Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Degree sum condition for Z_3 -connectivity in graphs

Xiaoxia Zhang^a, Mingquan Zhan^b, Rui Xu^c, Yehong Shao^d, Xiangwen Li^{a,*}, Hong-Jian Lai^{e,f}

^a Department of Mathematics, Huazhong Normal University, Wuhan 430079, China

^b Department of Mathematics, Millersville University, Millersville, PA 17551, USA

^c Department of Mathematics, University of West Georgia, Carrollton, GA 30118, USA

^d Arts and Science, Ohio University Southern, Ironton, OH 45638, USA

^e College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China

^f Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history: Received 9 October 2009 Received in revised form 15 February 2010 Accepted 7 August 2010 Available online 9 September 2010

*Keywords: Z*₃-connectivity Nowhere-zero 3-flow Degree sum

ABSTRACT

Let *G* be a 2-edge-connected simple graph on *n* vertices, let *A* denote an abelian group with the identity element 0, and let *D* be an orientation of *G*. The *boundary* of a function f: $E(G) \rightarrow A$ is the function $\partial f: V(G) \rightarrow A$ given by $\partial f(v) = \sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e)$, where $E^+(v)$ is the set of edges with tail v and $E^-(v)$ is the set of edges with head v. A graph *G* is *A*-connected if for every $b: V(G) \rightarrow A$ with $\sum_{v \in V(G)} b(v) = 0$, there is a function $f: E(G) \rightarrow A - \{0\}$ such that $\partial f = b$. In this paper, we prove that if $d(x) + d(y) \ge n$ for each $xy \in E(G)$, then *G* is not Z_3 -connected if and only if *G* is either one of 15 specific graphs or one of $K_{2,n-2}, K_{3,n-3}, K^+_{2,n-2}$ or $K^+_{3,n-3}$ for $n \ge 6$, where $K^+_{r,s}$ denotes the graph obtained from $K_{r,s}$ by adding an edge joining two vertices of maximum degree. This result generalizes the result in [G. Fan, C. Zhou, Degree sum and Nowhere-zero 3-flows, Discrete Math. 308 (2008) 6233–6240] by Fan and Zhou.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite, loopless, and may have multiple edges. Terminology and notations not defined here are from [1]. Let *G* be a graph, *H* a subgraph of *G*, and $v \in V(G)$. Let $d_H(v)$ denote the number of edges joining *v* to vertices of V(H) - v. In particular, when H = G, $d_G(v)$ is the degree of *v* and we simply write d(v) for it. For two subsets $A, B \subseteq V(G)$, $e_G(A, B)$ (or simply e(A, B)) denotes the number of edges with one endpoint in *A* and the other endpoint in *B*. For simplicity, if H_1 and H_2 are two subgraphs of *G*, we write $e(H_1, H_2)$ to mean $e(V(H_1), V(H_2))$.

A cycle is a connected 2-regular graph. An *n*-cycle is a cycle on *n* vertices. For simplicity, a 3-cycle with vertex set {*x*, *y*, *z*} is denoted by *xyz*. The complete graph on *n* vertices is denoted by K_n . Let K_n^- denote the graph obtained from K_n by deleting an edge, and let $K_{r,s}^+$ denote the simple graph obtained from the complete bipartite graph $K_{r,s}$ by adding an edge joining two vertices of maximum degree. Throughout this paper, when $K_{2,n-2}$ and $K_{2,n-2}^+$ are mentioned, we mean $n \ge 4$; when $K_{3,n-3}$ and $K_{3,n-3}^+$ are mentioned, $n \ge 6$.

Let *G* be a graph, and let *D* be an orientation of *G*. If an edge $e \in E(G)$ is directed from a vertex *u* to a vertex *v*, then let *tail* (e) = u and *head* (e) = v. For a vertex $v \in V(G)$, let $E^+(v)$ denote the set of edges with tail *v* and $E^-(v)$ the set of edges with head *v*. Let *A* denote an (additive) abelian group with the identity element 0. Let A^* denote the set of nonzero elements of *A*. We define F(G, A) to be the set of labelings of E(G) using elements of *A* and define $F^*(G, A)$ to be the set of labelings of E(G) using nonzero elements of *A*.

* Corresponding author. E-mail addresses: xwli68@yahoo.cn, xwli2808@yahoo.com (X. Li).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter S 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.08.004

X. Zhang et al. / Discrete Mathematics 310 (2010) 3390-3397

Fig. 1. Exceptional graphs for the main theorem.

Given a function $f \in F(G, A)$, define $\partial f : V(G) \to A$ by

$$\partial f(v) = \sum_{e \in E_D^+(v)} f(e) - \sum_{e \in E_D^-(v)} f(e)$$

where " \sum " refers to the addition in *A*. The value $\partial f(v)$ is known as the *net flow out of* v under f.

For a graph *G*, a function $b : V(G) \to A$ is an *A*-valued zero-sum function on *G* if $\sum_{v \in V(G)} b(v) = 0$. The set of all *A*-valued zero-sum functions on *G* is denoted by Z(G, A). Given $b \in Z(G, A)$, a function $f \in F^*(G, A)$ is an (A, b)-nowhere-zero flow if *G* has an orientation *D* such that $\partial f = b$. A graph *G* is *A*-connected if for every $b \in Z(G, A)$, *G* admits an (A, b)-nowhere-zero flow. A nowhere-zero *A*-flow is an (A, 0)-nowhere-zero flow, where here 0 denotes the function on V(G) that is identically zero. More specifically, a nowhere-zero *k*-flow is a nowhere-zero Z_k -flow, where Z_k is the cyclic group of order *k*. Tutte [12] proved that *G* admits a nowhere-zero *A*-flow with |A| = k if and only if *G* admits a nowhere-zero *k*-flow. We use group connectivity to refer to the general properties of a graph being *A*-connected for some particular *A*. Let $\langle A \rangle$ denote the family of graphs which are *A*-connected.

Integer flow problems were introduced by Tutte [11,13]. Group connectivity was introduced by Jaeger et al. [7] as a generalization of nowhere-zero flows. This paper is mainly motivated by the following two conjectures.

Conjecture 1.1 ([11]). Every 4-edge-connected graph admits a nowhere-zero Z₃-flow.

Conjecture 1.2 ([7]). Every 5-edge-connected graph is Z₃-connected.

Conjecture 1.2 implies Conjecture 1.1 by a result of Kochol [8] that reduces Conjecture 1.1 to a consideration of 5-edge-connected graphs. So far, both conjectures are still open. Recently, degree conditions have been used to guarantee the existence of nowhere-zero Z_3 -flows and Z_3 -connectivity. Let *G* be a graph on *n* vertices. If $d(u) + d(v) \ge n$ for every pair of nonadjacent vertices *u* and *v*, then *G* is said to satisfy *Ore's condition*. Throughout this paper, we say *G* satisfies the *given degree-sum condition* if $d(u) + d(v) \ge n$ for every edge $uv \in E(G)$. Fan and Zhou [5] investigated the relationship between Ore's condition and nowhere-zero Z_3 -flows; Lou et al. [10] studied Z_3 -connectivity in graphs satisfying Ore's condition. Fan and Zhou [5] also studied the relationship between the given degree-sum condition and nowhere-zero Z_3 -flows. We investigate Z_3 -connectivity in graphs satisfying the given degree-sum condition and prove the following theorem in this paper.

Theorem 1.3. Let G be a 2-edge-connected simple graph on n vertices. If $d(x) + d(y) \ge n$ for each $xy \in E(G)$, then $G \notin \langle Z_3 \rangle$ if and only if G is one of $K_{2,n-2}, K_{3,n-3}, K_{2,n-2}^+, K_{3,n-3}^+$ or one of the 15 exceptional graphs in Fig. 1.

2. Lemmas

For a subset $X \subseteq E(G)$, the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting all loops generated by this process. Note that even if G is simple, G/X may have multiple edges. For convenience, we write G/e for $G/\{e\}$, where $e \in E(G)$. If H is a subgraph of G, then G/H denotes G/E(H).

The wheel W_k ($k \ge 2$) is the graph obtained from a k-cycle by adding a new vertex, called the *center* of the wheel, which is adjacent to every vertex of the k-cycle. We define W_k to be *odd* (even) if k is odd (or even, respectively). For technical reasons, we define the wheel W_1 to be a 3-cycle.

Fig. 2. Two Z₃-connected graphs.

In this section, we establish several lemmas. Some results in [2–4,7,9] on group connectivity are summarized as follows.

Lemma 2.1. Let A be an abelian group with $|A| \ge 3$. The following results are known:

- (1) K_n and K_n^- are A-connected if $n \ge 5$.
- (2) C_n is A-connected if and only if $|A| \ge n + 1$.

(3) $K_{m,n}$ is A-connected if $m \ge n \ge 4$; neither $K_{2,t}$ $(t \ge 2)$ nor $K_{3,s}$ $(s \ge 3)$ is Z_3 -connected.

(4) $W_{2k} \in \langle Z_3 \rangle$ and $W_{2k+1} \notin \langle Z_3 \rangle$, where k is a positive integer.

(5) If $G \notin \langle A \rangle$, then also $H \notin \langle A \rangle$ when H is a spanning subgraph of G.

(6) If $H \subseteq G$, $H \in \langle A \rangle$, and $G/H \in \langle A \rangle$, then $G \in \langle A \rangle$.

When H_1 and H_2 are two subgraphs of a graph G, we say that G is the 2-sum of H_1 and H_2 , denoted by $H_1 \oplus H_2$, if $E(H_1) \cup E(H_2) = E(G)$, $|V(H_1) \cap V(H_2)| = 2$ and $|E(H_1) \cap E(H_2)| = 1$. Note that the definition of 2-sum of two graphs here is not that of 2-sum used in graph minor theory, which allows the edge joining the two common vertices to be dropped when forming the 2-sum.

A graph *G* is *triangularly connected* if whenever $e_1, e_2 \in E(G)$, there exists a list C_1, \ldots, C_k of cycles such that $e_1 \in E(C_1)$, $e_2 \in E(C_k)$, $|E(C_i)| \le 3$ for $1 \le i \le k$, and such that $E(C_j) \cap E(C_{j+1}) \ne \emptyset$ for $1 \le j \le k-1$. For triangularly connected graphs, the following characterization of group connectivity is known.

Lemma 2.2 ([4]). If G is a triangularly connected graph on $n \ge 3$ vertices, then G is not Z_3 -connected if and only if there is an odd wheel W and a subgraph G_1 such that $G = W \oplus G_1$, where G_1 is triangularly connected and not Z_3 -connected.

Lemma 2.3 ([3]). If G is a triangularly connected graph with $\delta(G) \ge 4$, then G is Z₃-connected.

For a graph *G* with $u, v, w \in V(G)$ such that $v, w \in N(u)$, let $G_{[uv,uw]}$ be the graph obtained from *G* by deleting two edges uv and uw and then adding edge vw, that is, $G_{[uv,uw]} = G \cup \{wv\} - \{uv, uw\}$.

Lemma 2.4 ([2]). Let A be an abelian group, let G be a graph, and let u, v, w be three vertices of G such that $d(u) \ge 4$ and $v, w \in N(u)$. If $G_{[uv,uw]}$ is A-connected, then so is G.

The edge v_1v_2 in Fig. 2(a) is called a *distinguished edge*. By the result in [10, Lemma 2.2], Fig. 2(a) is Z_3 -connected. The same is true for Fig. 2(b).

Lemma 2.5. Both graphs in Fig. 2 are Z₃-connected.

Proof. Let *G* be the graph (b) shown in Fig. 2. The graph $G_{[u_1v_1,u_1v_2]}$ has two copies of the edges v_1v_2 . Iteratively contracting 2-cycles leads eventually to K_1 , which is Z_3 -connected. By Lemma 2.1(2) and (6), $G_{[u_1v_1,u_1v_2]} \in \langle Z_3 \rangle$. By Lemma 2.4, $G \in \langle Z_3 \rangle$.

By the results in [6, Proposition 1.3] and [5, Theorem 1.7], no graph in $\{G_4, G_{11}, G_{12}, G_{13}, G_{15}, K_{3,n-3}^+\}$ admits a nowhere-zero Z_3 -flow. By definition, every graph not admitting a nowhere-zero Z_3 -flow is not Z_3 -connected. We summarize this result in the following lemma (also see [10, Theorem 1.7]).

Lemma 2.6. No graph in $\{G_4, G_{11}, G_{12}, G_{13}, G_{15}, K_{3,n-3}^+\}$ is Z_3 -connected.

Lemma 2.7. No graph in Fig. 1 or in $\{K_{2,n-2}, K_{3,n-3}, K_{2,n-2}^+, K_{3,n-3}^+\}$ is Z₃-connected.

Proof. By Lemmas 2.1 and 2.6, we only need to check the graphs G_1 , G_2 , G_3 , G_6 , G_7 , G_9 , G_{10} , and $K_{2,n-2}^+$, since each of the others (except { G_4 , G_{11} , G_{12} , G_{13} , G_{15} }) is a spanning subgraph of G_{13} or $K_{3,n-3}^+$. It follows from Lemma 2.2 that no graph in { G_1 , G_2 , G_3 , G_6 , G_7 , G_9 , G_{10} , $K_{2,n-2}^+$ } is Z_3 -connected. \Box

Since an even wheel W_4 and the graph in Fig. 2(a) play an important role in the proof of our main theorem, we establish the following two technical lemmas.

Lemma 2.8. Suppose that *G* is a 2-edge-connected simple graph on $n \ge 6$ vertices such that $d(x) + d(y) \ge n$ for each $xy \in E(G)$. If G_1 is a Z_3 -connected subgraph of *G*, then

- (1) if $n \in \{6, 7\}$ and $|V(G_1)| \ge 4$, then $G \in \langle Z_3 \rangle$.
- (2) if n = 8 and $|V(G_1)| \ge 5$, then $G \in \langle Z_3 \rangle$.
- (3) if $n \ge 9$ and $|V(G_1)| \ge n 4$, then $G \in \langle Z_3 \rangle$.

Proof. Let G^* be a maximum Z_3 -connected subgraph of G such that G^* contains G_1 . Note that $|V(G^*)| \ge |V(G_1)|$. If $G^* = G$, we are done. Thus, assume that $G^* \ne G$. Let $G_2 = G - V(G^*)$. By Lemma 2.1(2) and (6), $e(v, G^*) \le 1$ for each vertex $v \in V(G_2)$. Since G is 2-edge-connected, G_2 has no isolated vertex. Thus, G_2 has an edge v_1v_2 . When n = 6 and $|V(G_1)| \ge 4$, $|V(G_2)| \le 2$. Since $G^* \ne G$, $|V(G_2)| = 2$ and G_2 contains only one edge v_1v_2 . Since for each vertex $v \in V(G_2)$, $e(v, G^*) \le 1$. Thus, $d(v_1) + d(v_2) = 4 < 6$. Similarly, when n = 7 and $|V(G_1)| \ge 4$, $|V(G_2)| \le 3$ and $d(v_1) + d(v_2) \le 6 < 7$; when n = 8 and $|V(G_1)| \ge 5$, $|V(G_2)| \le 3$ and thus $d(v_1) + d(v_2) \le 6 < 8$; when $n \ge 9$ and $|V(G_1)| \ge n - 4$, $|V(G_2)| \le 4$ and thus $d(v_1) + d(v_2) \le 8 < n$. This contradicts the given degree-sum condition. \Box

Corollary 2.9. Suppose that *G* is a 2-edge-connected simple graph on $n \ge 6$ vertices such that $d(x) + d(y) \ge n$ for all $xy \in E(G)$. If *u* is a vertex of *G* such that $d(u) = \delta(G) = 3$ and $N(u) = \{u_1, u_2, u_3\}$, then the following hold:

- (1) if G contains an even wheel W_4 with $\{u, u_1, u_2, u_3\} \subseteq V(W_4)$, then $G \in \langle Z_3 \rangle$.
- (2) if G contains the subgraph H in Fig. 2(a) with $\{u, u_1, u_2, u_3\} \subseteq V(H)$, then $G \in \langle Z_3 \rangle$.
- **Proof.** (1) Let the vertex set of the non-central 4-cycle in the wheel be $\{v_1, v_2, v_3, v_4\}$, with $u = v_1$, and let v_5 be the central vertex. Let $M = V(G) V(W_4)$. When $n \in \{6, 7, 8\}$, the wheel is a Z_3 -connected subgraph of G with 5 vertices. By Lemma 2.8, G is Z_3 -connected. Thus, let $n \ge 9$. Applying the given degree-sum condition to v_1v_2 and v_1v_4 , respectively, $e(v_2, M) \ge n-6$ and $e(v_4, M) \ge n-7$. On the other hand, |M| = n-5. Thus $|N(v_2) \cap N(v_4) \cap M| \ge n-8$. By Lemma 2.1(2) and (6), G has a Z_3 -connected subgraph G_1 containing an even wheel W_4 and all the vertices of $N(v_1) \cap N(v_4) \cap M$. This means $|V(G_1)| \ge 5 + n 8 1 = n 4$. Lemma 2.8 shows that G is Z_3 -connected.
- (2) The proof is similar. \Box

Lemma 2.10. Let *G* be a 2-edge-connected simple graph on *n* vertices with $\delta(G) = 2$. If $d(x) + d(y) \ge n$ for each $xy \in E(G)$, then $G \notin \langle Z_3 \rangle$ if and only if *G* is $K_{2,n-2}$ or $K_{2,n-2}^+$ or G_i in Fig. 1 with $1 \le i \le 10$.

Proof. The sufficiency follows immediately from Lemma 2.7. Conversely, suppose that $G \notin \langle Z_3 \rangle$. We shall prove that G must be $K_{2,n-2}$ or $K_{2,n-2}^+$ or G_i , where $1 \le i \le 10$ in Fig. 1. Since G is a 2-edge-connected simple graph, we have that $n \ge 3$. If n = 3, then $G = G_1$. If n = 4, then G must be $K_{2,2}$ or $K_{2,2}^+$, since $\delta(G) = 2$. Suppose therefore that $n \ge 5$. Let $d(u) = \delta(G) = 2$, $N(u) = \{u_1, u_2\}$, and $N = N(u_1) \cap N(u_2)$. By applying the given degree-sum condition to uu_1 and uu_2 , respectively, $d(u_1) \ge n - 2$ and $d(u_2) \ge n - 2$. It follows that $n - 4 \le |N| \le n - 2$. In the remainder of the proof we shall use two claims.

Claim 1. *G*[*N*] does not contain a pair of incident edges.

Proof of Claim 1. Suppose, to the contrary, that $v_1v_2 \in E(G)$ and $v_2v_3 \in E(G)$, where $v_1, v_2, v_3 \in N$. The subgraph induced by u_1, u_2, v_1, v_2 and v_3 contains an even wheel W_4 with the center at v_2 . Since $|N| \ge n-4$, G has a Z_3 -connected subgraph G_1 containing an even wheel W_4 and all the vertices in N. Obviously, $|V(G_1)| \ge n-2$. By Lemma 2.8, $G \in \langle Z_3 \rangle$, a contradiction.

Claim 2. If $v_0 \in N(u_1) - (N(u_2) \cup \{u_2\})$, then $e(v_0, N) \le 1$.

Proof of Claim 2. Suppose otherwise that v_0 has two neighbors v_1 and v_2 in N. In this case, applying the given degree sum condition to uu_2 , we get $u_1u_2 \in E(G)$. It follows that G contains an even wheel W_4 induced by v_0 , v_1 , v_2 , u_1 , and u_2 with the center at u_1 . As in Claim 1, G has a Z_3 -connected subgraph G_1 containing an even wheel W_4 and all the vertices in N, and $|V(G_1)| \ge n - 2$. Lemma 2.8 proves that $G \in \langle Z_3 \rangle$, a contradiction.

Now we are ready to complete the proof of our lemma. We assume first that |N| = n - 2. If there is no edge in G[N], then G is $K_{2,n-2}$ if $u_1u_2 \notin E(G)$ and G is $K_{2,n-2}^+$ otherwise. Suppose now that v_1 and v_2 in N are adjacent. When n = 5, $G = G_4$ if $u_1u_2 \notin E(G)$ and $G = G_2$ otherwise. Let n = 6. When G[N] has only one edge, $G = G_5$ if $u_1u_2 \notin E(G)$ and $G = G_8$ if $u_1u_2 \in E(G)$; when G[N] has two edges, these two edges are incident, contrary to Claim 1. When $n \ge 7$, by applying the given degree-sum condition to v_1v_2 , G[N] contains a pair of incident edges in G[N], contrary to Claim 1.

We next assume that |N| = n - 3. Now there is a vertex $v_0 \notin N(u_1) \cap N(u_2)$. We assume, without loss of generality, that $v_0 \notin N(u_2)$. By applying the given degree-sum condition to uu_2 , we get $u_1u_2 \in E(G)$. When n = 5, $G = G_3$. Thus, let $n \ge 6$.

Suppose first that $v_0 \notin N(u_1) \cup N(u_2)$. When n = 6, $G = G_6$. Assume n = 7 or $n \ge 9$. Since $\delta(G) = 2$, let v_1, \ldots, v_k be the neighbors of v_0 in $N(u_1) \cap N(u_2) - \{u\}$, where $k = d(v_0)$. For each $1 \le j \le k$, by applying the given degree-sum condition to v_0v_j , G[N] has a pair of incident edges, contrary to Claim 1. When n = 8, G[N] has a pair of incident edges or a pair of independent edges. In the former case, it is contrary to Claim 1. In the latter case, G - u is a triangularly connected graph with $\delta(G) \ge 4$. By Lemma 2.3, $G - u \in \langle Z_3 \rangle$; also $G \in \langle Z_3 \rangle$ since d(u) = 2, a contradiction.

Next suppose that $v_0 \in N(u_1) \cup N(u_2)$. Without loss of generality, let $v_0 \in N(u_1) - (N(u_2) \cup \{u_2\})$. Since $\delta(G) = 2$, v_0 has at least one neighbor in N. By Claim 2, v_0 has only one neighbor v_1 in N. It follows that $v_0 v \notin E(G)$ for $v \in N - v_1$. When n = 6, $G = G_7$. When $n \ge 7$, G[N] has a pair of incident edges by applying the given degree-sum condition to v_0v_1 , contrary to Claim 1.

Finally, we assume that |N| = n - 4. By applying the given degree-sum condition to uu_1 and uu_2 , respectively, $N(u_1) - (N(u_2) \cup \{u_2\}) \neq \emptyset$, $N(u_1) - (N(u_1) \cup \{u_1\}) \neq \emptyset$ and $u_1u_2 \in E(G)$. Let $v_1 \in N(u_1) - (N(u_2) \cup \{u_2\})$, $v_2 \in N(u_2) - (N(u_1) \cup \{u_1\})$. If $v_1v_2 \notin E(G)$, by $\delta(G) = 2$ and by Claim 2, $v_1(v_2)$ has only one neighbor $v'_1(v'_2)$ in *N*. By symmetry, when n = 6, $G = G_9$; when n = 7, $G = G_{10}$. When $n \ge 8$, G[N] has a pair of incident edges in G[N] by applying the given degree-sum condition to $v_1v'_1$ and $v_2v'_2$, respectively, contrary to Claim 1. Thus, we assume that $v_1v_2 \in E(G)$. When n = 6, let $v_3 \in N - \{u\}$. Now v_1v_3 , $v_2v_3 \in E(G)$. *G* contains an even wheel W_4 induced by u_1 , u_2 , v_1 , v_2 and v_3 with the center at v_3 . We contract this W_4 and get a 2-cycle. We contract this 2-cycle and get a K_1 which is Z_3 -connected. By Lemma 2.1, $G \in \langle Z_3 \rangle$, a contradiction. When $n \ge 7$, applying the given degree-sum condition to v_1v_2 , one of v_1 and v_2 has at least two neighbors in N, contrary to Claim 2. \Box

In order to prove Lemma 2.13, we establish the following two lemmas.

Lemma 2.11. Suppose that *G* is a 2-edge-connected simple graph on *n* vertices and that $d(x) + d(y) \ge n$ for each $xy \in E(G)$ and that $\delta(G) = 3$ and $N(u) = \{u_1, u_2, u_3\}$. Let $M = V(G) - \{u, u_1, u_2, u_3\}$. Assume that $G \notin \langle Z_3 \rangle$.

- (1) If $u_1u_2, u_2u_3 \in E(G)$, then there is no vertex $v \in N(u_1) \cap N(u_2) \cap N(u_3) \{u\}$.
- (2) If $u_i u_i, u_i u_k \in E(G)$ and if $v_1 \in N(u_i) \cap N(u_i) \cap M$ and $v_2 \in N(u_i) \cap N(u_k) \cap M$, then $v_1 v_2 \notin E(G)$, where $\{i, j, k\} = \{1, 2, 3\}$.
- (3) If $u_1u_2, u_2u_3, u_3u_1 \in E(G)$, then $|N(u_i) \cap N(u_j) \{u\}| \le 2$, where $1 \le i < j \le 3$.
- **Proof.** (1) Suppose otherwise that u_1 , u_2 and u_3 have a common vertex v except for u. It follows that G contains an even wheel W_4 induced by u, u_1 , u_2 , u_3 and v, contrary to Corollary 2.9.
- (2) Suppose otherwise that $v_1v_2 \in E(G[M])$. This means that *G* contains the graph in Fig. 2(a) induced by u_i , u_j , u_k , u, v_1 and v_2 with the distinguished edge u_iv_1 , contrary to Corollary 2.9.
- (3) Suppose, to the contrary, that there are $i_0, j_0 \in \{1, 2, 3\}$ such that $|N(u_{i_0}) \cap N(u_{j_0}) \{u\}| \ge 3$. Let $v_1, v_2, v_3 \in N(u_{i_0}) \cap N(u_{j_0}) \{u\}$. Let $k \in \{1, 2, 3\} \{i_0, j_0\}$. On the other hand, by applying the given degree-sum condition to $uu_k, e(u_k, M) \ge n 6$. It follows that there are at most two vertices in M which are not adjacent to u_{i_0} since |M| = n 4. Thus, there is $v \in \{v_1, v_2, v_3\}$ such that $vu_k \in E(G)$. This means that $e(v, \{u_1, u_2, u_3\}) = 3$, contrary to (1). \Box

Lemma 2.12. Suppose that *G* is a 2-edge-connected simple graph on $6 \le n \le 10$ vertices such that $d(x) + d(y) \ge n$ for each $xy \in E(G)$. Assume further that d(u) = 3, $N(u) = \{u_1, u_2, u_3\}$ and $u_1u_2u_3$ is a 3-cycle. Let $M = V(G) - \{u, u_1, u_2, u_3\}$, $N = \{v \in M : e(v, \{u_1, u_2, u_3\}) \le 1\}$. If $G \notin \langle Z_3 \rangle$, then each of the following holds.

- (1) $|N| \leq 2$.
- (2) If $N \neq \emptyset$, then $7 \le n \le 9$.
- (3) If there are two vertices $v_1, v_2 \in M$ such that $e(v_i, \{u_1, u_2, u_3\}) = 1$ or there is one vertex $v \in M$ such that $e(v, \{u_1, u_2, u_3\}) = 0$, then n = 8.

Proof. By Lemma 2.11, for each vertex $v \in M$, $e(v, \{u_1, u_2, u_3\}) \leq 2$. Let $N = \{x_1, \dots, x_s, y_1, \dots, y_t\}$ such that $e(x_i, \{u_1, u_2, u_3\}) = 1$ for $1 \leq i \leq s$ and $e(y_i, \{u_1, u_2, u_3\}) = 0$ for $1 \leq j \leq t$. If N has no vertex x with $e(x, \{u_1, u_2, u_3\}) = 1$, s is defined to be 0; if N has no vertex y with $e(y, \{u_1, u_2, u_3\}) = 0$, t is defined to be 0. On the other hand, by applying the given degree-sum condition to each edge uu_i for $i = 1, 2, 3, e(u_i, M) \geq n - 6$. It follows that $3(n-6) \leq e(\{u_1, u_2, u_3\}, M) \leq 2(n-4-s-t)+s$, which implies that $n \leq 10-s-2t$. When n = 6, $e(M, \{u_1, u_2, u_3\}) \geq 4$ since $\delta(G) = 3$. It follows that $4 \leq e(\{u_1, u_2, u_3\}, M) \leq 4-s-2t$, which implies that s = t = 0 and $N = \emptyset$. Thus, if $N \neq \emptyset$, then $7 \leq n \leq 10-s-2t$.

Suppose that $|N| \ge 3$. Since $7 \le n \le 10 - s - 2t$, we have that t = 0, s = 3 and n = 7. In this case, G[M] is a 3-cycle, say $x_1x_2x_3$. $d(x_1) + d(x_2) = 6 < 7$. This contradiction proves (1).

If $N \neq \emptyset$, then $s \ge 1$ or $t \ge 1$. It follows immediately from $7 \le n \le 10 - s - 2t$ that $7 \le n \le 9$ and (2) holds.

If there are two vertices $v_1, v_2 \in M$ such that $e(v_i, \{u_1, u_2, u_3\}) = 1$, then $s \ge 2$ and $t \ge 0$. Thus, $7 \le n \le 8$. If n = 7, then |M| = 3. Since $\delta(G) = 3$, $v_1v_2 \in E(G)$. In this case, $d(v_1) + d(v_2) = 6 < 7$, contrary to the given degree-sum condition. Thus, n = 8. Suppose that there is a vertex $v \in M$ such that $e(v, \{u_1, u_2, u_3\}) = 0$. By $\delta(G) = 3$, v is adjacent to three vertices in M. Thus, $n \ge 8$. In this case, $t \ge 1$ and $n \le 8$ and (3) holds. \Box

Lemma 2.13. Let *G* be a 2-edge-connected simple graph on *n* vertices with $\delta(G) = 3$. If $d(x) + d(y) \ge n$ for each $xy \in E(G)$, then $G \notin \langle Z_3 \rangle$ if and only if *G* is $K_{3,n-3}$ or $K_{3,n-3}^+$ or G_i , where $11 \le i \le 15$ in Fig. 1.

Proof. If *G* is $K_{3,n-3}$ or $K_{3,n-3}^+$ or G_i , where $11 \le i \le 15$ in Fig. 1, then by Lemma 2.7, $G \notin \langle Z_3 \rangle$. Conversely, suppose that $G \notin \langle Z_3 \rangle$. We shall prove that it must be $K_{3,n-3}$ or $K_{3,n-3}^+$ or G_i , where $11 \le i \le 15$ in Fig. 1. Since $\delta(G) = 3$, for n = 4, $G = G_{11}$. For n = 5, since n is odd, there must be a vertex v such that d(v) = 4. For any $w \in V(G) - v$, $d_{G-v}(w) \ge 2$, so G - v contains a 4-cycle. This means that G contains an even wheel W_4 with the center at v as a spanning subgraph. By Lemma 2.1, $G \in \langle Z_3 \rangle$, a contradiction. Therefore we assume that $n \ge 6$. Let d(u) = 3, $N(u) = \{u_1, u_2, u_3\}$ and $M = V(G) - \{u, u_1, u_2, u_3\}$.

Case 1. There is no edge in G[N(u)].

If there is no edge in G[M], then G is $K_{3,n-3}$. Thus, assume that G[M] contains an edge xy. For n = 6, G is $K_{3,3}^+$. When $n \ge 7$, applying the given degree-sum condition to uu_i for i = 1, 2, 3, $d(u_i) \ge n - 4$. This means that each vertex in M is adjacent to each vertex in $\{u_1, u_2, u_3\}$. G must contain K_4^- , the union of u_1xy and u_2xy , and $d(u_1) \ge 4$. The graph $G_{[u_1x,u_1y]}$ contains a 2-cycle; by iterative contracting 2-cycles, we obtain the graph K_1 which is Z_3 -connected. By Lemma 2.1, $G_{[u_1x,u_1y]} \in \langle Z_3 \rangle$, so by Lemma 2.4, $G \in \langle Z_3 \rangle$, a contradiction.

Case 2. There is exactly one edge in G[N(u)].

We assume, without loss of generality, that $u_1u_2 \in E(G)$. Applying the given degree-sum condition to uu_i for i = 1, 2, 3, u_3 is adjacent to each vertex of M and u_i is adjacent to at least n-5 vertices of M for i = 1, 2. Thus, $n-5 \leq |N(u_1) \cap N(u_2)| \leq n-3$ since $u \in N(u_1) \cap N(u_2)$ and $u \notin M$.

Assume first that $|N(u_1) \cap N(u_2)| = n - 3$. In this case, $N(u_1) = N(u_2) = N(u_3) = M$. If there is no edge in G[M], then $G = K_{3,n-3}^+$. Thus, we assume that there is an edge v_1v_2 in G[M]. It follows that G contains the subgraph H in Fig. 2(a) induced by u, u_1, u_2, u_3, v_1 and v_2 with the distinguished edge u_1v_1 . This contradicts Corollary 2.9.

We next assume that $|N(u_1) \cap N(u_2)| = n - 4$. In this case, there is only one vertex in M which is not in $N(u_1) \cap N(u_2)$. Let $v_0 \in M - N(u_1) \cap N(u_2)$. If $v_0 \in N(u_1) \cup N(u_2)$, without loss of generality, let $v_0 \in N(u_1) - N(u_2)$. Since $\delta(G) \ge 3$ and $v_0u_v_0u_2 \notin E(G)$, there is a vertex $v_3 \in N(u_1) \cap N(u_2)$ such that $v_0v_3 \in E(G)$. Applying the given degree-sum condition to uu_3, u_3 is adjacent to all the vertices in M. Thus, $v_0u_3, v_3u_3 \in E(G)$. Then G contains the subgraph H in Fig. 2(a) induced by u, u_1, u_2, u_3, v_0 and v_3 with distinguished edge u_1v_0 , contrary to Corollary 2.9. Next, suppose that $v_0 \notin N(u_1) \cup N(u_2)$. Since $\delta(G) = 3, v_0$ has three neighbors in $V(G) - \{u, u_1, u_2\}$ and hence $n \ge 7$. If there is an edge v_1v_2 in the subgraph induced by $N(u_1) \cap N(u_2)$, then G contains the subgraph H in Fig. 2(a) induced by u, u_1, u_2, u_3, v_1 and v_2 with distinguished edge u_1v_1 , contrary to Corollary 2.9. Assume that there is no edge in the subgraph induced by $N(u_1) \cap N(u_2)$. In this case, applying the given degree-sum condition to u_3v_0 and $n \ge 6$, there are $v_1, v_2 \in N(u_1) \cap N(u_2)$ such that $v_0v_1, v_0v_2 \in E(G)$. Note that $d(v_2) \ge 4, u_3v_1, u_3v_2 \in E(G)$. Let $G' = G_{[v_2u_2, v_2u_3]}$. This implies that G' contains an even wheel W_4 induced by u, u_1, u_2, u_3 and v_1 with the center at u_2 . We contract this W_4 and contract every 2-cycle obtained in the process. Since $|N(u_1) \cap N(u_2)| \ge n - 4, \kappa'(G') \ge 2$ and $v_0u_3, v_0v_1 \in E(G')$, the resulting graph is K_1 which is Z_3 -connected. By Lemma 2.1, $G' \in \langle Z_3 \rangle$, and so by Lemma 2.4, $G \in \langle Z_3 \rangle$, a contradiction.

Next, assume that $|N(u_1) \cap N(u_2)| = n - 5$. Recall that $n \ge 6$. When n = 6, $G = G_{12}$. Thus, $n \ge 7$. Recall that u_i is adjacent to at least n - 5 vertices of M for i = 1, 2. Let $v_1 \in N(u_1) - (N(u_2) \cup \{u_2\})$ and $v_2 \in N(u_2) - (N(u_1) \cup \{u_1\})$. If there is a vertex v_3 in $N(u_1) \cap N(u_2)$ such that $v_1v_3 \in E(G)$ or $v_2v_3 \in E(G)$, by symmetry, let $v_1v_3 \in E(G)$. In this case, G contains the subgraph H induced by u, u_1, u_2, u_3, v_1 and v_3 with distinguished edge u_1v_1 , contrary to Corollary 2.9. Thus, neither v_1 nor v_2 is adjacent to any vertex in $N(u_1) \cap N(u_2)$. By applying the given degree-sum condition to $u_1v_1, v_1v_2 \in E(G)$, $d(v_1) + d(v_2) = 6 < n$, a contradiction.

Case 3. There are exactly two edges in G[N(u)].

In this case, we assume, without loss of generality, that $u_1u_2, u_2u_3 \in E(G)$.

Assume first that $n \ge 9$. In this case, we claim that u_1, u_2 and u_3 have a common neighbor v except for u. Suppose, to the contrary, that for each vertex $v \in M$, $e(v, \{u_1, u_2, u_3\}) \le 2$. By applying the given degree-sum condition to uu_i , $d(u_i) \ge n - 3$ for i = 1, 2, 3. On the other hand, each vertex in M is adjacent to at most two of u_1, u_2 and u_3 . It follows that $2(n - 4) \ge d(u_1) + d(u_2) + d(u_3) - 7 \ge 3(n - 3) - 7$, which implies that $n \le 8$. Thus, when $n \ge 9$, u_1, u_2 and u_3 have a common neighbor v except for u, contrary to Lemma 2.11.

Assume then that n = 8. By applying the given degree-sum condition to uu_i for i = 1, 2, 3, we have $e(u_1, M) \ge 3$, $e(u_2, M) \ge 2$ and $e(u_3, M) \ge 3$. Since |M| = 4, $|N(u_1) \cap N(u_2) \cap M| \ge 1$, $|N(u_2) \cap N(u_3) \cap M| \ge 1$ and $|N(u_1) \cap N(u_3) \cap M| \ge 2$. Let $v_1 \in N(u_1) \cap N(u_2) \cap M$, $v_2, v_3 \in N(u_1) \cap N(u_3) \cap M$ and $v_4 \in N(u_2) \cap N(u_3) \cap M$. By Lemma 2.11(1), $v_1 \notin N(u_3)$, $v_2, v_3 \notin N(u_2)$ and $v_4 \notin N(u_1)$. Thus, $M = \{v_1, v_2, v_3, v_4\}$. Since $\delta(G) = 3$, by Lemma 2.11(2), $v_1v_4 \in E(G)$ and v_1v_2 , v_1v_3 , v_4v_2 , $v_4v_3 \notin E(G)$. Thus, $d(v_1) + d(v_4) = 6 < 8$. This contradicts the given degree-sum condition.

Next, let n = 7. By applying the given degree-sum condition to uu_i for i = 1, 2, 3, we obtain $e(u_1, M) \ge 2$, $e(u_2, M) \ge 1$ and $e(u_3, M) \ge 2$. It follows that $|N(u_1) \cap N(u_3) \cap M| \ge 1$. Let $v_2 \in N(u_1) \cap N(u_3) \cap M$, $v_1 \in N(u_1) \cap M - \{v_2\}$ and $v_3 \in N(u_3) \cap M - \{v_2\}$. Assume first that $v_1 \ne v_3$. By Lemma 2.11(1), $u_2v_2 \notin E(G)$. Since $e(u_2, M) \ge 1$, either $v_1u_2 \in E(G)$ or $u_2v_3 \in E(G)$. In the former case, by Lemma 2.11(2), $v_1v_2 \notin E(G)$. Applying $\delta(G) = 3$ and Lemma 2.11(1) to v_1 and v_2 , respectively, we have v_3v_1 , $v_3v_2 \in E(G)$, $d(v_3) = 3$ and $d(v_2) = 3$. By Lemma 2.11(2), v_3u_2 , $v_3u_1 \notin E(G)$. Thus, $d(v_2) + d(v_3) = 6 < 7$, contrary to the given degree-sum condition. In the latter case, by applying $\delta(G) = 3$ and Lemma 2.11(1) to v_3 and v_2 , we have v_2v_1 , $v_3v_1 \in E(G)$, $d(v_3) = 3$ and $d(v_2) = 3$. By Lemma 2.11(2), v_1u_3 , $v_1u_2 \notin E(G)$. Thus, $d(v_1) + d(v_2) = 6 < 7$, contrary to the given degree-sum condition.

Now we suppose that $v_1 = v_3$. Let $v \in M - \{v_1, v_2\}$. It follows that $vu_2 \in E(G)$. By Lemma 2.11(1), v_2u_2 , $v_1u_2 \notin E(G)$. Since $\delta(G) = 3$, vv_1 , $vv_2 \in E(G)$. By applying the given degree-sum condition to vv_1 and vv_2 , respectively, $v_1v_2 \in E(G)$. In this case, *G* is the graph in Fig. 2(b) which is *Z*₃-connected by Lemma 2.5, a contradiction.

Finally, let n = 6. Let $v_1, v_2 \in V(G) - \{u, u_1, u_2, u_3\}$. By Lemma 2.11(1) and by $\delta(G) = 3$, $e(v_i, \{u_1, u_2, u_3\}) = 2$ and $v_1v_2 \in E(G)$. If $v_1u_1, v_1u_3 \in E(G)$, by Lemma 2.11(2), $v_2u_1, v_2u_3 \in E(G)$. In this case, $G = G_{14}$. If $v_1u_1, v_1u_2 \in E(G)$, by Lemma 2.11, $v_2u_2, v_2u_3 \in E(G)$. In this case, G is G_{15} .

Case 4. There are three edges in G[N(u)].

When $n \ge 11$, as in the proof in Case 3, $|N(u_1) \cap N(u_2) \cap N(u_3)| \ge 2$. By Lemma 2.11(1), $G \in \langle Z_3 \rangle$, a contradiction. Thus, we assume that $6 \le n \le 10$. Let $N = \{v \in M : e(v, \{u_1, u_2, u_3\}) \le 1\}$.

First, we assume that $N = \emptyset$. In this case, $e(v, \{u_1, u_2, u_3\}) = 2$ for each vertex $v \in M$. Let $v_1 \in M \cap N(u_1) \cap N(u_2)$. Since $\delta(G) = 3$, there must be a vertex $v_2 \in M$ such that $v_1v_2 \in E(G[M])$. By Lemma 2.11(2), $v_2 \in N(u_1) \cap N(u_2)$. When n = 6, G is G_{13} . When $n \ge 7$, by the given degree-sum condition to v_1v_2 , there is a vertex $v_3 \in M$ such that $v_1v_3 \in E(G[M])$ or $v_2v_3 \in E(G[M])$. By symmetry, let $v_1v_3 \in E(G)$. By Lemma 2.11(3), $v_3 \notin N(u_1) \cap N(u_2) \cap M$, that is, $v_3 \in N(u_1) \cap N(u_3) \cap M$ or $v_3 \in N(u_2) \cap N(u_3) \cap M$. Both cases contradict Lemma 2.11(2). Thus, $N \neq \emptyset$.

We next assume that there exists a vertex $v_0 \in N$ such that $e(v_0, \{u_1, u_2, u_3\}) = 0$. By Lemma 2.12, n = 8. As in the proof of Lemma 2.12, for each vertex v in $M - \{v_0\}$, $e(v, \{u_1, u_2, u_3\}) = 2$. Let $M = \{v_0, v_1, v_2, v_3\}$. By $d(v_0) \ge 3$, $v_0v_1, v_0v_2, v_0v_3 \in E(G)$. By applying the given degree-sum condition to each edge v_0v_1, v_0v_2, v_0v_3 and by Lemma 2.11, the subgraph induced by M is a complete graph. By Lemma 2.11(3), $(N(v_1) \cup N(v_2) \cup N(v_3)) \cap \{u_1, u_2, u_3\} = \{u_1, u_2, u_3\}$. Thus, there are $s, t \in \{1, 2, 3\}$ such that $v_s \in N(u_i) \cap N(u_i) \cap M$ and $v_t \in N(u_i) \cap N(u_k) \cap M$, which contradicts Lemma 2.11(2).

So far we have proved that $N \neq \emptyset$ and N does not have a vertex v such that $e(v, \{u_1, u_2, u_3\}) = 0$. Thus, assume that there is one vertex $v_0 \in M$ such that $e(v_0, \{u_1, u_2, u_3\}) = 1$. We assume, without loss of generality, that $v_0u_3 \in E(G)$. By Lemma 2.12, $7 \leq n \leq 9$. Since $d(v_0) \geq 3$, there exists a vertex $v_1 \in M$ such that $v_1v_0 \in E(G)$. By applying the given degree-sum condition to v_0v_1 , $M - \{v_0, v_1\}$ contains at least one vertex, say v_2 , adjacent to both v_0 and v_1 , for otherwise, $e(v_1, M - \{v_0, v_1\}) + e(v_0, M - \{v_0, v_1\}) \leq |M| - 2$, which implies that $d(v_0) + d(v_1) \leq |M| - 2 + 2 + 3 = n - 1 < n$, a contradiction.

Suppose that $e(v_i, \{u_1, u_2, u_3\}) = 2$ for each i = 1, 2. If $v_1 \in N(u_i) \cap N(u_j) \cap M$, then by Lemma 2.11(2), $v_2 \in N(u_i) \cap N(u_j) \cap M$ for $i \neq j$. If $\{i, j\} = \{1, 3\}$, then *G* contains an even wheel W_4 induced by u_1, u_3, v_0, v_1 and v_2 with the center at v_1 ; if $\{i, j\} = \{2, 3\}$, then *G* contains an even wheel W_4 induced by u_2, u_3, v_0, v_1 and v_2 with the center at v_1 . We contract this W_4 and iteratively contracting 2-cycles leads eventually to a K_1 which is Z_3 -connected. By Lemma 2.1, $G \in \langle Z_3 \rangle$, a contradiction. Thus, $N(u_i) \cap N(u_j) \cap M = \{v_1, v_2\}$ and $\{u_i, u_j\} = \{u_1, u_2\}$. In this case, *G* contains the graph *H* in Fig. 2(a) with a 4-cycle $v_1v_0u_3u_1$ and a distinguished edge u_2v_2 . We contract this *H* and iteratively contracting 2-cycles leads eventually to a K_1 which is Z_3 -connected. By Lemma 2.1, $G \in \langle Z_3 \rangle$, a contradiction.

Thus, there is one of v_1 and v_2 , say v_1 , such that $e(v_1, \{u_1, u_2, u_3\}) = 1$, by Lemma 2.12, n = 8. Pick $v_3 \in M - \{v_0, v_1, v_2\}$. This implies that $e(v_3, \{u_1, u_2, u_3\}) = 2$. Since $d(v_0) + d(v_1) \ge 8$, $v_0v_3 \in E(G)$ and $v_1v_3 \in E(G)$. Thus, $d(v_0) = 4$. Since $e(\{u_1, u_2\}, v_0) = 0$ and $e(\{u_1, u_2\}, v_1) \le 1$, $e(\{u_1, u_2\}, \{v_2, v_3\}) \ge 3$. We assume, without loss of generality, that $v_2u_1, v_2u_2 \in E(G)$. If $v_1u_1 \in E(G)$, by assumption that $e(v_1, \{u_1, u_2, u_3\}) = 1$, $e(v_1, \{u_2, u_3\}) = 0$. Applying the given degree-sum condition to uu_2 and uu_3 , respectively, then $v_3u_2, v_3u_3 \in E(G)$; if $v_1u_3 \in E(G)$, then $v_3u_1, v_3u_2 \in E(G)$. For both cases, let $G' = G_{[v_2u_1, v_2u_2]}$. It follows that G' contains a 2-cycle $u_1u_2u_1$. Iteratively contracting 2-cycles leads eventually to a K_1 , which is Z_3 -connected. By Lemmas 2.1 and 2.5, $G \in \langle Z_3 \rangle$, a contradiction. \Box

Lemma 2.14. Let *G* be a 2-edge-connected simple graph on *n* vertices with $\delta(G) \ge 4$, where $n \ge 7$. If $d(x) + d(y) \ge n$ for each $xy \in E(G)$, then $G \in \langle Z_3 \rangle$ or *G* contains K_4^- .

Proof. Let $v \in V(G)$ be a vertex such that $d(v) = \delta(G) \ge 4$. Suppose that $N(v) = \{u_1, u_2, \dots, u_k\}$. It follows that $k \ge 4$. If there is no edge in G[N(v)], then for each $1 \le i \le k$, u_i is adjacent to all the vertices in $V(G) - N_G(v)$ by the given degree-sum condition. Therefore, G contains $K_{k,n-k}$ as a subgraph. Since $\delta(G) \ge 4$, $k \ge 4$ and $n - k = d_G(u_i) \ge 4$. By Lemma 2.1(3), G is Z_3 -connected.

So we may assume that G[N(v)] contains some edge, say $u_1u_2 \in E(G)$. This implies that vu_1u_2 is a 3-cycle of G. If there is no K_4^- in G, then each vertex in $V(G) - \{v, u_1, u_2\}$ is adjacent to at most one vertex in $\{v, u_1, u_2\}$. Thus, $d_G(v) + d_G(u_1) + d_G(u_2) \leq n - 3 + 6 = n + 3$. By the given degree-sum condition, $d_G(v) + d_G(u_1) + d_G(u_2) \geq 3n/2$. Thus, $3n/2 \leq n + 3$, and so $n \leq 6$, a contradiction. Therefore, G contains a K_4^- . \Box

3. Proof of Theorem 1.3

If *G* is one of $K_{2,n-2}$, $K_{3,n-3}$, $K_{2,n-2}^+$, $K_{3,n-3}^+$ and the 15 exceptional graphs in Fig. 1, by Lemma 2.7, $G \notin \langle Z_3 \rangle$. Conversely, suppose that $G \notin \{K_{2,n-2}, K_{3,n-3}, K_{2,n-2}^+, K_{3,n-3}^+\}$ and no graph in Fig. 1 is *G*. We shall prove that $G \in \langle Z_3 \rangle$. If $2 \le \delta(G) \le 3$, then by Lemmas 2.10 and 2.13, $G \in \langle Z_3 \rangle$. Suppose therefore that $\delta(G) \ge 4$.

We proceed by induction on n = |V(G)|. When n = 5, G is K_5 and $G \in \langle Z_3 \rangle$ by Lemma 2.1(1). When n = 6, if G is K_6 , then by Lemma 2.1(1), $G \in \langle Z_3 \rangle$. Thus, assume that G is not a K_6 . In this case, $\delta(G) = 4$ and let d(u) = 4. Let G' = G - u. Then for each vertex $v \in V(G')$, $d_{G'}(v) \ge 3$. Since |V(G')| = 5, G' has an even wheel W_4 as a spanning subgraph. By Lemma 2.1, $G' \in \langle Z_3 \rangle$ and hence $G \in \langle Z_3 \rangle$. Suppose thus that $n \ge 7$ and the theorem holds for every graph G with |V(G)| < n. By Lemma 2.14, we may assume that G contains a K_4^- , the union of two triangles xyz and xyw with $d(z) \ge 4$. Let G' be the graph obtained from G by deleting zx, zy, and adding xy.

We claim that G' is 2-edge connected. Suppose otherwise that G' is not connected or G' has an cut edge e. Define G'' as follows. G'' = G' if G' is not connected and G'' = G' - e otherwise. It follows that x, y, w are in one component F_1 of G'' and z is in other component F_2 of G''. We further assume $e = z_1 z_2$ such that if G'' = G' - e, then $z_1 \in V(F_1)$ and $z_2 \in V(F_2)$.

If G' is not connected, w has a neighbor $w' \in V(G) - \{x, y, z\}$ and define $e_0 = ww'$; if G' has an cut edge e and $w \neq z_1$, then $zw \notin E(G)$. Since $\delta(G) \geq 4$, w has a neighbor $w' \in V(G) - \{x, y, z_1\}$ and define $e_0 = ww'$; if G' has an cut edge *e* and $w = z_1$, then we also have $zw \notin E(G)$. Since $\delta(G) \ge 4$, w have a neighbor $w_1 \in V(G) - \{x, y, z_1\}$. By $\delta(G) \ge 4$ again, w_1 has a neighbor $w_2 \in V(G) - \{x, y, z_1\}$ and define $e_0 = w_1 w_2$. Thus, F_1 contains an edge $e_0 = a_1 a_2$ such that $e(a_1a_2, z) = 0, z_1 \notin \{a_1, a_2\}$. Similarly, F_2 contains an edge b_1b_2 such that $\{b_1, b_2\} \cap \{z, z_2\} = \emptyset$. By the given degree sum condition, $n \le d(a_1) + d(a_2) \le 2|V(F_1)| - 2$ and $n \le d(b_1) + d(b_2) \le 2|V(F_2)| - 2$. It follows that $|V(F_i)| \ge (n+2)/2$ for i = 1, 2. Thus, $n \ge |V(F_1)| + |V(F_2)| \ge n + 2$, a contradiction.

Let *H* be the maximal Z_3 -connected subgraph containing 2-cycle xyx of *G'* and $G^* = G'/H$. Since *G'* is 2-edge connected, G^* is 2-edge connected. Denote by u^* the new vertex into which H is contracted. Note that G^* is a simple graph, in which all vertices except for u^* and z, have the same degree as in G and $e(t, H) \leq 1$ for any $t \in V(G) - V(H)$. If $G^* \in \langle Z_3 \rangle$, by Lemma 2.1 $G' \in \langle Z_3 \rangle$ and so is G. Let $|V(G^*)| = n^*$. Note that each vertex in G^* other than u^* and z has degree at least 4, then it is a routine work to verify that if $n^* \leq 5$, then $G^* \in \langle Z_3 \rangle$, which implies that $G' \in \langle Z_3 \rangle$ and so is G. Therefore, assume that $n^* > 6$, that is n > 8.

Note that $|V(G^*)| = n^* < n$. To prove that $G^* \in \langle Z_3 \rangle$, we need to prove that $d_{G^*}(v_1) + d_{G^*}(v_2) > n^*$ for any two distinct $v_1, v_2 \in V(G^*)$ and $v_1v_2 \in E(G^*)$. There are four cases to discuss, as follows.

If $v_1, v_2 \in V(G^*) \setminus \{z, u^*\}$, then $d_{G^*}(v_1) + d_{G^*}(v_2) = d_G(v_1) + d_G(v_2) \ge n > n^*$.

If $v_1 \neq u^*$ and $v_2 = z$, then using $d_{G^*}(z) = d_G(z) - 2$, $d_{G^*}(v_1) + d_{G^*}(v_2) = d_G(v_1) + d_G(v_2) - 2 \ge n - 2 \ge n^*$.

If $v_1 = u^*$ and $v_2 \neq z$, then there is $\lambda \in V(H)$ such that $v_2\lambda \in E(G)$. Since $d_{G^*}(u^*) \geq d_G(\lambda) - (|V(H)| - 1)$, we have that $d_{G^*}(v_1) + d_{G^*}(v_2) \ge d_G(\lambda) - (|V(H)| - 1) + d_G(v_2) \ge n - (|V(H)| - 1) = n^*.$

It remains to us that $v_1 = u^*$ and $v_2 = z$. Let T = G - V(H). It follows that there is $\mu \in V(H) - \{x, y\}$ such that $\mu z \in E(G)$. If |V(H)| = 3, then $V(H) = \{x, y, w\}$. In this case, $\mu \in \{x, y, w\}$. We have $d_{G^*}(z) + d_{G^*}(u^*) = d(z) - 2 + e(xy, T - z) + d_{G^*}(u^*) = d(z) - d(z) + d_{G^*}(u^*) = d(z) - d(z) + d($ $e(w, T) = d(z) - 2 + d(x) + d(y) - 6 + d(w) - 2 \ge 2n - 10$. Since $n \ge 8$, $d_{G^*}(v_1) + d_{G^*}(v_2) \ge n - 2 = n^*$.

If |V(H)| = 4, then $V(H) = \{x, y, w, s\}$. Because $n^* \ge 6$, |V(H)| = 4 implies that $n \ge 9$. Since |V(H)| = 4, $e(xy, T-z) \ge d(x) + d(y) - 8$, $e(w, T) \ge d(w) - 3$ and $e(s, T) \ge d(s) - 3$. Since $\delta(G) \ge 4$, $d_{G^*}(z) + d_{G^*}(u^*) = 4$ $d(z) - 2 + d(xy, T - z) + e(w, T) + e(s, T) \ge d(z) - 2 + d(x) + d(y) - 8 + d(w) - 3 + d(s) - 3 = (d(z) + d(x) - 5) + d(y) - 4 + d(y) - 4 + d(y) - 3 + d(y) - d(y) - 3 + d(y) - d(y) - 3 + d(y) - d(y) (d(y) + d(w) - 8) + (d(s) - 3) \ge n - 5 + n - 8 + 1 \ge n - 3 = n^*.$

Therefore we suppose that $|V(H)| \ge 5$. Let $H_0 = H - \{x, y, \mu\}$. If H_0 contains an edge ss' and $e(ss', T) \ge 2$, then $d_{G^*}(u^*) + d_{G^*}(z) \ge d(z) - 2 + d(\mu) - (|V(H)| - 1) + 2 \ge n - (|V(H)| - 1) = n^*. \text{ Thus, assume } e(ss', T) \le 1. \text{ In this case, } n \le d(s) + d(s') \le 2|V(H)| - 1, \text{ that is, } |V(H)| \ge \frac{n+1}{2}, \text{ so } |V(T)| \le \frac{n-1}{2}. \text{ For any } t \in V(T-z) \text{, there exist } t' \in V(T-z) \text{ such } t' \in V($ that $tt' \in E(G)$ since $d(t) \ge 4$ and $e(t, H) \le 1$ for any $t \in V(T - z)$. By the given degree sum condition, $d(t) + d(t') \ge n$. Then $|V(T)| \ge \frac{n}{2}$, a contradiction. So assume that there is no edge in H_0 . It follows that $e(H - \mu, T - z) \ge 2$ since $|V(H)| \ge 5$

and $\delta(G) \ge 4$. We obtain that $d_{G^*}(u^*) + d_{G^*}(z) \ge d(z) - 2 + d(\mu) - (|V(H)| - 1) + e(H - \mu, T - z) \ge n - (|V(H)| - 1) = n^*$. By the induction hypothesis, either $G^* \in \langle Z_3 \rangle$ or G^* is one of $K_{2,n-2}, K_{3,n-3}, K_{2,n-2}^+, K_{3,n-3}^+$ and the 15 exceptional graphs in Fig. 1. Note that there are $(|V(G^*)| - 2)$ vertices of degree at least 4, since each such vertex has the same degree in G^* as that in *G*. This shows that $G^* \notin \{K_{2,n-2}, K_{3,n-3}, K_{2,n-2}^+, K_{3,n-3}^+\}$ and no graph in Fig. 1 except G_6 is G^* . Suppose that $G^* = G_6$. Let v_1, v_2 be two vertices of degree 2 in G_6 and other vertices in G_6 has degree 4 which implies that $n = 8, n^* = 6$ and |V(H)| = 3. Thus, $\{v_1, v_2\} = \{u^*, z\}$. Since $\delta(G) \ge 4$ and $d(x) + d(y) \ge 8$, $d_{G^*}(u^*) \ge 4$, contrary to $d_{G^*}(u^*) = 2$. Therefore we complete our proof.

Corollary 3.1. Let G be a 2-edge-connected simple graph on n vertices. If $d(x) + d(y) \ge n + 1$ for each $xy \in E(G)$, then $G \notin \langle Z_3 \rangle$ if and only if G is either $K_{2,n-2}^+$ or G_1 or G_2 or G_{11} .

Acknowledgements

The second author is supported by PASSHE Faculty Professional Development Council grant at Millersville University; the fifth author is partially supported by research funds of CCNU09Y01018 and also partially supported by Hubei Key Laboratory of Mathematical Sciences of China.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Application, North-Holland, New York, 1976.
- [2] J.J. Chen, E. Eschen, H.J. Lai, Group connectivity of certain graphs, Ars Combin. 89 (2008) 141–158.
- M. DeVos, R. Xu, G. Yu, Nowhere-zero Z₃-flows through Z₃-connectivity, Discrete Math. 306 (2006) 26–30.
 G. Fan, H.J. Lai, R. Xu, C.Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory Ser. B 98 (2008) 1325–1336.
- [5] G. Fan, C. Zhou, Degree sum and Nowhere-zero 3-flows, Discrete Math. 308 (2008) 6233–6240.
- G. Fan, C. Zhou, Ore condition and Nowhere-zero 3-flows, SIAM J. Discrete Math. 22 (2008) 288-294.
- [7] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of Nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
- [8] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combin. Theory, Ser. B 83 (2001) 258-261.
- [9] H.J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs and Combin. 16 (2000) 165–176.
 [10] R. Luo, R. Xu, J.H. Yin, G.X. Yu, Ore-condition and Z₃-connectivity, European J. Combin. 29 (2008) 1587–1595.
- [11] W.T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math. 6 (1954) 80–91.
- [12] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–50.
- [13] C.Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.