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a b s t r a c t

There are several density functions for graphswhich have founduse in various applications.
In this paper, we examine two of them, the first being given by b(G) = |E(G)|/|V (G)|,
and the other being given by g(G) = |E(G)|/(|V (G)| − ω(G)), where ω(G) denotes the
number of components of G. Graphs for which b(H) ≤ b(G) for all subgraphs H of G are
called balanced graphs, and graphs for which g(H) ≤ g(G) for all subgraphs H of G are
called 1-balanced graphs (also sometimes called strongly balanced or uniformly dense in
the literature). Although the functions b and g are very similar, they distinguish classes
of graphs sufficiently differently that b(G) is useful in studying random graphs, g(G) has
been useful in designing networks with reduced vulnerability to attack and in studying the
World Wide Web, and a similar function is useful in the study of rigidity. First we give a
new characterization of balanced graphs. Then we introduce a graph construction which
generalizes the Cartesian product of graphs to produce what we call a generalized Cartesian
product. We show that generalized Cartesian product derived from a tree and 1-balanced
graphs are 1-balanced, and we use this to prove that the generalized Cartesian products
derived from 1-balanced graphs are 1-balanced.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We follow the notation of Diestel [3] for graphs, with the major exceptions that we use Kn for the complete graph on n
vertices and we use b(G) for the function ε(G) := |E(G)|

|V (G)| . Graphs considered in this paper are loopless, but multiple edges
are allowed. If a graph has an edge, it is called non-trivial. In this paper we look at two density functions, both related to the
average degree of a graph. The first of these is b(G) = |E(G)|

|V (G)| for a graph G. Graph G is said to be balanced if for all non-trivial
subgraphs H of G,

b(H) ≤ b(G)

and strictly balanced if for all non-trivial proper subgraphs H of G,

b(H) < b(G).

If G is connected, we also refer to a balanced graph as 0-balanced. Balanced graphs have been widely studied, particularly
in the context of random graphs; for example, see [12,4,5,17,21].
The second density function we consider is g(G) = |E(G)|/ρ(G), whose denominator ρ(G) is the rank of a graph G given

by |V (G)|−ω(G), whereω(G) is the number of components of G. (Note that ρ(G) is also the rank of the circuit matroidM(G)
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derived from the graph G; see Oxley’s book [15] for matroid terminology.) If X ⊆ E(G), then the rank ρ(X) of X is the rank
of the induced graph G[X].
A graph G is 1-balanced if, for every non-trivial subgraph H ⊆ G, g(H) ≤ g(G). The 1-balanced graphs and matroids

have been studied by many researchers; see [2,7,13,14,16,19,20], and the references listed in those papers. Other names for
a 1-balanced graph include ‘‘molecular graph’’ [13,14], ‘‘strongly balanced graph’’ [12,19], and ‘‘uniformly dense’’ [10,11].
The prism on a graph G is the Cartesian product of Gwith K2. It can also be seen as being formed by letting G′ be a disjoint

isomorphic copy of G and joining each vertex a of G to the vertex a′ of G′ corresponding to a under the isomorphism, thus
forming a matching between the two copies of G. In [18], Piazza and Ringeisen generalized the prism on G by taking two
disjoint copies G1 and G2 of G and a permutation α of the vertices of G2, and joining each vertex vi of G1 to the vertex α(vi)
of G2. In [11], Hobbs et al. generalized the prism on G further by allowing G1 and G2 to be non-isomorphic but on the same
numbers of vertices, and by replacing the matching joining them by a k-regular bipartite graph having as its two sides the
vertex sets of G and G′. The ‘‘generalized prisms’’ motivate us to consider further generalizations of Cartesian products. In
this paper, we present one such generalization, which contains both the Cartesian product and the generalized prisms as
special cases. We also present in this paper characterizations for graphs whose generalized products are balanced, and for
graphs whose generalized products are 1-balanced.
The construction of bigger 1-balanced graphs from smaller ones would be useful in the context of web-graphs, which

have vertices representing web pages and edges corresponding to the links between pages. The structure of the web is
often cited [1] as a bow tie, whose knot consists of a strongly connected component, called the core; and web-pages on
the two sides of the knot consist respectively of those which link towards and away from the core. The core has been
observed to be growing in its size over the years [9] and the cause for the growth is attributed to the increasing connec-
tivity between existing web pages. Presences of hubs (vertices with high degrees) and communities (subgraphs which have
more internal links than the external ones) dominate the web [6], which are also involved in the augmentation process of
the core. 1-balanced graphs are described to be survivable under attacks on edges [10] and so it is of interest to construct
1-balanced graphs as the cores for the web-graphs. To be able to analyze the properties of the growing core, it would be of
interest to design bigger networks from already existing smaller communities that may be modeled as 1-balanced graphs.
Constructing bigger 1-balanced graphs from smaller ones would be useful in the context of realizing bigger survivable cores
from existing communities.
In this paper, we are interested in constructing bigger 1-balanced graphs from already existing smaller 1-balanced sub-

graphs of equal density. Our main result is: if all the small 1-balanced graphs have the same number of edges and vertices,
then the graphs in a class of generalized product of the 1-balanced graphs is 1-balanced. This generalizes our earlier re-
sult [11, Theorem 5] that Cartesian products of 1-balanced graphs are 1-balanced. The rest of the paper is organized as
follows. In the next section, we give some preliminary results about 1-balanced graphs that will be used in the paper, and
also give the definition of the generalized Cartesian graphs. In Section 3, we prove a new characterization of balanced graphs
involving integer-valued functions on the vertices, and use it to prove that the generalized Cartesian product constructed
from balanced graphs is balanced. In Section 4, we prove our main result, which makes use of the result on balanced gener-
alized Cartesian products.

2. Preliminaries

2.1. Some results on 1-balanced graphs

We first recall some earlier results that are used in the paper. The following lemma is immediate for 1-balanced graphs.

Lemma 1. A graph G is 1-balanced if and only if for all non-trivial connected subgraphs H of G, we have g(H) ≤ g(G).

Proof. The necessity is clear. For sufficiency, suppose for all non-trivial, induced, connected subgraphs H of G, g(H) ≤ g(G).
Let H be a disconnected subgraph of G. Let Hi, 1 ≤ i ≤ ω(H) be the components of G. Clearly, we may assume that Hi for
1 ≤ i ≤ ω(H) are non-trivial. By hypothesis, g(Hi) ≤ g(G), so |E(Hi)| ≤ g(G)(|V (Hi)| − 1) for 1 ≤ i ≤ ω(H). Hence

|E(H)| =
ω(H)∑
i=1

|E(Hi)| ≤ g(G)
ω(H)∑
i=1

(|V (Hi)| − 1) = g(G)(|V (H)| − ω(H)),

and so g(H) ≤ g(G). �

As a consequence of the above lemma, we can observe that for a connected graph G, in order to check if G is 1-balanced,
it suffices to check if g(H) ≤ g(G) for all connected subgraphs H of G. For the purposes of this paper, all graphs considered
in the paper are connected. When we refer to Cartesian products, we refer to Cartesian products of connected graphs.

Theorem 2 (Catlin et al. [2]). Let G be a connected graphwith g(G) = x
y , where x and y are natural numbers. Then, G is 1-balanced

if and only if there is a family T of x spanning trees in G such that each edge of G lies in exactly y trees of T .
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The following are consequences of Theorem 2.

Corollary 3. If a graph G is an edge-disjoint union of spanning 1-balanced subgraphs G1, G2, . . . ,Gp for some integer p ≥ 1,
then G is 1-balanced.
Proof. We show the result for p = 2. For p > 2, the result follows by induction on p. Since G1 and G2 are connected 1-
balanced graphs on the same number of vertices, for x1 = |E(G1)|, x2 = |E(G2)| and y = |V (G)| − 1, g(G1) =

x1
y and

g(G2) =
x2
y . Thus g(G) =

x1+x2
y . For i = 1, 2, since Gi is 1-balanced, Gi has xi spanning trees such that each edge in Gi is

in exactly y of them. Thus G has x1 + x2 spanning trees such that each edge in G is in exactly y of them. G is 1-balanced by
Theorem 2. �

For a positive integer x, letGx denote the graph obtained by replacing each edge ofG by x parallel edges. The next corollary
can be derived from Corollary 3.

Corollary 4. Let x be a positive integer. A graph G is 1-balanced if and only if Gx is 1-balanced.

2.2. Generalized Cartesian products

Throughout this section, let e, n, ` andm be integers with e ≥ n−1 ≥ 1 and ` ≥ m−1 ≥ 1, let L be a graph with ` edges
andm vertices, and let the vertices of L be labeled v1, v2, . . . , vm. Label the edges of L as e1, e2, . . . , e`. Let G1,G2, . . . ,Gm be
vertex-disjoint graphs, each having n vertices and e edges. Let k be a positive integer. Let B1, B2, . . . , B` be k-regular bipartite
graphs (may be disconnected) such that, if edge ei of L joins vertices vr and vs, then the two sides of Bi are the vertex sets

of Gr and Gs. Let Ak = Ak(G1, . . . ,Gm; L) =
(⋃m

i=1 Gi

)
∪

(⋃`
i=1 Bi

)
. When the value of k is already known, we may use

A = A(G1, . . . ,Gm; L), with the subscript k omitted. Then Ak or A is called a generalized Cartesian product. Note that the
definition of Ak is ambiguous, since there are many possible k-regular bipartite graphs Bi. We allow this ambiguity because
the choices of the Bi make no difference to our results. Also note that if G and L are graphs, then the Cartesian product G× L
is a generalized Cartesian product with Gi = G for i = 1, 2, . . . ,m and k = 1.
Let H be a subgraph of A, and suppose H includes one or more vertices of Gi1 , . . . ,Gi`′ and no others of the Gi. Let L

′ be
the subgraph of L generated by the vertices vi1 , . . . , vi`′ . Then we say that L

′ is induced by H .

3. Characterizations of balanced graphs and balanced generalized Cartesian products

In this section, we first provide a new characterization of balanced graphs which is used to construct bigger balanced
graphs from smaller ones, which in turn is used in the last section to construct bigger 1-balanced graphs from smaller
1-balanced graphs. The characterization is also used to show that the Cartesian product of balanced graphs is balanced.
The next theorem is our new characterization of balanced graphs. The characterization involves arbitrary non-negative

integer vertex weights.

Theorem 5. Let L be a graph on m vertices V = {v1, . . . , vm}. Let α be any non-negative integer-valued function on the vertex
set V . Let

Nα :=
∑

vivj∈E(L)

[
min(α(vi), α(vj))−

1
m

m∑
r=1

α(vr)

]
.

Then L is balanced if and only if Nα ≤ 0 for all α, and L is strictly balanced if and only if Nα < 0 for all non-constant α.

Proof (Sufficiency of L Balanced). For a contradiction, suppose L is balanced while there is a non-negative, integer-valued
function α on V (L) with Nα > 0. Choose α0 such that Nα0 > 0 and s = max1≤i≤m α0(vi) is as small as possible. If α0 were
constant on {v1, . . . , vm}, thenNα0 = 0. Hence, there is a j ∈ {1, 2, . . . ,m} such thatα0(vj) < s. Then s ≥ 1 sinceα0(vj) ≥ 0.
Let S := {vi : α0(vi) = s}. By the definition of s and j, S 6∈ {∅, V }. Consider the function α′0 defined by α

′

0(vi) = α0(vi) if
vi 6∈ S and α0(vi)− 1 if vi ∈ S. Thus max1≤i≤m α0(vi) < s.
We claim that Nα′0 ≥ Nα0 .
Let L′ := L[S], and denotem′ := |V (L′)| = |S| and `′ := |E(L′)|. Then

1
m

m∑
r=1

α′0(vr) =
1
m

[∑
r:vr 6∈S

α0(vr)+
∑
r:vr∈S

(α0(vr)− 1)
]

=
1
m

[∑
r:vr 6∈S

α0(vr)+
∑
r:vr∈S

α0(vr)−m′
]

=
1
m

m∑
r=1

α0(vr)−
m′

m
.
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Suppose vivj ∈ E(L′). Then min(α′0(vi), α
′

0(vj)) = min(α0(vi), α0(vj))− 1. Therefore, in this case we have

min(α′0(vi), α
′

0(vj))−
1
m

m∑
r=1

α′0(vr) = min(α0(vi), α0(vj))− 1−
1
m

m∑
r=1

α0(vr)+
m′

m
.

If vivj 6∈ E(L′), then min(α′0(vi), α
′

0(vj)) = min(α0(vi), α0(vj)). This is true even if, for example, vi ∈ S and vj 6∈ S, for then
α′0(vi) = s−1 andα

′

0(vj) = α0(vj) ≤ s−1, and somin(α
′

0(vi), α
′

0(vj)) = min(s−1, α0(vj)) = α0(vj) = min(α0(vi), α0(vj)).
Thus we have

min(α′0(vi), α
′

0(vj))−
1
m

m∑
r=1

α′0(vr) = min(α0(vi), α0(vj))−
1
m

m∑
r=1

α0(vr)+
m′

m
.

Therefore,

Nα′0 − Nα0 = `
′

(
−1+

m′

m

)
+ (`− `′)

m′

m
= −`′ +

`m′

m
= m′

(
−
`′

m′
+
`

m

)
≥ 0

since `′

m′ = b(L
′) ≤ b(L) = `

m either because L is balanced or because `
′
= 0. Hence the claim.

But Nα′0 ≥ Nα0 > 0 is a contradiction to the minimality of s by the definition of Nα′0 . The contradiction proves sufficiency.
(Necessity of L balanced) Suppose Nα ≤ 0 for all labelings α. Let L′ be any non-trivial vertex-induced subgraph of L, and

suppose L′ hasm′ vertices and `′ edges. Define α on V (L) by letting α(v) = 1 if v ∈ V (L′) and 0 if v 6∈ V (L′). Then

1
m

m∑
r=1

α(vr) =
m′

m
,

and

0 ≥ Nα

=

∑
vivj∈E(L′)

(
1−

m′

m

)
+

∑
vivj 6∈E(L′)

(
−
m′

m

)

= `′ −
m′`′

m
−
m′`
m
+
m′`′

m

= `′ −
m′`
m

= m′
(
`′

m′
−
`

m

)
.

Hence we have `′

m′ ≤
`
m (i.e., b(L

′) ≤ b(L)), so L is balanced.
The proof for strictly balanced graphs is similar. �

Next, we prove that Cartesian products of balanced graphs are balanced. In fact, we will prove an extension of the result.
We present a construction of bigger balanced graphs from smaller ones by joining some additional edges, namely, the
following result for generalized Cartesian product defined in Section 2.

Theorem 6. Let L be a graph onm vertices and ` edges. Let k be any positive integer and let G1, . . . ,Gm be balanced graphs, each
on n vertices and e edges. Then A = Ak(G1, . . . ,Gm; L) is balanced if and only if L is balanced.

Proof.

b(A) =
nkl+me
mn

=
kl
m
+
e
n
. (1)

Note that for i = 1, . . . ,m,

b(Gi) < b(A). (2)

(Necessity) Suppose A is balanced. Let V (L) = {v1, v2, . . . , vm}. Let L′ be any subgraph of L, and suppose L′ has `′ edges
andm′ vertices. Form A′ on L′ as A is formed on L. Then,

b(A′) =
nk`′ +m′e
m′n

=
kl′

m′
+
e
n
. (3)

Since A is balanced, we have b(A′) ≤ b(A), and by (1) and (3), we have

k`′

m′
≤
k`
m
. (4)
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Thus

`′

m′
≤
`

m
. (5)

Therefore L is balanced.
(Sufficiency) Suppose L is balanced. Let H be a subgraph of A. If H is a subgraph of a Gj for some j = 1, . . . ,m, then since

Gj is balanced, we have b(H) ≤ b(Gj) and by (2), we have b(Gj) < b(L); thus b(H) < b(L). Otherwise, let Hi = H ∩ Gi
and ni = |V (Hi)| for i = 1, . . . ,m. Without loss of generality, we may suppose that there is an integer m′ > 0 such that
1 ≤ n1 ≤ n2 ≤ · · · ≤ nm′ and ni = 0 for i > m′. Let L′ be the subgraph of L induced by H , and note that L′ = L is possible.
For each i ∈ {1, 2, . . . ,m′}, let ei = |E(Hi)|, and e′ = |E(H) ∩ E(

⋃`
i=1 Bi)|. Notice that

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj). (6)

Since L is balanced, using α(vi) = ni for i ∈ {1, 2, . . . ,m} in Theorem 5 and using ni = 0 for i > m′, we have∑
vivj∈E(L′)

min(ni, nj) =
∑

vivj∈E(L′)

min(ni, nj) ≤
l
m

m∑
i=1

ni =
l
m

m′∑
i=1

ni. (7)

By (6) and (7), we get

e′ ≤
kl
m

m′∑
i=1

ni. (8)

Thus,

b(H) =
e′ +

m′∑
i=1
ei

m′∑
i=1
ni

(9)

≤

kl
m

m′∑
i=1
ni +

m′∑
i=1
ei

m′∑
i=1
ni

(10)

=
kl
m
+

m′∑
i=1
ei

m′∑
i=1
ni

. (11)

By [8, Theorem 1, page 14], we have
∑m′
i=1 ei∑m′
i=1 ni
≤ max1≤i≤m′

ei
ni
≤
e
n since Gi is balanced for every i. Therefore, b(H) ≤

kl
m +

e
n =

g(A) and thus A is balanced. �

Corollary 7. The Cartesian product of balanced graphs is balanced.
Proof. Let G and L be two balanced graphs. Then G× L = A1(G,G, . . . ,G; L)with suitable choices of the bipartite graphs Bij.
By the above theorem, G× L is balanced. �

4. 1-balanced generalized Cartesian products

The method of generalized Cartesian products defined in Section 1 can be used to construct bigger 1-balanced graphs
from smaller ones. In this section, we prove that 1-balanced generalized Cartesian products can be formed from 1-balanced
graphs.
In this section we prove that A is 1-balanced if G1, . . . ,Gm and L are 1-balanced and k is a fixed integer such that

m− 1
`

(
t
n

)
≤ k ≤

m− 1
`

(mt) . (12)

The reason why we need the above bounds for k is explained in the next paragraph.
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Fig. 1. A1(G,H; K2): Example of a generalized Cartesian product that is 1-balanced, but neither G nor H is 1-balanced.

Let t = g(Gi) = e
n−1 for all i ∈ {1, 2, . . . ,m}. Unlike balanced generalized Cartesian products, the value of the positive

integer k in a 1-balanced generalized Cartesian product has a non-trivial lower bound, as the following Lemma shows.

Lemma 8. If A is 1-balanced, then

k ≥
m− 1
`

(
t
n

)
=
g(Gi)
g(L)n

.

Proof. For each i, we have |E(Bi)| = 2nk/2 = nk. Since each Gi is connected and L is connected, A is connected. Hence

g(A) =
nk`+me
mn− 1

.

Since A is 1-balanced and Gi is a subgraph of A for each i, we have

g(A) =
nk`+me
mn− 1

≥
e

n− 1
= g(Gi).

Solving for k, we get

k ≥
m− 1
`

(
t
n

)
. �

The need for an upper bound for k such as this for k is illustrated by the graph A = A3(K2, K2; K2). Here, L = K2, t = 1
and m = 2. We have m−1

`
(mt) = 2 < 3. If H denotes the subgraph on 2 vertices and 3 parallel edges, then g(H) = 3. But,

g(A) = 2(3+1)
3 =

8
3 < 3 = g(H). Therefore A is not 1-balanced. Thus even the usual Cartesian product is not necessarily

1-balanced when k > m−1
`
(mt), even if G1, . . . ,Gm and L are 1-balanced.

That a generalized Cartesian product A = Ak(G1, . . . ,Gm; L) is 1-balanced does not imply that any of G1, . . . ,Gm or L is
1-balanced. The graph in Fig. 1 is an example of a generalized Cartesian product Ak(G,H; K2) that is 1-balanced, but neither
G nor H is 1-balanced. It is easy to see that A1(G,H; K2) is the union of 2 edge-disjoint spanning trees. Thus A is 1-balanced,
by Theorem 2. Also, note that K2 is a subgraph of G and g(K2) = 2, but g(G) = 5

3 < 2. Thus, G is not 1-balanced. Similarly,
H is not 1-balanced.
However, we have this result:

Theorem 9. If A is 1-balanced, then L is strictly balanced.

Proof. Let V (L) = {v1, v2, . . . , vm}. Let L′ be any proper connected subgraph of L, and suppose L′ has `′ edges andm′ vertices.
Form A′ on L′ as A is formed on L. Then g(A′) = nk`′+m′e

m′n−1 . Since A is 1-balanced, we have

nk`′ +m′e
m′n− 1

= g(A′) ≤ g(A) =
nk`+me
mn− 1

.

Cross-multiplying and simplifying,

mn2k`′ +mm′ne− nk`′ −m′e ≤ m′n2k`+mm′ne− nk`−me,

or

mn2k`′ − nk`′ −m′e ≤ m′n2k`− nk`−me
< m′n2k`− nk`′ −m′e
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since ` > `′ andm > m′. Hence,

mn2k`′ − nk`′ −m′e < m′n2k`− nk`′ −m′e,

which simplifies tom`′ < m′` since n2k > 0. Thus we have `′

m′ <
`
m as required. �

The converse of this theorem is false. Let L be the graph formedby the vertices {a, b, c, d} and edges (a, b), (b, c), (a, c) and
(c, d). Then g(L[{a, b, c}]) = 3

2 > 2 = g(L). Thus L is not 1-balanced, but it can be easily verified that L is strictly balanced.
Now, consider the Cartesian product of K2 and L, A = A1(K2, K2, K2, K2; L). The Cartesian product of K2 and H := G[{a, b, c}]
is a subgraph of A, and g(K2 × H) = 9

5 >
12
7 = g(A). Thus A is not 1-balanced.

Throughout the rest of the paper, for any graph X , we refer to γ (X) as

γ (X) := max
X ′⊆X

g(X ′),

where the maximum is taken over all non-trivial subgraphs X ′ of X . We also call a non-trivial subgraph X ′ of X with
g(X ′) = γ (X), as a γ -achieving subgraph of X .
From now on, we assume that G1, . . . ,Gm are connected 1-balanced graphs. We first show that A is 1-balanced if k is

as specified in (12) and L is a tree. Our plan of proof is to choose a γ -achieving, connected (in view of Lemma 1) subgraph
H of A. We move to the subtree L′ of L induced by H and prove g(H) ≤ g(A′) in that case. (It is here that we use the new
characterization of balanced graphs, namely Theorem 5.) Using g(A′) ≤ g(A), as shown in the next lemma, we conclude that
g(H) ≤ g(A). Thus g(A) = γ (A) and A is 1-balanced.
We start with some lemmas. Let L be any 1-balanced graph, and let L′ be a connected induced subgraph of L. Letting A′

be constructed from L′ as A is constructed from L, we first look at the relationship between g(A) and g(A′) (Lemma 10) and
between g(A) and g(Gi) (Lemma 11).

Lemma 10. Let t = e
n−1 = g(Gi) for i ∈ {1, 2, . . . ,m}, and let k ≥

t
g(L)n . Let L

′ be a connected induced subgraph of L. Form A′

from L′ in the same way A is formed from L. If L is 1-balanced, then g(A′) ≤ g(A).

Proof.

g(A)− g(A′) =
nk`+me
mn− 1

−
nk`′ +m′e
m′n− 1

=
nk`(m′n− 1)+mm′ne−me− nk`′(mn− 1)−mm′ne+m′e

(mn− 1)(m′n− 1)

=
nk`(m′n− 1)−me− nk`′(mn− 1)+m′e

(mn− 1)(m′n− 1)
.

Since ` = g(L)(m− 1) and `′ ≤ g(L)(m′ − 1), we have

g(A)− g(A′) ≥
g(L)nk(m− 1)(m′n− 1)−me− g(L)nk(m′ − 1)(mn− 1)+m′e

(mn− 1)(m′n− 1)

=
g(L)nk[mm′n−m′n−m+ 1−mm′n+mn+m′ − 1] − (m−m′)e

(mn− 1)(m′n− 1)

=
g(L)nk[−m′n−m+mn+m′] − (m−m′)e

(mn− 1)(m′n− 1)

=
g(L)nk[(m−m′)(n− 1)] − (m−m′)e

(mn− 1)(m′n− 1)

= (m−m′)
g(L)nk(n− 1)− e
(mn− 1)(m′n− 1)

= (m−m′)(n− 1)
g(L)nk− g(Gi)

(mn− 1)(m′n− 1)
≥ 0

since k ≥ g(Gi)
g(L)n . �

Lemma 11. With k ≥ m−1
`

( t
n

)
, we have g(Gi) ≤ g(A).

Proof. This was noted at the end of the proof of Lemma 8. �

From now on, we assume that k satisfies (12).

Theorem 12. Let L be a tree. Then A is 1-balanced.
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Proof. If n = 1, A = L and since L is 1-balanced, A is 1-balanced. We may assume that n > 1.
Suppose, for a contradiction, that A is not 1-balanced. Then by Lemma 1, there is an induced connected subgraph H of A

such that g(H) = γ (A) > g(A). Let Hi = H ∩ Gi and ni = |V (Hi)|. Without loss of generality, we may suppose there is an
integer m′ > 0 such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nm′ and ni = 0 for i > m′. Let L′ be the subgraph of L induced by H , and
note that L′ = L is possible. L′ is the same subgraph of L which is induced by {v1, . . . , vm′}. For each i ∈ {1, 2, . . . ,m′}, let
ei = |E(Hi)|, ωi = ω(Hi), and e′ = |E(H) ∩ E(

⋃`
i=1 Bi)|. Notice that

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj). (13)

Since L is a tree and H is connected, L′ is a tree. g(L) = 1. So,

t
n
≤ k ≤ mt. (14)

Recall that g(A′) ≤ g(A) by Lemma 10. Thus

g(H) > g(A) ≥ g(A′), (15)

so A′ is also not 1-balanced.
We consider two cases:
Case 1: tn ≤ k ≤ m

′t .
First we show

nk`′ − (m′ − 1)t
m′n− 1

<
e′ − (m′ − 1)t
m′∑
i=1
ni − 1

. (16)

Since k ≥ t
n , g(A) ≥ g(Gi) for each i by Lemma 11, H 6⊆ Gi for any i, som

′ > 1.
Recalling that t = g(Gi) = e

n−1 ,

g(A′) =
nk`′ +m′e
m′n− 1

=
nk`′ +m′ en−1 (n− 1)

m′n− 1

=
tm′(n− 1)+ nk`′

m′n− 1

=
m′nt − t + t −m′t + nk`′

m′n− 1

= t +
nk`′ − (m′ − 1)t

m′n− 1
. (17)

Also,

g(H) =

m′∑
i=1
ei + e′

m′∑
i=1
ni − 1

.

But, with i ≤ m′, ni ≥ 1. Thus, if ei 6= 0, then

ei =
ei

ni − ωi
(ni − ωi) ≤ g(Gi)(ni − ωi) ≤ t(ni − 1).

On the other hand, if ei = 0, then

ei = 0 ≤ t(ni − 1).

Thus, from the definitions of the symbols,

g(H) =

m′∑
i=1
ei + e′

m′∑
i=1
ni − 1
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≤

t
m′∑
i=1
(ni − 1)+ e′

m′∑
i=1
ni − 1

=

t
( m′∑
i=1
ni − 1

)
+ t + e′ −

m′∑
i=1
t

m′∑
i=1
ni − 1

= t +
e′ − (m′ − 1)t
m′∑
i=1
ni − 1

. (18)

Since g(A′) < g(H), (16) follows from (17) and (18).
Next we show that∑

vivj∈E(L′)

[
min(ni, nj)−

1
m′

m′∑
r=1

nr

]
> 0 (19)

follows from (16), thus leading to a contradiction. But

nk`′ − (m′ − 1)t
m′n− 1

=

k`′
m′ − (m

′
− 1)t

m′n− 1
+
k`′

m′
.

Replacing the left-hand side of (16) with this, moving k`
′

m′ to the other side, and using (13),

k`′
m′ − (m

′
− 1)t

m′n− 1
<

−
k`′
m′

m′∑
i=1
ni + k`′

m′ + k
∑

vivj∈E(L′)
min(ni, nj)− (m′ − 1)t

m′∑
i=1
ni − 1

=

k`′
m′ + k

( ∑
vivj∈E(L′)

[
min(ni, nj)− 1

m′

m′∑
i=1
ni
])
− (m′ − 1)t

m′∑
i=1
ni − 1

.

Multiplying through by the denominators and canceling like terms, we get

k`′

m′

m′∑
i=1

ni − (m′ − 1)t
m′∑
i=1

ni <
k`′

m′
(m′n)+ k(m′n− 1)

( ∑
vivj∈E(L′)

[
min(ni, nj)−

1
m′

m′∑
i=1

ni

])
−m′n(m′ − 1)t.

Thus

k`′

m′

m′∑
i=1

ni −
k`′

m′
(m′n)+m′n(m′ − 1)t − (m′ − 1)t

m′∑
i=1

ni < k(m′n− 1)
( ∑
vivj∈E(L′)

[
min(ni, nj)−

1
m′

m′∑
i=1

ni

])
.

Combining the two terms containing (m′ − 1)t and then the first two terms of the previous inequality, we get

(m′ − 1)t
m′∑
i=1

(n− ni)−
k`′

m′

(
m′n−

m′∑
i=1

ni

)
< k(m′n− 1)

( ∑
vivj∈E(L′)

[
min(ni, nj)−

1
m′

m′∑
i=1

ni

])
.

Combining the terms on the left hand side gives us(
(m′ − 1)t −

k`′

m′

) m′∑
i=1

(n− ni) < k(m′n− 1)
( ∑
vivj∈E(L′)

[
min(ni, nj)−

1
m′

m′∑
i=1

ni

])
. (20)

But
∑m′
i=1(n− ni) ≥ 0 since ni ≤ n for all i. Moreover, since `

′
= m′ − 1,m′ ≥ 2 and k ≤ m′t ,

(m′ − 1)t −
k`′

m′
= (m′ − 1)

[
t −

k
m′

]
≥ 0.
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Thus the left hand side of (20) is non-negative. Since k(m′n−1) is positive, the rest of the right hand sidemust be positive.
Hence the inequality (19). But L′ is a tree, and so it is 1-balanced and thus balanced. By Theorem 5, the inequality we have
just reached is impossible. Thus A′ is 1-balanced, so the proposed subgraph H cannot exist.
Case 2:m′t ≤ k ≤ mt .
For this case, we show that g(A) < g(H) and k ≥ m′t together imply that k > mt which is a contradiction.
Using the similar computations we used in (17), we obtain

g(A) =
nk`+m′e
mn− 1

=
nk`+m e

n−1 (n− 1)

mn− 1

=
tm(n− 1)+ nk`

mn− 1

=
mnt − t + t −mt + nk`

mn− 1

= t +
nk`− (m− 1)t
mn− 1

. (21)

From (15), we have g(A) < g(H). Thus by (18) and (21),

nk`− (m− 1)t
mn− 1

<
e′ − (m′ − 1)t
m′∑
i=1
ni − 1

. (22)

Now, we will get a bound for e′. By (13), we have

e′ ≤ k
∑

vivj∈E(L′)

min(ni, nj).

By Theorem 5, since L′ is a balanced graph,

∑
vivj∈E(L′)

min(ni, nj) ≤
`′

m′

m′∑
i=1

ni.

Since `′ = m′ − 1,

e′ ≤ k
( m′∑
i=1

ni −
1
m′

m′∑
i=1

ni

)
.

Substituting this in (22) and adding and subtracting k in the numerator of the left hand side, we have

nk`− (m− 1)t
mn− 1

<

k
(
m′∑
i=1
ni − 1

)
− k

(
1
m′

m′∑
i=1
ni − 1

)
− (m′ − 1)t

m′∑
i=1
ni − 1

.

Using the fact that k ≥ m′t and simplifying, we have

nk`− (m− 1)t
mn− 1

<

k
(
m′∑
i=1
ni − 1

)
−m′t

(
1
m′

m′∑
i=1
ni − 1

)
− (m′ − 1)t

m′∑
i=1
ni − 1

=

k
(
m′∑
i=1
ni − 1

)
− t
(
m′∑
i=1
ni −m′

)
− (m′ − 1)t

m′∑
i=1
ni − 1
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=

k
(
m′∑
i=1
ni − 1

)
− t
(
m′∑
i=1
ni − 1

)
m′∑
i=1
ni − 1

= k− t.

Substituting ` = m− 1 and cross-multiplying, we have

(m− 1)(nk− t) < (mn− 1)(k− t),

which simplifies to

−nk−mt < −k−mnt.

Thus, (n− 1)(mt) < (n− 1)k. Since n > 1, we have k > mt which is a contradiction.
Hence A is 1-balanced. �

Now,we are ready to show that if L is 1-balanced, then A is 1-balanced.We recall that in the generalized Cartesian product
A = Ak(G1, . . . ,Gm; L), the graphs Gi, i = 1, 2, . . . ,m are 1-balanced and with the same number of vertices and edges; and
k is any integer satisfying (12), i.e.,

t
g(L)n

≤ k ≤
mt
g(L)

,

where t = g(Gi), i = 1, 2, . . . ,m.

Theorem 13. If L is 1-balanced, then A is 1-balanced.

Proof. Let g(L) = r
s . Since

t
g(L)n

≤ k ≤
mt
g(L)

,

substituting g(L) = r
s , we have

st
rn
≤ k ≤

mst
r
, or

st
n
≤ kr ≤ mst. (23)

We first prove that Ars is 1-balanced. By Corollary 4, if Ars is 1-balanced, then A is 1-balanced. To prove Ars is 1-balanced,
we will prove that Ars is an edge-disjoint union of r spanning 1-balanced connected subgraphs. Then, Corollary 3 will show
that Ars is 1-balanced.
Since L is 1-balanced of density rs , by Theorem 2, there are r spanning trees T1, T2, . . . , Tr in L such that each edge of

L appears in exactly s of the trees. Let us denote by Be the k-regular bipartite graph that replaces the edge e ∈ L in A. For
1 ≤ j ≤ r , let Aj be the generalized Cartesian product Akr(Gs1, . . . ,G

s
m; Tj) using the kr-regular graphs B

r
e for each edge e in

the tree Tj. Notice that Gsi is 1-balanced by Corollary 4 and g(G
s
i ) = st for i = 1, . . . ,m. By (23), we have

g(Gsi )
n
≤ kr ≤ mg(Gsi ).

By Theorem 12, Aj is 1-balanced for j = 1, 2, . . . , r .

Claim. Ars = ∪rj=1 Aj.

Proof of Claim. Each Aj, 1 ≤ j ≤ r has a copy of Gsi for each i ∈ {1, 2, . . . ,m}. Hence the edges of Gi appear rs times in
∪
r
j=1 Aj.

Now, let e = (u, v) be an edge in L. In Ars, we have Brse between Gu and Gv . On the other hand, B
r
e appears in exactly s of

A1, A2, . . . , Ar since e appears in exactly s of T1, T2, . . . , Tr . Thus we can find Brse in ∪
r
j=1 Aj. Hence the claim.

Thus Ars is 1-balanced and the theorem follows. �

Corollary 14. If connected graphs G1 and G2 are both 1-balanced, then the Cartesian product G1 × G2 is 1-balanced.

Proof. There are two ways to view G1 × G2 as a generalized Cartesian product. G1 × G2 = A1(G1,G1, . . . ,G1;G2) with
suitable choices of the bipartite graphs Bij. Similarly, G1 × G2 = G2 × G1 = A1(G2,G2, . . . ,G2;G1) with suitable choices of
the bipartite graphs Bij.
We first prove that either

g(G1)
|V (G1)|g(G2)

≤ 1, (24)
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or

g(G2)
|V (G2)|g(G1)

≤ 1 (25)

holds. Suppose both (24) and (25) do not hold. Then we have

g(G1) > |V (G1)|g(G2) > |V (G1)||V (G2)|g(G1),

a contradiction since |V (G1)||V (G2)| ≥ 1.
Now, if (24) holds, then by Theorem 13 with k = 1 (noting that k = 1 satisfies (12)), A1(G1,G1, . . . ,G1;G2) = G1 × G2

is 1-balanced. Similarly, if (25) holds, then by Theorem 13 with k = 1, A1(G2,G2, . . . ,G2;G1) = G1 × G2 is 1-balanced. �

Appendix

(Sufficiency of L strictly balanced) We note that Nα = 0 for all constant labelings α. For a contradiction, suppose L
is strictly balanced while there is a non-constant, non-negative, integer-valued function α on V (L) with Nα ≥ 0. Choose
non-constant α0 such that Nα0 ≥ 0 and s = max1≤i≤m α0(vi) is as small as possible. Since α0 is not constant, there is a
j ∈ {1, 2, . . . ,m} such that α0(vj) < s. Then the integer s ≥ 1 since α0(vj) ≥ 0.
Let S := {vi : α0(vi) = s}; by definition of s and j, S 6∈ {∅, V }. Consider the function α′0 defined by α

′

0(vi) = α0(vi) if
vi 6∈ S and α0(vi)− 1 if vi ∈ S. Thus max1≤i≤m α0(vi) < s.
We claim that Nα′0 > Nα0 , and thus α

′

0 is non-constant.
Let L′ := L[S], and denotem′ := |V (L′)| = |S| and `′ := |E(L′)|. Exactly as in the case of non-strictly balanced,

Nα′0 − Nα0 = m
′

(
−
`′

m′
+
`

m

)
.

But this is greater than zero either because L is strictly balanced and so `′

m′ = b(L
′) < b(L) = `

m or because `
′
= 0.

Thus Nα′0 > Nα0 ≥ 0, so α
′

0 is not constant. This is a contradiction to the choice of α0 and the minimality of s. The
contradiction proves sufficiency.

(Necessity of L strictly balanced) Suppose Nα < 0 for all non-constant labelings α. Let L′ be any non-trivial vertex-
induced subgraph of L, L′ 6= L, and suppose L′ hasm′ vertices and `′ edges. Define α on V (L) by letting α(v) = 1 if v ∈ V (L′)
and 0 if v 6∈ V (L′). Then α is not constant, so

1
m

m∑
r=1

α(vr) =
m′

m
,

and

0 > Nα

=

∑
vivj∈E(L′)

(
1−

m′

m

)
+

∑
vivj 6∈E(L′)

(
−
m′

m

)

= `′ −
m′`′

m
−
m′`
m
+
m′`′

m

= `′ −
m′`
m

= m′
(
`′

m′
−
`

m

)
.

Sincem′ > 0, we have `′

m′ <
`
m (i.e., b(L

′) < b(L)), so L is strictly balanced.
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