Group Connectivity in Products of Graphs

Jin Yan
Department of Mathematics, Shangdong University
Jinan 250100, PRC
\section*{Senmei Yao}
Department of Mathematics, West Virginia University
Morgantown, WV 26506, USA
Hong-Jian Lai
College of Mathematics and System Sciences, Xinjiang University
Urumqi, Xinjiang 830046, PRC
and
Department of Mathematics, West Virginia University
Morgantown, WV 26506, USA
hjlai@math.wvu.edu
\section*{Xiaofeng Gu}
Department of Mathematics, West Virginia University
Morgantown, WV 26506, USA

Abstract

Let G be a 2-edge-connected undirected graph, A be an (additive) abelian group and $A^{*}=A-\{0\}$. A graph G is A-connected if G has an orientation $D(G)$ such that for every function $b: V(G) \mapsto A$ satisfying $\sum_{v \in V(G)} b(v)=0$, there is a function $f: E(G) \mapsto A^{*}$ such that for each vertex $v \in V(G)$, the total amount of f values on the edges directed out from v minus the total amount of f values on the edges directed into v equals $b(v)$. For a 2 -edge-connected graph G, define $\Lambda_{g}(G)=\min \{k$: for any abelian group A with $|A| \geq k, G$ is A-connected $\}$.

Let $G_{1} \otimes G_{2}$ and $G_{1} \times G_{2}$ denote the strong and Cartesian product of two connected nontrivial graphs G_{1} and G_{2}. In this paper, we prove that $\Lambda_{g}\left(G_{1} \otimes G_{2}\right) \leq 4$, where equality holds if and only if both G_{1} and G_{2} are trees and $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2 ; \Lambda_{g}\left(G_{1} \times G_{2}\right) \leq 5$, where equality holds if and only if both G_{1} and G_{2} are trees and either $G_{1} \cong K_{1, m}$ and

$G_{2} \cong K_{1, n}$, for $n, m \geq 2$ or $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$. A similar result for the lexicographical product graphs is also obtained.

Keywords: nowhere-zero flows, group connectivity, products of graphs

1 Introduction

We consider finite graphs which may have multiple edges but no loops. Undefined terms and notations will follow Bondy and Murty [1]. For $m, n \geq 1$, P_{m} is a path with m edges, K_{m} is a complete graph with m vertices and $K_{m, n}$ is a complete bipartite graph with bipartition (X, Y) such that $|X|=m$ and $|Y|=n$. And $\kappa(G), \kappa^{\prime}(G)$ and $\delta(G)$ denote the connectivity, edge-connectivity and minimum degree of a graph G, respectively. Different from [1], a 2-regular nontrivial connected graph is called a circuit, and a circuit with k edges is referred as a k-circuit. For an edge subset $J \subseteq E(G)$ of a graph G, we take the convention of using J to denote both the edge subset as well as the subgraph $G[J]$ induced by the edge set J. Throughout this paper, G_{1} and G_{2} denote two nontrivial connected simple graphs and A denotes an (additive) abelian group with identity 0 . and $A^{*}=A-\{0\}$.

Let $D=D(G)$ be an orientation of a graph G. If an edge $e \in E(G)$ is directed from a vertex u to a vertex v, then let $\operatorname{tail}(e)=u$ and $\operatorname{head}(e)=v$. For a vertex $v \in V(G)$, define

$$
E_{D}^{+}(v)=\{e \in E(G): v=\operatorname{tail}(e)\}, \text { and } E_{D}^{-}(v)=\{e \in E(G): v=\operatorname{head}(e)\} .
$$

Following Jaeger et al [9], we define $F(G, A)=\{f \mid f: E(G) \mapsto A\}$ and $F^{*}(G, A)=\left\{f \mid f: E(G) \mapsto A^{*}\right\}$. For a function $f: E(G) \rightarrow A$, define $\partial f: V(G) \mapsto A$ by

$$
\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A.
Assume that G has an orientation $D(G)$. A function $b: V(G) \mapsto A$ is called an A-valued zero sum function on G if $\sum_{v \in V(G)} b(v)=0$. The set of all A-valued zero sum functions on G is denoted by $Z(G, A)$. A function $f \in F(G, A)$ is an A-flow of G if $\partial f(v)=0$ for every vertex $v \in V(G)$. An A-flow f is a nowhere-zero A-flow (abbreviated as A-NZF) if $f \in F^{*}(G, A)$. For a $b \in Z(G, A)$, a function $f \in F^{*}(G, A)$ is a nowhere-zero (A, b)-flow (abbreviated as (A, b)-NZF) if $\partial f=b$. A graph G is A-connected if $\forall b \in$ $Z(G, A), G$ has an (A, b)-NZF. Let $\langle A\rangle$ be the family of graphs that are A connected. The group connectivity number of a graph G is defined as

$$
\Lambda_{g}(G)=\min \{k: G \in\langle A\rangle \text { for every abelian group } A \text { with }|A| \geq k\}
$$

The concept of group connectivity was first introduced by Jaeger, Linial, Payan and Tarsi in [9] as a nonhomogeneous form of the nowhere-zero flow problem. The nowhere-zero flow problem was first introduced by Tutte [17] in his way to attach the 4 -color-conjecture. Tutte left with several fascinating conjectures in this area, which have remained open as of today.

Conjecture 1.1 (Tutte [17], [8])

(i) Every graph G with $\kappa^{\prime}(G) \geq 2$ has a nowhere-zero Z_{5}-flow.
(ii) Every graph G with $\kappa^{\prime}(G) \geq 2$ without a subgraph contractible to the $P e$ terson graph admits a nowhere-zero Z_{4}-flow.
(iii) Every graph G with $\kappa^{\prime}(G) \geq 4$ admits a nowhere-zero Z_{3}-flow.

Jaeger et al made the following conjectures about group connectivity. The truth of these conjectures will imply the truth of Tutte's Z_{5}-flow conjecture and Z_{3}-flow conjecture, as indicated by Kochol [10].

Conjecture 1.2 (Jaeger, Linial, Payan and Tarsi [9])
(i) If G is a 3-edge-connected graph, then $\Lambda_{g}(G) \leq 5$.
(ii) If G is a 5-edge-connected graph, then $\Lambda_{g}(G) \leq 3$.

While many have contributed to the literature of nowhere-zero flows, all these conjectures remain open. Most recently, X. Yao et al [18] and X. Zhang et al [21] have found best possible degree conditions for graphs with group connectivity 4 and 3 , respectively. X. Yao and D. Gong also investigated the group connectivity of Kneser graphs. A survey on group connectivity can be found in [15]. Several researchers have investigated the problem that what kind of products graphs will have nowhere-zero A-flows when $|A|$ is small, as seen in [7], [16] and [20], among others.

The purpose of this paper is to determine the group connectivity number for all strong product and lexicographical product graphs, and to investigate the group connectivity number of the Cartesian product graphs.

For graph products, we adopt the notation in [6]. Let G_{1}, G_{2} be two graphs. The Cartesian product graph $G=G_{1} \times G_{2}$ is a graph with vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E(G)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1}=v_{1}\right.$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $\left.u_{1} v_{1} \in E\left(G_{1}\right)\right\}$. The strong product graph $G=G_{1} \otimes G_{2}$ is a graph with vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E(G)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1}=v_{1}\right.$ and $u_{2} v_{2} \in E\left(G_{2}\right)$, or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$, or both $u_{1} v_{1} \in E\left(G_{1}\right)$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$. And the lexicographic product (sometimes called composition, tensor or wreath product) $G=G_{1}\left[G_{2}\right]$ is a graph with vertex set $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E(G)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$, or $u_{1}=v_{1}$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$.

The following are immediate from the above definitions.

Proposition 1.3 Each of the following holds.
(i) $G_{1} \times G_{2}$ is a spanning subgraph of $G_{1} \otimes G_{2}$, and $G_{1} \otimes G_{2}$ is a spanning subgraph of $G_{1}\left[G_{2}\right]$.
(ii) If $G_{2} \cong K_{m}$ is a complete graph, then $G_{1}\left[K_{m}\right]=G_{1} \otimes K_{m}$.

In this paper we will determine the group connectivity number of certain products of connected graphs by proving the following main results.

Theorem $1.4 \Lambda_{g}\left(G_{1} \otimes G_{2}\right) \leq 4$, where equality holds if and only if both G_{1} and G_{2} are trees and $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$.

Corollary 1.5 $G_{1} \otimes G_{2}$ has a nowhere-zero 3-flow if and only if either one of G_{1} and G_{2} is not a tree, or both G_{1} and G_{2} are trees with $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \geq$ 3.

Theorem $1.6 \Lambda_{g}\left(G_{1}\left[G_{2}\right]\right) \leq 4$, where equality holds if and only if both G_{1} and G_{2} are trees and $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$.

Corollary 1.7 $G_{1}\left[G_{2}\right]$ has a nowhere-zero 3-flow if and only if either one of G_{1} and G_{2} is not a tree, or both G_{1} and G_{2} are trees with $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \geq$ 3.

Theorem $1.8 \Lambda_{g}\left(G_{1} \times G_{2}\right) \leq 5$, where equality holds if and only if either $G_{1} \cong K_{1, m}$ and $G_{2} \cong K_{1, n}$, for $n, m \geq 2$ or G_{1} is a tree and $G_{2} \cong K_{2}$.

This paper is organized as follows: In Section 2, we present the preliminaries as a preparation for the proofs. Sections 3 and 4 are devoted to the investigation of the group connectivity of strong products and lexicographical products, and Cartesian products of graphs, respectively.

2 Preliminaries

The purpose of this section is to lay down the preparation for the proofs of the main results in the next two sections.

Let G be a graph and let $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and deleting the resulting loops. For convenience, we use G / e for $G /\{e\}$; and if H is a subgraph of G, we write G / H for $G / E(H)$.

Proposition 2.1 (Proposition 2.2, [9]) Let G be a connected graph and A be an abelian group. Then following are equivalent.
(i) $G \in\langle A\rangle$.
(ii) $\forall \bar{f} \in F(G, A), \exists f \in F_{0}(G, A)$ such that $\forall e \in E(G), f(e) \neq \bar{f}(e)$.
(iii) $\forall b \in Z(G, A)$, and $\forall \bar{f} \in F(G, A), \exists f \in F(G, A)$ such that $\partial f=b$ and $\forall e \in E(G), f(e) \neq \bar{f}(e)$.

Proposition 2.2 (Lai, Proposition 3.2 of [13] and Proposition 2.2 of Chen et al, [4]) Let A be an abelian group with $|A| \geq 3$. Then $\langle A\rangle$ satisfies each of the following:
(C1) $K_{1} \in\langle A\rangle$,
(C2) if $G \in\langle A\rangle$ and $e \in E(G)$, then $G / e \in\langle A\rangle$,
(C3) if H is a subgraph of G and if both $H \in\langle A\rangle$ and $G / H \in\langle A\rangle$, then $G \in\langle A\rangle$.

Lemma 2.3 (Lemma 2.1 of [14]) Let G be a graph and A be an abelian group. If for every edge e in a spanning tree of G, G has a subgraph $H_{e} \in\langle A\rangle$ with $e \in E\left(H_{e}\right)$, then $G \in\langle A\rangle$.

Proposition 2.4 ([9], Lemma 3.3 of [13]) For any abelian group $A, C_{n} \in$ $\langle A\rangle$ if and only if $|A| \geq n+1$.

Let H_{1} and H_{2} be two subgraphs of a graph G. We say that G is a parallel connection of H_{1} and H_{2}, denoted by $H_{1} \oplus_{2} H_{2}$, if $E\left(H_{1}\right) \cup E\left(H_{2}\right)=$ $E(G),\left|V\left(H_{1}\right) \cap V\left(H_{2}\right)\right|=2$ and $\left|E\left(H_{1}\right) \cap E\left(H_{2}\right)\right|=1$. The edge $e \in E\left(H_{1}\right) \cap$ $E\left(H_{2}\right)$ is usually referred as the base edge.

A wheel W_{k} is the graph obtained from a k-circuit by adding a new vertex the center of the wheel, and then by joining the center to every vertex of the k-circuit. A fan F_{k} is the graph obtained from W_{k} by deleting an edge not incident with the center. Note that F_{2} is the 3 -circuit, and W_{3} is the complete graph K_{4}. The family $W F$ can now be recursively defined as follows:
(WF1) For all $k \geq 1$, and $n \geq 2, W_{2 k+1}, F_{n} \in\langle W F\rangle$.
(WF2) If $G, H \in\langle W F\rangle$, then any parallel connection of G and H is also in $\langle W F\rangle$.

Graphs in $\langle W F\rangle$ are usually referred as $W F$-graphs. For an integer $k \geq 3$, graph G is k-circuit connected if for any pair of edges $e, e^{\prime} \in E(G), G$ has a sequence of circuits $C_{1}, C_{2}, \cdots, C_{m}$ such that $\left|E\left(C_{i}\right)\right| \leq k,(1 \leq i \leq m)$, $e \in E\left(C_{1}\right), e^{\prime} \in E\left(C_{m}\right)$ and $E\left(C_{i}\right) \cap E\left(C_{i+1}\right) \neq \emptyset,(1 \leq i \leq m-1)$. The sequence $C_{1}, C_{2}, \cdots, C_{m}$ is often referred as an $\left(e, e^{\prime}\right)$ - k-circuit-path. A 3circuit connected graph is also referred as a triangularly connected graph. By definition, every $W F$-graph is triangularly connected.

Theorem 2.5 (Fan et al, [5]) Let G be a triangularly connected graph with $|V(G)| \geq 3$. Then
(i) G is Z_{3}-connected if and only if G contains a nontrivial Z_{3}-connected subgraph.
(ii) G is Z_{3}-connected if and only if $G \notin\langle W F\rangle$.

A graph G is collapsible if for every even subset $R \subseteq V(G), G$ has a subgraph Γ_{R} (called the R-subgraph of G) such that $G-E\left(\Gamma_{R}\right)$ is connected
and R is the set of odd-degree vertices of Γ_{R}. The collection of all collapsible graphs is denoted by $\mathcal{C L}$. The following summarizes some useful result related to collapsible graphs.

Theorem 2.6 Let G be a graph and H be a collapsible subgraph of G. Each of the following holds.
(i) (Catlin, Theorem 3 and its Corollary of [3]) G is collapsible if and only if G / H is collapsible.
(ii) (Catlin, Lemma 3 of [3]) If G is collapsible, then for any $e \in E(G), G / e$ is collapsible.
(iii) (Catlin, [3] and Lemma 1 of [2]) Let $e \in E\left(K_{3,3}\right)$. Then $C_{2}, C_{3}, K_{3,3}$ and $K_{3,3}-e$ are collapsible.
(iv) (Theorem 1.5, [12]) Let A be an abelian group with $|A|=4$. Then $H \in$ $\langle A\rangle$.

We follow the notations in [11]. Let G be a graph with C_{4} as a subgraph, and $\pi=\{X, Y\}$ the bipartition of $V\left(C_{4}\right)$ so that both X and Y are independent sets of C_{4}. Let G / π denote the graph obtained from G by identifying all vertices of X to form a single vertex x, identifying all vertices of Y to form a single vertex y, and then joining x, y with a new edge $e_{\pi}=x y$, so that

$$
E(G)-E\left(C_{4}\right)=E(G / \pi)-\left\{e_{\pi}\right\} .
$$

Catlin had the following result.
Theorem 2.7 (Catlin, [2]) Let G / π be defined as above. If $G / \pi \in \mathcal{C L}$, then $G \in \mathcal{C L}$.

3 Group Connectivity of Strong Products and Lexicographical Products

The following observation follows from the definition of strong product immediately.

$$
\begin{equation*}
G_{1} \otimes G_{2} \text { is triangularly connected. } \tag{1}
\end{equation*}
$$

Thus every edge of $G_{1} \otimes G_{2}$ is contained in a 3 -circuit. It follows by Lemma 2.3 and Proposition 2.4, that

$$
\begin{equation*}
\Lambda_{g}\left(G_{1} \otimes G_{2}\right) \leq 4 \tag{2}
\end{equation*}
$$

We shall prove Theorem 1.4 by proving each of the following lemmas.

Figure $1 G=P_{2} \otimes P_{2}$

Lemma 3.1 Each of the following holds.
(i) $\Lambda_{g}\left(C_{n} \otimes K_{2}\right)=3$ and $\Lambda_{g}\left(P_{2} \otimes P_{2}\right)=3$.
(ii) If G_{1} or G_{2} contains a circuit, then $\Lambda_{g}\left(G_{1} \otimes G_{2}\right)=3$.
(iii) If both G_{1} and G_{2} contains a path of length at least 2, then $\Lambda_{g}\left(G_{1} \otimes G_{2}\right)=$ 3.

Proof: (i) By (2), $\Lambda_{g}\left(C_{n} \otimes K_{2}\right) \leq 4$. By the definition of strong product, $C_{n} \otimes K_{2}$ is not a $W F$-graph. It follows by (1) and by Theorem 2.5 that $C_{n} \otimes K_{2}$ is Z_{3}-connected. Thus $\Lambda_{g}\left(C_{n} \otimes K_{2}\right)=3$.

Let $G=P_{2} \otimes P_{2}$ (see Figure 1). Then the subgraph G^{\prime} induced by the vertex subset $\left\{x_{0} y_{1}, x_{1} y_{0}, x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}\right\}$ is an even wheel. By Theorem 2.5(ii), $\Lambda_{g}\left(G^{\prime}\right)=3$. And by Theorem $2.5(\mathrm{i}), \Lambda_{g}(G)=3$.
(ii) and (iii) Both conclusions follow from (i) and from Theorem 2.5(i).

Lemma 3.2 If G_{1} is a tree, and $G_{2} \cong K_{2}$, then each of the following holds. (i) $G_{1} \otimes G_{2} \in\langle W F\rangle$.
(ii) $\Lambda_{g}\left(G_{1} \otimes G_{2}\right)=4$.
(iii) If H is a nontrivial connected graph, then H has a nowhere-zero Z_{3}-flow if and only if $H \oplus_{2} K_{4}$ has a nowhere-zero Z_{3}-flow.
(iv) $G_{1} \otimes G_{2}$ does not have a nowhere-zero Z_{3}-flow.

Proof: (i) We first argue by induction on $\left|V\left(G_{1}\right)\right|$ to show that, under the assumption of this lemma, $G_{1} \otimes G_{2} \in\langle W F\rangle$. If $\left|V\left(G_{1}\right)\right|=2$, then $G_{1} \cong K_{2}$ as well, and so $G_{1} \otimes G_{2} \cong K_{4} \in\langle W F\rangle$. Assume that for smaller values of $\left|V\left(G_{1}\right)\right|$, if G_{1} is a tree, then $G_{1} \otimes G_{2} \in\langle W F\rangle$. Assume now $\left|V\left(G_{1}\right)\right| \geq 3$. Since G_{1} is a tree, G_{1} has an edge $u v$ such that u has degree 1 in G_{1}. It follows by assumption that $\left(G_{1}-u\right) \otimes G_{2} \in\langle W F\rangle$. By the definition of strong product, $G_{1} \otimes G_{2}$ is a parallel connection of $\left(G_{1}-u\right) \otimes G_{2}$ and $G_{1}[\{u, v\}] \otimes G_{2} \cong K_{4}$. It follows by (WF2) in the definition of $\langle W F\rangle$ that $G_{1} \otimes G_{2} \in\langle W F\rangle$. Hence (i) holds by induction.
(ii) By (2), (i) and Theorem 2.5, (ii) follows as well.
(iii) Suppose that the K_{4}, as a subgraph of $H \oplus_{2} K_{4}$, has four vertices $u_{1}, v_{1}, u_{2}, v_{2}$ such that u_{1}, v_{1} are the two vertices not in $V(H)$. If H has a nowhere-zero 3 -flow, then extend the orientation of H to $H \oplus_{2} K_{4}$ by orienting all edges incident with u_{1} away from u_{1} and all edges incident with v_{1} into v_{1}, and by extending the flow ion H to $E\left(K_{4}\right)-E(H)$ taking a constant value 1 . Then we obtain a nowhere-zero Z_{3}-flow of $H \oplus_{2} K_{4}$. Conversely, if $H \oplus_{2} K_{4}$ has a nowhere-zero Z_{3}-flow, then since both u_{1} and v_{1} are adjacent degree 3 vertices, the restriction of this Z_{3}-flow to $E(H)$ is also a nowhere-zero Z_{3}-flow of L.
(iv) This follows from (iii) and by induction on $\left|V\left(G_{1}\right)\right|$.

Proof of Theorem 1.4: By (2) and by Lemma 3.2, we may assume that $\Lambda_{g}\left(G_{1} \otimes G_{2}\right)=4$ to prove that both G_{1} and G_{2} are trees, and $\min \left\{\left|V\left(G_{1}\right)\right|\right.$, $\left.\left|V\left(G_{2}\right)\right|\right\}=2$.

If G_{1} or G_{2} has a circuit, then by Lemma 3.1(ii), $G_{1} \otimes G_{2} \in\left\langle Z_{3}\right\rangle$. Hence we may assume that both G_{1} and G_{2} are trees. If $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \geq 3$, then since G_{1} and G_{2} are connected, each of G_{1} and G_{2} contains a path of length 2. It follows by Lemma 3.1(i) that $G_{1} \otimes G_{2}$ has a nontrivial subgraph in $\left\langle Z_{3}\right\rangle$, and so by (1) and by Theorem $2.5(\mathrm{i}), G_{1} \otimes G_{2} \in\left\langle Z_{3}\right\rangle$. Therefore, we must have $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$.
Proof of Corollary 1.5: Since $G \in\left\langle Z_{3}\right\rangle$ implies that G has a nowhere-zero 3 -flow, the sufficiency follows from Theorem 1.4. Conversely, if both G_{1} and G_{2} are trees, and $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$, then by Lemma 3.2(iv), $G_{1} \otimes G_{2}$ does not have a nowhere-zero Z_{3}-flow.
Proof of Theorem 1.6: By Proposition 1.3(i), $G_{1} \otimes G_{2}$ is a spanning subgraph of $G_{1}\left[G_{2}\right]$. By Theorem 1.4 and Lemma 2.3, $\Lambda_{g}\left(G_{1}\left[G_{2}\right]\right) \leq 4$. If $G_{1} \otimes G_{2} \in\left\langle Z_{3}\right\rangle$, then by Lemma 2.3, $G_{1}\left[G_{2}\right] \in\left\langle Z_{3}\right\rangle$ as well. If both G_{1} and G_{2} are trees, and $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$, then by Proposition 1.3(ii), $G_{1}\left[G_{2}\right]=G_{1} \otimes G_{2}$, and so by Theorem 1.4, $G_{1}\left[G_{2}\right] \notin\left\langle Z_{3}\right\rangle$.
Proof of Corollary 1.7: The proof is similar to that for Corollary 1.5, and so it is omitted.

4 Group Connectivity of Cartesian Products

Then the following observation follows from the definition of Cartesian product immediately.

$$
\begin{equation*}
G_{1} \times G_{2} \text { is 4-circuit connected. } \tag{3}
\end{equation*}
$$

Thus every edge of $G_{1} \times G_{2}$ is contained in a 4 -circuit. It follows by Lemma 2.3 and Proposition 2.4 that

$$
\begin{equation*}
\Lambda_{g}\left(G_{1} \times G_{2}\right) \leq 5 \tag{4}
\end{equation*}
$$

Lemma 4.1 Let G be 4-circuit connected and A be an abelian group with $|A|=4$. Each of the following holds.
(i) $G \in\langle A\rangle$ if and only if G has a nontrivial A-connected subgraph.
(ii) $G \in \mathcal{C L}$ if and only if G has a nontrivial collapsible subgraph.
(iii)If G has a nontrivial A-connected subgraph, then $\Lambda_{g}(G) \leq 4$; If G has a nontrivial collapsible subgraph, then G is collapsible and $\Lambda_{g}(G) \leq 4$.

Proof: (i) If $G \in\langle A\rangle$, then G is a nontrivial A-connected subgraph of G.
Conversely, let H be a nontrivial maximal A-connected subgraph of G. If $G=H$, then done. Assume that $H \neq G$. Since $|E(H)| \geq 1$, there is an edge $e_{1} \in E(H)$. Since $E(G)-E(H) \neq \emptyset$, there is an edge $e_{2} \in E(G)-E(H)$. By the definition of 4 -circuit-connectedness, G has an $\left(e_{1}, e_{2}\right)$-4-circuit-path. By the choice of e_{1} and e_{2}, this 4-circuit-path has a circuit T with $|E(T)| \leq 4$ such that $T_{1}=E(T) \cap E(H) \neq \emptyset$ and $T_{2}=E(T)-T_{1} \neq \emptyset$. By Proposition 2.4, T / T_{1} is A-connected. Let $H^{\prime}=H \cup T$. Since $H^{\prime} / H=T / T_{1}$ is A-connected, and since H is A-connected, it follows by Proposition 2.2(C3) that H^{\prime} is A connected, contrary to the maximality of H. Thus we must have $H=G$, and so G is A-connected. This, together with (4), implies that $\Lambda_{g}(G) \leq 4$.
(ii) If $G \in\langle A\rangle$, then G is a nontrivial collapsible subgraph of G.

Conversely, let H be a nontrivial maximal collapsible subgraph of G. If $G=H$, then done. Assume that $H \neq G$. Since $|E(H)| \geq 1$, there is an edge $e_{1} \in E(H)$. Since $E(G)-E(H) \neq \emptyset$, there is an edge $e_{2} \in E(G)-E(H)$. By the definition of 4 -circuit-connectedness, G has an $\left(e_{1}, e_{2}\right)$-4-circuit-path. By the choice of e_{1} and e_{2}, this 4-circuit-path has a circuit T with $|E(T)| \leq 4$ such that $T_{1}=E(T) \cap E(H) \neq \emptyset$ and $T_{2}=E(T)-T_{1} \neq \emptyset$. By Theorem 2.6(ii), T / T_{1} is collapsible. Let $H^{\prime}=H \cup T$. Since $H^{\prime} / H=T / T_{1}$ is collapsible, and since H is collapsible, it follows by Theorem 2.6(i) that H^{\prime} is collapsible, contrary to the maximality of H. Thus we must have $H=G$, and so G is collapsible.
(iii) This follows from (ii), (4) and Theorem 2.6(iv).

Lemma 4.2 Let C be a 4-circuit and A be an abelian group with $|A|=4$. Let $G=H \oplus_{2} C$. Then H is A-connected if and only if G is A-connected.

Proof: Let $V(C)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, E(C)=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and assume $V(H) \cap$ $V(C)=\left\{v_{1}, v_{4}\right\}$ (see Figure 2). Let D be an orientation of G such that the edge $v_{i} v_{i+1}$ is directed from v_{i} from v_{i+1}, for $i=1,2,3$.

If $H \in\langle A\rangle$, since G / H is a 3 -circuit, by Proposition 2.4, $G / H \in\langle A\rangle$, then, by Proposition $2.2(\mathrm{C} 3), G \in\langle A\rangle$.

G

Figure $2 G=H \bigoplus_{2} C$

Conversely, if $G \in A$, since for any abelian group A of order 4, either $A \cong Z_{4}$ or $A \cong Z_{2} \times Z_{2}$, then we have the following two cases.

Case 1: $A \cong Z_{4}$. Let $b \in Z\left(H, Z_{4}\right)$. Define $b^{\prime}: V(G) \mapsto Z_{4}$ to be

$$
b^{\prime}(v)= \begin{cases}1, & \text { if } v=v_{2}, v_{3}, \\ b(v)+1, & \text { if } v=v_{1}, v_{4}, \\ b(v), & \text { otherwise }\end{cases}
$$

Then $\sum_{v \in V(G)} b^{\prime}(v)=\sum_{v \in V(H)} b(v)+4 \equiv 0(\bmod 4)$. So $b^{\prime} \in Z\left(G, Z_{4}\right)$. By the definition of Z_{4}-connectedness, there is a Z_{4}-NZF f^{\prime} of G such that $\partial f^{\prime}(v)=b^{\prime}(v)$, for any $v \in V(G)$. So $f^{\prime}\left(e_{3}\right)=f^{\prime}\left(e_{2}\right)+1=f^{\prime}\left(e_{1}\right)+2$. Therefor $\left\{f^{\prime}\left(e_{3}\right), f^{\prime}\left(e_{2}\right), f^{\prime}\left(e_{1}\right)\right\}=\{1,2,3\}$. This concludes that $f^{\prime}\left(e_{1}\right)=1, f^{\prime}\left(e_{2}\right)=2$ and $f^{\prime}\left(e_{3}\right)=3$. Define $f: E(H) \mapsto Z_{4}^{*}$ to be $f(e)=f^{\prime}(e)$, for any $e \in E(H)$. Then

$$
\partial f(v)= \begin{cases}\partial f^{\prime}(v)-1=b^{\prime}(v)-1=b(v), & \text { if } v=v_{1} \\ \partial f^{\prime}(v)+3=b^{\prime}(v)+3=b(v)+4 \equiv b(v), & \text { if } v=v_{4} \\ b(v), & \text { otherwise }\end{cases}
$$

That is, for any $v \in V(H), \partial f(v)=b(v)$. Therefore by the definition of Z_{4}-connectedness, $H \in\left\langle Z_{4}\right\rangle$.

Case 2: $A \cong Z_{2} \times Z_{2}$.
Let $b \in Z\left(H, Z_{2} \times Z_{2}\right)$. Define $b^{\prime}: V(G) \mapsto Z_{2} \times Z_{2}$ to be

$$
b^{\prime}(v)= \begin{cases}b(v)+(0,1), & \text { if } v=v_{1} \\ (1,0), & \text { if } v=v_{2} \\ (0,1), & \text { if } v=v_{3} \\ b(v)-(1,0), & \text { if } v=v_{4} \\ b(v), & \text { otherwise }\end{cases}
$$

Then $\sum_{v \in V(G)} b^{\prime}(v)=\sum_{v \in V(H)} b(v)+2(0,1)=0$. So $b^{\prime} \in Z\left(G, Z_{4}\right)$. By the definition of $Z_{2} \times Z_{2}$-connectedness, there is a $Z_{2} \times Z_{2}$-NZF f^{\prime} of G such that $\partial f^{\prime}(v)=b^{\prime}(v)$, for any $v \in V(G)$. So $f^{\prime}\left(e_{3}\right)=f^{\prime}\left(e_{2}\right)+(0,1)=f^{\prime}\left(e_{1}\right)+(1,1)$. Therefor $\left\{f^{\prime}\left(e_{3}\right), f^{\prime}\left(e_{2}\right), f^{\prime}\left(e_{1}\right)\right\}=\{(0,1),(1,0),(1,1)\}$. This concludes that $f^{\prime}\left(e_{1}\right)=(0,1), f^{\prime}\left(e_{2}\right)=(1,1)$ and $f^{\prime}\left(e_{3}\right)=(1,0)$. Let $f: E(H) \mapsto Z_{2} \times Z_{2}^{*}$ be $f(e)=f^{\prime}(e)$, for any $e \in E(H)$. Then

$$
\partial f(v)= \begin{cases}\partial f^{\prime}(v)-(0,1)=b^{\prime}(v)-(0,1)=b(v), & \text { if } v=v_{1} \\ \partial f^{\prime}(v)+(1,0)=b^{\prime}(v)+(1,0)=b(v), & \text { if } v=v_{4} \\ b(v), & \text { otherwise }\end{cases}
$$

That is, for any $v \in V(H), \partial f(v)=b(v)$. Therefore by the definition of $Z_{2} \times Z_{2}$-connectedness, $H \in\langle A\rangle$.

By Case 1 and Case 2, we prove that if $G \in\langle A\rangle$, then $H \in\langle A\rangle$.
Lemma 4.3 Each of the following holds.
(i) Let G be a tree. Then $\Lambda_{g}\left(G \times K_{2}\right)=5$.
(ii) Let $m \geq 2, n \geq 2$. Then $\Lambda_{g}\left(K_{1, m} \times K_{1, n}\right)=5$.

Proof: (i) If we can prove that $G \times K_{2}$ is not Z_{4}-connected, then, by (4), $\Lambda_{g}\left(G \times K_{2}\right)=5$. We will prove by induction on $|V(G)|$ that $G \times K_{2}$ is not Z_{4}-connected.

If $|V(G)|=2$, then $G \cong K_{2}$, and so $G \times K_{2} \cong C_{4}$. By Proposition 2.4, $G \times K_{2}$ is not Z_{4}-connected. Assume that for smaller values of $|V(G)|$, if G is a tree, then $G \times K_{2}$ is not Z_{4}-connected. Assume now $|V(G)| \geq 3$. Since G is a tree, G has an edge $u v$ such that u has degree 1 in G. It follows by assumption that $(G-u) \times K_{2}$ is not Z_{4}-connected. By the definition of Cartesian product, $G \times K_{2}$ is a parallel connection of $(G-u) \times K_{2}$ and $G[\{u, v\}] \times K_{2} \cong C_{4}$. It follows by Lemma 4.2 that $G \times K_{2}$ is not Z_{4}-connected. This completes the proof of (i).
(ii) By (4), if we can prove that $K_{1, m} \times K_{1, n}$ is not Z_{4}-connected, then $\Lambda_{g}\left(K_{1, m} \times K_{1, n}\right)=5$. By contradiction, we assume that $K_{1, m} \times K_{1, n}$ is $Z_{4^{-}}$ connected.

Suppose $V\left(K_{1, m}\right)=\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$ with $d_{K_{1, m}}\left(x_{0}\right)=m$ and $V\left(K_{1, n}\right)=$ $\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}$ with $d_{K_{1, n}}\left(y_{0}\right)=n$. Let $I=\{1,2, \ldots, m\}, I_{0}=\{0,1,2, \ldots, m\}, J=$ $\{1,2, \ldots, n\}$ and $J_{0}=\{0,1,2, \ldots, n\}$. By the definition of Cartesian product, $V\left(K_{1, m} \times K_{1, n}\right)=\left\{v_{i j}=x_{i} y_{j}:\right.$ for $i \in I_{0}$ and $\left.j \in J_{0}\right\}$. Let $E_{1}=\left\{v_{0 j} v_{i j}\right.$: for $\left.i \in I, j \in J_{0}\right\}$ and $E_{2}=\left\{v_{i 0} v_{i j}:\right.$ for $\left.i \in I_{0}, j \in J\right\}$. Then $E\left(K_{1, m} \times K_{1, n}\right)=$ $E_{1} \cup E_{2}$ and $v_{i j}$ has degree 2 , for $i \in I$ and $j \in J$.

Let D be an orientation of $K_{1, m} \times K_{1, n}$ such that $v_{0 j} v_{i j} \in E_{1}$ is directed from $v_{0 j}$ to $v_{i j} ; v_{i 0} v_{i j} \in E_{2}$ is directed from $v_{i j}$ to $v_{i 0}$ (see $K_{1,3} \times K_{1,3}$ in Figure $3)$.

Let $b: V\left(K_{1, m} \times K_{1, n}\right) \mapsto Z_{4}$ such that

Figure $3 K_{1,3} \times K_{1,3}$

$$
b(v)= \begin{cases}1, & \text { if } v=v_{01} \\ 3, & \text { if } v=v_{10} \\ 0, & \text { otherwise }\end{cases}
$$

Then $b \in Z\left(K_{1, m} \times K_{1, n}, Z_{4}\right)$.
Let $\bar{f}: K_{1, m} \times K_{1, n} \mapsto Z_{4}$ such that

$$
\bar{f}(e)= \begin{cases}1, & \text { if } e=v_{01} v_{00}, v_{i j} v_{i 0}, \text { for } i \in I, j \in J \\ 3, & \text { if } e=v_{10} v_{00}, v_{i j} v_{0 j}, \text { for } i \in I, j \in J \\ 2, & \text { otherwise }\end{cases}
$$

By Proposition 2.1, there is an $f \in F\left(K_{1, m} \times K_{1, n}, Z_{4}\right)$ such that $\partial f=b$, and $\bar{f}(e) \neq f(e)$, for any $e \in E\left(K_{1, m} \times K_{1, n}\right)$. For $v_{i j}$, where $i \in I$ and $j \in J$, since $b\left(v_{i j}\right)=f\left(v_{i j} v_{i 0}\right)-f\left(v_{i j} v_{0 j}\right)=0, \underline{f}\left(v_{i j} v_{i 0}\right)=f\left(v_{i j} v_{0 j}\right)$. Together with $f\left(v_{i j} v_{i 0}\right) \neq \bar{f}\left(v_{i j} v_{i 0}\right)=1$ and $f\left(v_{i j} v_{0 j}\right) \neq \bar{f}\left(v_{i j} v_{i 0}\right)=3$, we have

$$
\begin{equation*}
f\left(v_{i j} v_{i 0}\right), f\left(v_{i j} v_{0 j}\right) \in\{0,2\}, \text { for } i \in I \text { and } j \in J \tag{5}
\end{equation*}
$$

For vertex $v_{i 0}, i=2, \ldots, m$, since $b\left(v_{i 0}\right)=0=-\sum_{j=1}^{n} f\left(v_{i j} v_{i 0}\right)-f\left(v_{i 0} v_{00}\right)$, $f\left(v_{i 0} v_{00}\right)=-\sum_{j=1}^{n} f\left(v_{i j} v_{i 0}\right)$. By (5), $f\left(v_{i 0} v_{00}\right) \in\{0,2\}$, and since $f\left(v_{i 0} v_{00}\right) \neq$ $\bar{f}\left(v_{i 0} v_{00}\right)=2, f\left(v_{i 0} v_{i 0}\right)=0$, for $i=2, \ldots, m$. By the similar argument, $f\left(v_{00} v_{0 j}\right)=0$, for $j=2, \ldots$. n. That is

$$
\begin{equation*}
f\left(v_{i 0} v_{00}\right)=0, \text { for } i=2, \ldots, m ; f\left(v_{00} v_{0 j}\right)=0, \text { for } j=2, \ldots, n \tag{6}
\end{equation*}
$$

Figure 4

Since $b\left(v_{00}\right)=0$, by $(6), f\left(v_{10} v_{00}\right)=f\left(v_{01} v_{00}\right)$. And $f\left(v_{10} v_{00}\right) \neq \bar{f}\left(v_{10} v_{00}\right)=$ $3, f\left(v_{01} v_{00}\right) \neq \bar{f}\left(v_{01} v_{00}\right)=1$, so $f\left(v_{10} v_{00}\right), f\left(v_{01} v_{00}\right) \in\{0,2\}$. For vertex v_{10}, $b\left(v_{10}\right)=3=-\sum_{j=1}^{n} f\left(v_{1 j} v_{10}\right)-f\left(v_{10} v_{00}\right)$. But by (5) and (6), $-\sum_{j=1}^{3} f\left(v_{1 j} v_{10}\right)-$ $f\left(v_{10} v_{00}\right) \in\{0,2\}$. This is a contradiction. Therefore $K_{1, m} \times K_{1, n}$ is not $Z_{4^{-}}$ connected.

Thus by (4), $\Lambda_{g}\left(K_{1, m} \times K_{1, n}\right)=5$.
Lemma 4.4 Each of the following holds.
(i) $\Lambda_{g}\left(P_{2} \times P_{3}\right) \leq 4$.
(ii)Let $n \geq 3$. Then $\Lambda_{g}\left(C_{n} \times K_{2}\right) \leq 4$.
(iii)If one of G_{1} and G_{2} is not a tree, then $\Lambda_{g}\left(G_{1} \times G_{2}\right) \leq 4$.

Proof: (i) We label most of the vertices of $P_{2} \times P_{3}$ as in Figure $4 a$. Let $\pi_{1}=\left\langle\left\{v_{3}, v_{3}^{\prime}\right\},\left\{v_{4}, v_{4}^{\prime}\right\}\right\rangle$ and $H_{1}=\left(P_{2} \times P_{3}\right) / \pi_{1}$ (see Figure $4 b$). Let $\pi_{2}=$ $\left\langle\left\{v_{1}, v_{1}^{\prime}\right\},\left\{v_{2}, v_{2}^{\prime}\right\}\right\rangle$ and $H_{2}=H_{1} / \pi_{2}$ (see Figure $5 a$). Let $\pi_{3}=\left\langle\left\{v_{3}^{\prime}, v_{3}^{\prime \prime}\right\},\left\{v_{4}^{\prime}, v_{4}^{\prime \prime}\right\}\right\rangle$ and $H_{3}=H_{2} / \pi_{3}$ (see Figure 5 b). If we redraw H_{3} (see Figure 5 c), then $H_{3} \cong K_{3,3}-e$. By Theorem 2.6(iii), $H_{3} \in \mathcal{C L}$. It follows by Theorem 2.7 that $H_{2} \in \mathcal{C L}$. Similarly by Theorem $2.7, H_{1} \in \mathcal{C L}$ and $P_{2} \times P_{3} \in \mathcal{C L}$. Then by Theorem 2.6(iv) and (4), $\Lambda_{g}\left(P_{2} \times P_{3}\right) \leq 4$.
(ii) First we will prove by induction on n that $C_{n} \times K_{2} \in \mathcal{C L}$. When $n=3$, by Proposition 2.6(iii), $C_{3} \in \mathcal{C L}$, and by Lemma 4.1 (iii), $C_{3} \times K_{2} \in \mathcal{C L}$. When $n=4$, let $C=v_{1} v_{2} v_{3} v_{4}$ be a 4 -circuit in $C_{4} \times K_{2}$ (see Figure $6 a$). Let $\pi=\left\langle\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\rangle$ and $G^{\prime}=\left(C_{4} \times K_{2}\right) / \pi$ (see Figure $6 b$). If we redraw G^{\prime} (see Figure $6 c$), then $G^{\prime} \cong K_{3,3}$. It follows by Proposition 2.6(iii) that G^{\prime} is collapsible. Therefor by Lemma 2.7, $C_{4} \times K_{2} \in \mathcal{C L}$.

For a fixed $n>4$, assume that for any $m<n, C_{m} \times K_{2} \in \mathcal{C L}$. Let $C=v_{1} v_{2} v_{1}^{\prime} v_{2}^{\prime}$ and $C^{\prime}=v_{1}^{\prime} v_{2} v_{1}^{\prime \prime} v_{2}^{\prime \prime}$ be two 4 -circuits contained in $C_{n} \times K_{2}$ (see Figure $7 a$). Let $\pi_{1}=\left\langle\left\{v_{1}, v_{1}^{\prime}\right\},\left\{v_{2}, v_{2}^{\prime}\right\}\right\rangle$ and $\pi_{2}=\left\langle\left\{v_{1}, v_{1}^{\prime \prime}\right\},\left\{v_{2}, v_{2}^{\prime \prime}\right\}\right\rangle$. Let $G^{\prime}=\left(C_{n} \times K_{2}\right) / \pi_{1}\left(\right.$ see Figure 7 a) and $G^{\prime \prime}=\left(C_{n} \times K_{2}\right) / \pi_{1} / \pi_{2}$ (see Figure 7

Figure 5

Figure 6
b). Then by assumption $\left(C_{n} \times K_{2}\right) / \pi_{1} / \pi_{2} \cong C_{n-2} \times K_{2} \in \mathcal{C L}$ (see Figure $7 c$). By Lemma 2.7, $\left(C_{n} \times K_{2}\right) / \pi_{1} \in \mathcal{C L}$. And by Lemma 2.7 again, $\left(C_{n} \times K_{2}\right) \in \mathcal{C L}$. Thus $C_{n} \times K_{2} \in \mathcal{C L}$, for $n \geq 3$. It follows by (4) and Theorem 2.6 (iv) that $\Lambda_{g}\left(C_{n} \times K_{2}\right) \leq 4$, for $n \geq 3$.
(iii) Suppose G_{1} is not a tree, then there is a circuit $C_{n} \subseteq G_{1}$, where $n \geq 3$. Therefor $G_{1} \times G_{2}$ contains a nontrivial collapsible subgraph $H \cong C_{n} \times K_{2}$. It follows by Theorem 4.1 (iii) that $\Lambda_{g}\left(G_{1} \times G_{2}\right) \leq 4$.
Proof of Theorem 1.8: By (4) and by Lemma 4.3, we may assume that $\Lambda_{g}\left(G_{1} \otimes G_{2}\right)=5$ to prove that either $G_{1} \cong K_{1, m}$ and $G_{2} \cong K_{1, n}$, where $n, m \geq 2$ or G_{1} is a tree and $G_{2} \cong K_{2}$.

If G_{1} or G_{2} has a circuit, then by Lemma 4.4(iii), $\Lambda_{g}\left(G_{1} \otimes G_{2}\right) \leq 4$. Hence we may assume that both G_{1} and G_{2} are trees.

Case 1: If $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=2$, assume $V\left(G_{2}\right)=2$. Since G_{2} is connected, $G_{2} \cong K_{2}$, by Lemma 4.3(ii), $\Lambda_{g}\left(G_{1} \times G_{2}\right)=5$.

Case 2: If $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \geq 3$, then since G_{1} and G_{2} are connected, both G_{1} and G_{2} contain a path of length 2 . If one of G_{1} and G_{2} contains a path of length 3 , then it follows by Lemma 4.4(i) that $G_{1} \otimes G_{2}$ has a nontrivial subgraph $H \cong P_{2} \times P_{3}$ with $\Lambda_{g}(H) \leq 4$, and so by (1) and by Theorem 4.1(iii), $\Lambda_{g}\left(G_{1} \otimes G_{2}\right) \leq 4$. Therefor G_{1} and G_{2} contains only paths with length 2. So

Figure 7
$G_{1} \cong K_{1, m}$ and $G_{2} \cong K_{1, n}$, for $m, n \geq 2$.
ACKNOWLEDGEMENTS. Jin Yan wants to thank the Department of Mathematics, West Virginia University, for supporting her visit at WVU, where this research project is completed.

References

[1] J. A. Bondy and U. S. R.Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] P. A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congressus Numerantium, 56 (1987), 223-246.
[3] P. A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory, 12 (1988), 29-44.
[4] Z. H. Chen, H.-J. Lai and H. Y. Lai, Nowhere zero flows in line graphs, Discrete Mathematics, 230 (2001), 133-141.
[5] G. Fan, H.-J. Lai, R. Xu, C.-Q. Zhang and C. Zhou, Nowhere-zero 3flows in triangularly connected graphs, Journal of Combinatorial Theory, Series B 98 (2008), 1325-1336.
[6] R. J. Gould, Advance on the Hamiltonian problem - a survey, Graphs and Combinatorics, 19 (2003), 7-52
[7] W.Imrich and R. Škrekovski, A theorem on integer flows on Cartesian products of graphs, J. Graph Theory, 43 (2003), 93-98.
[8] F. Jaeger, Nowhere-zero flow problems, in "Selected Topics in Graph Theory" (L. Beineke and R. Wilson, Eds), Vol. 3. pp. 91-95 Academic Press, London/New York, 1988.
[9] F. Jaeger, N. Linial, C. Payan and M. Tarsi, Group connectivity of graphs - a nonhomogeneous analogue of nowhere-zero flow properties, J. Combinatorial Theory, Ser. B 56 (1992), 165-182.
[10] M. Kochol, An equivalent version of the 3-flow conjecture, J. Combinatorial Theory, Ser. B, 83 (2001) 258-261.
[11] H.-J. Lai, Graph whose edges are in small cycles, Discrete Mathematics, 94 (1991) 11-22.
[12] H.-J. Lai, Extending a partial nowhere-zero 4-flow, Jhon Wiley Sons, Inc. J Graph Theory, 30 (1999) 277-288.
[13] H.-J. Lai, Group connectivity in 3-edge-connected chordal graph, Graphs and Combinatorics, 16 (2000), 165-176.
[14] H.-J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory, 42 (2003), 211-219.
[15] H.-J. Lai, X. Li, Y. H. Shao and M. Zhan, Group Connectivity and Group Colorings of Graphs-A survey, Acta Mathematica Sinica, English Series, accepted.
[16] J. Shi and C. Q. Zhang, Nowhere-zero 3-flows in products of graphs, J. Graph Theory, 50 (2005), 79-89.
[17] W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math., 6 (1954), 80-91.
[18] X. Yao, X. Li and H.-J. Lai, Degree Conditions for Group Connectivity, Discrete Mathematics, 310 (2010), 1050-1058.
[19] X. Yao and D. Gong, Group connectivity of Kneser graphs, International Journal of Algebra, 1 (2007) 535-539.
[20] Z. Zhang, Y. Zheng and A. Mamut, Nowhere-Zero flows in tensor product of graphs, J. Graph Theory, 54 (2007) 284-292.
[21] X. Zhang, M. Zhan, R. Xu, Y. Shao, X. Li and H.-J. Lai, Z ${ }_{3}$-connectivity in graphs satisfying degree sum condition, Discrete Mathematics, accepted.

Received: May, 2010

