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Abstract

Let G be a 2-edge-connected undirected graph, A be an (additive)
abelian group and A∗ = A−{0}. A graph G is A-connected if G has an
orientation D(G) such that for every function b : V (G) �→ A satisfying∑

v∈V (G) b(v) = 0, there is a function f : E(G) �→ A∗ such that for each
vertex v ∈ V (G), the total amount of f values on the edges directed out
from v minus the total amount of f values on the edges directed into v
equals b(v). For a 2-edge-connected graph G, define Λg(G) = min{k :
for any abelian group A with |A| ≥ k, G is A-connected}.

Let G1⊗G2 and G1×G2 denote the strong and Cartesian product of
two connected nontrivial graphs G1 and G2. In this paper, we prove that
Λg(G1⊗G2) ≤ 4, where equality holds if and only if both G1 and G2 are
trees and min{|V (G1)|, |V (G2)|}=2; Λg(G1 × G2) ≤ 5, where equality
holds if and only if both G1 and G2 are trees and either G1

∼= K1,m and
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G2
∼= K1,n, for n, m ≥ 2 or min{|V (G1)|, |V (G2)|}=2. A similar result

for the lexicographical product graphs is also obtained.

Keywords: nowhere-zero flows, group connectivity, products of graphs

1 Introduction

We consider finite graphs which may have multiple edges but no loops. Un-
defined terms and notations will follow Bondy and Murty [1]. For m,n ≥ 1,
Pm is a path with m edges, Km is a complete graph with m vertices and Km,n

is a complete bipartite graph with bipartition (X, Y ) such that |X | = m and
|Y | = n. And κ(G), κ′(G) and δ(G) denote the connectivity, edge-connectivity
and minimum degree of a graph G, respectively. Different from [1], a 2-regular
nontrivial connected graph is called a circuit, and a circuit with k edges is
referred as a k-circuit. For an edge subset J ⊆ E(G) of a graph G, we take the
convention of using J to denote both the edge subset as well as the subgraph
G[J ] induced by the edge set J . Throughout this paper, G1 and G2 denote
two nontrivial connected simple graphs and A denotes an (additive) abelian
group with identity 0. and A∗ = A − {0}.

Let D = D(G) be an orientation of a graph G. If an edge e ∈ E(G) is
directed from a vertex u to a vertex v, then let tail(e) = u and head(e) = v.
For a vertex v ∈ V (G), define

E+
D(v) = {e ∈ E(G) : v = tail(e)}, and E−

D(v) = {e ∈ E(G) : v = head(e)}.
Following Jaeger et al [9], we define F (G, A) = {f |f : E(G) �→ A} and
F ∗(G, A) = {f |f : E(G) �→ A∗}. For a function f : E(G) → A, define
∂f : V (G) �→ A by

∂f(v) =
∑

e∈E+
D(v)

f(e) −
∑

e∈E−
D(v)

f(e),

where “
∑

” refers to the addition in A.
Assume that G has an orientation D(G). A function b : V (G) �→ A is

called an A-valued zero sum function on G if
∑

v∈V (G) b(v) = 0. The set

of all A-valued zero sum functions on G is denoted by Z(G, A). A function
f ∈ F (G, A) is an A-flow of G if ∂f(v) = 0 for every vertex v ∈ V (G). An
A-flow f is a nowhere-zero A-flow (abbreviated as A-NZF) if f ∈ F ∗(G, A).
For a b ∈ Z(G, A), a function f ∈ F ∗(G, A) is a nowhere-zero (A, b)-flow
(abbreviated as (A, b)-NZF) if ∂f = b. A graph G is A-connected if ∀b ∈
Z(G, A), G has an (A, b)-NZF. Let 〈A〉 be the family of graphs that are A-
connected. The group connectivity number of a graph G is defined as

Λg(G) = min{k : G ∈ 〈A〉 for every abelian group A with |A| ≥ k}.
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The concept of group connectivity was first introduced by Jaeger, Linial,
Payan and Tarsi in [9] as a nonhomogeneous form of the nowhere-zero flow
problem. The nowhere-zero flow problem was first introduced by Tutte [17]
in his way to attach the 4-color-conjecture. Tutte left with several fascinating
conjectures in this area, which have remained open as of today.

Conjecture 1.1 (Tutte [17], [8])
(i) Every graph G with κ′(G) ≥ 2 has a nowhere-zero Z5-flow.
(ii) Every graph G with κ′(G) ≥ 2 without a subgraph contractible to the Pe-
terson graph admits a nowhere-zero Z4-flow.
(iii) Every graph G with κ′(G) ≥ 4 admits a nowhere-zero Z3-flow.

Jaeger et al made the following conjectures about group connectivity. The
truth of these conjectures will imply the truth of Tutte’s Z5-flow conjecture
and Z3-flow conjecture, as indicated by Kochol [10].

Conjecture 1.2 (Jaeger, Linial, Payan and Tarsi [9])
(i) If G is a 3-edge-connected graph, then Λg(G) ≤ 5.
(ii) If G is a 5-edge-connected graph, then Λg(G) ≤ 3.

While many have contributed to the literature of nowhere-zero flows, all
these conjectures remain open. Most recently, X. Yao et al [18] and X. Zhang
et al [21] have found best possible degree conditions for graphs with group
connectivity 4 and 3, respectively. X. Yao and D. Gong also investigated the
group connectivity of Kneser graphs. A survey on group connectivity can be
found in [15]. Several researchers have investigated the problem that what
kind of products graphs will have nowhere-zero A-flows when |A| is small, as
seen in [7], [16] and [20], among others.

The purpose of this paper is to determine the group connectivity number
for all strong product and lexicographical product graphs, and to investigate
the group connectivity number of the Cartesian product graphs.

For graph products, we adopt the notation in [6]. Let G1, G2 be two
graphs. The Cartesian product graph G = G1 × G2 is a graph with vertex
set V (G) = V (G1) × V (G2) and edge set E(G) = {(u1, u2)(v1, v2)|u1 = v1

and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1)}. The strong product
graph G = G1 ⊗ G2 is a graph with vertex set V (G) = V (G1) × V (G2) and
edge set E(G) = {(u1, u2)(v1, v2)|u1 = v1 and u2v2 ∈ E(G2), or u2 = v2 and
u1v1 ∈ E(G1), or both u1v1 ∈ E(G1) and u2v2 ∈ E(G2)}. And the lexico-
graphic product (sometimes called composition, tensor or wreath product)
G = G1[G2] is a graph with vertex set V (G) = V (G1) × V (G2) and edge set
E(G) = {(u1, u2)(v1, v2)|u1v1 ∈ E(G1), or u1 = v1 and u2v2 ∈ E(G2)}.

The following are immediate from the above definitions.
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Proposition 1.3 Each of the following holds.
(i) G1 × G2 is a spanning subgraph of G1 ⊗ G2, and G1 ⊗ G2 is a spanning
subgraph of G1[G2].
(ii) If G2

∼= Km is a complete graph, then G1[Km] = G1 ⊗ Km.

In this paper we will determine the group connectivity number of certain
products of connected graphs by proving the following main results.

Theorem 1.4 Λg(G1⊗G2) ≤ 4, where equality holds if and only if both G1

and G2 are trees and min{|V (G1)|, |V (G2)|} = 2.

Corollary 1.5 G1⊗G2 has a nowhere-zero 3-flow if and only if either one of
G1 and G2 is not a tree, or both G1 and G2 are trees with min{|V (G1)|, |V (G2)|} ≥
3.

Theorem 1.6 Λg(G1[G2]) ≤ 4, where equality holds if and only if both G1

and G2 are trees and min{|V (G1)|, |V (G2)|} = 2.

Corollary 1.7 G1[G2] has a nowhere-zero 3-flow if and only if either one of
G1 and G2 is not a tree, or both G1 and G2 are trees with min{|V (G1)|, |V (G2)|} ≥
3.

Theorem 1.8 Λg(G1 × G2) ≤ 5, where equality holds if and only if either
G1

∼= K1,m and G2
∼= K1,n, for n, m ≥ 2 or G1 is a tree and G2

∼= K2.

This paper is organized as follows: In Section 2, we present the prelimi-
naries as a preparation for the proofs. Sections 3 and 4 are devoted to the
investigation of the group connectivity of strong products and lexicographical
products, and Cartesian products of graphs, respectively.

2 Preliminaries

The purpose of this section is to lay down the preparation for the proofs of the
main results in the next two sections.

Let G be a graph and let X ⊆ E(G) be an edge subset. The contraction
G/X is the graph obtained from G by identifying the two ends of each edge in
X and deleting the resulting loops. For convenience, we use G/e for G/{e};
and if H is a subgraph of G, we write G/H for G/E(H).

Proposition 2.1 (Proposition 2.2, [9]) Let G be a connected graph and A
be an abelian group. Then following are equivalent.
(i) G ∈ 〈A〉.
(ii) ∀f ∈ F (G, A), ∃f ∈ F0(G, A) such that ∀e ∈ E(G), f(e) �= f(e).
(iii) ∀b ∈ Z(G, A), and ∀f ∈ F (G, A), ∃f ∈ F (G, A) such that ∂f = b and
∀e ∈ E(G), f(e) �= f(e).
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Proposition 2.2 (Lai, Proposition 3.2 of [13] and Proposition 2.2 of Chen
et al, [4]) Let A be an abelian group with |A| ≥ 3. Then 〈A〉 satisfies each of
the following:
(C1) K1 ∈ 〈A〉,
(C2) if G ∈ 〈A〉 and e ∈ E(G), then G/e ∈ 〈A〉,
(C3) if H is a subgraph of G and if both H ∈ 〈A〉 and G/H ∈ 〈A〉, then
G ∈ 〈A〉.

Lemma 2.3 (Lemma 2.1 of [14]) Let G be a graph and A be an abelian
group. If for every edge e in a spanning tree of G, G has a subgraph He ∈ 〈A〉
with e ∈ E(He), then G ∈ 〈A〉.

Proposition 2.4 ([9], Lemma 3.3 of [13]) For any abelian group A, Cn ∈
〈A〉 if and only if |A| ≥ n + 1.

Let H1 and H2 be two subgraphs of a graph G. We say that G is a
parallel connection of H1 and H2, denoted by H1⊕2 H2, if E(H1)∪E(H2) =
E(G), |V (H1)∩ V (H2)| = 2 and |E(H1)∩E(H2)| = 1. The edge e ∈ E(H1)∩
E(H2) is usually referred as the base edge.

A wheel Wk is the graph obtained from a k-circuit by adding a new vertex
the center of the wheel, and then by joining the center to every vertex of
the k-circuit. A fan Fk is the graph obtained from Wk by deleting an edge not
incident with the center. Note that F2 is the 3-circuit, and W3 is the complete
graph K4. The family WF can now be recursively defined as follows:
(WF1) For all k ≥ 1, and n ≥ 2, W2k+1, Fn ∈ 〈WF 〉.
(WF2) If G, H ∈ 〈WF 〉, then any parallel connection of G and H is also in
〈WF 〉.

Graphs in 〈WF 〉 are usually referred as WF -graphs. For an integer k ≥ 3,
graph G is k-circuit connected if for any pair of edges e, e′ ∈ E(G), G has
a sequence of circuits C1, C2, · · · , Cm such that |E(Ci)| ≤ k, (1 ≤ i ≤ m),
e ∈ E(C1), e′ ∈ E(Cm) and E(Ci) ∩ E(Ci+1) �= ∅, (1 ≤ i ≤ m − 1). The
sequence C1, C2, · · · , Cm is often referred as an (e, e′)-k-circuit-path. A 3-
circuit connected graph is also referred as a triangularly connected graph.
By definition, every WF -graph is triangularly connected.

Theorem 2.5 (Fan et al, [5]) Let G be a triangularly connected graph with
|V (G)| ≥ 3. Then
(i) G is Z3-connected if and only if G contains a nontrivial Z3-connected sub-
graph.
(ii) G is Z3-connected if and only if G /∈ 〈WF 〉.

A graph G is collapsible if for every even subset R ⊆ V (G), G has a
subgraph ΓR (called the R-subgraph of G) such that G−E(ΓR) is connected
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and R is the set of odd-degree vertices of ΓR. The collection of all collapsible
graphs is denoted by CL. The following summarizes some useful result related
to collapsible graphs.

Theorem 2.6 Let G be a graph and H be a collapsible subgraph of G. Each
of the following holds.
(i) (Catlin, Theorem 3 and its Corollary of [3]) G is collapsible if and only if
G/H is collapsible.
(ii) (Catlin, Lemma 3 of [3]) If G is collapsible, then for any e ∈ E(G), G/e
is collapsible.
(iii) (Catlin, [3] and Lemma 1 of [2]) Let e ∈ E(K3,3). Then C2, C3, K3,3 and
K3,3 − e are collapsible.
(iv) (Theorem 1.5, [12]) Let A be an abelian group with |A| = 4. Then H ∈
〈A〉.

We follow the notations in [11]. Let G be a graph with C4 as a subgraph,
and π = {X, Y } the bipartition of V (C4) so that both X and Y are independent
sets of C4. Let G/π denote the graph obtained from G by identifying all vertices
of X to form a single vertex x, identifying all vertices of Y to form a single
vertex y, and then joining x, y with a new edge eπ = xy, so that

E(G) − E(C4) = E(G/π) − {eπ}.

Catlin had the following result.

Theorem 2.7 (Catlin, [2]) Let G/π be defined as above. If G/π ∈ CL, then
G ∈ CL.

3 Group Connectivity of Strong Products and

Lexicographical Products

The following observation follows from the definition of strong product imme-
diately.

G1 ⊗ G2 is triangularly connected. (1)

Thus every edge of G1⊗G2 is contained in a 3-circuit. It follows by Lemma 2.3
and Proposition 2.4, that

Λg(G1 ⊗ G2) ≤ 4. (2)

We shall prove Theorem 1.4 by proving each of the following lemmas.
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Figure 1 G = P2 ⊗ P2

Lemma 3.1 Each of the following holds.
(i) Λg(Cn ⊗ K2) = 3 and Λg(P2 ⊗ P2) = 3.
(ii) If G1 or G2 contains a circuit, then Λg(G1 ⊗ G2) = 3.
(iii) If both G1 and G2 contains a path of length at least 2, then Λg(G1⊗G2) =
3.

Proof: (i) By (2), Λg(Cn ⊗ K2) ≤ 4. By the definition of strong product,
Cn ⊗ K2 is not a WF -graph. It follows by (1) and by Theorem 2.5 that
Cn ⊗ K2 is Z3-connected. Thus Λg(Cn ⊗ K2) = 3.

Let G = P2 ⊗P2 (see Figure 1). Then the subgraph G′ induced by the ver-
tex subset {x0y1, x1y0, x1y1, x1y2, x2y1} is an even wheel. By Theorem 2.5(ii),
Λg(G

′) = 3. And by Theorem 2.5(i), Λg(G) = 3.
(ii) and (iii) Both conclusions follow from (i) and from Theorem 2.5(i). �

Lemma 3.2 If G1 is a tree, and G2
∼= K2, then each of the following holds.

(i) G1 ⊗ G2 ∈ 〈WF 〉.
(ii) Λg(G1 ⊗ G2) = 4.
(iii) If H is a nontrivial connected graph, then H has a nowhere-zero Z3-flow
if and only if H ⊕2 K4 has a nowhere-zero Z3-flow.
(iv) G1 ⊗ G2 does not have a nowhere-zero Z3-flow.

Proof: (i) We first argue by induction on |V (G1)| to show that, under the
assumption of this lemma, G1 ⊗G2 ∈ 〈WF 〉. If |V (G1)| = 2, then G1

∼= K2 as
well, and so G1⊗G2

∼= K4 ∈ 〈WF 〉. Assume that for smaller values of |V (G1)|,
if G1 is a tree, then G1 ⊗ G2 ∈ 〈WF 〉. Assume now |V (G1)| ≥ 3. Since G1

is a tree, G1 has an edge uv such that u has degree 1 in G1. It follows by
assumption that (G1 − u) ⊗ G2 ∈ 〈WF 〉. By the definition of strong product,
G1 ⊗ G2 is a parallel connection of (G1 − u) ⊗ G2 and G1[{u, v}] ⊗ G2

∼= K4.
It follows by (WF2) in the definition of 〈WF 〉 that G1 ⊗ G2 ∈ 〈WF 〉. Hence
(i) holds by induction.
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(ii) By (2), (i) and Theorem 2.5, (ii) follows as well.

(iii) Suppose that the K4, as a subgraph of H ⊕2 K4, has four vertices
u1, v1, u2, v2 such that u1, v1 are the two vertices not in V (H). If H has a
nowhere-zero 3-flow, then extend the orientation of H to H⊕2 K4 by orienting
all edges incident with u1 away from u1 and all edges incident with v1 into v1,
and by extending the flow ion H to E(K4)−E(H) taking a constant value 1.
Then we obtain a nowhere-zero Z3-flow of H ⊕2 K4. Conversely, if H ⊕2 K4

has a nowhere-zero Z3-flow, then since both u1 and v1 are adjacent degree 3
vertices, the restriction of this Z3-flow to E(H) is also a nowhere-zero Z3-flow
of L.

(iv) This follows from (iii) and by induction on |V (G1)|. �

Proof of Theorem 1.4: By (2) and by Lemma 3.2, we may assume that
Λg(G1 ⊗ G2) = 4 to prove that both G1 and G2 are trees, and min{|V (G1)|,
|V (G2)|} = 2.

If G1 or G2 has a circuit, then by Lemma 3.1(ii), G1 ⊗ G2 ∈ 〈Z3〉. Hence
we may assume that both G1 and G2 are trees. If min{|V (G1)|, |V (G2)|} ≥ 3,
then since G1 and G2 are connected, each of G1 and G2 contains a path of
length 2. It follows by Lemma 3.1(i) that G1 ⊗ G2 has a nontrivial subgraph
in 〈Z3〉, and so by (1) and by Theorem 2.5(i), G1 ⊗ G2 ∈ 〈Z3〉. Therefore, we
must have min{|V (G1)|, |V (G2)|} = 2. �

Proof of Corollary 1.5: Since G ∈ 〈Z3〉 implies that G has a nowhere-zero
3-flow, the sufficiency follows from Theorem 1.4. Conversely, if both G1 and
G2 are trees, and min{|V (G1)|, |V (G2)|} = 2, then by Lemma 3.2(iv), G1⊗G2

does not have a nowhere-zero Z3-flow. �

Proof of Theorem 1.6: By Proposition 1.3(i), G1⊗G2 is a spanning subgraph
of G1[G2]. By Theorem 1.4 and Lemma 2.3, Λg(G1[G2]) ≤ 4. If G1⊗G2 ∈ 〈Z3〉,
then by Lemma 2.3, G1[G2] ∈ 〈Z3〉 as well. If both G1 and G2 are trees, and
min{|V (G1)|, |V (G2)|} = 2, then by Proposition 1.3(ii), G1[G2] = G1 ⊗ G2,
and so by Theorem 1.4, G1[G2] �∈ 〈Z3〉. �

Proof of Corollary 1.7: The proof is similar to that for Corollary 1.5, and
so it is omitted. �

4 Group Connectivity of Cartesian Products

Then the following observation follows from the definition of Cartesian product
immediately.

G1 × G2 is 4-circuit connected. (3)
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Thus every edge of G1×G2 is contained in a 4-circuit. It follows by Lemma 2.3
and Proposition 2.4 that

Λg(G1 × G2) ≤ 5. (4)

Lemma 4.1 Let G be 4-circuit connected and A be an abelian group with
|A| = 4. Each of the following holds.
(i) G ∈ 〈A〉 if and only if G has a nontrivial A-connected subgraph.
(ii) G ∈ CL if and only if G has a nontrivial collapsible subgraph.
(iii)If G has a nontrivial A-connected subgraph, then Λg(G) ≤ 4; If G has a
nontrivial collapsible subgraph, then G is collapsible and Λg(G) ≤ 4.

Proof: (i) If G ∈ 〈A〉, then G is a nontrivial A-connected subgraph of G.
Conversely, let H be a nontrivial maximal A-connected subgraph of G. If

G = H , then done. Assume that H �= G. Since |E(H)| ≥ 1, there is an edge
e1 ∈ E(H). Since E(G) − E(H) �= ∅, there is an edge e2 ∈ E(G) − E(H). By
the definition of 4-circuit-connectedness, G has an (e1, e2)-4-circuit-path. By
the choice of e1 and e2, this 4-circuit-path has a circuit T with |E(T )| ≤ 4 such
that T1 = E(T ) ∩ E(H) �= ∅ and T2 = E(T ) − T1 �= ∅. By Proposition 2.4,
T/T1 is A-connected. Let H ′ = H ∪ T . Since H ′/H = T/T1 is A-connected,
and since H is A-connected, it follows by Proposition 2.2(C3) that H ′ is A-
connected, contrary to the maximality of H . Thus we must have H = G, and
so G is A-connected. This, together with (4), implies that Λg(G) ≤ 4.

(ii) If G ∈ 〈A〉, then G is a nontrivial collapsible subgraph of G.
Conversely, let H be a nontrivial maximal collapsible subgraph of G. If

G = H , then done. Assume that H �= G. Since |E(H)| ≥ 1, there is an edge
e1 ∈ E(H). Since E(G) − E(H) �= ∅, there is an edge e2 ∈ E(G) − E(H). By
the definition of 4-circuit-connectedness, G has an (e1, e2)-4-circuit-path. By
the choice of e1 and e2, this 4-circuit-path has a circuit T with |E(T )| ≤ 4 such
that T1 = E(T ) ∩ E(H) �= ∅ and T2 = E(T ) − T1 �= ∅. By Theorem 2.6(ii),
T/T1 is collapsible. Let H ′ = H ∪ T . Since H ′/H = T/T1 is collapsible,
and since H is collapsible, it follows by Theorem 2.6(i) that H ′ is collapsible,
contrary to the maximality of H . Thus we must have H = G, and so G is
collapsible.

(iii) This follows from (ii), (4) and Theorem 2.6(iv). �

Lemma 4.2 Let C be a 4-circuit and A be an abelian group with |A| = 4.
Let G = H ⊕2 C. Then H is A-connected if and only if G is A-connected.

Proof: Let V (C) = {v1, v2, v3, v4}, E(C) = {e1, e2, e3, e4} and assume V (H)∩
V (C) = {v1, v4} (see Figure 2). Let D be an orientation of G such that the
edge vivi+1 is directed from vi from vi+1, for i = 1, 2, 3.

If H ∈ 〈A〉, since G/H is a 3-circuit, by Proposition 2.4, G/H ∈ 〈A〉, then,
by Proposition 2.2 (C3), G ∈ 〈A〉.
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Conversely, if G ∈ A, since for any abelian group A of order 4, either
A ∼= Z4 or A ∼= Z2 × Z2, then we have the following two cases.

Case 1: A ∼= Z4. Let b ∈ Z(H, Z4). Define b′ : V (G) �→ Z4 to be

b′(v) =

⎧⎨
⎩

1, if v = v2, v3,
b(v) + 1, if v = v1, v4,
b(v), otherwise.

Then
∑

v∈V (G) b′(v) =
∑

v∈V (H) b(v) + 4 ≡ 0 (mod 4). So b′ ∈ Z(G, Z4).
By the definition of Z4-connectedness, there is a Z4-NZF f ′ of G such that
∂f ′(v) = b′(v), for any v ∈ V (G). So f ′(e3) = f ′(e2)+1 = f ′(e1)+2. Therefor
{f ′(e3), f

′(e2), f
′(e1)} = {1, 2, 3}. This concludes that f ′(e1) = 1, f ′(e2) = 2

and f ′(e3) = 3. Define f : E(H) �→ Z∗
4 to be f(e) = f ′(e), for any e ∈ E(H).

Then

∂f(v) =

⎧⎨
⎩

∂f ′(v) − 1 = b′(v) − 1 = b(v), if v = v1,
∂f ′(v) + 3 = b′(v) + 3 = b(v) + 4 ≡ b(v), if v = v4,
b(v), otherwise.

That is, for any v ∈ V (H), ∂f(v) = b(v). Therefore by the definition of
Z4-connectedness, H ∈ 〈Z4〉.

Case 2: A ∼= Z2 × Z2.
Let b ∈ Z(H, Z2 × Z2). Define b′ : V (G) �→ Z2 × Z2 to be

b′(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b(v) + (0, 1), if v = v1,
(1, 0), if v = v2,
(0, 1), if v = v3,
b(v) − (1, 0), if v = v4,
b(v), otherwise.
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Then
∑

v∈V (G) b′(v) =
∑

v∈V (H) b(v)+2(0, 1) = 0. So b′ ∈ Z(G, Z4). By the
definition of Z2 × Z2-connectedness, there is a Z2 × Z2-NZF f ′ of G such that
∂f ′(v) = b′(v), for any v ∈ V (G). So f ′(e3) = f ′(e2) + (0, 1) = f ′(e1) + (1, 1).
Therefor {f ′(e3), f

′(e2), f
′(e1)} = {(0, 1), (1, 0), (1, 1)}. This concludes that

f ′(e1) = (0, 1), f ′(e2) = (1, 1) and f ′(e3) = (1, 0). Let f : E(H) �→ Z2 × Z∗
2 be

f(e) = f ′(e), for any e ∈ E(H). Then

∂f(v) =

⎧⎨
⎩

∂f ′(v) − (0, 1) = b′(v) − (0, 1) = b(v), if v = v1,
∂f ′(v) + (1, 0) = b′(v) + (1, 0) = b(v), if v = v4,
b(v), otherwise.

That is, for any v ∈ V (H), ∂f(v) = b(v). Therefore by the definition of
Z2 × Z2-connectedness, H ∈ 〈A〉.

By Case 1 and Case 2, we prove that if G ∈ 〈A〉, then H ∈ 〈A〉. �

Lemma 4.3 Each of the following holds.
(i) Let G be a tree. Then Λg(G × K2) = 5.
(ii) Let m ≥ 2, n ≥ 2. Then Λg(K1,m × K1,n) = 5.

Proof: (i) If we can prove that G × K2 is not Z4-connected, then, by (4),
Λg(G × K2) = 5. We will prove by induction on |V (G)| that G × K2 is not
Z4-connected.

If |V (G)| = 2, then G ∼= K2, and so G × K2
∼= C4. By Proposition 2.4,

G×K2 is not Z4-connected. Assume that for smaller values of |V (G)|, if G is
a tree, then G×K2 is not Z4-connected. Assume now |V (G)| ≥ 3. Since G is a
tree, G has an edge uv such that u has degree 1 in G. It follows by assumption
that (G−u)×K2 is not Z4-connected. By the definition of Cartesian product,
G × K2 is a parallel connection of (G − u) × K2 and G[{u, v}] × K2

∼= C4. It
follows by Lemma 4.2 that G × K2 is not Z4-connected. This completes the
proof of (i).

(ii) By (4), if we can prove that K1,m × K1,n is not Z4-connected, then
Λg(K1,m × K1,n) = 5. By contradiction, we assume that K1,m × K1,n is Z4-
connected.

Suppose V (K1,m) = {x0, x1, ..., xm} with dK1,m(x0) = m and V (K1,n) =
{y0, y1, ..., yn} with dK1,n(y0) = n. Let I = {1, 2, ..., m}, I0 = {0, 1, 2, ..., m}, J =
{1, 2, ..., n} and J0 = {0, 1, 2, ..., n}. By the definition of Cartesian product,
V (K1,m × K1,n) = {vij = xiyj : for i ∈ I0 and j ∈ J0}. Let E1 = {v0jvij : for
i ∈ I, j ∈ J0} and E2 = {vi0vij : for i ∈ I0, j ∈ J}. Then E(K1,m × K1,n) =
E1

⋃
E2 and vij has degree 2, for i ∈ I and j ∈ J .

Let D be an orientation of K1,m × K1,n such that v0jvij ∈ E1 is directed
from v0j to vij ; vi0vij ∈ E2 is directed from vij to vi0(see K1,3 ×K1,3 in Figure
3).

Let b : V (K1,m × K1,n) �→ Z4 such that
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b(v) =

⎧⎨
⎩

1, if v = v01,
3, if v = v10,
0, otherwise.

Then b ∈ Z(K1,m × K1,n, Z4).
Let f : K1,m × K1,n �→ Z4 such that

f(e) =

⎧⎨
⎩

1, if e = v01v00, vijvi0, for i ∈ I, j ∈ J,
3, if e = v10v00, vijv0j , for i ∈ I, j ∈ J,
2, otherwise.

By Proposition 2.1, there is an f ∈ F (K1,m × K1,n, Z4) such that ∂f = b,
and f(e) �= f(e), for any e ∈ E(K1,m × K1,n). For vij, where i ∈ I and j ∈ J ,
since b(vij) = f(vijvi0) − f(vijv0j) = 0, f(vijvi0) = f(vijv0j). Together with
f(vijvi0) �= f(vijvi0) = 1 and f(vijv0j) �= f(vijvi0) = 3, we have

f(vijvi0), f(vijv0j) ∈ {0, 2}, for i ∈ I and j ∈ J. (5)

For vertex vi0, i = 2, ..., m, since b(vi0) = 0 = −∑n
j=1 f(vijvi0) − f(vi0v00),

f(vi0v00) = −∑n
j=1 f(vijvi0). By (5), f(vi0v00) ∈ {0, 2}, and since f(vi0v00) �=

f(vi0v00) = 2, f(vi0vi0) = 0, for i = 2, ..., m. By the similar argument,
f(v00v0j) = 0, for j = 2, ...., n. That is

f(vi0v00) = 0, for i = 2, ..., m; f(v00v0j) = 0, forj = 2, ...., n. (6)
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Since b(v00) = 0, by (6), f(v10v00) = f(v01v00). And f(v10v00) �= f(v10v00) =
3, f(v01v00) �= f(v01v00) = 1, so f(v10v00), f(v01v00) ∈ {0, 2}. For vertex v10,
b(v10) = 3 = −∑n

j=1 f(v1jv10)−f(v10v00). But by (5) and (6), −∑3
j=1 f(v1jv10)−

f(v10v00) ∈ {0, 2}. This is a contradiction. Therefore K1,m × K1,n is not Z4-
connected.

Thus by (4), Λg(K1,m × K1,n) = 5. �

Lemma 4.4 Each of the following holds.
(i)Λg(P2 × P3) ≤ 4.
(ii)Let n ≥ 3. Then Λg(Cn × K2) ≤ 4.
(iii)If one of G1 and G2 is not a tree, then Λg(G1 × G2) ≤ 4.

Proof: (i) We label most of the vertices of P2 × P3 as in Figure 4 a. Let
π1 = 〈{v3, v

′
3}, {v4, v

′
4}〉 and H1 = (P2 × P3)/π1 (see Figure 4 b). Let π2 =

〈{v1, v
′
1}, {v2, v

′
2}〉 and H2 = H1/π2 (see Figure 5 a). Let π3 = 〈{v′

3, v
′′
3}, {v′

4, v
′′
4}〉

and H3 = H2/π3 (see Figure 5 b). If we redraw H3(see Figure 5 c), then
H3

∼= K3,3 − e. By Theorem 2.6(iii), H3 ∈ CL. It follows by Theorem 2.7 that
H2 ∈ CL. Similarly by Theorem 2.7, H1 ∈ CL and P2 × P3 ∈ CL. Then by
Theorem 2.6(iv) and (4), Λg(P2 × P3) ≤ 4.

(ii) First we will prove by induction on n that Cn ×K2 ∈ CL. When n = 3,
by Proposition 2.6(iii), C3 ∈ CL, and by Lemma 4.1(iii), C3 ×K2 ∈ CL. When
n = 4, let C = v1v2v3v4 be a 4-circuit in C4 × K2 (see Figure 6 a). Let
π = 〈{v1, v3}, {v2, v4}〉 and G′ = (C4 × K2)/π (see Figure 6 b). If we redraw
G′ (see Figure 6 c), then G′ ∼= K3,3. It follows by Proposition 2.6(iii) that G′

is collapsible. Therefor by Lemma 2.7, C4 × K2 ∈ CL.
For a fixed n > 4, assume that for any m < n, Cm × K2 ∈ CL. Let

C = v1v2v
′
1v

′
2 and C ′ = v′

1v2v
′′
1v

′′
2 be two 4-circuits contained in Cn × K2 (see

Figure 7 a). Let π1 = 〈{v1, v
′
1}, {v2, v

′
2}〉 and π2 = 〈{v1, v

′′
1}, {v2, v

′′
2}〉. Let

G′ = (Cn × K2)/π1(see Figure 7 a) and G′′ = (Cn × K2)/π1/π2 (see Figure 7
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b). Then by assumption (Cn ×K2)/π1/π2
∼= Cn−2 ×K2 ∈ CL (see Figure 7 c).

By Lemma 2.7, (Cn×K2)/π1 ∈ CL. And by Lemma 2.7 again, (Cn×K2) ∈ CL.
Thus Cn × K2 ∈ CL, for n ≥ 3. It follows by (4) and Theorem 2.6 (iv) that
Λg(Cn × K2) ≤ 4, for n ≥ 3.

(iii) Suppose G1 is not a tree, then there is a circuit Cn ⊆ G1, where n ≥ 3.
Therefor G1 ×G2 contains a nontrivial collapsible subgraph H ∼= Cn ×K2. It
follows by Theorem 4.1(iii) that Λg(G1 × G2) ≤ 4. �

Proof of Theorem 1.8: By (4) and by Lemma 4.3, we may assume that
Λg(G1 ⊗ G2) = 5 to prove that either G1

∼= K1,m and G2
∼= K1,n, where

n, m ≥ 2 or G1 is a tree and G2
∼= K2.

If G1 or G2 has a circuit, then by Lemma 4.4(iii), Λg(G1 ⊗G2) ≤ 4. Hence
we may assume that both G1 and G2 are trees.

Case 1: If min{|V (G1)|, |V (G2)|} = 2, assume V (G2) = 2. Since G2 is
connected, G2

∼= K2, by Lemma 4.3(ii), Λg(G1 × G2) = 5.

Case 2: If min{|V (G1)|, |V (G2)|} ≥ 3, then since G1 and G2 are connected,
both G1 and G2 contain a path of length 2. If one of G1 and G2 contains a
path of length 3, then it follows by Lemma 4.4(i) that G1⊗G2 has a nontrivial
subgraph H ∼= P2×P3 with Λg(H) ≤ 4, and so by (1) and by Theorem 4.1(iii),
Λg(G1 ⊗ G2) ≤ 4. Therefor G1 and G2 contains only paths with length 2. So
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G1
∼= K1,m and G2

∼= K1,n, for m,n ≥ 2. �
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