. We assume first that $|N|=n-2$. If there is no edge in $G[N]$, then G is $K_{2, n-2}$ if $u_{1} u_{2} \notin E(G)$ and G is $K_{2, n-2}^{+}$otherwise. Suppose now that v_{1} and v_{2} in N are adjacent. When $n=5, G=G_{4}$ if $u_{1} u_{2} \notin E(G)$ and $G=G_{2}$ otherwise. Let $n=6$. When $G[N]$ has only one edge, $G=G_{5}$ if $u_{1} u_{2} \notin E(G)$ and $G=G_{8}$ if $u_{1} u_{2} \in E(G)$; when $G[N]$ has two edges, these two edges are incident, contrary to Claim 1 . When $n \geq 7$, by applying the given degree-sum condition to $v_{1} v_{2}, G[N]$ contains a pair of incident edges in $G[N]$, contrary to Claim 1 .

We next assume that $|N|=n-3$. Now there is a vertex $v_{0} \notin N\left(u_{1}\right) \cap N\left(u_{2}\right)$. We assume, without loss of generality, that $v_{0} \notin N\left(u_{2}\right)$. By applying the given degree-sum condition to $u u_{2}$, we get $u_{1} u_{2} \in E(G)$. When $n=5, G=G_{3}$. Thus, let $n \geq 6$.

Suppose first that $v_{0} \notin N\left(u_{1}\right) \cup N\left(u_{2}\right)$. When $n=6, G=G_{6}$. Assume $n=7$ or $n \geq 9$. Since $\delta(G)=2$, let v_{1}, \ldots, v_{k} be the neighbors of v_{0} in $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{u\}$, where $k=d\left(v_{0}\right)$. For each $1 \leq j \leq k$, by applying the given degree-sum condition to $v_{0} v_{j}, G[N]$ has a pair of incident edges, contrary to Claim 1 . When $n=8, G[N]$ has a pair of incident edges or a pair of independent edges. In the former case, it is contrary to Claim 1. In the latter case, $G-u$ is a triangularly connected graph with $\delta(G) \geq 4$. By Lemma $2.3, G-u \in\left\langle Z_{3}\right\rangle$; also $G \in\left\langle Z_{3}\right\rangle$ since $d(u)=2$, a contradiction.

Next suppose that $v_{0} \in N\left(u_{1}\right) \cup N\left(u_{2}\right)$. Without loss of generality, let $v_{0} \in N\left(u_{1}\right)-\left(N\left(u_{2}\right) \cup\left\{u_{2}\right\}\right)$. Since $\delta(G)=2, v_{0}$ has at least one neighbor in N. By Claim 2, v_{0} has only one neighbor v_{1} in N. It follows that $v_{0} v \notin E(G)$ for $v \in N-v_{1}$. When $n=6, G=G_{7}$. When $n \geq 7, G[N]$ has a pair of incident edges by applying the given degree-sum condition to $v_{0} v_{1}$, contrary to Claim 1.

Finally, we assume that $|N|=n-4$. By applying the given degree-sum condition to $u u_{1}$ and $u u_{2}$, respectively, $N\left(u_{1}\right)-\left(N\left(u_{2}\right) \cup\left\{u_{2}\right\}\right) \neq \emptyset, N\left(u_{1}\right)-\left(N\left(u_{1}\right) \cup\left\{u_{1}\right\}\right) \neq \emptyset$ and $u_{1} u_{2} \in E(G)$. Let $v_{1} \in N\left(u_{1}\right)-\left(N\left(u_{2}\right) \cup\left\{u_{2}\right\}\right)$, $v_{2} \in N\left(u_{2}\right)-\left(N\left(u_{1}\right) \cup\left\{u_{1}\right\}\right)$. If $v_{1} v_{2} \notin E(G)$, by $\delta(G)=2$ and by Claim $2, v_{1}\left(v_{2}\right)$ has only one neighbor $v_{1}^{\prime}\left(v_{2}^{\prime}\right)$ in N. By symmetry, when $n=6, G=G_{9}$; when $n=7, G=G_{10}$. When $n \geq 8, G[N]$ has a pair of incident edges in $G[N]$ by applying the given degree-sum condition to $v_{1} v_{1}^{\prime}$ and $v_{2} v_{2}^{\prime}$, respectively, contrary to Claim 1 . Thus, we assume that $v_{1} v_{2} \in E(G)$. When $n=6$, let $v_{3} \in N-\{u\}$. Now $v_{1} v_{3}, v_{2} v_{3} \in E(G)$. G contains an even wheel W_{4} induced by $u_{1}, u_{2}, v_{1}, v_{2}$ and v_{3} with the center at v_{3}. We contract this W_{4} and get a 2 -cycle. We contract this 2 -cycle and get a K_{1} which is Z_{3}-connected. By Lemma 2.1, $G \in\left\langle Z_{3}\right\rangle$, a contradiction. When $n \geq 7$, applying the given degree-sum condition to $v_{1} v_{2}$, one of v_{1} and v_{2} has at least two neighbors in N, contrary to Claim 2.

In order to prove Lemma 2.13, we establish the following two lemmas.
Lemma 2.11. Suppose that G is a 2-edge-connected simple graph on n vertices and that $d(x)+d(y) \geq n$ for each $x y \in E(G)$ and that $\delta(G)=3$ and $N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Let $M=V(G)-\left\{u, u_{1}, u_{2}, u_{3}\right\}$. Assume that $G \notin\left\langle Z_{3}\right\rangle$.
(1) If $u_{1} u_{2}, u_{2} u_{3} \in E(G)$, then there is no vertex $v \in N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap N\left(u_{3}\right)-\{u\}$.
(2) If $u_{i} u_{j}, u_{i} u_{k} \in E(G)$ and if $v_{1} \in N\left(u_{i}\right) \cap N\left(u_{j}\right) \cap M$ and $v_{2} \in N\left(u_{j}\right) \cap N\left(u_{k}\right) \cap M$, then $v_{1} v_{2} \notin E(G)$, where $\{i, j, k\}=\{1,2,3\}$.
(3) If $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1} \in E(G)$, then $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)-\{u\}\right| \leq 2$, where $1 \leq i<j \leq 3$.

Proof. (1) Suppose otherwise that u_{1}, u_{2} and u_{3} have a common vertex v except for u. It follows that G contains an even wheel W_{4} induced by u, u_{1}, u_{2}, u_{3} and v, contrary to Corollary 2.9.
(2) Suppose otherwise that $v_{1} v_{2} \in E(G[M])$. This means that G contains the graph in Fig. 2(a) induced by $u_{i}, u_{j}, u_{k}, u, v_{1}$ and v_{2} with the distinguished edge $u_{i} v_{1}$, contrary to Corollary 2.9.
(3) Suppose, to the contrary, that there are $i_{0}, j_{0} \in\{1,2,3\}$ such that $\left|N\left(u_{i_{0}}\right) \cap N\left(u_{j_{0}}\right)-\{u\}\right| \geq 3$. Let $v_{1}, v_{2}, v_{3} \in$ $N\left(u_{i_{0}}\right) \cap N\left(u_{j_{0}}\right)-\{u\}$. Let $k \in\{1,2,3\}-\left\{i_{0}, j_{0}\right\}$. On the other hand, by applying the given degree-sum condition to $u u_{k}, e\left(u_{k}, M\right) \geq n-6$. It follows that there are at most two vertices in M which are not adjacent to $u_{i_{0}}$ since $|M|=n-4$. Thus, there is $\bar{v} \in\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $v u_{k} \in E(G)$. This means that $e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=3$, contrary to (1).

Lemma 2.12. Suppose that G is a 2-edge-connected simple graph on $6 \leq n \leq 10$ vertices such that $d(x)+d(y) \geq n$ for each $x y \in E(G)$. Assume further that $d(u)=3, N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $u_{1} u_{2} u_{3}$ is a 3 -cycle. Let $M=V(G)-\left\{u, u_{1}, u_{2}, u_{3}\right\}$, $N=\left\{v \in M: e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right) \leq 1\right\}$. If $G \notin\left\langle Z_{3}\right\rangle$, then each of the following holds.
(1) $|N| \leq 2$.
(2) If $N \neq \emptyset$, then $7 \leq n \leq 9$.
(3) If there are two vertices $v_{1}, v_{2} \in M$ such that $e\left(v_{i},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$ or there is one vertex $v \in M$ such that $e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0$, then $n=8$.
Proof. By Lemma 2.11, for each vertex $v \in M, e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right) \leq 2$. Let $N=\left\{x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{t}\right\}$ such that $e\left(x_{i},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$ for $1 \leq i \leq s$ and $e\left(y_{j},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0$ for $1 \leq j \leq t$. If N has no vertex x with $e\left(x,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$, s is defined to be 0 ; if N has no vertex y with $e\left(y,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0, t$ is defined to be 0 . On the other hand, by applying the given degree-sum condition to each edge $u u_{i}$ for $i=1,2,3, e\left(u_{i}, M\right) \geq n-6$. It follows that $3(n-6) \leq e\left(\left\{u_{1}, u_{2}, u_{3}\right\}, M\right) \leq$ $2(n-4-s-t)+s$, which implies that $n \leq 10-s-2 t$. When $n=6, e\left(M,\left\{u_{1}, u_{2}, u_{3}\right\}\right) \geq 4$ since $\delta(G)=3$. It follows that $4 \leq e\left(\left\{u_{1}, u_{2}, u_{3}\right\}, M\right) \leq 4-s-2 t$, which implies that $s=t=0$ and $N=\emptyset$. Thus, if $N \neq \emptyset$, then $7 \leq n \leq 10-s-2 t$.

Suppose that $|N| \geq 3$. Since $7 \leq n \leq 10-s-2 t$, we have that $t=0, s=3$ and $n=7$. In this case, $G[M]$ is a 3-cycle, say $x_{1} x_{2} x_{3}$. $d\left(x_{1}\right)+d\left(x_{2}\right)=6<7$. This contradiction proves (1).

If $N \neq \emptyset$, then $s \geq 1$ or $t \geq 1$. It follows immediately from $7 \leq n \leq 10-s-2 t$ that $7 \leq n \leq 9$ and (2) holds.
If there are two vertices $v_{1}, v_{2} \in M$ such that $e\left(v_{i},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$, then $s \geq 2$ and $t \geq 0$. Thus, $7 \leq n \leq 8$. If $n=7$, then $|M|=3$. Since $\delta(G)=3, v_{1} v_{2} \in E(G)$. In this case, $d\left(v_{1}\right)+d\left(v_{2}\right)=6<7$, contrary to the given degree-sum condition. Thus, $n=8$. Suppose that there is a vertex $v \in M$ such that $e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0$. By $\delta(G)=3, v$ is adjacent to three vertices in M. Thus, $n \geq 8$. In this case, $t \geq 1$ and $n \leq 8$ and (3) holds.

Lemma 2.13. Let G be a 2-edge-connected simple graph on n vertices with $\delta(G)=3$. If $d(x)+d(y) \geq n$ for each $x y \in E(G)$, then $G \notin\left\langle Z_{3}\right\rangle$ if and only if G is $K_{3, n-3}$ or $K_{3, n-3}^{+}$or G_{i}, where $11 \leq i \leq 15$ in Fig. 1.

Proof. If G is $K_{3, n-3}$ or $K_{3, n-3}^{+}$or G_{i}, where $11 \leq i \leq 15$ in Fig. 1, then by Lemma 2.7, $G \notin\left\langle Z_{3}\right\rangle$. Conversely, suppose that $G \notin\left\langle Z_{3}\right\rangle$. We shall prove that it must be $K_{3, n-3}$ or $K_{3, n-3}^{+}$or G_{i}, where $11 \leq i \leq 15$ in Fig. 1 . Since $\delta(G)=3$, for $n=4$, $G=G_{11}$. For $n=5$, since n is odd, there must be a vertex v such that $d(v)=4$. For any $w \in V(G)-v, d_{G-v}(w) \geq 2$, so $G-v$ contains a 4 -cycle. This means that G contains an even wheel W_{4} with the center at v as a spanning subgraph. By Lemma 2.1, $G \in\left\langle Z_{3}\right\rangle$, a contradiction. Therefore we assume that $n \geq 6$. Let $d(u)=3, N(u)=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $M=V(G)-\left\{u, u_{1}, u_{2}, u_{3}\right\}$.

Case 1. There is no edge in $G[N(u)]$.
If there is no edge in $G[M]$, then G is $K_{3, n-3}$. Thus, assume that $G[M]$ contains an edge $x y$. For $n=6, G$ is $K_{3,3}^{+}$. When $n \geq 7$, applying the given degree-sum condition to $u u_{i}$ for $i=1,2,3, d\left(u_{i}\right) \geq n-4$. This means that each vertex in M is adjacent to each vertex in $\left\{u_{1}, u_{2}, u_{3}\right\}$. G must contain K_{4}^{-}, the union of $u_{1} x y$ and $u_{2} x y$, and $d\left(u_{1}\right) \geq 4$. The graph $G_{\left[u_{1} x, u_{1} y\right]}$ contains a 2-cycle; by iterative contracting 2-cycles, we obtain the graph K_{1} which is Z_{3}-connected. By Lemma 2.1, $G_{\left[u_{1} x, u_{1} y\right]} \in\left\langle Z_{3}\right\rangle$, so by Lemma 2.4, $G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Case 2. There is exactly one edge in $G[N(u)]$.
We assume, without loss of generality, that $u_{1} u_{2} \in E(G)$. Applying the given degree-sum condition to $u u_{i}$ for $i=1,2,3$, u_{3} is adjacent to each vertex of M and u_{i} is adjacent to at least $n-5$ vertices of M for $i=1$, 2 . Thus, $n-5 \leq\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right| \leq$ $n-3$ since $u \in N\left(u_{1}\right) \cap N\left(u_{2}\right)$ and $u \notin M$.

Assume first that $\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right|=n-3$. In this case, $N\left(u_{1}\right)=N\left(u_{2}\right)=N\left(u_{3}\right)=M$. If there is no edge in $G[M]$, then $G=K_{3, n-3}^{+}$. Thus, we assume that there is an edge $v_{1} v_{2}$ in $G[M]$. It follows that G contains the subgraph H in Fig. 2(a) induced by $u, u_{1}, u_{2}, u_{3}, v_{1}$ and v_{2} with the distinguished edge $u_{1} v_{1}$. This contradicts Corollary 2.9.

We next assume that $\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right|=n-4$. In this case, there is only one vertex in M which is not in $N\left(u_{1}\right) \cap N\left(u_{2}\right)$. Let $v_{0} \in M-N\left(u_{1}\right) \cap N\left(u_{2}\right)$. If $v_{0} \in N\left(u_{1}\right) \cup N\left(u_{2}\right)$, without loss of generality, let $v_{0} \in N\left(u_{1}\right)-N\left(u_{2}\right)$. Since $\delta(G) \geq 3$ and $v_{0} u, v_{0} u_{2} \notin E(G)$, there is a vertex $v_{3} \in N\left(u_{1}\right) \cap N\left(u_{2}\right)$ such that $v_{0} v_{3} \in E(G)$. Applying the given degree-sum condition to $u u_{3}, u_{3}$ is adjacent to all the vertices in M. Thus, $v_{0} u_{3}, v_{3} u_{3} \in E(G)$. Then G contains the subgraph H in Fig. 2(a) induced by $u, u_{1}, u_{2}, u_{3}, v_{0}$ and v_{3} with distinguished edge $u_{1} v_{0}$, contrary to Corollary 2.9. Next, suppose that $v_{0} \notin N\left(u_{1}\right) \cup N\left(u_{2}\right)$. Since $\delta(G)=3, v_{0}$ has three neighbors in $V(G)-\left\{u, u_{1}, u_{2}\right\}$ and hence $n \geq 7$. If there is an edge $v_{1} v_{2}$ in the subgraph induced by $N\left(u_{1}\right) \cap N\left(u_{2}\right)$, then G contains the subgraph H in Fig. 2(a) induced by $u, u_{1}, u_{2}, u_{3}, v_{1}$ and v_{2} with distinguished edge $u_{1} v_{1}$, contrary to Corollary 2.9. Assume that there is no edge in the subgraph induced by $N\left(u_{1}\right) \cap N\left(u_{2}\right)$. In this case, applying the given degree-sum condition to $u_{3} v_{0}$ and $n \geq 6$, there are $v_{1}, v_{2} \in N\left(u_{1}\right) \cap N\left(u_{2}\right)$ such that $v_{0} v_{1}, v_{0} v_{2} \in E(G)$. Note that $d\left(v_{2}\right) \geq 4, u_{3} v_{1}, u_{3} v_{2} \in E(G)$. Let $G^{\prime}=G_{\left[v_{2} u_{2}, v_{2} u_{3}\right]}$. This implies that G^{\prime} contains an even wheel W_{4} induced by u, u_{1}, u_{2}, u_{3} and v_{1} with the center at u_{2}. We contract this W_{4} and contract every 2 -cycle obtained in the process. Since $\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right| \geq n-4, \kappa^{\prime}\left(G^{\prime}\right) \geq 2$ and $v_{0} u_{3}, v_{0} v_{1} \in E\left(G^{\prime}\right)$, the resulting graph is K_{1} which is Z_{3}-connected. By Lemma 2.1, $G^{\prime} \in\left\langle Z_{3}\right\rangle$, and so by Lemma 2.4, $G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Next, assume that $\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right|=n-5$. Recall that $n \geq 6$. When $n=6, G=G_{12}$. Thus, $n \geq 7$. Recall that u_{i} is adjacent to at least $n-5$ vertices of M for $i=1$, 2. Let $v_{1} \in N\left(u_{1}\right)-\left(N\left(u_{2}\right) \cup\left\{u_{2}\right\}\right)$ and $v_{2} \in N\left(u_{2}\right)-\left(N\left(u_{1}\right) \cup\left\{u_{1}\right\}\right)$. If there is a vertex v_{3} in $N\left(u_{1}\right) \cap N\left(u_{2}\right)$ such that $v_{1} v_{3} \in E(G)$ or $v_{2} v_{3} \in E(G)$, by symmetry, let $v_{1} v_{3} \in E(G)$. In this case, G contains the subgraph H induced by $u, u_{1}, u_{2}, u_{3}, v_{1}$ and v_{3} with distinguished edge $u_{1} v_{1}$, contrary to Corollary 2.9. Thus, neither v_{1} nor v_{2} is adjacent to any vertex in $N\left(u_{1}\right) \cap N\left(u_{2}\right)$. By applying the given degree-sum condition to $u_{1} v_{1}, v_{1} v_{2} \in E(G)$, $d\left(v_{1}\right)+d\left(v_{2}\right)=6<n$, a contradiction.

Case 3. There are exactly two edges in $G[N(u)]$.
In this case, we assume, without loss of generality, that $u_{1} u_{2}, u_{2} u_{3} \in E(G)$.
Assume first that $n \geq 9$. In this case, we claim that u_{1}, u_{2} and u_{3} have a common neighbor v except for u. Suppose, to the contrary, that for each vertex $v \in M, e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right) \leq 2$. By applying the given degree-sum condition to $u u_{i}$, $d\left(u_{i}\right) \geq n-3$ for $i=1,2,3$. On the other hand, each vertex in M is adjacent to at most two of u_{1}, u_{2} and u_{3}. It follows that $2(n-4) \geq d\left(u_{1}\right)+d\left(u_{2}\right)+d\left(u_{3}\right)-7 \geq 3(n-3)-7$, which implies that $n \leq 8$. Thus, when $n \geq 9, u_{1}, u_{2}$ and u_{3} have a common neighbor v except for u, contrary to Lemma 2.11.

Assume then that $n=8$. By applying the given degree-sum condition to $u u_{i}$ for $i=1,2$, 3 , we have $e\left(u_{1}, M\right) \geq 3$, $e\left(u_{2}, M\right) \geq 2$ and $e\left(u_{3}, M\right) \geq 3$. Since $|M|=4,\left|N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap M\right| \geq 1,\left|N\left(u_{2}\right) \cap N\left(u_{3}\right) \cap M\right| \geq 1$ and $\left|N\left(u_{1}\right) \cap N\left(u_{3}\right) \cap M\right| \geq 2$. Let $v_{1} \in N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap M, v_{2}, v_{3} \in N\left(u_{1}\right) \cap N\left(u_{3}\right) \cap M$ and $v_{4} \in N\left(u_{2}\right) \cap N\left(u_{3}\right) \cap M$. By Lemma 2.11(1), $v_{1} \notin N\left(u_{3}\right), v_{2}, v_{3} \notin N\left(u_{2}\right)$ and $v_{4} \notin N\left(u_{1}\right)$. Thus, $M=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Since $\delta(G)=3$, by Lemma 2.11(2), $v_{1} v_{4} \in E(G)$ and $v_{1} v_{2}, v_{1} v_{3}, v_{4} v_{2}, v_{4} v_{3} \notin E(G)$. Thus, $d\left(v_{1}\right)+d\left(v_{4}\right)=6<8$. This contradicts the given degree-sum condition.

Next, let $n=7$. By applying the given degree-sum condition to $u u_{i}$ for $i=1,2,3$, we obtain $e\left(u_{1}, M\right) \geq 2, e\left(u_{2}, M\right) \geq 1$ and $e\left(u_{3}, M\right) \geq 2$. It follows that $\left|N\left(u_{1}\right) \cap N\left(u_{3}\right) \cap M\right| \geq 1$. Let $v_{2} \in N\left(u_{1}\right) \cap N\left(u_{3}\right) \cap M, v_{1} \in N\left(u_{1}\right) \cap M-\left\{v_{2}\right\}$ and $v_{3} \in N\left(u_{3}\right) \cap M-\left\{v_{2}\right\}$. Assume first that $v_{1} \neq v_{3}$. By Lemma 2.11(1), $u_{2} v_{2} \notin E(G)$. Since $e\left(u_{2}, M\right) \geq 1$, either $v_{1} u_{2} \in E(G)$ or $u_{2} v_{3} \in E(G)$. In the former case, by Lemma 2.11(2), $v_{1} v_{2} \notin E(G)$. Applying $\delta(G)=3$ and Lemma 2.11(1) to v_{1} and v_{2}, respectively, we have $v_{3} v_{1}, v_{3} v_{2} \in E(G), d\left(v_{3}\right)=3$ and $d\left(v_{2}\right)=3$. By Lemma 2.11(2), $v_{3} u_{2}, v_{3} u_{1} \notin E(G)$. Thus, $d\left(v_{2}\right)+d\left(v_{3}\right)=6<7$, contrary to the given degree-sum condition. In the latter case, by applying $\delta(G)=3$ and Lemma 2.11(1) to v_{3} and v_{2}, we have $v_{2} v_{1}, v_{3} v_{1} \in E(G), d\left(v_{3}\right)=3$ and $d\left(v_{2}\right)=3$. By Lemma 2.11(2), $v_{1} u_{3}, v_{1} u_{2} \notin E(G)$. Thus, $d\left(v_{1}\right)+d\left(v_{2}\right)=6<7$, contrary to the given degree-sum condition.

Now we suppose that $v_{1}=v_{3}$. Let $v \in M-\left\{v_{1}, v_{2}\right\}$. It follows that $v u_{2} \in E(G)$. By Lemma 2.11(1), $v_{2} u_{2}, v_{1} u_{2} \notin E(G)$. Since $\delta(G)=3, v v_{1}, v v_{2} \in E(G)$. By applying the given degree-sum condition to $v v_{1}$ and $v v_{2}$, respectively, $v_{1} v_{2} \in E(G)$. In this case, G is the graph in Fig. 2(b) which is Z_{3}-connected by Lemma 2.5, a contradiction.

Finally, let $n=6$. Let $v_{1}, v_{2} \in V(G)-\left\{u, u_{1}, u_{2}, u_{3}\right\}$. By Lemma 2.11(1) and by $\delta(G)=3, e\left(v_{i},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=2$ and $v_{1} v_{2} \in E(G)$. If $v_{1} u_{1}, v_{1} u_{3} \in E(G)$, by Lemma 2.11(2), $v_{2} u_{1}, v_{2} u_{3} \in E(G)$. In this case, $G=G_{14}$. If $v_{1} u_{1}, v_{1} u_{2} \in E(G)$, by Lemma 2.11, $v_{2} u_{2}, v_{2} u_{3} \in E(G)$. In this case, G is G_{15}.

Case 4. There are three edges in $G[N(u)]$.
When $n \geq 11$, as in the proof in Case $3,\left|N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap N\left(u_{3}\right)\right| \geq 2$. By Lemma 2.11(1), $G \in\left\langle Z_{3}\right\rangle$, a contradiction. Thus, we assume that $6 \leq n \leq 10$. Let $N=\left\{v \in M: e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right) \leq 1\right\}$.

First, we assume that $N=\emptyset$. In this case, $e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=2$ for each vertex $v \in M$. Let $v_{1} \in M \cap N\left(u_{1}\right) \cap N\left(u_{2}\right)$. Since $\delta(G)=3$, there must be a vertex $v_{2} \in M$ such that $v_{1} v_{2} \in E(G[M])$. By Lemma 2.11(2), $v_{2} \in N\left(u_{1}\right) \cap N\left(u_{2}\right)$. When $n=6$, G is G_{13}. When $n \geq 7$, by the given degree-sum condition to $v_{1} v_{2}$, there is a vertex $v_{3} \in M$ such that $v_{1} v_{3} \in E(G[M])$ or $v_{2} v_{3} \in E(G[M])$. By symmetry, let $v_{1} v_{3} \in E(G)$. By Lemma 2.11(3), $v_{3} \notin N\left(u_{1}\right) \cap N\left(u_{2}\right) \cap M$, that is, $v_{3} \in N\left(u_{1}\right) \cap N\left(u_{3}\right) \cap M$ or $v_{3} \in N\left(u_{2}\right) \cap N\left(u_{3}\right) \cap M$. Both cases contradict Lemma 2.11(2). Thus, $N \neq \emptyset$.

We next assume that there exists a vertex $v_{0} \in N$ such that $e\left(v_{0},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0$. By Lemma $2.12, n=8$. As in the proof of Lemma 2.12, for each vertex v in $M-\left\{v_{0}\right\}, e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=2$. Let $M=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. By $d\left(v_{0}\right) \geq 3$, $v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3} \in E(G)$. By applying the given degree-sum condition to each edge $v_{0} v_{1}, v_{0} v_{2}, v_{0} v_{3}$ and by Lemma 2.11 , the subgraph induced by M is a complete graph. By Lemma $2.11(3),\left(N\left(v_{1}\right) \cup N\left(v_{2}\right) \cup N\left(v_{3}\right)\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\left\{u_{1}, u_{2}, u_{3}\right\}$. Thus, there are $s, t \in\{1,2,3\}$ such that $v_{s} \in N\left(u_{i}\right) \cap N\left(u_{j}\right) \cap M$ and $v_{t} \in N\left(u_{i}\right) \cap N\left(u_{k}\right) \cap M$, which contradicts Lemma 2.11(2).

So far we have proved that $N \neq \emptyset$ and N does not have a vertex v such that $e\left(v,\left\{u_{1}, u_{2}, u_{3}\right\}\right)=0$. Thus, assume that there is one vertex $v_{0} \in M$ such that $e\left(v_{0},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$. We assume, without loss of generality, that $v_{0} u_{3} \in E(G)$. By Lemma 2.12, $7 \leq n \leq 9$. Since $d\left(v_{0}\right) \geq 3$, there exists a vertex $v_{1} \in M$ such that $v_{1} v_{0} \in E(G)$. By applying the given degree-sum condition to $v_{0} v_{1}, M-\left\{v_{0}, v_{1}\right\}$ contains at least one vertex, say v_{2}, adjacent to both v_{0} and v_{1}, for otherwise, $e\left(v_{1}, M-\left\{v_{0}, v_{1}\right\}\right)+e\left(v_{0}, M-\left\{v_{0}, v_{1}\right\}\right) \leq|M|-2$, which implies that $d\left(v_{0}\right)+d\left(v_{1}\right) \leq|M|-2+2+3=n-1<n$, a contradiction.

Suppose that $e\left(v_{i},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=2$ for each $i=1$, 2. If $v_{1} \in N\left(u_{i}\right) \cap N\left(u_{j}\right) \cap M$, then by Lemma 2.11(2), $v_{2} \in$ $N\left(u_{i}\right) \cap N\left(u_{j}\right) \cap M$ for $i \neq j$. If $\{i, j\}=\{1,3\}$, then G contains an even wheel W_{4} induced by $u_{1}, u_{3}, v_{0}, v_{1}$ and v_{2} with the center at v_{1}; if $\{i, j\}=\{2,3\}$, then G contains an even wheel W_{4} induced by $u_{2}, u_{3}, v_{0}, v_{1}$ and v_{2} with the center at v_{1}. We contract this W_{4} and iteratively contracting 2-cycles leads eventually to a K_{1} which is Z_{3}-connected. By Lemma 2.1 , $G \in\left\langle Z_{3}\right\rangle$, a contradiction. Thus, $N\left(u_{i}\right) \cap N\left(u_{j}\right) \cap M=\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{i}, u_{j}\right\}=\left\{u_{1}, u_{2}\right\}$. In this case, G contains the graph H in Fig. 2(a) with a 4-cycle $v_{1} v_{0} u_{3} u_{1}$ and a distinguished edge $u_{2} v_{2}$. We contract this H and iteratively contracting 2-cycles leads eventually to a K_{1} which is Z_{3}-connected. By Lemma 2.1, $G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Thus, there is one of v_{1} and v_{2}, say v_{1}, such that $e\left(v_{1},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1$, by Lemma $2.12, n=8$. Pick $v_{3} \in M-\left\{v_{0}, v_{1}, v_{2}\right\}$. This implies that $e\left(v_{3},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=2$. Since $d\left(v_{0}\right)+d\left(v_{1}\right) \geq 8, v_{0} v_{3} \in E(G)$ and $v_{1} v_{3} \in E(G)$. Thus, $d\left(v_{0}\right)=4$. Since $e\left(\left\{u_{1}, u_{2}\right\}, v_{0}\right)=0$ and $e\left(\left\{u_{1}, u_{2}\right\}, v_{1}\right) \leq 1, e\left(\left\{u_{1}, u_{2}\right\},\left\{v_{2}, v_{3}\right\}\right) \geq 3$. We assume, without loss of generality, that $v_{2} u_{1}, v_{2} u_{2} \in E(G)$. If $v_{1} u_{1} \in E(G)$, by assumption that $e\left(v_{1},\left\{u_{1}, u_{2}, u_{3}\right\}\right)=1, e\left(v_{1},\left\{u_{2}, u_{3}\right\}\right)=0$. Applying the given degree-sum condition to $u u_{2}$ and $u u_{3}$, respectively, then $v_{3} u_{2}, v_{3} u_{3} \in E(G)$; if $v_{1} u_{3} \in E(G)$, then $v_{3} u_{1}, v_{3} u_{2} \in E(G)$. For both cases, let $G^{\prime}=G_{\left[v_{2} u_{1}, v_{2} u_{2}\right]}$. It follows that G^{\prime} contains a 2 -cycle $u_{1} u_{2} u_{1}$. Iteratively contracting 2-cycles leads eventually to a K_{1}, which is Z_{3}-connected. By Lemmas 2.1 and $2.5, G \in\left\langle Z_{3}\right\rangle$, a contradiction.

Lemma 2.14. Let G be a 2-edge-connected simple graph on n vertices with $\delta(G) \geq 4$, where $n \geq 7$. If $d(x)+d(y) \geq n$ for each $x y \in E(G)$, then $G \in\left\langle Z_{3}\right\rangle$ or G contains K_{4}^{-}.
Proof. Let $v \in V(G)$ be a vertex such that $d(v)=\delta(G) \geq 4$. Suppose that $N(v)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. It follows that $k \geq 4$. If there is no edge in $G[N(v)]$, then for each $1 \leq i \leq k, u_{i}$ is adjacent to all the vertices in $V(G)-N_{G}(v)$ by the given degree-sum condition. Therefore, G contains $K_{k, n-k}$ as a subgraph. Since $\delta(G) \geq 4, k \geq 4$ and $n-k=d_{G}\left(u_{i}\right) \geq 4$. By Lemma 2.1(3), G is Z_{3}-connected.

So we may assume that $G[N(v)]$ contains some edge, say $u_{1} u_{2} \in E(G)$. This implies that $v u_{1} u_{2}$ is a 3-cycle of G. If there is no K_{4}^{-}in G, then each vertex in $V(G)-\left\{v, u_{1}, u_{2}\right\}$ is adjacent to at most one vertex in $\left\{v, u_{1}, u_{2}\right\}$. Thus, $d_{G}(v)+d_{G}\left(u_{1}\right)+d_{G}\left(u_{2}\right) \leq n-3+6=n+3$. By the given degree-sum condition, $d_{G}(v)+d_{G}\left(u_{1}\right)+d_{G}\left(u_{2}\right) \geq 3 n / 2$. Thus, $3 n / 2 \leq n+3$, and so $n \leq 6$, a contradiction. Therefore, G contains a K_{4}^{-}.

3. Proof of Theorem 1.3

If G is one of $K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}$and the 15 exceptional graphs in Fig. 1, by Lemma 2.7, $G \notin\left\langle Z_{3}\right\rangle$. Conversely, suppose that $G \notin\left\{K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}\right\}$and no graph in Fig. 1 is G. We shall prove that $G \in\left\langle Z_{3}\right\rangle$. If $2 \leq \delta(G) \leq 3$, then by Lemmas 2.10 and $2.13, G \in\left\langle Z_{3}\right\rangle$. Suppose therefore that $\delta(G) \geq 4$.

We proceed by induction on $n=|V(G)|$. When $n=5, G$ is K_{5} and $G \in\left\langle Z_{3}\right\rangle$ by Lemma $2.1(1)$. When $n=6$, if G is K_{6}, then by Lemma 2.1(1), $G \in\left\langle Z_{3}\right\rangle$. Thus, assume that G is not a K_{6}. In this case, $\delta(G)=4$ and let $d(u)=4$. Let $G^{\prime}=G-u$. Then for each vertex $v \in V\left(G^{\prime}\right), d_{G^{\prime}}(v) \geq 3$. Since $\left|V\left(G^{\prime}\right)\right|=5, G^{\prime}$ has an even wheel W_{4} as a spanning subgraph. By Lemma 2.1, $G^{\prime} \in\left\langle Z_{3}\right\rangle$ and hence $G \in\left\langle Z_{3}\right\rangle$. Suppose thus that $n \geq 7$ and the theorem holds for every graph G with $|V(G)|<n$. By Lemma 2.14, we may assume that G contains a K_{4}^{-}, the union of two triangles $x y z$ and $x y w$ with $d(z) \geq 4$. Let G^{\prime} be the graph obtained from G by deleting $z x, z y$, and adding $x y$.

We claim that G^{\prime} is 2-edge connected. Suppose otherwise that G^{\prime} is not connected or G^{\prime} has an cut edge e. Define $G^{\prime \prime}$ as follows. $G^{\prime \prime}=G^{\prime}$ if G^{\prime} is not connected and $G^{\prime \prime}=G^{\prime}-e$ otherwise. It follows that x, y, w are in one component F_{1} of $G^{\prime \prime}$ and z is in other component F_{2} of $G^{\prime \prime}$. We further assume $e=z_{1} z_{2}$ such that if $G^{\prime \prime}=G^{\prime}-e$, then $z_{1} \in V\left(F_{1}\right)$ and $z_{2} \in V\left(F_{2}\right)$.

If G^{\prime} is not connected, w has a neighbor $w^{\prime} \in V(G)-\{x, y, z\}$ and define $e_{0}=w w^{\prime}$; if G^{\prime} has an cut edge e and $w \neq z_{1}$, then $z w \notin E(G)$. Since $\delta(G) \geq 4, w$ has a neighbor $w^{\prime} \in V(G)-\left\{x, y, z_{1}\right\}$ and define $e_{0}=w w^{\prime}$; if G^{\prime} has an cut edge e and $w=z_{1}$, then we also have $z w \notin E(G)$. Since $\delta(G) \geq 4, w$ have a neighbor $w_{1} \in V(G)-\left\{x, y, z_{1}\right\}$. By $\delta(G) \geq 4$ again, w_{1} has a neighbor $w_{2} \in V(G)-\left\{x, y, z_{1}\right\}$ and define $e_{0}=w_{1} w_{2}$. Thus, F_{1} contains an edge $e_{0}=a_{1} a_{2}$ such that $e\left(a_{1} a_{2}, z\right)=0, z_{1} \notin\left\{a_{1}, a_{2}\right\}$. Similarly, F_{2} contains an edge $b_{1} b_{2}$ such that $\left\{b_{1}, b_{2}\right\} \cap\left\{z, z_{2}\right\}=\emptyset$. By the given degree sum condition, $n \leq d\left(a_{1}\right)+d\left(a_{2}\right) \leq 2\left|V\left(F_{1}\right)\right|-2$ and $n \leq d\left(b_{1}\right)+d\left(b_{2}\right) \leq 2\left|V\left(F_{2}\right)\right|-2$. It follows that $\left|V\left(F_{i}\right)\right| \geq(n+2) / 2$ for $i=1$, 2. Thus, $n \geq\left|V\left(F_{1}\right)\right|+\left|V\left(F_{2}\right)\right| \geq n+2$, a contradiction.

Let H be the maximal Z_{3}-connected subgraph containing 2-cycle $x y x$ of G^{\prime} and $G^{*}=G^{\prime} / H$. Since G^{\prime} is 2-edge connected, G^{*} is 2-edge connected. Denote by u^{*} the new vertex into which H is contracted. Note that G^{*} is a simple graph, in which all vertices except for u^{*} and z, have the same degree as in G and $e(t, H) \leq 1$ for any $t \in V(G)-V(H)$. If $G^{*} \in\left\langle Z_{3}\right\rangle$, by Lemma $2.1 G^{\prime} \in\left\langle Z_{3}\right\rangle$ and so is G. Let $\left|V\left(G^{*}\right)\right|=n^{*}$. Note that each vertex in G^{*} other than u^{*} and z has degree at least 4, then it is a routine work to verify that if $n^{*} \leq 5$, then $G^{*} \in\left\langle Z_{3}\right\rangle$, which implies that $G^{\prime} \in\left\langle Z_{3}\right\rangle$ and so is G. Therefore, assume that $n^{*} \geq 6$, that is $n \geq 8$.

Note that $\left|V\left(G^{*}\right)\right|=n^{*}<n$. To prove that $G^{*} \in\left\langle Z_{3}\right\rangle$, we need to prove that $d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right) \geq n^{*}$ for any two distinct $v_{1}, v_{2} \in V\left(G^{*}\right)$ and $v_{1} v_{2} \in E\left(G^{*}\right)$. There are four cases to discuss, as follows.

If $v_{1}, v_{2} \in V\left(G^{*}\right) \backslash\left\{z, u^{*}\right\}$, then $d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right)=d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right) \geq n>n^{*}$.
If $v_{1} \neq u^{*}$ and $v_{2}=z$, then using $d_{G^{*}}(z)=d_{G}(z)-2, d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right)=d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)-2 \geq n-2 \geq n^{*}$.
If $v_{1}=u^{*}$ and $v_{2} \neq z$, then there is $\lambda \in V(H)$ such that $v_{2} \lambda \in E(G)$. Since $d_{G^{*}}\left(u^{*}\right) \geq d_{G}(\lambda)-(|V(H)|-1)$, we have that $d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right) \geq d_{G}(\lambda)-(|V(H)|-1)+d_{G}\left(v_{2}\right) \geq n-(|V(H)|-1)=n^{*}$.

It remains to us that $v_{1}=u^{*}$ and $v_{2}=z$. Let $T=G-V(H)$. It follows that there is $\mu \in V(H)-\{x, y\}$ such that $\mu z \in E(G)$.
If $|V(H)|=3$, then $V(H)=\{x, y, w\}$. In this case, $\mu \in\{x, y, w\}$. We have $d_{G^{*}}(z)+d_{G^{*}}\left(u^{*}\right)=d(z)-2+e(x y, T-z)+$ $e(w, T)=d(z)-2+d(x)+d(y)-6+d(w)-2 \geq 2 n-10$. Since $n \geq 8, d_{G^{*}}\left(v_{1}\right)+d_{G^{*}}\left(v_{2}\right) \geq n-2=n^{*}$.

If $|V(H)|=4$, then $V(H)=\{x, y, w, s\}$. Because $n^{*} \geq 6,|V(H)|=4$ implies that $n \geq 9$. Since $|V(H)|=4$, $e(x y, T-z) \geq d(x)+d(y)-8, e(w, T) \geq d(w)-3$ and $e(s, T) \geq d(s)-3$. Since $\delta(G) \geq 4, d_{G^{*}}(z)+d_{G^{*}}\left(u^{*}\right)=$ $d(z)-2+d(x y, T-z)+e(w, T)+e(s, T) \geq d(z)-2+d(x)+d(y)-8+d(w)-3+d(s)-3=(d(z)+d(x)-5)+$ $(d(y)+d(w)-8)+(d(s)-3) \geq n-5+n-8+1 \geq n-3=n^{*}$.

Therefore we suppose that $|V(H)| \geq 5$. Let $H_{0}=H-\{x, y, \mu\}$. If H_{0} contains an edge $s s^{\prime}$ and $e\left(s s^{\prime}, T\right) \geq 2$, then $d_{G^{*}}\left(u^{*}\right)+d_{G^{*}}(z) \geq d(z)-2+d(\mu)-(|V(H)|-1)+2 \geq n-(|V(H)|-1)=n^{*}$. Thus, assume $e\left(s s^{\prime}, T\right) \leq 1$. In this case, $n \leq d(s)+d\left(s^{\prime}\right) \leq 2|V(H)|-1$, that is, $|V(H)| \geq \frac{n+1}{2}$, so $|V(T)| \leq \frac{n-1}{2}$. For any $t \in V(T-z)$, there exist $t^{\prime} \in V(T-z)$ such that $t t^{\prime} \in E(G)$ since $d(t) \geq 4$ and $e(t, H) \leq 1$ for any $t \in V(T-z)$. By the given degree sum condition, $d(t)+d\left(t^{\prime}\right) \geq n$. Then $|V(T)| \geq \frac{n}{2}$, a contradiction. So assume that there is no edge in H_{0}. It follows that $e(H-\mu, T-z) \geq 2$ since $|V(H)| \geq 5$ and $\delta(G) \geq 4$. We obtain that $d_{G^{*}}\left(u^{*}\right)+d_{G^{*}}(z) \geq d(z)-2+d(\mu)-(|V(H)|-1)+e(H-\mu, T-z) \geq n-(|V(H)|-1)=n^{*}$.

By the induction hypothesis, either $G^{*} \in\left\langle Z_{3}\right\rangle$ or G^{*} is one of $K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}$and the 15 exceptional graphs in Fig. 1. Note that there are $\left(\left|V\left(G^{*}\right)\right|-2\right)$ vertices of degree at least 4 , since each such vertex has the same degree in G^{*} as that in G. This shows that $G^{*} \notin\left\{K_{2, n-2}, K_{3, n-3}, K_{2, n-2}^{+}, K_{3, n-3}^{+}\right\}$and no graph in Fig. 1 except G_{6} is G^{*}. Suppose that $G^{*}=G_{6}$. Let v_{1}, v_{2} be two vertices of degree 2 in G_{6} and other vertices in G_{6} has degree 4 which implies that $n=8, n^{*}=6$ and $|V(H)|=3$. Thus, $\left\{v_{1}, v_{2}\right\}=\left\{u^{*}, z\right\}$. Since $\delta(G) \geq 4$ and $d(x)+d(y) \geq 8, d_{G^{*}}\left(u^{*}\right) \geq 4$, contrary to $d_{G^{*}}\left(u^{*}\right)=2$. Therefore we complete our proof.

Corollary 3.1. Let G be a 2-edge-connected simple graph on n vertices. If $d(x)+d(y) \geq n+1$ for each $x y \in E(G)$, then $G \notin\left\langle Z_{3}\right\rangle$ if and only if G is either $K_{2, n-2}^{+}$or G_{1} or G_{2} or G_{11}.

Acknowledgements

The second author is supported by PASSHE Faculty Professional Development Council grant at Millersville University; the fifth author is partially supported by research funds of CCNU09Y01018 and also partially supported by Hubei Key Laboratory of Mathematical Sciences of China.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, North-Holland, New York, 1976.
[2] J.J. Chen, E. Eschen, H.J. Lai, Group connectivity of certain graphs, Ars Combin. 89 (2008) 141-158.
[3] M. DeVos, R. Xu, G. Yu, Nowhere-zero Z_{3}-flows through Z_{3}-connectivity, Discrete Math. 306 (2006) 26-30.
[4] G. Fan, H.J. Lai, R. Xu, C.Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory Ser. B 98 (2008) $1325-1336$.
[5] G. Fan, C. Zhou, Degree sum and Nowhere-zero 3-flows, Discrete Math. 308 (2008) 6233-6240.
[6] G. Fan, C. Zhou, Ore condition and Nowhere-zero 3-flows, SIAM J. Discrete Math. 22 (2008) 288-294.
[7] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of Nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[8] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combin. Theory, Ser. B 83 (2001) 258-261.
[9] H.J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs and Combin. 16 (2000) 165-176.
[10] R. Luo, R. Xu, J.H. Yin, G.X. Yu, Ore-condition and Z_{3}-connectivity, European J. Combin. 29 (2008) 1587-1595.
[11] W.T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math. 6 (1954) 80-91.
[12] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-50.
[13] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

[^0]: * Corresponding author.

 E-mail addresses: xwli68@yahoo.cn, xwli2808@yahoo.com (X. Li).

