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Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1].

The objective of this paper is to present the concept of bicoset of a bivector space and obtain

some of its elementary properties.

Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space,

biprojection.

AMS(2000): 20Kxx, 20L05.

§1. Introduction and Preliminaries

The study of bialgebraic structures is a new development in the field of abstract algebra.

Some of the bialgebraic structures already developed and studied and now available in several

literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi-

rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic

structure is pivoted on the union of two non-empty subsets of a given algebraic structure for

example a group, the usual problem arising from the union of two substructures of such an

algebraic structure which generally do not form any algebraic structure has been resolved.

With this new concept, several interesting algebraic properties could be obtained which are not

present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of

bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy

and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector

space and obtain some of its elementary properties.

Definition 1.1([2]) A set (G, +, ·) with two binary operations + and · is called a bigroup if

there exists two proper subsets G1 and G2 of G such that:

(i) G = G1 ∪G2;

(ii) (G1, +) is a group;

1Received Sep.16, 2009. Accepted Oct. 8, 2009.



2 Agboola A.A.A. and Akinola L.S.

(iii) (G2, .) is a group.

Definition 1.2([2]) A nonempty subset H of a bigroup (G, +, ·) is called a subbigroup if H is

itself a bigroup under + and · defined on G.

Theorem 1.3([2]) Let (G, +, ·) be a bigroup. The nonempty subset H of G is a subbigroup if

and only if there exists two proper subsets G1 and G2 such that:

(i) G = G1 ∪G2, where (G1, +) and (G2, .) are groups;

(ii) (H ∩G1, +) is a subgroup of (G1, +);

(iii) (H ∩G2, .) is a subgroup of (G2, .).

Definition 1.4([2]) Let (G, +, ·) be a bigroup where G = G1∪G2. G is said to be commutative

if both (G1, +) and (G2, ·) are commutative.

Definition 1.5([1]) Let V = V1 ∪ V2 where V1 and V2 are proper subsets of V . V is said to

be a bivector space over the field F if V1 and V2 are vector spaces over the same field F. In this

case, V is a bigroup.

Definition 1.6([1]) Let V = V1 ∪ V2 be a bivector space. If dimV1 = m and dimV2 = n, then

dimV = m + n. Thus there exists only m + n linearly independent elements that can span V .

In this case, V is said to be finite dimensional.

If one of V1 or V2 is infinite dimensional, we call V an infinite dimensional bivector space.

Theorem 1.7([1]) The bivector spaces of the same dimension over the same field need not be

isomorphic in general.

Theorem 1.8([1]) Let V = V1 ∪ V2 and W = W1 ∪W2 be two bivector spaces of the same

dimension over the same field F . Then V is isomorphic to W if and only if V1 is isomorphic

to W1 and V2 is isomorphic to W2.

Example 1.9 Let V = V1 ∪ V2 and W = W1 ∪W2 be two bivector spaces over a field F = R.

Suppose that V1 = F 4, V2 =

⎧⎨⎩
⎡⎣ v1

2 v2
2

0 v3
2

⎤⎦ : vi
2 ∈ F, i = 1, 2, 3

⎫⎬⎭, W1 = P3(F ) (a space of

polynomials of degrees ≤ 3 with coefficients in F ) and W2 = F 3. Clearly dimV = dimW = 7,

dimV1 = dimW1 = 4 and dimV2 = dimW2 = 3. Since V1
∼= W1 and V2

∼= W2 in this case, it

follows that V and W are isomorphic bivector spaces.

Theorem 1.10 Let V = V1 ∪ V2 be a bivector space over a field F . A nonempty subset

W = W1 ∪W2 of V is a sub-bivector space of V if and only if W1 = W ∩ V1 and W2 = W ∩ V2

are subspaces of V1 and V2 respectively.

Proof Suppose that W = W1 ∪W2 is a sub-bivector space of a bivector space V = V1 ∪ V2

over F . It is clear that W ∩ V1 and W ∩ V2 are subspaces of V1 and V2 respectively over F .

The required result follows immediately by taking W1 = W ∩ V1 and W2 = W ∩ V2.

Conversely, suppose that V = V1 ∪ V2 is a bivector space over F and and W = W1 ∪W2 is



On the Bicoset of a Bivector Space 3

a nonempty subset of V such that W1 = W ∩ V1 and W2 = W ∩ V2 are subspaces of V1 and V2,

respectively. We then have to show that W is a bivector space over F . To do this, it suffices to

show that W = (W ∩ V1) ∪ (W ∩ V2). Obviously, W ⊆ V1 ∪W, W ∪ V2 ⊆ V and W ⊆ W ∪ V2.

Now,

(W ∩ V1) ∪ (W ∩ V2) = [(W ∩ V1) ∪W ] ∩ [(W ∩ V1) ∪ V2]

= [(W ∪W ) ∩ (V1 ∪W )] ∩ [(W ∪ V2) ∩ (V1 ∪ V2)]

= [W ∩ (V1 ∪W )] ∩ [(W ∪ V2) ∩ V ]

= W ∩ (W ∪ V2)

= W.

This shows that W = (W ∩ V1) ∪ (W ∩ V2) is a bivector space over F . �

§2. Main Results

Definition 2.1 Let V = V1 ∪ V2 be a bivector space over a field F and let W = W1 ∪W2 be

a sub-bivector space of V . Let v0 ∈ V and w ∈ W be such that v0 = v1
0 ∪ v2

0 and w = w1 ∪ w2

where vi
0 ∈ Vi, i = 1, 2 and wi ∈Wi, i = 1, 2. Let P be a set defined by

P = {v0 + W : v0 ∈ V }
=

{(
v1
0 ∪ v2

0

)
+
(
w1 ∪ w2

)
: vi

0 ∈ Vi, i = 1, 2
}

=
{(

v1
0 + W1

) ∪ (v2
0 + W2

)
: vi

0 ∈ Vi, i = 1, 2
}

=
{(

v1
0 + w1

) ∪ (v2
0 + w2

)
: vi

0 ∈ Vi, w
i ∈ Wi, i = 1, 2

}
.

Then P is called a bicoset of V determined by W and v0 is a fixed bivector in V .

Example 2.2 Let W = W1 ∪W2 be any sub-bivector space of a bivector space V = V1 ∪ V2

over a field F = R. Let V1 = F 3 and V2 = P2(F ) (a space of polynomials of degrees ≤ 2 with

coefficients in F ). Let W1 and W2 be defined by

W1 = {(a, b, c) : 3a + 2b + c = 0, a, b, c ∈ F} ,

W2 =
{
p(x) : p(x) = a2x

2 + a1x + a0, ai ∈ F, i = 0, 1, 2
}

.

If v = v1 ∪ v2 is any bivector in V, then v1 =
(
v1
1 , v

2
1 , v

3
1

) ∈ V1, where vi
1 ∈ F, i = 1, 2, 3 and

also v2 = b2x
2 + b1x + b0, where bi ∈ F, i = 0, 1, 2. Now, the bicoset of V determined by W is

obtained as

[
3
(
a− v1

1

)
+ 2

(
b− v2

1

)
+
(
c− v3

1

)] ∪ [(b2 − a2)x2 + (b1 − a1)x1 + (b0 − a0)
]
.
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Proposition 2.3 Let S be a collection of bicosets of a bivector space V = V1 ∪ V2 over a field

F determined by sub-bivector space W = W1 ∪W2 . Then S is not a bivector space over F .

Proof Let P = P1∪P2 =
(
v1
1 + W1

)∪(v2
1 + W2

)
and Q = Q1∪Q2 = (v1

2 +W1)∪(v2
2 +W2)

be arbitrary members of S with vj
i ∈ Vi, i, j = 1, 2. Clearly, P1 = v1

1 + W1, P2 = v2
1 + W2, Q1 =

v1
2 +W1, Q2 = v2

2 +W2 are vector spaces over F and P ∪Q = [P1 ∪ (P1 ∪Q1)]∪ [P1 ∪ (P2 ∪Q2)].

Since [P1 ∪ (P1 ∪ Q1)] and [P1 ∪ (P2 ∪ Q2)] are obviously not vector spaces over F , it follows

that S is not a bivector space over F . �

This is another marked difference between a vector space and a bivector space. We also

note that P ∩Q = [(P1 ∩Q1) ∪ (P2 ∩Q1)]∪ [(P1 ∩Q2)∪ (P2 ∩Q2)] is also not a bivector space

over F since it is a union of two bivector spaces and not a union of two vector spaces over F.

Proposition 2.4 Let W = W1 ∪W2 be a sub-bivector space of a bivector space V = V1 ∪ V2

and let P = (v1
0 + W1) ∪ (v2

0 + W2) be a bicoset of V determined by W where v0 = v1
0 ∪ v2

0 is

any bivector in V . Then P is a sub-bivector space of V if and only if v0 ∈ W .

Proof Suppose that v0 = v2
0 + W2 ∈ W = W1 ∪W2. It follows that v1

0 ∈ W1 and v2
0 ∈ W2

and consequently, P = (v1
0 +W1)∪ (v2

0 +W2) = W1∪W2 = W . Since W is a sub-bivector space

of V , it follows that P is a sub-bivector space of V .

The converse is obvious. �

Proposition 2.5 Let W = W1∪W2 be a sub-bivector space of a bivector space V = V1∪V2 and

let P = (v1
0 + W1)∪ (v2

0 + W2) and Q = (v1
1 + W1)∪ (v2

1 + W2) be two bicosets of V determined

by W where v0 = v1
0 ∪ v2

0 and v1 = v1
1 ∪ v2

1 . Then P = Q if and only if v0 − v1 ∈ W .

Proof Suppose that P = Q. Then (v1
0 + W1) ∪ (v2

0 + W2) = (v1
1 + W1) ∪ (v2

1 + W2)

and this implies that v1
0 + W1 = v1

1 + W1 or v2
0 + W2 = v2

1 + W2 which also implies that

v1
0 − v1

1 ∈W1 or v2
0 − v2

1 ∈ W2 from which we obtain (v1
0 − v1

1) ∪ (v2
0 − v2

1) ∈W1 ∪W2 and thus

(v1
0 ∪ v2

0)− (v1
1 ∪ v2

1) ∈W1 ∪W2 that is v0 − v1 ∈W .

The converse is obvious and the proof is complete. �

Proposition 2.6 Let P = (v1
0 + W1) ∪ (v2

0 + W2) be a bicoset of V = V1 ∪ V2 determined by

W = W1 ∪W2 where v0 = v1
0 ∪ v2

0 . If v1 = v1
1 ∪ v2

1 is any bivector in V such that v1 ∈ P , then

P can be expressed as P = (v1
1 + W1) ∪ (v2

1 + W2).

Proof This result is obvious. �

Proposition 2.7 Let W = W1 ∪W2 and W ′ = W3 ∪W4 be two distinct sub-bivector spaces of

a bivector space V = V1 ∪V2 and let P = (v1
1 +W1)∪ (v2

1 +W2) and Q = (v1
2 +W3)∪ (v2

2 +W4)

be two bicosets of V determined by W and W ′ respectively. If v0 = v1
0 ∪ v2

0 is any bivector in V

such that v0 ∈ P and v0 ∈ Q, then P ∪Q is also a bicoset of V and P ∪Q = v0 + (W ∪W ′).

Proof Suppose that v0 ∈ P and v0 ∈ Q. It follows from Proposition 2.6 that P =

(v1
0 + W1) ∪ (v2

0 + W2) and Q = (v1
0 + W3) ∪ (v2

0 + W4) and therefore
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P ∪Q = [(v1
0 + W1) ∪ (v2

0 + W2)] ∪ [(v1
0 + W3) ∪ (v2

0 + W4)]

= [(v1
0 ∪ v2

0) + (W1 ∪W2)] ∪ [(v1
0 ∪ v2

0) + (W3 ∪W4)]

= [v0 + W ] ∪ [v0 + W ′]

= v0 + (W ∪W ′).

The required results follow. �

Definition 2.8([2]) Let V = V1∪V2 be a bivector space over the field F . An inner biproduct on

V is a bifunction <, >=<, >1 ∪ <, >2 which assigns to each ordered pair of bivectors x = x1∪x2,

y = y1 ∪ y2 in V with xi, yi ∈ Vi (i = 1, 2) a pair of scalars < x, y >=< x1, y1 >1 ∪ < x2, y2 >2

in F in such a way that ∀x, y, z = z1 ∪ z2 ∈ V and all scalars α = α1 ∪ α2 in F , the following

conditions hold:

(i) < x + y, z >=< x1 + y1, z1 >1 ∪ < x2 + y2, z2 >2;

(ii) < αx, y >= α < x, y >;

(iii) < y, x >= < x, y >;

(iv) < x, x >> 0 if x 	= 0 ∪ 0.

V = V1∪V2 together with a specified inner biproduct <, >=<, >1 ∪ <, >2 is called an inner

biproduct space over the field F.

If V is a finite dimensional real inner biproduct space, it is called a Euclidean bispace. A

complex inner biproduct space is called a unitary bispace.

Definition 2.9 Let V = V1 ∪V2 be an inner biproduct space over a field F . If x = x1 ∪x2 and

y = y1 ∪ y2 in V with xi, yi ∈ Vi (i = 1, 2) are such that

< x, y >=< x1, y1 >1 ∪ < x2, y2 >2= 0 ∪ 0,

we say that x is biorthogonal to y. If < x, y > 	= 0 ∪ 0 but < x1, y1 >1= 0 or < x2, y2 >2= 0,

then we say that x and y are semi biorthogonal.

If B = B1 ∪B2 is any set in V = V1 ∪ V2 such that all pairs of distinct vectors in B1 and

all pairs of distinct vectors in B2 are orthogonal, then we say that B is a biorthogonal set.

If W = W1∪W2 is any set in V = V1∪V2 and ∀v ∈ V, w ∈W with v = v1∪v2, w = w1∪w2

is such that

< v, w >=< v1, w1 >1 ∪ < v2, w2 >2= 0 ∪ 0,

then we call the set

W⊥ = W⊥
1 ∪W⊥

2 = {v ∈ V :< v1, w1 >1 ∪ < v2, w2 >2= 0 ∪ 0, ∀w ∈W}

biorthogonal complement of W.

Definition 2.10 Let W1 = W 1
1 ∪W 2

1 and W2 = W 1
2 ∪W 2

2 be sub-bivector spaces of a bivector

space V = V1 ∪ V2. The bisum of W1 and W2 denoted by W1 + W2 is defined by
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W1 + W2 = {(W 1
1 ∪W 2

1 ) + (W 1
2 ∪W 2

2 ) : W j
i ⊂ Vi, i, j = 1, 2}

= {(W 1
1 + W 1

2 ) ∪ (W 2
1 + W 2

2 ), W j
i ⊂ Vi, i, j = 1, 2}.

Definition 2.11 Let V = V1 ∪ V2 be a bivector space over a field F and let W1 = W 1
1 ∪W 2

1

and W2 = W 1
2 ∪W 2

2 be sub-bivector spaces of V . If V1 = W 1
1 ⊕W 1

2 and V2 = W 2
1 ⊕W 2

2 , then

we call

V = W1 ⊕W2

= (W 1
1 ⊕W 1

2 ) ∪ (W 2
1 ⊕W 2

2 )

a direct bisum of W1 and W2 and any bivector v = v1 ∪ v2 in V can be expressed uniquely as

v = (w1
1 + w1

2) ∪ (w2
1 + w2

2), wj
i ∈W j

i , i, j = 1, 2.

Proposition 2.12 Let W1 = W 1
1 ∪W 2

1 and W2 = W 1
2 ∪W 2

2 be sub-bivector spaces of a bivector

space V = V1 ∪ V2. Then the bisum of W1 and W2 is also a sub-bivector space of V.

Proof Obviously, (W1+W2)∩V1 and (W1+W2)∩V2 are subspaces of V1 and V2 respectively.

Direct expansion of [(W1 + W2) ∩ V1] ∪ [(W1 + W2) ∩ V2] shows that

W1 + W2 = [(W1 + W2) ∩ V1] ∪ [(W1 + W2) ∩ V2].

Consequently by Theorem 1.10 it follows that W1 + W2 is a sub-bivector space of V. �

Proposition 2.13 Let W1 = W 1
1 ∪W 2

1 and W2 = W 1
2 ∪W 2

2 be sub-bivector spaces of a bivector

space V = V1 ∪ V2. Then V = W1 ⊕W2 if and only if:

(i) V = W1 + W2;

(ii) W1 ∩W2 = {0}.

Proof Suppose that V = W1 ⊕W2. Then any bivector v = W 1
1 ∪W 2

1 in V can be written

uniquely as v = (w1
1 + w1

2) ∪ (w2
1 + w2

2), wj
i ∈ W j

i , i, j = 1, 2, which is an element of W1 + W2

and therefore, V = W1 + W2. Also since V = W1 ⊕W2, it follows that V1 = W 1
1 ⊕W 1

2 and

V2 = W 2
1 ⊕W 2

2 . Now, let v = W 1
1 ∪W 2

1 ∈W1 ∪W2. Then v ∈W1 and v ∈W2 and thus, v ∈ V1

and v ∈ V2. If v ∈ V1, then we can write v = W 1
1 ∪W 2

1 = W 1
2 ∪W 2

2 from which we obtain

v1 = w1
1 + w1

2 ≡ v1 + 0, v1 ∈ W 1
1 , 0 ∈ W 1

2 and also,

v1 = w1
1 + w1

2 ≡ 0 + v1, 0 ∈W 1
1 , v1 ∈W 1

2 .

Since V1 = W 1
1 ⊕ W 1

2 , it follows that v1 = 0. By similar argument, we obtain v2 = 0 and

therefore, v = 0 ∪ 0. Hence, W1 ∩W2 = {0}.
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Conversely, suppose that V = W1 + W2 and W1 ∪W2 = {0}. Let v = W 1
1 ∪W 2

1 be an

arbitrary bivector in V . Suppose we can write v in two ways as

v = W 1
1 ∪W 2

1 = (w1
1 + w1

2) ∪ (w2
1 + w2

2) = (w1
11 + w1

22) ∪ (w2
11 + w2

22), w
j
i , w

j
ii ∈ W j

i , i, j = 1, 2.

Then we have w1
1 + w1

2 = w1
11 + w1

22, w2
1 + w2

2 = w2
11 + w2

22 from which we obtain w1
1 − w1

11 =

w1
22−w1

2, w2
1−w2

11 = w2
22−w2

2 . But then w1
1−w1

11, w
2
1−w2

11 ∈W1 and w1
22−w1

2, w
2
22−w2

2 ∈ W2

and since W1∪W2 = {0}, it follows that w1
1−w1

11 = 0 = w2
1−w2

11 and w1
22−w1

2 = 0 = w2
22−w2

2

from which we obtain w1
1 = w1

11, w
2
1 = w2

11, w1
22 = w1

2 , w
2
22 = w2

2 . This shows that v ∈ V can be

expressed uniquely as v = (w1
1 + w1

2)∪ (w2
1 + w2

2), w
j
i ∈ W j

i , i, j = 1, 2 and hence V = W1⊕W2

and the proof is complete. �

Proposition 2.14 Let W1 = W 1
1 ∪W 2

1 and W2 = W 1
2 ∪W 2

2 be two distinct sub-bivector spaces

of a bivector space V = V1 ∪ V2 such that V = W1 + W2. If P = (v1
1 + W 1

1 ) ∪ (v2
1 + W 2

1 ) and

Q = (v1
2 + W 1

2 ) ∪ (v2
2 + W 2

2 ) are two bicosets of V determined by W1 and W2 respectively, then

P ∩Q is also a bicoset of V .

Proof Suppose that V = W1+W2. Let v = x1∪x2 and u = y1∪y2 be bivectors in V. Clearly,

u−v ∈ V and u−v = (y1−x1)∪(y2−x2) = (w1
1+w1

2)∪(w2
1+w2

2), w
j
i ∈ W j

i from which we obtain

y1− x1 = w1
1 + w1

2 , y2− x2 = w2
1 + w2

2 which implies that y1−w1
1 = x1 + w1

2 , y2−w2
1 = x2 + w2

2

and thus, (y1 −w1
1)∪ (y2−w2

1) = (x1 + w1
2)∪ (x2 + w2

2) = v0 = v1
0 ∪ v2

0 . Since the LHS belongs

to P and RHS belongs to Q, it follows that v0 ∈ P ∩Q and therefore, P ∩Q is a bicoset of V

that is P ∩Q = v0 + (W1 ∩W2). �

Definition 2.15 Let V = V1 ∪ V2 be a finite dimensional inner biproduct space and W =

W1 ∪W2 a sub-bispace of V. Let W⊥ = W⊥
1 ∪W⊥

2 be a biorthogonal complement of W and

P = (v1 +W1)∪ (v2 +W2) a bicoset of V determined by W , where v = v1∪v2 is a fixed bivector

in V. It can be shown that

V = W ⊕W⊥ = (W1 ⊕W⊥
1 ) ∪ (W2 ⊕W⊥

2 )

and consequently we have

W ∪W⊥ = (W1 ∪W⊥
1 ) ∪ (W2 ∪W⊥

2 ) = {0} ∪ {0}.

Suppose that x = x1 ∪x2 and y = y1∪y2 are bivectors such that xi ∈ Wi and yi ∈ W⊥
i , i = 1, 2.

Suppose also that v = v1 ∪ v2 = (x1 + y1) ∪ (x2 + y2). Then P can be represented by

P = (x1 + y1 + W1) ∪ (x2 + y2 + W2)

= (y1 + W1) ∪ (y2 + W2), since xi ∈ Wi, i = 1, 2.

This representation is called the biprojection of v on W and it is unique.

To establish the uniqueness, let z = z1 ∪ z2 be any bivector in W⊥ and let P have another

representation P = (z1 + W1)∪ (z2 + W2), zi ∈ W⊥
i , i = 1, 2. Then we have y1 + W1 = z1 + W1,
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y2 + W2 = z2 + W2 so that y1 − z1 ∈ W1, y2 − z2 ∈ W2 and thus y1 − z1 ∈ W1 ∩W⊥
1 = {0} ,

y2 − z2 ∈ W2 ∩W⊥
2 = {0} which implies that y1 − z1 = 0, y2 − z2 = 0 from which we obtain

y1 = z1, y2 = z2 and the uniqueness of P is established.
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Abstract: A dominating set D of a graph G is called a Smarandachely dominating s-

set if for an integer s, each vertex v in V − D is adjacent to a vertex u ∈ D such that

degu + s = degv. The minimum cardinality of Smarandachely dominating s-set in a graph

G is called the Smarandachely dominating s-number of G, denoted by γs
S(G). Such a set

with minimum cardinality is called a Smarandachely dominating s-set. The Smarandachely

bondage s-number bs
S(G) of a graph G is defined to be the minimum cardinality among all

sets of edges E′ ⊆ E such that γs
S(G − E′) > γs

S(G). Particularly, the set with minimum

Smarandachely bondage s-number for all integers s ≥ 0 or s ≤ 0 is called the strong or weak

dominating number of G, denoted by γs(G) or γw(G), respectively. In this paper, we present

some bounds on bs(G) and bw(G) and give exact values for bs(G) and bw(G) for complete

graphs, paths, wheels and bipartite complete graphs. Some general bounds are also given.

Key Words: Smarandachely dominating s-set, Smarandachely dominating s-number,

Smarandachely bondage s-number, strong or weak bondage numbers.

AMS(2000): 05C69.

§1. Introduction

In this paper, we follow the notation of [6,7]. Specifically, let G = (V, E) be a graph with vertex

set V and edge set E. A set D ⊆ V is a dominating set of G if every vertex v in V −D there

exists a vertex u in D such that u and v are adjacent in G. The domination number of G,

denoted γ(G), is the minimum cardinality of a dominating set of G. The concept of domination

in graphs, with its many variations, is well studied in graph theory. A thorough study of

domination appears in [6,7]. Let uv ∈ E. Then, u and v dominate each other. A dominating

set D of a graph G is called a Smarandachely dominating s-set if for an integer s, each vertex

1Received Sep.28, 2009. Accepted Oct. 12, 2009.
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v in V −D is adjacent to a vertex u ∈ D such that degu + s = degv. The minimum cardinality

of Smarandachely dominating s-set in a graph G is called the Smarandachely dominating s-

number of G, denoted by γs
S(G). Such a set with minimum cardinality is called a Smarandachely

dominating s-set. The Smarandachely bondage s-number bs
S(G) of a graph G is defined to be

the minimum cardinality among all sets of edges E′ ⊆ E such that γs
S(G − E′) > γs

S(G).

Particularly, the set with minimum Smarandachely bondage s-number for all integers s ≥ 0

or s ≤ 0 is called the strong or weak dominating number of G, denoted by γs(G) or γw(G),

respectively.

As a special case of Smarandachely bondage number, the strong (weak) domination was

introduced by E. Sampathkumar and L.Pushpa Latha in [8]. For any undefined term, we refer

Harary [4]. By definition, the bondage number b(G) of a nonempty graph G is the minimum

cardinality among all sets of edges E′ ⊆ E for which γ(G − E′) > γ(G). Thus, the bondage

number of G is the smallest number of edges whose removal renders every minimum dominating

set of G a nondominating set in the resulting spanning subgraph. Since the domination number

of every spanning subgraph of a nonempty graph G is at least as great as γ(G), the bondage

number of a nonempty graph is well defined. This concept was introduced by Bauer, Harary,

Nieminen and Suffel [1] and has been further studied by Fink, Jacobson, Kinch and Roberts [2],

Hartnell and Rall [5], etc. The strong bondage number of G, denoted bs(G), as the minimum

cardinality among all sets of edges E′ ⊆ E such that γs(G − E′) > γs(G). This concept was

introduced by J. Ghoshal, R. Laskar, D. Pillone and C. Wallis [3].

We define the weak bondage number of G, denoted bw(G), as the minimum cardinality

among all sets of edges E′ ⊆ E such that γw(G − E′) > γw(G), and we deal with the strong

bondage number of a nonempty graph G.

§2. Exact Values for bs(G) and bw(G)

We begin our investigation of the strong and weak bondage numbers by computing its value for

several well known classes of graphs. In several instances we shall have cause to use the ceiling

function of a number x. This is denoted �x� and takes the value of the least integer greater

than or equal to x. We begin with a rather straightforward evaluation of the strong and weak

bondage numbers of the complete graph of order n.

Proposition 2.1 The strong bondage number of the complete graph Kn (n ≥ 2) is

bs(Kn) = �n�2�.

Proof. Let u1, u2, ..., un be the n vertices of degree n − 1. Then clearly removal of fewer

than n�2 edges results in a graph H having maximum degree n− 1. Hence bs(Kn) ≥ �n�2�.
Now we consider the following cases.

Case 1. If n is even, then the removal of n�2 independent edges u1u2, u3u4, ..., un−1un results

in a graph H ′ regular of degree n− 2. Hence bs(Kn) = n�2.

Case 2. If n is odd, then the removal of (n−1)�2 independent edges u1u2, u3u4, ..., un−2un−1
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yields a graph H ′′ containing exactly one vertex un of degree n − 1. Thus by removing an

edge incident with un we obtain a graph H ′′′ with maximum degree n − 2. Hence bs(Kn) =

(n− 1)�2 + 1.

Combining cases (1) and (2) it follows that bs(Kn) = �n�2�. �

Proposition 2.2 The weak bondage number of the complete graph Kn (n ≥ 2) is

bw(Kn) = 1.

Proof If H is a spanning subgraph of Kn that is obtained by removing any edge from

Kn, then H contains two vertices of degree n− 2. Whence γw(H) = 2 > 1 = γw(Kn). Hence

bw(Kn) = 1. �

If G is a regular graph, then γ(G) = γs(G) because in a regular graph, the degrees of all

the vertices are equal. We next consider paths Pn and cycles Cn on n vertices and find that

γ(Cn) = γs(Cn) because Cn is a regular graph. Also γ(Pn) = γs(Pn) since we can choose from

all the γ sets of Pn, one which dose not include either end vertex. Such a γ set is also a γs set

and hence we get γ(Pn) ≥ γs(Pn) but since γ(G) ≥ γs(G) for all graphs G, which follows

Lemma 2.3 The strong domination number of the n-cycle and the path of order n are respec-

tively

(i) γs(Cn) = �n/3� for n ≥ 3 and

(ii) γs(Pn) = �n/3� for n ≥ 2.

Lemma 2.4 The weak domination number of the n − cycle and the path of order n are

respectively

(i) γw(Cn) = �n/3� for n ≥ 3 and

(ii)

γw(Pn) =

⎧⎨⎩ �n/3� if n ≡ 1 (mod3),

�n/3�+ 1 otherwise.

Proof (i) Since Cn is a regular graph, so γw(Cn) = γ(Cn) and proof techniques in [2].

(ii) γw(Pn) = �(n− 4)/3�+ 2 = γ(Pn−4) + 2, the proof is the same as in [2]. �

Theorem 2.5 The strong bondage number of the n-cycle (with n ≥ 3) is

bs(Cn) =

⎧⎨⎩ 3 if n ≡ 1 (mod3),

2 otherwise.

Proof Since γs(Cn) = γs(Pn) for n ≥ 3, we see that bs(Cn) ≥ 2. If n ≡ 1 (mod3) the

removal of two edges from Cn leaves a graph H consisting of two paths P and Q. If P has

order n1 and Q has order n2, then either n1 ≡ n2 ≡ 2 (mod3), or, without loss of generality,
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n1 ≡ 0 (mod3) and n2 ≡ 1 (mod3). In the former case,

γs(H) = γs(P ) + γs(Q) = �n1/3�+ �n2/3�
= (n1 + 1)/3 + (n2 + 1)/3 = (n1 + n2 + 2)/3 = (n + 2)/3 = �n/3� = γs(Cn).

In the latter case.

γs(H) = γs(P ) + γs(Q) = n1/3 + (n2 + 2)/3 = (n + 2)/3 = �n/3� = γs(Cn).

In either case, when n ≡ 1 (mod3) we have bs(Cn) ≥ 3. Now we consider two cases.

Case 1 Suppose that n ≡ 0, 2 (mod3). The graph H obtained removing two adjacent edges

from Cn consist of an isolated vertex and a path of order n− 1. Thus

γs(H) = γs(P1) + γs(Pn−1) = 1 + �(n− 1)/3� = 1 + �n/3� = 1 + γs(Cn),

Whence bs(Cn) ≤ 2 in this case. Combining this with the upper strong bondage obtained

earlier, we have bs(Cn) = 2 if n ≡ 0, 2 (mod3).

Case 2 Suppose now that n ≡ 1 (mod3). The graph H resulting from the deletion of three

consecutive edges of Cn consists of two isolated vertices and a path of order n− 2. Thus,

γs(H) = 2 + �(n− 2)/3� = 2 + (n− 1)/3 = 2 + (�n/3� − 1) = 1 + γs(Cn),

So that bs(Cn) ≤ 3. With the earlier inequality we conclude that bs(Cn) = 3 when n ≡ 1

(mod3). �

Theorem 2.6 The weak bondage number of the n-cycle (with n ≥ 3) is

bw(Cn) =

⎧⎨⎩ 2 if n ≡ 1 (mod3),

1 otherwise.

Proof Assume n 	≡ 1 (mod3) since γw(Pn) = �n/3�+ 1 = γw(Cn) + 1 > γw(Cn). Hence

bw(Cn) = 1. Now assume n ≡ 1 (mod3) since γw(Cn) = γw(Pn) it follows that bw(Cn) ≥ 2.

Let H be the graph obtained by the removal of two edges from Cn such that P3 and Pn−3

are formed. Then γw(H) = γw(P3)+γw(Pn−3) = 2+�(n−3)/3� = 2+�n/3�−1 = �n/3�+1 >

γw(Cn). Hence bw(Cn) ≤ 2 thus bw(Cn) = 2. �

As an immediate Corollary to Theorem 2.5 we have the following.

Corollary 2.7 The strong bondage number of the path (with n ≥ 3) is given by

bs(Pn) =

⎧⎨⎩ 2 if n ≡ 1 (mod3),

1 otherwise.

Theorem 2.8 The weak bondage number of the path (with n ≥ 3) is
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bw(Pn) =

⎧⎨⎩ 2 if n = 3, 5,

1 otherwise.

Proof It is easy to verify that bw(Pn) = 2 for n = 3, 5.

Let H be the graph obtained by the removal of one edge from Pn such that P3 and Pn−3

are formed. Then γw(H) = γw(P3) + γw(Pn−3). Now we consider the following cases.

Case 1 If n ≡ 1 (mod3) then γw(H) = γw(P3)+γw(Pn−3) = 2+ �(n−3)/3� = 2+ �n/3�−1 =

�n/3�+ 1 then γw(H) > γw(Pn). Hence bw(Pn) = 1.

Case 2 If n 	≡ 1 (mod3) we have γw(H) = 2+�(n−3)/3�+1 = 2+�n/3�−1+1 = 2+�n/3� >

γw(Pn) then γw(H) > γw(Pn). Hence bw(Pn) = 1. �

Lemma 2.9 The strong and weak domination numbers of the wheel Wn (with n ≥ 4) are

(i) γs(Wn) = 1;

(ii) γw(Wn) = �(n− 1)/3�.

Proof (i) Since γ(Wn) = γs(Wn) so proof techniques same in [2].

(ii) Since γw(Wn) = γ(Cn−1) = �(n− 1)/3� so proof techniques same in [2]. �

Proposition 2.10 The strong bondage number of the wheel Wn (with n ≥ 4) is bs(Wn) = 1.

Proof Let x be the vertex of maximum degree of Wn. Let v be a vertex of Wn such that

deg v < deg x. Let H be the graph obtained from Wn by removing edge xv. Then no one

vertex strongly dominates H . So γs(Wn − xv) > γs(Wn). Hence bs(Wn) = 1. �

Proposition 2.11 The weak bondage number of Wn (with n ≥ 4) is given by

bw(Wn) =

⎧⎨⎩ 2 if n ≡ 2 (mod3),

1 otherwise.

Proof Assume n ≡ 0, 1 (mod3), let e be an edge on the (n− 1)-cycle. Then γw(Wn − e) =

�(n−5)/3�+2 = �(n−2)/3�+1 = �(n−1)/3�+1 > �(n−1)/3� = γw(Wn), whence bw(Wn) = 1.

Now assume n ≡ 2 (mod3), the removal of any one edge from Wn will not alter γw(Wn).

So when n ≡ 2 (mod3) we have bw(Wn) ≥ 2.

Let H be the graph obtained by the removal of two adjacent edges from Wn such that these

edges are not incident with the vertex of maximum degree. Then γw(H) = �(n − 6)/3�+ 3 =

�n/3�+ 1 = �(n− 1)/3�+ 1 > �(n− 1)/3� = γw(Wn), whence bw(Wn) = 2. �

Lemma 2.12 The strong and weak domination numbers of the Kr,t are

(i)

γs(Kr,t) =

⎧⎨⎩ 2 if 2 ≤ r = t,

r if 1 ≤ r < t.
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(ii)

γw(Kr,t) =

⎧⎨⎩ t if 1 ≤ r < t,

2 if 2 ≤ r = t.

Proof (i) see [3].

(ii) Note that the vertices in the second partite set have the smallest degree. If 1 ≤ r < t,

then to weakly dominate these vertices, we need include all of them in any wd-set and these

suffice to weakly dominate the rest. If r = t ≥ 2, we claim γw = 2. Since t ≥ 2, none of

the vertices in the graph are of full degree hence γw in this case is greater than 1. Now to

demonstrate a wd-set of cardinality 2, we can take one vertex from the first partite set which

weakly dominate the rest of the vertices in the first partite set, we use a vertex from the second

partite set. Note that a vertex from the second partite set has equal degree as the vertices in

the first set since r = t. �

The next theorem establishes the strong and weak bondage numbers of the complete bi-

partite graph Kr,t.

Theorem 2.13 Let Kr,t be a complete bipartite graph, where 4 ≤ r ≤ t, then

bs(Kr,t) =

⎧⎨⎩ 2r if t = r + 1,

r otherwise.

Proof Let V = V1 ∪ V2 be the vertex set of Kr,t such that |V1| = r and |V2| = t. We

consider the following cases.

Case 1 Suppose t = r + 1 and v ∈ V2, then by removing all edges incident whit v, we obtain

a graph H containing two components K1 and Kr,t−1. Hence

γs(H) = γs(K1) + γs(Kr,t−1) = 1 + 2 < r = γs(Kr,t). Now let v ∈ V2 and u ∈ V1 be a vertex

of Kr,t, then by removing all edges incident to both u and v, we obtain a graph H containing

two components 2K1 and Kr−1,t−1, thus

γs(H) = 2γs(K1) + γs(Kr−1,t−1) = 2 + r − 1 = r + 1 > r = γs(Kr,t).

Hence

bs(Kr,t) = deg u + deg v − 1 = |V2|+ |V1| − 1 = t + r − 1 = 2r

for t = r + 1.

Case 2 Suppose r = t, then by Lemma 2.12, γs(Kr,t) = 2. Let v ∈ V2, then by removing all

edges incident whit v, we obtain a graph H containing two components K1 and Kr,t−1, thus

γs(H) = γs(K1) + γs(Kr,t−1) = 1 + t − 1 = t = r > 2 = γs(Kr,t). Hence bs(Kr,t) = deg v =

|V1| = r for r = t.

Case 3 Suppose r+1 < t, then by Lemma 2.12, γs(Kr,t) = r. Let v ∈ V2, then by removing all

edges incident whit v, we obtain a graph H containing two components K1 and Kr,t−1. Hence
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γs(H) = γs(K1) + γs(Kr,t−1) = 1 + r > r = γs(Kr,t). Thus bs(Kr,t) = deg v = |V1| = r for

r + 1 < t. �

Theorem 2.14 Let Kr,t be a complete bipartite graph, where 1 ≤ r ≤ t, then bw(Kr,t) = t.

Proof Let V = V1 ∪ V2 be the vertex set of Kr,t where |V1| = r and |V2| = t. Let v ∈ V1

and r = t ≥ 2, then by removing all edges incident whit v, we obtain a graph H containing two

components K1 and Kr−1,t. Hence

γw(H) = γw(K1) + γw(Kr−1,t) = 1 + t > 2 = γw(Kr,t). Thus

bw(Kr,t) = deg v = |V2| = t.

Now suppose r < t and v ∈ V1, then by removing all edges incident whit v, we obtain a

graph H containing two components K1 and Kr−1,t. Hence

γw(H) = γw(K1) + γw(Kr−1,t) = 1 + t > t = γw(Kr,t). Thus

bw(Kr,t) = degv = |V2| = t. �

§3. The Strong and Weak Bondage Numbers of a Tree

We now consider the strong and weak bondage numbers for a tree T . Define a support to be a

vertex in a tree which is adjacent to an end-vertex (see [3]).

Proposition 3.1 Every tree T with (n ≥ 4) has at least one of the following characteristics.

(1) A support adjacent to at least 2 end-vertex.

(2) A support is adjacent to a support of degree 2.

(3) A vertex is adjacent to 2 support of degree 2.

(4) The support of a leaf and the vertex adjacent to the support are both of degree 2.

Proof See [3] for the proof. �

Theorem 3.2 If T is a nontrivial tree then bs(T ) ≤ 3.

Proof See [3] for the proof. �

Proposition 3.3 If any vertex of tree T is adjacent with two or more end-vertices, then

bs(T ) = 1.

Proof Let u be a cut vertex adjacent two or more end-vertices. Then u belongs to every

minimum strong dominating set of T . Let v be an end-vertex adjacent to u. Then T − uv

contains an isolated vertex and a tree T ′ of order n− 1. Therefore γs(T − uv) = γs(T
′) + 1 >

γs(T ). Hence bs(T ) = 1. �
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Fig.1: End characteristics of trees in Case 2 of the Proof of Theorem 3.4

Theorem 3.4 If T is a nontrivial tree, then bw(T ) ≤ Δ(T ).

Proof The statement is obviously true for trees order 2 or 3, so we shall suppose that T

has at least 4 vertices. Now we consider the following cases.

Case 1 Suppose T has a support vertex s that is adjacent to two (and possibly more) end-

vertex, that dose not belong to a weak dominating set. Let Es denote the set of edges incident

with s. And let D be a minimum weak dominating set for T −Es. Then s is in D and D\{s} is

a weak dominating set for T . Hence γw(T − Es) > γw(T ) thus bw(T ) ≤ |Es| = deg s ≤ Δ(T ).

Case 2 Suppose a support vertex is adjacent to a support vertex of degree 2. Delete the edge

(s, l). The vertex x then has two end-vertices an adjacent to s and m. Let D be wd-set of

T − {(s, l)}. Then s is in D and D \ {s} is a weak dominating set for T . Hence bw(T ) in this

case equals 1.

Case 3 In this case delete the edge (s, l). If γw(T − {(s, l)}) < γw(T ), then it will contradict

the assumption that the γw-set was the smallest wd-set for T . If γw(T −{(s, l)}) is greater that

γw(T ) then we have done. If γw(T − {(s, l)}) = γw(T ), then the vertex x has a one support

vertex s in T −{(s, l)}, that adjacent to it. then by Case 2, deleting on more edge ({m, k}) will

increase the weak domination number of the resulting graph. So in this case bw(T ) = 2.

Case 4 In the last case, either s or l is any weak dominating set of T . By removing edges

(k, x) and (x, s), we make the necessary for any γw-set for the resulting graph to contain x and

so bw(T ) = 2 this completes the proof. �

Theorem 3.5 Let T be a tree. Then bw(T ) = Δ(T ) if and only if T = K1,r.

Proof This follows from Theorem 3.4. �

§4. General Bounds on Strong and Weak Bondage Numbers

Proposition 4.1([2]) If G is a nonempty graph, then

b(G) ≤ min{deg u + deg v − 1 : u and v are adjacent}.
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Theorem 4.2 If γ(G) = γs(G) and γ(G) = γw(G) then,

(i) bs(G) ≤ b(G);

(ii) bw(G) ≤ b(G).

Proof Let E be a b-set of G. Then γs(G) = γ(G) < γ(G − E) ≤ γs(G − E). Thus

bs(G) ≤ b(G) and for (ii) proof is same. �

Theorem 4.3 If G is a nonempty graph and γ(G) = γs(G) then

bs(G) ≤ min{deg u + deg v − 1 | u and v are adjacent}.

Proof This follows from Proposition 4.1 and Theorem 4.2. �

Theorem 4.4 For any graph G,

bs(G) ≤ q − p + γs(G) + 1

Proof Let D be a γs-set of a graph G. For each vertex v ∈ V \D choose exactly one edge

which is incident to v and to a vertex in D. Let E0 be the set of all such edges. Then clearly

γs(G− (E−E0)) = γs(G) and |E−E0| = q−p+γs(G). So for any edge e ∈ G− (E−E0) = E0

we see that {E − E0} ∪ {e} is a strong bondage set of G. Thus

bs(G) ≤ q − p + γs(G) + 1 �

Corollary 4.5 For any graph G,

bs(G) ≤ q −Δ(G) + 1

Proof In [8], We have known that γs(G) ≤ p −Δ(G). By applying Theorem 4.4, we get

that bs(G) ≤ q −Δ(G) + 1. �

Theorem 4.6 If G is a nonempty graph with strong domination number γs(G) ≥ 2, Then

bs(G) ≤ (γs(G)− 1)Δ(G) + 1.

Proof We proceed by induction on the strong domination number γs(G). Let G be a

nonempty graph with γs(G) = 2, and assume that bs(G) ≥ Δ(G) + 2, then, if u is a vertex of

maximum degree in G, we have γs(G−u) = γs(G)−1 = 1, and bs(G−u) ≥ 2. Since γs(G) = 2

and γs(G − u) = 1, there is a vertex v that is adjacent with every vertex of G but u, that

degGv = Δ(G) also, and u is adjacent with every vertex of G except v. Since bs(G−u) ≥ 2, the

removal from G−u of any one edge incident with v again leaves a graph with strong domination

number 1. Thus there is a vertex w 	= v that is adjacent with every vertex of G− u. But, since

v is the only vertex of G that is not adjacent with u, vertex w must be adjacent in G with u.

This however implies that γs(G) = 1, a contradiction. Thus bs(G) ≤ Δ(G) + 1 if γs(G) = 2.

Now, let (k ≥ 2) be any integer for which the following statement is true: If H is nonempty

graph with γs(G) = k, then γs(H) ≤ (k−1) ·Δ(H)+1. Let G be a graph nonempty graph with
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γs(G) = k+1, and assume that bs(G) > k·Δ(G)+1. Then. But then, bs(G) ≤ bs(G−u)+deg u,

and by the inductive hypothesis we have

bs(G) ≤ [(k − 1) ·Δ(G− u) + 1] + deg u ≤ (k − 1) ·Δ(G) + 1 + Δ(G),

or

bs(G) ≤ k ·Δ(G) + 1,

a contradiction to our assumption that bs(G) > k ·Δ(G) + 1. Thus, bs(G) ≤ k ·Δ(G) + 1, and,

by the principle of mathematical induction, the proof is complete. �

Theorem 4.7 If G is a planar graph, then

bw(G) ≤ Δ(G).

Proof Suppose G has a vertex u with maximum degree that dose not belong to a weak

dominating set. Let Eu denote the set of edges incident with u. And let D be a minimum weak

dominating set for G − Eu. Then u is in D and D \ u is a weak dominating set for G. Hence

γw(G− Eu) > γw(G) thus bw(G) ≤ |Eu| = deg u ≤ Δ(G). �

§5. Open Problems

We strongly believe the following to be true.

Theorem 5.1 If G is a nonempty graph of order (n ≥ 2) then bw(G) ≤ n− 1.

Theorem 5.2 If G is a nonempty graph of order (n ≥ 2) then bw(G) ≤ n− δ(G).

Theorem 5.3 If G is a nonempty graph of order (n ≥ 2) then bs(G) ≤ n− 1.

Other bounds for the strong and weak bondage of a graph exist. For several classes

of graphs, bs(G) ≤ Δ(G) and bw(G) ≤ Δ(G). Let F be the set of edges incident with a

vertex of maximum degree. Then it can be shown that γs(G − F ) ≥ γs(G) and similarly

γw(G − F ) ≥ γw(G). But it is not necessary that this action would result in an increase in

the strong and weak domination numbers. See Fig.2. The calculation for the strong and weak

bondage for multipartite graphs remains open. Unions, joins and product of graphs could be

investigated for their strong and weak bondage in terms of the constituent graphs. This implies

that we need to calculate the strong and weak domination of these graphs. The problem of

strong and weak domination is virtually unexplored and so there are several classes of graphs

for which the strong and weak domination numbers could be calculated.

Fig. 2
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Abstract: A set of vertices S in a graph G is said to be a Smarandachely k-dominating

set if each vertex of G is dominated by at least k vertices of S. Particularly, if k = 1, such

a set is called a dominating set of G. The Smarandachely k-domination number γk(G) of

G is the minimum cardinality of a Smarandachely k-dominating set of G. For abbreviation,

we denote γ1(G) by γ(G). In [9], Reed proved that the domination number γ(G) of every

n−vertex graph G with minimum degree at least 3 is at most 3n/8. In this note, we present

a sequence of Hamiltonian 4-regular graphs whose domination numbers are sharp. Here

we state some results which will pave the way in characterization of domination number in

regular graphs. Also, we determine independent, connected, total and forcing domination

number of those graphs.

Key Words: Regular graph, Smarandachely k-dominating set, Hamiltonian graph.

AMS(2000): 05C69.

§1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without mul-

tiple edges. We refer the reader to [11] for terminology in graph theory.

Let G = (V, E) be a graph with vertex set V and edge set E, and let v ∈ V . The

neighborhood of v, denoted by N(v), is defined as the set of vertices adjacent to v, i.e., N(v) =

{u ∈ V |uv ∈ E}. For S ⊆ V , the neighborhood of S, denoted by N(S), is defined by N(S) =

∪v∈SN(v), and the closed neighborhood N [S] of S is the set N [S] = N(S) ∪ S and the degree

of x is degG(x) = |NG(x)|.
A set of vertices S in a graph G is said to be a Smarandachely k-dominating set, if each

vertex of G is dominated by at least k vertices of S. Particularly, if k = 1, such a set is called

a dominating set of G. The Smarandachely k-domination number γk(G) of G is the minimum

1Received Sep.28, 2009. Accepted Oct. 14, 2009.
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cardinality of a Smarandachely k-dominating set of G. For abbreviation, we denote γ1(G) by

γ(G). The domination number has received considerable attention in the literature.

A dominating set S is called a connected dominating set if the subgraph G[S] induced by

S is connected. The connected domination number of G denoted by γc(G) is the minimum

cardinality of a connected dominating set of G. A dominating set S is called an independent

dominating set if S is an independent set. The independent domination number of G denoted

by i(G) is the minimum cardinality of an independent dominating set of G. A dominating

set S is a total dominating set of G if G[S] has no isolated vertex and the total domination

number of G, denoted by γt (G), is the minimum cardinality of a total dominating set of G. A

subset F of a minimum dominating set S is a forcing subset for S if S is the unique minimum

dominating set containing F . The forcing domination number f (G, γ) of S is the minimum

cardinality among the forcing subsets of S, and the forcing domination number f (G, γ) of G is

the minimum forcing domination number among the minimum dominating sets of G ([1]-[7]).

For every graph G, f (G, γ) ≤ γ (G).

The problem of finding the domination number of a graph is NP-hard, even when restricted

to 4-regular graphs. One simple heuristic is the greedy algorithm [10]. Let dg be the size

of the dominating set returned by the greedy algorithm. In 1991 Parekh [8] showed that

dg ≤ n+1−√2e + 1. Reed [9] proved that γ (G) ≤ 3
8n. Fisher et al. [3]-[4] repeated this result

and showed that if G has girth at least 5 then γ (G) ≤ 5
14n. In the light of these bounds on γ,

in 2004 Seager considered bounds on dg for r-regular graphs and showed that:

Theorem 1.1([10]) For r ≥ 3, dg ≤ r2+4r+1
(2r+1)2 × n.

Theorem 1.2([3]) For any graph of order n,
⌈

n
1+ΔG

⌉
≤ γ (G).

The authors of [7] studied domination number in Hamiltonian cubic graphs, and stated in

it the following problem.

Problem 1.3 What are the domination numbers of the Hamiltonian 4-regular graphs?

The aim of this article is to study the domination number γ(G), independent domination

number i(G), connected domination number γc(G), total domination number γt(G) and forcing

domination number f(G, γ) for 4-regular graphs and give a sharp value for the domination

numbers of these graphs.

§2. Domination Number

In this section we obtain a sharp value for the domination number of some 4-regular graph. In

the following, we construct graphs G, G1 and G2 of which the graphs G and G2 are 4-regular.

The graph G1 is not 4-regular but degG1(vi) = 4 where 2 ≤ i ≤ m−1 and for the two remaining

vertices, degG1(v1) = degG1(vm) = 3. Moreover, the graph G2 will be obtained from the graphs

G1.

Remark 2.1 (i) Let G be a graph with V (G) = {v1, v2, ..., vn} and E(G) = {vivj | |j − i| =
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1 or t or t + 1} ∪ {v1vt, vt+1v2t} where n = 2t, t ≥ 3;

(ii) Let G1 be a graph with V (G1) = {v1, v2, ..., vm} and E(G1) = {vivj | |j − i| =

1 or s or s + 1} where m = 2s + 1, s ≥ 2;

(iii) Let G2 = ∪q
i=1Gmi

where Gmi
∼= G1, |V (Gmi

)| = mi for all possible i and |V (Gm1)| ≤
|V (Gm2)| ≤ ... ≤ |V (Gmq

)|, such that V (G2) = ∪q
i=1 ∪mi

j=1 {vivj} and E(G2) = ∪q
i=1E(Gmi

) ∪
{vimi

v(i+1)1 (mod q)| i = 1, 2, ..., q}.
By Theorem 1.1, we have dg ≤ (33/81)n for r-regular graphs where r = 4. In the following

Theorems, we obtain the exact number for constructed 4-regular graphs.

In all following theorems, let m, n be odd and even respectively and n ≡ l1 (mod 5), m ≡ l2

(mod 5) then m = 5p + l2 and n = 5k + l1 where 0 ≤ l1, l2 ≤ 4 and p, k are integers.

By Theorem 1.2, we have the following observation.

Observation 2.2 γ(G) ≥ � 5k+l1
5 � and γ(G1) ≥ � 5p+l2

5 �.

Theorem 2.3 Let G be a graph of order n, then γ(G) =

⎧⎨⎩ k if n ≡ 0 (mod 5)

k + 1 otherwise
.

Proof We proceed by proving the series cases of following.

Case 1 If n ≡ 0 (mod 5) then n = 5k. Let S = {v3, v8, v13, · · · , vi, vi+5, · · · , vn
2−7, vn

2−2, vn
2 +1,

vn
2
+6, · · · , vj , vj+5, · · · , vn−4}. It is easy to verify that |S| = (2× (n

2 − 5)/5) + 2 = k. Further-

more, every vertex in S dominates four vertices and itself and N [x] ∩N [y] = ∅ for any pair of

vertices x, y ∈ S. It follows that S is a dominating set, so γ(G) ≤ k. Using Observation 2.2 it

is now straightforward to see that γ(G) = k.

Case 2 If n ≡ 1 (mod 5) then n = 5k +1. Let S = {v3, v8, v13, ..., vi, vi+5, ...vn
2
−5, vn

2
−1, vn

2
+1,

vn
2 +6, · · · , vj , vj+5, ..., vn−2} which implies |S| = k + 1. Clearly, every vertex in S − {vn

2−1}
dominates four vertices and itself. Then the non-dominated vertex vn

2
−1 is dominated by itself.

Also, N [x] ∩ N [y] = ∅ for every pair vertices x, y ∈ S − {vn
2−1}. Thus S is a dominating set

and γ(G) ≤ k + 1. Using Observation 2.2 it is now straightforward to see that γ(G) = k + 1.

Case 3 If n ≡ 2 (mod 5) so n = 5k + 2. Assign S = {v2, v7, · · · , vi, vi+5, · · · , vn
2−9, vn

2−4, vm,

vn
2
+5, · · · , vj , vj+5, ..., vn−1} and m ∈ {n

2 , n
2 + 1}. One can see that any vertex in S − {vm}

dominates four vertices and itself and the two non-dominated vertices vn
2

and vn
2 +1 are dom-

inated by vertex vm. Obviously, |S| = k + 1. Moreover, for every pair of vertices x and y

from S − {vm}, we have N [x] ∩N [y] = ∅. Therefore S is a dominating set for G that implies

γ(G) ≤ k + 1. Using Observation 2.2 it is now straightforward to see that γ(G) = k + 1.

Case 4 If n ≡ 3 (mod 5) so n = 5k + 3. Let S = {v2, v7, v12, · · · , vi, vi+5, · · · , vn
2−2, vm,

vn
2
+5, · · · , vj , vj+5, · · · , vn−4}, where m ∈ {n

2 , n
2 +1, n}. By simple verification one can see that

every vertex in S − {vm} dominates four vertices and itself and the three vertices vn
2
, vn

2
+1

and vn are dominated by vertex vm. Clearly, |S| = k + 1 and N [x] ∩N [y] = ∅ for all possible

vertices x, y ∈ S − {vm}. Therefore S is a dominating set for G that implies γ(G) ≤ k + 1.

Using Observation 2.2 it is now straightforward to see that γ(G) = k + 1.

Case 5 If n ≡ 4 (mod 5), so n = 5k + 4. Let S = {v2, v7, ..., vi, vi+5, ..., vn
2
−5, vn

2
, vn

2
+5, ..., vj ,



Domination Number in 4-Regular Graphs 23

vj+5, · · · , vn−2}. We see every vertex in S − {vn
2
} dominated four vertices and itself and

the vertex vn
2

dominates three vertices {vn
2−1, vn

2 +1, vn} and itself. Since |S| = k + 1 and

N [x]∩N [y] = ∅ for all possible vertices x, y ∈ S−{vn
2
}. Then S is a dominating set for G that

implies γ(G) ≤ k + 1. By Observation 2.2 it is straightforward to see that γ(G) = k + 1. �

Theorem 2.4 Let G1 be a graph of order m = 5p + l2 where l2 ∈ {0, 1, 2, 3, 4} and p is an

integer, then γ(G1) =

⎧⎨⎩ p if m ≡ 0 (mod 5);

p + 1 otherwise.

Proof We consider the following sets such that m ≡ l2 (mod 5) for 0 ≤ l2 ≤ 4.

For l2 = 0. We say S = {v2, v7, ..., vi, vi+5, ..., vs, vs+5, ..., vj , vj+5, ..., vm−3}.
For l2 = 1. We say S = {v2, v7, ..., vi, vi+5, ..., vs−3, vs, vs+5, vs+10, ..., vj , vj+5, ..., vm−1}.
For l2 = 2. We say S = {v2, v7, .., vi, vi+5, .., vs−1, vs+1, vs+5, vs+10, .., vj , vj+5, ..., vm−4}.
For l2 = 3. We say S = {v2, v7, ..., vi, vi+5, ..., vs−4, vs, vs+5, vs+10, ..., vj , vj+5, ..., vm−2}.
For l2 = 4. We say S = {v2, v7, ..., vi, vi+5, ..., vs−2, vs, vs+5, vs+10, ..., vj , vj+5, ..., vm−5}.
A method similar to that described in proof of Theorem 2.3 can be applied for proof of

this Theorem. From this, one can see that all of the considered sets are dominating sets. Using

Observation 2.2 it is now straightforward to obtain the stated results in this Theorem. �

Now we are ready to study domination number of more 4-regular graphs which are stated

in Theorem 2.3.

Remark 2.5 We construct graph G′ = Gn1 ∪ Gn2 ∪ ... ∪ Gnr
in which between every two

4-regular graphs we add an edge such that d(v) = 5 to each of first and end vertices of Gni
for

all possible i and Gni
∼= G, |V (Gn1)| ≤ |V (Gn2)| ≤ ... ≤ |V (Gnr

)|.

Theorem 2.6 γ(G′) =
∑r

i=1 γ(Gni
) such that there exists a G with Gni

∼= G for each i.

Proof The result follows by Theorem 2.3. �

Let G
′

1 and G
′′

1 be the graphs in which these are two induced subgraphs of G1 such that

V (G
′

1) = V (G1)− {v1, vm} and V (G
′′

1 ) = V (G1)− {v1} (or V (G
′′

1 ) = V (G1)− {vm}).

Proposition 2.7 (i) γ(G
′

1) = γ(G
′′

1 ) = γ(G1) where V (G1) ≡ l to modulo 5 and l ∈ {0, 2, 3, 4};
(ii)Let V (G1) ≡ 1 to modulo 5. Then (a): γ(G

′

1) = γ(G1)− 1 (b): γ(G
′′

1 ) = γ(G1) where

V (G
′′

1 ) = V (G1)− {v1} (c): γ(G
′′

1 ) = γ(G1)− 1 where V (G
′′

1 ) = V (G1)− {vm}.

Proof (i) The result follows by Observation 2.2 and Theorem 2.4.

(ii) Let V (G1) ≡ 1 (mod 5). We say S = {v4, v9, ..., vs−1, vs+2, vs+7, ..., vm−4}. Clearly S

is a dominating set for G
′

1 and G
′′

1 where V (G
′′

1 ) = V (G1)−{vm}. Therefore γ(G
′

1) = γ(G
′′

1 ) =

γ(G1) − 1 because |S| = m−1
5 . Finally if V (G

′′

1 ) = V (G1) − {v1}, one can check by simple

verification that γ(G
′′

1 ) = γ(G1). �

Proposition 2.8 Let G2 be the graph with V (Gmi
) ≡ 1 (mod 5) for all i. Then γ(G2) =∑q

i=1 γ(Gmi
)− � q

2�.
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Proof The result follows by Proposition 2.7 (ii)(c). Moreover, It is sufficient to show the

truth of the statement when q = 2 (G2 = Gm1 ∪Gm2).

Let S = {v14, v19, · · · , v1i, v1(i+5), · · · , v1(sm1−1), v1(sm1+2), v1(sm1+7), · · · , v1j , v1(j+5), · · · ,
v1(m1−4), v21, v26, · · · , v2i′ , v2(i′+5), · · · , v2(sm2−4), v2(sm2+1), · · · , v2j′ , v2(j′+5), · · · , v2(m2−2)}.

Obviously, γ(G2) = γ(Gm1) + γ(Gm2) − 1. It is now straightforward to prove the result

for q > 2, by Proposition 2.7(ii) and a method similar to that described for q = 2. Thus

γ(G2) =
∑q

i=1 γ(Gmi
)− � q

2� with V (Gmi
) ≡ 1 (mod 5) for all i. �

Let l be the number of occurrences of consecutive G1’s with V (G1) ≡ 1 (mod 5). For

1 ≤ i′ ≤ l, let Hi′ = {G2 − e| G2 = ∪ri′

j=1Gmj
, ri′ is the number of consecutive Gmjs with

V(Gmj) ≡ 1 (mod 5) for all j, e(= vi′

11v
i′

ri′mr
i′

) /∈ Gmj
}.

Theorem 2.9 Let G3 = ∪q
i=1Gmi

which contains the induced subgraph Hi′ for 1 ≤ i′ ≤ l and

G3
∼= G2. Then γ(G3) =

∑q
i=1 γ(Gmi

)− (� r1

2 �+ � r2

2 �+ ... + � rl

2 �).

Proof The result follows by Theorem 2.4 and Propositions 2.7 and 2.8. �

§3. Independent Domination Number of Some Graphs

Theorem 3.1 If n ≡ l (mod 5) where 0 ≤ l ≤ 4, then i(G) = γ (G).

Proof We Suppose that n ≡ 0 (mod 5) and n is even. Since i(G) ≥ γ (G), The-

orem 2.3 implies that i(G) ≥ k. Let S = S1 ∪ S2 = {v3, ..., vi, vi+5, ..., vn
2−7, vn

2−2} ∪
{vn

2
+1, vn

2
+6, ..., vj , vj+5, ..., vn−4}. It is sufficient to prove that there exists no pair of ver-

tices (x, y) with xy ∈ E(G) in S. Because, on the one hand dPn
(x, y) = 5 (Let Pn = v1v2...vn)

for any two consecutive vertices with x, y ∈ S1 (or x, y ∈ S2). On the other hand each vi ∈ S

is adjacent to vertices vi−1, vi+1, vi+ n
2

and vi+ n
2
+1. So by simple verification one can see that

there exists no vertex in S from {vi−1, vi+1, vi+ n
2
, vi+ n

2 +1}. Hence S is an independent set of

G, then i(G) = γ (G).

Similar argument settles proof of cases n ≡ l where 1 ≤ l ≤ 4. �

Theorem 3.2 If m ≡ l (mod 5) where 0 ≤ l ≤ 4, then i(G1) = γ(G1).

Proof Similar to that of Theorem 3.1, we settle the proof of this Theorem. �

Theorem 3.3 i(Gx) = γ(Gx) where x = 2, 3.

Proof The result follows by Theorems 2.4 and 2.9. �

§4. Connected Domination Number of Some Graphs

Let Np[vi] = N [vi]− (N(vi) ∩ S) where S is an arbitrary set.

Theorem 4.1 If n ≡ l ( mod 5 ), where 0 ≤ l ≤ 4, then γc(G) = n
2 − 1.
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Proof Let n ≡ 0 (mod 5). Since γc(G) ≥ γ (G), Theorem 2.3 implies γc(G) ≥ k. We

introduce S0 = {v2, v3, ..., vn
2
}. Obviously, S0 is a connected dominating set for G, then γc(G) ≤

n
2 − 1. Now we suppose that S is an arbitrary connected dominating set for G with |S| =

l ≤ n
2 − 2. Clearly, 〈S〉 is containing a path of length l ≤ n

2 − 2, and |Np[x]|, |Np[y]| ≤ 4

and |Np[z]| = 3 where x, y are pendant vertices of path and z ∈ S − {x, y}. Furthermore

|Np[u]∩Np[v]| = 1 where u, v are two consecutive vertices from S. By the assumptions we have

| ∪x∈S Np[x]| ≤ (2 × 4) + (n
2 − 4)× 3 − (n

2 − 3) = n− 1. Then S cannot dominate all vertices

of G. This implies that S0 is minimum connected dominating set of G, hence γc(G) = n
2 − 1.

Similar argument settles proof of cases n ≡ l where 1 ≤ l ≤ 4. �

Theorem 4.2 If m ≡ l (mod 5) where 0 ≤ l ≤ 4 then γc(G1) = s− 1.

Proof In a manner similar to Theorem 4.1 we can prove the Theorem. �

Theorem 4.3 γc(G2) =
∑q

i=1(smi
+ 1)− 2.

Proof Theorem 4.2 implies that γc(G2) ≥
∑q

i=1(smi
− 1). Because if S1 and S2 are

arbitrary γc-sets for Gm1 and Gm2 with |S1| = sm1 − 1, |S2| = sm2 − 1 then 〈S1 ∪ S2〉 is

disconnected. Furthermore, any γc-set for Gmi
does not contain first or endvertex of Gmi

.

Therefore, to obtain a γc-set for G2, we must add all of the end and first vertices of the graph

Gmi
except for two graphs. For the first graph, say (Gm1), we can add the endvertex and the

last graph, say (Gmq
), we may add its first vertex (note that we may choose in a similar manner

for two other graphs). Then γc(G2) =
∑q

i=1(smi
+ 1)− 2. �

§5. Total Domination Number of Some Graphs

Let S be a minimum total dominating set, then we have the following Observations.

Observation 5.1 For any vertex x ∈ S, there exists at least one vertex y ∈ S such that

xy ∈ E(G).

Observation 5.2 Let G be a 4-regular graph then |N [x] ∪ N [y]| ≤ 8, where x, y ∈ S and

xy ∈ E(G).

Immediately we have the following lemma.

Lemma 5.3 Let G and G1 be the graphs defined in Remark 2.1. For any x, y ∈ S with xy ∈ S

then |N [x] ∪N [y]| ≤ 7.

Proof Let x = vi and y = vi+1 (or y = vi−1) then |N [x] ∪ N [y]| = 7. Now suppose that

x = vi and y = vi+ n
2

(or y = vi+ n
2 +1) then |N [x] ∪N [y]| = 6. Hence |N [x] ∪N [y]| ≤ 7. �

We consider the following Theorem.

Theorem 5.4 γt(G) =

⎧⎨⎩ 2�n
7 � n ≡ l (mod 7) where l ∈ {0, 3, 4, 5, 6}

2�n
7 �+ 1 n ≡ 1or 2 (mod 7)

.
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Proof The proof is divided into the following cases by considering n ≡ (mod7).

Case 1 n ≡ 0 (mod 7)

Let S = {v1, v2, v8, v9, · · · , vi, vi+1, · · · , vn
2−6, vn

2−5, vn
2 +5, vn

2 +6, vn
2 +12, vn

2 +13, · · · , vj , vj+1,

· · · , vn−2, vn−1}. It is easy to verify that S is a γt-set for G where n ≡ 0 (mod 7). Moreover

any two adjacent vertices from S have 7 vertices as neighbors, so by Lemma 5.3, S is minimum

total dominating set for G and γt(G) = |S| = 2�n
7 � where n ≡ 0 (mod 7).

Case 2 n ≡ 1 (mod 7)

Let S1 = {v1, v2, v8, v9, · · · , vi, vi+1, · · · , vn
2−3, vn

2−2, vn
2 +5, vn

2 +6, vn
2 +12, vn

2 +13, · · · , vj , vj+1,

· · · , vn−6, vn−5}. It is easy to verify that (N [x] ∪N [y]) ∩ (N [z] ∪N [t]) = ∅ for each two pairs

of vertices (x, y) and (z, t) and xy, zt ∈ E(G) and x, y, z, t ∈ S1. Also, |N [r] ∪N [s]| = 7 for all

possible r, s ∈ S1 and rs ∈ E(G). Meanwhile, Lemma 5.3 implies that the set S1 is a minimum

γt-set for G −M1 where M1 = {vn}. Now, we give S2 = {vn
2
−1}. Clearly S = S1 ∪ S2 is a

γt-set of G where n = 7k + 1. Then γ(G) = |S| = 2�n
7 �+ 1 where n ≡ 1 (mod 7).

Case 3 n ≡ 2 (mod 7)

Let S1 = {v1, v2, v8, v9, · · · , vi, vi+1, · · · , vn
2
−7, vn

2
−6, vn

2
+5, vn

2
+6, vn

2
+12, vn

2
+13, · · · , vj , vj+1,

· · · , vn−3, vn−2}. It is easy to verify that (N [x] ∪N [y]) ∩ (N [z] ∪N [t]) = ∅ for each two pairs

of vertices (x, y) and (z, t) with xy, zt ∈ E(G) and x, y, z, t ∈ S1. Also, |N [r] ∪ N [s]| = 7 for

all possible r, s ∈ S1 and rs ∈ E(G). Hence, Lemma 5.3 implies that the set S1 is a minimum

γt-set for G −M2 where M2 = {vn
2
−1, vn}. Now, let S2 = {vn−1}. Clearly S = S1 ∪ S2 is a

γt-set of G where n = 7k + 2. Then γ(G) = |S| = 2�n
7 �+ 1 where n ≡ 2 (mod 7).

Case 4 n ≡ 3 (mod 7)

Let S1 = {v1, v2, v8, v9, ..., vi, vi+1, ..., vn
2
−4, vn

2
−3, vn

2
+5, vn

2
+6, vn

2
+12, vn

2
+13, · · · , vj , vj+1,

· · · , vn−7, vn−6}. It is easy to verify that (N [x]∪N [y])∩ (N [z]∪N [t]) = ∅ for each two pairs of

vertices (x, y) and (z, t) with xy, zt ∈ E(G) and x, y, z, t ∈ S1. Furthermore, |N [r]∪N [s]| = 7 for

all possible r, s ∈ S1 and rs ∈ E(G). Clearly, Lemma 5.3 implies that the set S1 is a minimum

γt-set for G −M3 where M3 = {vn
2−1, vn−1, vn}. Now, let S2 be 2-subset from M3 which are

adjacent in G. Clearly S = S1 ∪ S2 is a γt-set of G where n = 7k + 3. Then γ(G) = |S| = 2�n
7 �

where n ≡ 3 (mod 7).

Case 5 n ≡ 4 (mod 7)

We assign S1 = {v1, v2, v8, v9, · · · , vi, vi+1, · · · , vn
2
−8, vn

2
−7, vn

2
+5, vn

2
+6, vn

2
+12, vn

2
+13, · · · ,

vj , vj+1, ..., vn−4, vn−3}. It is easy to verify that (N [x] ∪N [y]) ∩ (N [z]∪N [t]) = ∅ for each two

pairs of vertices (x, y) and (z, t) with xy, zt ∈ E(G). Also, |N [r] ∪ N [s]| = 7 for all possible

r, s ∈ S1 and rs ∈ E(G). Hence, Lemma 5.3 implies that the set S1 is a minimum γt-set for

G −M4, where M4 = {vn
2
−2, vn

2
−1, vn−1, vn}. Now, let S2 be a 2-subset from M4 which are

adjacent in G. Clearly S = S1 ∪ S2 is a γt-set of G where n = 7k + 4. Then γ(G) = |S| = 2�n
7 �

where n ≡ 4 (mod 7).

Case 6 n ≡ 5 (mod 7)

Say S1 = {v1, v2, v8, v9, · · · , vi, vi+1, · · · , vn
2
−5, vn

2
−4, vn

2
+5, vn

2
+6, vn

2
+12, vn

2
+13, · · · , vj , vj+1,



Domination Number in 4-Regular Graphs 27

· · · , vn−8, vn−7}. It is easy to verify that (N [x] ∪N [y]) ∩ (N [z] ∪N [t]) = ∅ for each two pairs

of vertices (x, y) and (z, t) with xy, zt ∈ E(G) and x, y, z, t ∈ S1. Also, |N [r] ∪ N [s]| = 7 for

all possible r, s ∈ S1 and rs ∈ E(G). Hence, Lemma 5.3 implies that the set S1 is a minimum

γt-set for G − M5, where M5 = {vn
2−2, vn

2−1, vn−2, vn−1, vn}. Now, let S2 = {vn
2−2, vn

2−1}.
Clearly S = S1 ∪ S2 is a γt-set of G where n = 7k + 5. Then γ(G) = |S| = 2�n

7 � where n ≡ 5

(mod 7).

Case 7 n ≡ 6 (mod 7)

Let S1 = {v1, v2, v8, v9, ..., vi, vi+1, · · · , vn
2−9, vn

2−8, vn
2 +5, vn

2 +6, vn
2 +12, vn

2 +13, · · · , vj , vj+1,

· · · , vn−5, vn−4}. It is easy to verify that (N [x] ∪N [y]) ∩ (N [z] ∪N [t]) = ∅ for each two pairs

of vertices (x, y) and (z, t) with xy, zt ∈ E(G) and x, y, z, t ∈ S1. Also, |N [r] ∪N [s]| = 7 for all

possible r, s ∈ S1 and rs ∈ E(G). Hence, Lemma 5.3 implies that the set S1 is a minimum γt-

set for G−M6, where M6 = {vn
2
−3, vn

2
−2, vn

2
−1, vn−2, vn−1, vn}. Now, let S2 = {vn

2
−2, vn

2
−1}.

Clearly S = S1 ∪ S2 is a γt-set of G where n = 7k + 6. Then γ(G) = |S| = 2�n
7 � where n ≡ 6

(mod 7). �

Theorem 5.5 γt(G1) =

⎧⎨⎩ 2�m
7 � if m ≡ l (mod 7) where l ∈ {0, 3, 4, 5, 6}

2�m
7 �+ 1 if m ≡ 1 or 2 (mod 7)

.

Proof Lemma 5.3 implies that γt(G1) ≥ 2�m
7 �. Now we consider the following cases.

Case 1 m ≡ 0 (mod 7)

We assign St0 = {v5, v6, v12, v13, · · · , vi, vi+1, · · · , vs−5, vs−4, vs+2, vs+3, · · · , vj , vj+1, · · · ,
vm−2, vm−1}. It is easy to see that St0 is a γt-set for G1. Hence γt(G1) ≤ 2�m

7 �. Moreover

Lemma 5.3 implies γt(G1) ≥ 2�m
7 �. It follows that γt(G1) = 2�m

7 � with m ≡ 0 (mod 7).

Case 2 m ≡ l (mod 7) where l ∈ {1, 2, 3, 4, 5, 6}.

We assign Stl
to each l as follows:

St1 = {v1, v2, v3, v9, v10, ..., vi, vi+1, vi+7, ..., vs−5, vs−4, vs+6, vs+7, ..., vj , vj+1, ..., vm−2, vm−1}.
St2 = {v2, v3, v9, v10, ..., vi, vi+1, vi+7, ..., vs−2, vs−1, vs, vs+6, vs+7, ..., vj , vj+1, ..., vm−6, vm−5}.
St3 = {v3, v4, v10, v11, ..., vi, vi+1, vi+7, ..., vs−5, vs−4, vs, vs+1, vs+7, vs+8, ..., vj , vj+1, ..., vm−2,

vm−1}.
St4 = {v1, v2, v7, v8, ..., vi, vi+1, vi+7, .., vs−5, vs−4, vs+4, vs+5, .., vj , vj+1, ..., vm−2, vm−1}.
St5 = {v4, v5, v11, v12, v18, .., vi, vi+1, vi+7, .., vs−5, vs−4, vs+1, vs+2, vs+8, vs+9, ..., vj , vj+1, ...,

vm−2, vm−1}.
St6 = {v1, v2, v8, v9, .., vi, vi+1, vi+7, .., vs−5, vs−4, vs+5, vs+6, .., vj , vj+1..., vm−2, vm−1}.

In the same manner as in Case 1 we settle this Case. Hence γt(G1) = 2�m
7 � where m ≡ 3

or 4 or 5 or 6 (mod 7) and γt(G1) = 2�m
7 �+ 1 where m ≡ 1 or 2 (mod 7). �

Motivated by Theorem 5.5, we are now really ready to state of following Theorem.

Theorem 5.6 γt(G2) =
∑q

i=1 γt(Gmi
).
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§6. Forcing Domination Number of Some Graphs

Observation 6.1 f(H, γ) ≥ 1 where H ∈ {G, G1, G2}.
Proof It is easy to see that the graphs G, G1 and G2 have at least two γ-sets. Then it

immediately implies that f(H, γ) ≥ 1 where H ∈ {G, G1, G2}. �

Observation 6.2 f(G, γ), f(G1, γ) ≥ 2 where |V (G)|, |V (G1)| ≡ l with l ∈ {1, 2, 3, 4} (mod 5).

Proof It is straightforward to see that with any 1-subset, say T from any arbitrary domi-

nating set, we can obtain at least two different γ-sets for G containing T . Then f(G, γ) ≥ 2.

Similar argument settles that f(G1, γ) ≥ 2 too. �

Theorem 6.3 (i) If n ≡ 0 (mod 5) then f(G, γ) = 1;

(ii)If m ≡ 0 (mod 5) then f(G1, γ) = 1;

(iii) f(G2, γ) = q where V (Gmi
) ≡ 0 (mod 5) for all i.

Proof (i) We apply Observation 6.1 with H = G, so f (G, γ) ≥ 1. Now let S =

{v3, v8, ..., vi, vi+5, · · · , vn
2
−2, vn

2
+1, vn

2
+6, · · · , vj , vj+5, · · · , vn−4}. It is easy to see that F =

{v3} ⊂ S is a forcing subset for G which implies f (G, γ) ≤ 1. It is now straightforward to give

f (G, γ) = 1.

(ii) By Observation 6.1 with H = G1, it implies that f (G1, γ) ≥ 1. Let F = {v2}. Obvi-

ously, F is a forcing subset for G1. From this and by Theorem 2.4, it follows that f (G1, γ) = 1.

(iii) The Case(ii) settles this case. Moreover, let F = {v12, v22, v32, ..., vi2, ..., vq2} then it

implies that f(G2, γ) = q. �

Theorem 6.4 (i) If n ≡ 1 (mod 5), then f(G, γ) = 2;

(ii)If m ≡ 1 (mod 5), then f(G1, γ) = 2;

(iii) f(G2, γ) = 2� q
2� where V (Gmi

) ≡ 1 (mod 5) for all i.

Proof (i) Observation 6.2 implies that f (G, γ) ≥ 2. Say S = {v1, v6, ..., vi, vi+5, · · · , vn
2
−2,

vn
2 +1, vn

2 +6, · · · , vj , vj+5, · · · , vn−4}. Suppose that F = {v1, vn
2 +1} ⊂ S, clearly F is a forcing

subset for G and it follows that f (G, γ) ≤ 2. This implies that f (G, γ) = 2.

(ii)Using Observation 6.2 we have f (G1, γ) ≥ 2. Now we define F = {vs, vm−1}. Clearly,

|N [vs]∪N [vm−1]| = 6. On the other hand, since m ≡ 1 (mod 5) then cardinality of the set of re-

maining vertices is multiple of 5. It immediately follows that the set {v2, v7, ..., vi, vi+5, ..., vs−3,

vs+5, vs+10, ..., vj , vj+5, ..., vm−6} ∪ F is the unique γ-set containing F . Thus f(G1, γ) = 2.

(iii) We consider the following cases. (a): If q is even, let F1 = ∪q
i=2{vi1, vi(si+1)} where

i is even. (b): If q is odd let F2 = ∪q−1
i=2 {vi1, vi(si+1)} ∪ {v(q)1, vq(sq+1)} where i is even. By

simple verification one can check that F1 and F2 are forcing subsets for G2 in two stated cases.

Hence, it follows that f(G2, γ) = 2� q
2�. �

Theorem 6.5 (i) If n ≡ 2 (mod 5), then f(G, γ) = 2;

(ii) If m ≡ 2 (mod 5), then f(G1, γ) = 2;

(iii) f(G2, γ) = 2q where V (Gmi
) ≡ 2 (mod 5) for all i.
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Proof (i)Using Observation 6.2 we have f (G, γ) ≥ 2. Now we define F = {vn
2
−1, vn

2
} ⊂ S.

Clearly, |N [vn
2−1] ∪N [vn

2
]| = 7. Moreover, since m ≡ 2 (mod 5) then cardinality of the set of

remaining vertices is a multiple of 5. It immediately follows that the set {v5, v10, ..., vi, vi+5, ...,

vn
2−6, vn

2 +3, vn
2 +8, ..., vj , vj+5, ..., vn−3}∪F is the unique γ-set containing F . Thus f(G, γ) = 2.

(ii) Using Observation 6.2 we have f (G1, γ) ≥ 2. Now we define F = {vs+1, vs+2}. It

immediately follows that the set {v4, v9, ..., vi, vi+5, ..., vs−4, vs+7, vs+12, ..., vj , vj+5, ..., vm−2}∪F

is the unique γ-set containing F . Thus f(G1, γ) = 2.

(iii): Clearly, the obtained forcing subset in the case (ii) is extendible to G2. Therefore,

we can assert that f(G2, γ) = 2q. �

Theorem 6.6 (i) If n ≡ 3 (mod 5), then f(G, γ) = 2;

(ii) If m ≡ 3 (mod 5), then f(G1, γ) = 2;

(iii) f(G2, γ) = 2q where V (Gmi
) ≡ 3 (mod 5) for all i.

Proof (i) Using Observation 6.2 we have f (G, γ) ≥ 2. Now we define F = {v1, vn
2
+3} ⊂ S.

Clearly, |N [v1] ∪ N [vn
2 +3]| = 8. On the other hand, since m ≡ 2 (mod 5) then cardinal-

ity of the set of remaining vertices is a multiple of 5. It immediately follows that the set

{v5, v10, ..., vi, vi+5, ..., vn
2
−4, vn

2
+8, vn

2
+13, ..., vj , vj+5, ..., vn−1} ∪ F is the unique γ-set contain-

ing F . Thus f(G, γ) = 2.

(ii) Using Observation 6.2 we have f (G1, γ) ≥ 2. Let F = {v1, v3}. Since |N [v1]∪V [v3]| =
8, cardinality of the set of non-dominated vertices is a multiple of 5. From this it immediately

follows that S consists of vs+6, v8, vs+11, v13,...,vm−1, vs−3. Thus f(G1, γ) = 2.

(iii) Clearly, the obtained forcing subset in Case (ii) is extendible to G2. Therefore, it

implies that f(G2, γ) = 2q. �

Theorem 6.7 (i) If n ≡ 4 (mod 5), then f(G, γ) = 2;

(ii) If m ≡ 4 (mod 5), then f(G1, γ) = 2;

(iii) f(G2, γ) = 2q where V (Gmi
) ≡ 4 (mod 5) for all i.

Proof (i) Using Observation 6.2 we have f (G, γ) ≥ 2. Now we define F = {vn
2
−2, vn

2
} ⊂

S. Clearly, |N [vn
2−2] ∪ N [vn

2
]| = 9. Furthermore, since m ≡ 2 (mod 5) then cardinal-

ity of the set of remaining vertices is a multiple of 5. It immediately follows that the set

{v5, v10, · · · , vi, vi+5, · · · , vn
2−7,

vn
2
+3, vn

2
+8, · · · , vj , vj+5, · · · , vn−4} ∪ F is the unique γ-set containing F . Thus f(G, γ) = 2.

(ii) By Observation 6.2 we have f (G1, γ) ≥ 2. Let F = {vs, vs+2}. It immediately follows

that the set {v4, v9, · · · , vi, vi+5, · · · , vs−5, vs+7, vs+12, · · · , vj , vj+5, · · · , vm−3}∪F is the unique

γ-set containing F . Thus f(G1, γ) = 2.

(iii) Clearly, the obtained forcing subset in Case (ii) is extendible to G2. Therefore, it

implies that f(G2, γ) = 2q. �

We close this section by the following Theorem for which we are motivated by the results

of this section.
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Theorem 6.8 Let G3 be the graph defined in Section 2. Then f(G3, γ) =
∑q

i=1 f(Gmi
, γ) −

(� r1

2 �+ � r2

2 �+ ... + � rl

2 �).
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Abstract: Let S be a set consist of chosen components in G − X. The Smarandachely

scattering number of a graph G is defined by

γS(G) = max{w(G−X)− |X| −
∑
H∈S

|H | : X ⊂ V (G), w(G−X) > 1}.

Particularly, if S = ∅ or S = {the largest component in G − X}, then γS(G) is

the scattering number or rupture degree of a graph G. In this paper, general results on

the Smarandachely scattering number of a graph are considered. Firstly the relationships

between the Smarandachely scattering number and some vulnerability parameters, namely

scattering, integrity and toughness are given. Further, we calculate the Smarandachely

scattering number of total graphs. Also several results are given about total graphs and

graph operations.

Key Words: Smarandachely scattering number, connectivity, network design and com-

munication, graph operations, rupture degree.

AMS(2000): 05C40, 05C76, 68M10, 68R10.

§1. Introduction

In a communication network, the vulnerability measures the resistance of network to disruption

of operation after the failure of certain stations or communication links. The stability of com-

munication networks is of prime importance to network designers.In analysis of vulnerability of

a communication network to disruption, two quantities that come to mind are:

(1)the size of the largest remaining group within which mutual communication can still

occur,

(2)the number of elements that are not functioning.

If we think of the graph as a model of a communication network, many graph theoreti-

1Received Sep.28, 2009. Accepted Oct. 18, 2009.
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cal parameters have been used to describe the stability of communication networks including

connectivity, integrity, toughness, tenacity, binding number and scattering number (see [2]-[3],

[7]-[9] and [13]).

A graph G is denoted by G = (V (G), E(G)), where V (G) is the vertex set of G and E(G)

is the edges set of G. The number of vertices and the number of edges of the graph G are

denoted by |V | = n, |E| = q respectively.

In this paper we will deal with the Smarandachely scattering number. But first we will

give some basic definitions and notation. After that we give the the Smarandachely scattering

number of total graph of specific families of graphs (see [4],[6],[10] and [12]).

•t(G) : The toughness of a graph G is defined by

t(G) = min
X⊆V (G)

|X |
w (G−X)

,

where X is a vertex cut of G and w(G −X) is the number of the components of G−X .

•I(G) : The integrity of a graph is given by

I(G) = min
X⊆V (G)

{|X |+ m (G−X)} ,

where m(G−X) is the maximum number of vertices in a component of G−X .

•s(G) : The scattering number of a graph is defined by

s(G) = max {w(G −X)− |X | : X ⊆ V (G), w(G−X) � 2} ,

where w(G −X) denotes the number of components of the graph G−X .

•γS(G): The Smarandachely scattering number of a graph G is defined by

γS(G) = max{w(G−X)− |X | −
∑
H∈S

|H | : X ⊂ V (G), w(G −X) > 1}.

Particularly, if S = ∅ or S = {the largest component in G −X}, then γS(G) is the scattering

number or rupture degree of a graph G (see [11]).

Definition 1.1 Two vertices are said to cover each other in a graph G if they are incident in

G. A vertex cover in G is a set of vertices that covers all edges of G. The minimum cardinality

of a vertex cover in a graph G is called the vertex covering number of G and is denoted by

α(G)(see [4],[6],[10] and [12]).

Definition 1.2([4],[6],[10] and [12]) An independent set of vertices of a graph G is a set of

vertices of G whose elements are pairwise nonadjacent. The independence number β(G) of G

is the maximum cardinality among all independent sets of vertices of G.

Theorem 1.1([10],[12]) For any graph G of order n,

α(G) + β(G) = n.
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Definition 1.3 The vertex-connectivity or simply connectivity k(G) of a graph G is the min-

imum number of vertices whose removal from G result in a disconnected or trivial graph. The

complete graph Kn cannot be disconnected by the removal of vertices, but the deletion of any

n−1 vertices result in Kn; thus k(Kn) = n− 1.

k(G) = min{|X | : X ⊂ V (G), ω(G−X) > 1},

where �x� is the smallest integer greater than or equal to x. �x� is the greatest integer less than

or equal to x.

§2. Some Results

We use Pn and Cn to denote the path and cycle with n vertices, respectively. A comet Ct,r is

defined as the graph obtained by identifying one end of the path Pt, (t � 2) with the center of

the star K1,r. In this section we review the Smarandachely scattering number of Pn, Cn, Ct,r

and the k-complete partite graph Kn1,n2,...,nk
.

Theorem 2.1([11]) The Smarandachely scattering number of the comet Ct,r the path Pn, (n �

3), the star K1,n−1, (n � 3) and the cycle Cn are given in the following.

a) The Smarandachely scattering number of the comet Ct,r is

γS (Ct,r) =

⎧⎨⎩ r − 1, if t is even

r − 2, if t is odd

b) The Smarandachely scattering number of the path Pn (n � 3) is

γS (Pn) =

⎧⎨⎩ −1, ifn is even

0, ifn is odd

c) The Smarandachely scattering number of the star K1,n−1 (n � 3) is n-3.

d) The Smarandachely scattering number of the cycle Cn is

γS (Cn) =

⎧⎨⎩ −1, ifn is even

−2, ifn is odd

Theorem 2.2([11]) The Smarandachely scattering number of the complete k-partite graph

Kn1,n2,...,nk
is 2 max {n1, n2, ..., nk} −

k∑
i=1

ni − 1.

Theorem 2.3([11]) Let G1 and G2 be two connected graphs of order n1 and n2, respectively.

Then γS(G1 + G2) = max{γS(G1)− n2, γS(G2)− n1}.

Theorem 2.4([11]) Let G be an incomplete connected graph of order n. Then
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a) 2α(G)− n− 1 � γS(G) �
[α(G)]2−κ(G)[α(G)−1]−n

α(G) .

b) 3− n � γS(G) � n− 3.

c) γS(G) � 2δ(G)− 1.

§3. Bounds for Smarandachely Scattering Number

In this section, we consider the relations between the Smarandachely scattering number and

toughness, integrity and scattering number. Parameters that will be used in this paper are as

the following:

α(G), the covering number;

β(G), the independence number;

k(G), the connectivity number;

δ(G), the minimum vertex degree and

Δ(G), the maximum vertex degree.

Theorem 3.1 Let G be a connected graph of order n such that t(G) = t, γS(G) = γS and

δ(G) = δ. Then γS � n
t+1 − (δ + 1).

Proof Let X be cut set of vertices of G. From the definition of t(G), we know that

t �
|X|

w(G−X) . Therefore,

w(G −X) �
|X |
t

.

We also have w(G − X) + |X | ≤ n. In this inequality, |X | ≤ n − w(G − X)and get

w(G −X) + |X | � n. In this inequality, |X | � n− w(G −X). Therefore,

w(G −X) �
|X|
t

w(G −X) �
n−w(G−X)

t

w(G −X) � n
t+1 .

On the other hand, for every graph G, it’s known that

δ(G) + 1 � I(G) � α(G) + 1

and

I(G) = |X |+ m(G−X) � δ(G) + 1.

Then, we have m(G−X) � δ(G−X) + 1 � δ(G)− |X |+ 1.

Therefore, we have m(G−X) � δ(G) + 1− |X |.
Let’s construct the definition of the Smarandachely scattering number.
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w(G −X)− |X | −m(G−X) � w(G−X)− |X | − δ(G) − 1 + |X |
γS(G) � w(G −X)− δ(G) − 1

γS(G) � n
t+1 − δ(G)− 1

The proof is completed. �

Theorem 3.2 Let G be a connected graph of order n such that t(G) = t, γS(G) = γS, α(G) = α

and k(G) = k. Then γS(G) � k
t − (α + 1).

Proof Let X be a cut set of vertices of G. From the definition of γS(G), we know that

w(G − X) − |X | −m(G − X) � γS . Moreover, for every graph G, it is known that I(G) �

α(G) + 1. So, we have I(G) = |X |+ m(G−X) � α(G) + 1. We have the following inequality:

w(G −X) � γS(G) + α(G) + 1.

1
w(G−X) � 1

γS+α+1

|X|
w(G−X) �

|X|
γS+α+1 , | X | � k(G)

|X|
w(G−X) � k

γS+α+1

min
{

|X|
w(G−X)

}
� min

{
k

γS+α+1

}
t � k

γS+α+1

γS � k
t − (α + 1)

The proof is completed. �

Theorem 3.3 LetG be a non-complete connected graph such that s(G) = s, γS(G) = γS,

I(G) = I and α(G) = α is the covering number of graph G. Then γS � s - I + α.

Proof Let X be a vertex cut of G, then from the definition of s(G) we know that w(G −
X)− |X | � s.

When we subtract m (G−X) from both sides of this inequality, we have the following.

w(G−X)− |X | −m(G−X) � s−m(G−X).

From the definition of I(G) we know that I(G) � |X |+ m(G−X).

I(G) � |X |+ m(G−X)⇒ m(G−X) � I − |X |
−m(G−X) � −I + |X | .

Then we have,

w (G−X)− |X | −m (G−X) � s− I + |X |
since X is a cut set of vertices, |X | � α is always satisfied,

w (G−X)− |X | −m (G−X) � s− I + α
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max {w (G−X)− |X | −m (G−X)} � max {s− I + α}
r � s− I + α

The proof is completed. �

§4. The Smarandachely Scattering Number of of

Total Graphs Some Graph Types and Cartesian Product of Graphs

In this section, firstly, we will give definition of total graph of a graph and Cartesian prod-

uct operation on graphs. After that we will give some results about the The Smarandachely

scattering number of T (Pn), T (Cn), T (S1,n), T (K2xPn) and T (K2xCn).

Definition 4.1 The vertices and edges of a graph are called its elements. Two elements of

a graph are neighbors if they are either incident or adjacent. The total graph T (G) of the

graph G = (V (G), E(G)), has vertex set V (G) ∪ E(G), and two vertices of T (G) are adjacent

whenever they are neighbors in G. It is easy to see that T (G)always contains both G and Line

graph L(G) as a induced subgraphs. The total graph is the largest graph that is formed by the

adjacent relations of elements of a graph.

Fig.1

Definition 4.2 The Cartesian product of two graphs G1 and G2, denoted by G1xG2, is defined

as follows:

V (G1xG2) = V (G1)xV (G2), two vertices (u1, u2) and (v1, v2) are adjacent if and only

if u1 = v1 and u2v2 ∈ E(G2) or u1v1 ∈ E(G1) and u2 = v2. The Cartesian product of

n graphs G1, G2, · · · , Gn denoted by G1xG2x · · ·xGn is defined inductively as the Cartesian

product G1xG2x · · ·xGn−1 and Gn.

Theorem 4.1 The Smarandachely scattering number of T (Pn) order of 2n-1 is

γS(T (Pn)) = 2− ⌊√
1 + 2n

⌋ − ⌈
1 + 2n− 2

⌊√
1 + 2n

⌋⌊√
1 + 2n

⌋ ⌉
.
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Proof If we remove p vertices from graph T (Pn), then the number of the remaining con-

nected components is at most
⌊

p
2

⌋
+1. In this case the order of the largest remaining component

is m(G−X) �
2n−1−p

� p
2 �+1

. So,

γS(T (Pn)) � maxp

{
p

2
+ 1− p− 2n− 1− p

p
2 + 1

}
.

The function p
2 +1−p− 2n−1−p

p
2 +1 takes its maximum value at p = −2+2

√
1 + 2n. Then we write

this p value in the definitions of w and m to calculate the Smarandachely scattering number as

follows:

w =
⌊√

1 + 2n
⌋
, m =

⌈
1 + 2n− 2

⌊√
1 + 2n

⌋⌊√
1 + 2n

⌋ ⌉
,

γS =
⌊√

1 + 2n
⌋ − (−2 + 2

⌊√
1 + 2n

⌋ )− ⌈
1 + 2n− 2

⌊√
1 + 2n

⌋⌊√
1 + 2n

⌋ ⌉
and

γS(T (Pn)) = 2− ⌊√
1 + 2n

⌋ − ⌈
1 + 2n− 2

⌊√
1 + 2n

⌋⌊√
1 + 2n

⌋ ⌉
This completes the proof. �

Theorem 4.2 The Smarandachely scattering number of T (Cn) order of 2n is

γS(T (Cn)) = −
⌊√

2n
⌋

+ 2 −
⌈

2n⌊√
2n
⌋⌉ .

Proof If we remove p vertices from graph T (Cn), then the number of the remaining

connected components is at most
⌊

p
2

⌋
. In this case the order of the largest remaining component

is m(T (Cn)−X) �
2n−p

� p
2 � . So,

γS(T (Cn)) � maxp

{
p

2
− p− 2n− p

p
2

}
.

The function p
2 − p − 2n−p

p
2

takes its maximum value at p = 2
√

2n. Then we write this p

value in the definitions of w and m to calculate the Smarandachely scattering number.

γS(T (Cn)) =
2
⌊√

2
√

n
⌋

2
− 2

⌊√
2
√

n
⌋
− 2n− 2

⌊√
2
√

n
⌋

2�√2
√

n�
2

,

γS(T (Cn)) = −2
⌊√

2
√

n
⌋
− 2n− 2

⌊√
2
√

n
⌋⌊√

2
√

n
⌋ ,

then

γS(T (Cn)) = −
⌊√

2n
⌋

+ 2−
⌈

2n⌊√
2n
⌋⌉ . �
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Theorem 4.3 The Smarandachely scattering number of T (S1,n) order of 2n + 1 is

r(T (S1,n)) = −2.

Proof Our proof is divided into two cases following.

Case 1 Let |X | � α (S1,n) + α (Kn) = 1 + (n− 1) = n be a cut set of vertices of T (S1,n). The

number of the components inT (S1,n)is at most p, after removing p vertices. If |X | = n, then

w(T (S1,n)−X = n. In this case the order of the largest remaining component is

m(T (S1,n)−X) �

⌈
2n + 1− n

n

⌉
�

⌈
n + 1

n

⌉
� 2.

Hence

w(T (S1,n)−X)− |X | −m(T (S1,n)−X) � n− n− 2 � −2.

Case 2 Let us take |X | � n. We assume |X | = n + 1. In this case,

w(T (S1,n)−X) � 2n + 1− |X | = 2n + 1− n− 1 = n,

w(T (S1,n)−X) � n.

The order of the largest remaining component is

m(T (S1,n)−X) �

⌈
2n + 1− |X |
2n + 1− |X |

⌉
= 1,

m(T (S1,n)−X) � 1.

Hence

w(T (S1,n)−X)− |X | −m(T (S1,n)−X) � n− (n + 1)− 1

w(T (S1,n)−X)− |X | −m(T (S1,n)−X) � −2

From the choice of X and the definition of the Smarandachely scattering number, we obtain

γS(T (S1,n)) = −2.

It is easy to see that there is a vertex cut set X∗ of T (S1,n) such that | X∗| = n, w(T (S1,n)−
X∗) = nand m(T (S1,n)−X∗) = 2. From the definition of the Smarandachely scattering num-

ber, we have r(T (S1,n)) � w(T (S1,n)−X∗)− |X∗| −m(T (S1,n)−X∗) = −2. This implies that

r(T (S1, n)) = −2. �

Theorem 4.4 For n ≥ 3, the Smarandachely scattering number of T (K2xPn) of order 5n− 2

is

γS(T (K2xPn)) = −2
⌈√

6 + 15n
⌉

+ 8.
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Proof There exist at most
⌊

p
4

⌋
+1 components when p vertices are removed from the graph.

The order of the largest remaining component is m(T (K2xPn)− |X |) �
5n−2−p

� p
4�+1

. So,

γS(T (K2xPn)) � maxp

{
p

4
+ 1− p− 5n− 2− p

p
4 + 1

}
.

The function p
4 +1−p− 5n−2−p

p
4 +1 takes its maximum value at p = −4+ 4

3

√
(6 + 15n).

Then we obtain

γS(T (K2xPn)) = −2
⌈√

6 + 15n
⌉

+ 8.

This completes the proof. �

Theorem 4.5 The Smarandachely scattering number of T (K2xCn) order of 5n is

γS (T (K2 xCn)) � 6− ⌈√
60n + 24

⌉
.

Proof The number of the components is at most
⌊

p+6
4

⌋− 1 when p vertices are removed.

The number of vertices in each component is at least m(T (K2xCn) - |X| ) �
5n−p

� p+6
4 �−1

. So,

γS(T (K2xCn)) � maxp

{
p + 6

4
− 1− p− 20n− 4p

p + 2

}
.

The function p+6
4 −1−p− 20n−4p

p+2 takes its maximum value at p = −2+ 2
3

√
9 + 3 (20n + 5).

Hence we obtain

γS (T (K2 xCn)) � 6− ⌈√
60n + 24

⌉
.

This completes the proof. �

§5. Conclusion

If we want to design a communications network, we wish it as stable as possible. Any com-

munication network can be modeled by a connected graph. In graph theory, we have many

stability measures such as connectivity, toughness, integrity and tenacity. The Smarandachely

scattering number is the new parameter which measures the vulnerability of a graph G. When

we design two networks which have the same number of processors, if we want to choose the

more stable one from two graphs with the same number of vertices, it is enough to choose the

one whose The Smarandachely scattering number is greater.
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§1. Introduction

We follow the standard notation of q-series [4] and we always assume that |q| < 1. The q-shifted

factorials (a; q)n and (a; q)∞ are defined as

(a; q)n = (a)n :=

⎧⎨⎩1, if n = 0,

(1− a)(1− aq)(1− aq2)...(1 − aqn), if n � 1

and

(a; q)∞ = (a)∞ := (1− a)(1− aq)(1 − aq2) · · · .

The basic hypergeometric series r+1ϕr is defined by

r+1ϕr

⎡⎣ a1, a2, · · · , ar+1

b1, b2, · · · , br

; z

⎤⎦ :=

∞∑
n=0

(a1)n(a2)n · · · (ar+1)n

(q)n(b1)n(b2)n · · · (br)n
zn, |z| < 1.

One of the most classical identities in q-series is the q-binomial theorem, due to Cauchy:

1Received Oct.3, 2009. Accepted Nov. 8, 2009.
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1ϕ0

⎡⎣ a

−
; z

⎤⎦ =
(az)∞
(z)∞

, |z| < 1, (1.1)

Another classical q-series identity in q-series is Heine’s q-analogue of the Gauss 2F1 summation

formula:

2ϕ1

⎡⎣ a, b

c
;

c

ab

⎤⎦ =
(c/a)∞(c/b)∞
(c)∞(c/ab)∞

,
∣∣∣ c

ab

∣∣∣ < 1. (1.2)

Heine deduced (1.2) as a particular case of his transformation formula [5]

2ϕ1

⎡⎣ a, b

c
; z

⎤⎦ =
(b)∞(az)∞
(c)∞(z)∞

2ϕ1

⎡⎣ c/b, z

az
; b

⎤⎦ , |z| < 1, |b| < 1. (1.3)

Another interesting transformation formula due to Sear’s [7] is

3ϕ2

⎡⎣ a, b, c

d, e
;

de

abc

⎤⎦ =
(e/a)∞(de/bc)∞
(e)∞(de/abc)∞

3ϕ2

⎡⎣ a, d/b, d/c

d, de/bc
; e/a

⎤⎦ , (1.4)

|de/abc| < 1, |e/a| < 1. The basic bilateral hypergeometric series rψris defined by

rψr

⎡⎣ a1, a2, · · · , ar

b1, b2, · · · , br

; z

⎤⎦ :=

∞∑
n=−∞

(a1)n(a2)n · · · (ar)n

(b1)n(b2)n · · · (br)n
zn,

∣∣∣ b1b2···br

a1a2···ar

∣∣∣ < |z| < 1. There are many generalizations of q-binomial theorem (1.1) of which, one

of the interesting is the following Ramanujan’s 1ψ1 summation [1] [6]:

1ψ1

⎡⎣ a

b
; z

⎤⎦ =
(az)∞(b/a)∞(q/az)∞(q)∞
(z)∞(q/a)∞(b/az)∞(b)∞

, |b/a| < |z| < 1. (1.5)

A variety of proofs have been given of (1.5). For more details of (1.5), one may refer [1],

[4]. H. Exton [3, p. 305] has given following two 3ψ3 basic bilateral series summation formula

without proof :

3ψ3

⎡⎣ a, b, cq

d, bq, c
;
1

a

⎤⎦ =
(1− (b/c))(d/b)∞(bq/a)∞(q)2∞

(1− (1/c))(q/b)∞(q/a)∞(bq)∞(d)∞
, (1.6)

|d| < 1, |1/a| < 1 and

3ψ3

⎡⎣ a, b, cq

d, bq, c
;
q

a

⎤⎦ =
(1− (c/b))(d/b)∞(bq/a)∞(q)2∞
(1− c)(q/b)∞(q/a)∞(bq)∞(d)∞

, (1.7)
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|d/q| < 1, |q/a| < 1. Exton [3, p. 305] has incorrectly given (q/c)∞ instead of (q/b)∞ in the

denominator of (1.7). W. Chu [2], deduced (1.6) and (1.7) as a special cases of his integral-

summation formula. In this paper, we give a proof of (1.6) and (1.7) on the lines of G. E.

Andrews and R. Askey [1] proof of (1.5).

§2. Proof of (1.6) and (1.7)

Lemma 2.1 We have

a

d
(1− d) 3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦+ (1− (a/d)) 3ψ3

⎡⎣ a, b, c

dq, e, f
; z

⎤⎦

=
(1− d)(1 − (e/q))(1− (f/q))

z(1− (b/q))(1− (c/q))
3ψ3

⎡⎣ a, b/q, c/q

d, e/q, f/q
; z

⎤⎦ , (2.1)

((d/q)− b)

1− b
3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦− (d− a)

(q − a)
3ψ3

⎡⎣ a/q, bq, c

d, e, f
; z

⎤⎦
=

z((a/q)− b)(1− c)

(1− e)(1 − f)
3ψ3

⎡⎣ a, bq, cq

d, eq, fq
; z

⎤⎦ , (2.2)

b(d− 1)(d− a)

d(d− b)
3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦ = (1 − (a/d)) 3ψ3

⎡⎣ a, b, c

dq, e, f
; z

⎤⎦
+

(d− 1)(d− a)(1− (e/q))(1− (f/q))

z((d/q)− (b/q))(1− (c/q))(q − a)
3ψ3

⎡⎣ a/q, b, c/q

d, e/q, f/q
; z

⎤⎦ , (2.3)

[
f − (a/q)− (d− a)

(q − a)

]
3ψ3

⎡⎣ a/q, bq, c

d, e, f
; z

⎤⎦ =
((d/q)− f)(f − (a/q))

(1− f)

3ψ3

⎡⎣ a/q, bq, c

d, e, fq
; zq

⎤⎦− ((d/q)− f)

(1− f)
3ψ3

⎡⎣ a, bq, c

d, e, fq
; z

⎤⎦ . (2.4)

Proof of (2.1). It is easy to see that

a 3ψ3

⎡⎣ a, b, c

dq, e, f
; zq

⎤⎦+
a(1− d)

d
3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦
=

a

d

∞∑
n=−∞

(a)n(b)n(c)n

(dq)n−1(e)n(f)n
zn

[
dqn

(1− dqn)
+ 1

]
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=
a

d

∞∑
n=−∞

(a)n(b)n(c)n

(dq)n(e)n(f)n
zn.

Hence,

a 3ψ3

⎡⎣ a, b, c

dq, e, f
; zq

⎤⎦+
a(1− d)

d
3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦ =
a

d
3ψ3

⎡⎣ a, b, c

dq, e, f
; z

⎤⎦ . (2.5)

Also, we have

3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦− a 3ψ3

⎡⎣ a, b, c

d, e, f
; zq

⎤⎦ =

∞∑
n=−∞

(a)n+1(b)n(c)n

(d)n(e)n(f)n
zn

=
(1 − (d/q))(1 − (e/q))(1− (f/q))

z(1− (b/q))(1− (c/q))

∞∑
n=−∞

(a)n(b/q)n(c/q)n

(d/q)n(e/q)n(f/q)n
zn.

Thus,

3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦− a 3ψ3

⎡⎣ a, b, c

d, e, f
; zq

⎤⎦

=
(1− (d/q))(1 − (e/q))(1 − (f/q))

z(1− (b/q))(1 − (c/q))
3ψ3

⎡⎣ a, b/q, c/q

d/q, e/q, f/q
; z

⎤⎦ . (2.6)

Changing d to dq in (2.6) and then adding resulting identity with (2.5), we obtain (2.1).

Proof of (2.2). We have

((d/q)− b)

(1− b)

∞∑
n=−∞

(a)n(b)n(c)n

(d)n(e)n(f)n
zn − (d− a)

(q − a)

∞∑
n=−∞

(q/a)n(bq)n(c)n

(d)n(e)n(f)n
zn

=

∞∑
n=−∞

(a)n−1(bq)n−1(c)n

(d)n(e)n(f)n
zn

[
((d/q)− b)(1 − aqn−1)− ((d/q)− (a/q))(1− bqn)

]

=

∞∑
n=−∞

(a)n−1(bq)n−1(c)n

(d)n(e)n(f)n
zn((a/q)− b)(1− dqn−1)

=
z((a/q)− b)(1− c)

(1− e)(1 − f)

∞∑
n=−∞

(a)n(bq)n(cq)n

(d)n(eq)n(fq)n
zn.

This proves (2.2).

Proof of (2.3). Changing b to b/q, c to c/q, e to e/q and f to f/q in (2.2), and multiplying

throughout by q(1−d)(1−(e/q))(1−(f/q))
z(1−(c/q))(d−b) and adding the resulting identity with (2.1), we find (2.3).
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Proof of (2.4). From [8], we have

(1− f) 3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦− ((d/q)− f) 3ψ3

⎡⎣ a, b, c

d, e, fq
; zq

⎤⎦

=
z(1− a)(1− b)(1− c)

(1− fq)(1− e)
3ψ3

⎡⎣ aq, bq, cq

d, eq, fq2
; z

⎤⎦ ,

and

((d/q)− a)

(1 − a)
3ψ3

⎡⎣ a, b, c

d, e, f
; z

⎤⎦− ((d/q)− f)

(1− f)
3ψ3

⎡⎣ aq, b, c

d, e, fq
; z

⎤⎦ .

=
z(f − a)(1 − b)(1− c)

(1− f)(1− fq)(1− e)
3ψ3

⎡⎣ aq, bq, cq

d, eq, fq2
; z

⎤⎦
Eliminating 3ψ3

⎡⎣ aq, bq, cq

d, eq, fq
; z

⎤⎦ between above two identities and then replacing a by a/q and

b by bq , we obtain(2.4).

Proof of (1.6). Setting c = cq, e = bq, f = c and z = 1/a in (2.4), we deduce that

[
c− (a/q)− (d− a)

(q − a)

]
2ψ2

⎡⎣ a/q, cq

d, c
; 1/a

⎤⎦ =
((d/q)− c)(c− (a/q))

(1− c)
1ψ1

⎡⎣ a/q

a
; q/a

⎤⎦

− ((d/q)− c)

(1− c)
1ψ1

⎡⎣ a

d
; 1/a

⎤⎦ .

Employing (1.5) in the right side of the above, we obtain

2ψ2

⎡⎣ a/q, cq

d, c
; 1/a

⎤⎦ = 0. (2.7)

Let

f(d) = 3ψ3

⎡⎣ a, b, cq

d, bq, c
; 1/a

⎤⎦ .
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As a function of d, f(d) is clearly analytic for |d| < 1 and |a| > 1 . Setting c = cq, e = bq,

f = c and z = 1/a in (2.3) and then employing (2.7), we find that

f(d) =
(1− (d/b))

(1− d)
f(dq). (2.8)

Iterating (2.8) n− 1 times , we find that

f(d) =
(d/b)n

(d)n
f(dqn).

Since f(d) is analytic for |d| < 1, |a| > 1, by letting n→∞ , we obtain

f(d) =
(d/b)∞
(d)∞

f(0).

Setting c = cq, d = c, e = bq in (1.4), we deduce that

3ϕ2

⎡⎣ a, b, cq

bq, c
; 1/a

⎤⎦

=
(bq/a)∞(q)∞
(bq)∞(1/a)∞

∞∑
n=0

(a)n(c/b)n(1/q)n

(q)n(c)n(q)n−1
(bq/a)n

=
(bq/a)∞(q)∞
(bq)∞(1/a)∞

(1− a)(1 − (c/b))(1− (1/q))(bq/a)

(1 − q)(1− c)

∞∑
n=0

(aq)n(cq/b)n(1)n

(q)n(cq)n(q2)n
(bq/a)n

=
b(1− (c/b))(bq/a)∞(q)∞

(1− c)(bq)∞(q/a)∞
.

Thus,

f(q) =
(1 − (b/c))(bq/a)∞(q)∞
(1− (1/c))(bq)∞(q/a)∞

.

Setting d = q in (2.9), and using the above, we find that

f(0) =
(1− (b/c))(bq/a)∞(q)2∞

(1− (1/c))(bq)∞(q/a)∞(q/b)∞
.

Using this in (2.9), we deduce that

f(d) =
(1 − (b/c))(bq/a)∞(d/b)∞(q)2∞

(1− (1/c))(bq)∞(q/a)∞(q/b)∞(d)∞
.
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This completes the proof of (1.6).

Proof of (1.7). Setting c = cq, e = bq, f = c and z = q/a in (2.4) and then employing

(1.5), we find that

2ψ2

⎡⎣ a/q, cq

d, c
; q/a

⎤⎦ = 0. (2.9)

Let

f(d) := 3ψ3

⎡⎣ a, b, cq

d, bq, c
; q/a

⎤⎦ .

As a function of d, f(d) is clearly analytic for |d| < 1, when |q/a| < 1. Setting c = cq,

e = bq, f = c and z = q/a in (2.3) and then employing (2.10), we find that

f(d) =
(1− (d/b))

(1− d)
f(dq).

Iterating the above n− 1 times , we get

f(d) =
(d/b)n

(d)n
f(dqn).

Since f(d) is analytic for |d| < 1, |q/a| < 1, by letting n →∞, we obtain

f(d) =
(d/b)∞
(d)∞

f(0).

Setting c = bq, z = q2/a in (1.3) and employing (1.1), we obtain

2ϕ1

⎡⎣ a, b

bq
; q2/a

⎤⎦ =
(bq/a)∞(q)∞
b(bq)∞(q/a)∞

.

Also by (1.2), we deduce that

∞∑
n=1

(a)n(b)n

(q)n(bq)n
(q/a)n =

(bq/a)∞(q)∞
(bq)∞(q/a)∞

.
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Thus,

f(q) =3 ϕ2

⎡⎣ a, b, cq

bq, c
; q/a

⎤⎦
=

1

(1 − c)

⎡⎣
2ϕ1

⎡⎣ a, b

bq
; q/a

⎤⎦− c 2ϕ1

⎡⎣ a, b

bq
; q2/a

⎤⎦⎤⎦
=

(1− (c/b))(bq/a)∞(q)∞
(1− c)(q/a)∞(bq)∞

.

Now setting in d = q in (2.11) and employing above, we find that

f(0) =
(1− (c/b))(bq/a)∞(q)2∞

(1− c)(q/a)∞(bq)∞(q/b)∞
.

Using this in (2.11), we deduce (1.7).
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Abstract: A Smarandache multi-spacetime is such a union spacetime
n⋃

i=1

Si of spacetimes

S1, S2, · · · , Sn for an integer n ≥ 1. In this article, we will be deduced the geodesics of

space-time, i.e., a Smarandache multi-spacetime with n = 1 by using Lagrangian equations.

The deformation retract of space-time onto itself and into a geodesics will be achieved. The

concept of retraction and folding of zero dimension space-time will be obtained.The relation

between limit of folding and retraction presented.

Key Words: Folding, deformation retract, space-time, Smarandache multi-spacetime.

AMS(2000): 53A35, 51H05, 58C05, 51F10, 58B34.

§1. Introduction

The folding of a manifold was, firstly introduced by Robertson in [1977] [14]. Since then many

authers have studied the folding of manifolds such as in [4,6,12,13]. The deformation retracts of

the manifolds defined and discussed in [5,7]. In this paper, we will discuss the folding restricted

by a minimal retract and geodesic. We may also mention that folding has many important

technical applications, for instance, in the engineering problems of buckling and post-buckling

of elastic and elastoplastic shells [1]. More studies and applications are discussed in [4], [8], [9],

[10], [13].

§2. Definitions

1. A subset A of a topological space X is called a retract of X , if there exists a continuous map

r : X → A such that ([2]):

(i) X is open;

(ii)r(a) = a, ∀a ∈ A.

2. A subset A of atopological space X is said to be a deformation retract if there exists a

retraction r : X → A, and a homotopy f : X × I → X such that([2]):

f(x, 0) = x,∀, x ∈ X ;

1Received Oct.15, 2009. Accepted Nov. 18, 2009.
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f(x, 1) = r(x), ∀x ∈ X ;

f(a, t) = a,∀a ∈ A, t ∈ [0, 1].

3. Let M and N be two smooth manifolds of dimensions m and n respectively. A map

f : M → N is said to be an isometric folding of M into N if and only if for every piecewise

geodesic path γ : J → M ,the induced path f ◦ γ : J → N is a piecewise geodesic and of the

same length as γ ([14]). If fdoes not preserve the lengths, it is called topological folding.

4. Let M be an m-dimensional manifold. M is said to be minimal m-dimensional manifold if

the mean curvature vanishes everywhere, i.e., H(σ.p) = 0 for all p ∈M ([3]).

5. A subset A of a minimal manifold M is a minimal retraction of M , if there exists a continuous

map r : M → Asuch that ([12]):

(i)M is open;

(ii)r(M) = A;

(iii)r(a) = a,∀a ∈ A;

(iv)r(M)is minimal manifold.

§3. Main Results

Using the Neugebaure-Bcklund transformation, the space-time T take the form [11]

ds2 = d t2 − d p2 − d z2 − p2dφ2 (1)

Using the relationship between the cylindrical and spherical coordinates, the metric be-

comes

ds
2

= r2(sin2 θ2 − cos2 θ2) dθ
2

2 − r2 sin2 θ2 dθ
2

1 + (cos2 θ2 − sin2 θ2) dr
2

−r2 sin2 θ1 sin2 θ2 dϕ
2 − 4r sin θ2 cos θ2dθ2dr.

The coordinates of space-time T are:

y1 =
√

c1(r, θ2)− r2 sin2 θ2θ2
1

y2 =
√

4r2 cos 2θ2 + k1

y3 =
√

r2 cos 2θ2 + c3(θ2)

y4 =
√

c4(r, θ1, θ2)− r2 sin2 θ1 sin2 θ2φ2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

where c1, k1, c3, c4 are the constant of integrations. Applying the transformation

x2
1 = y2

1 − c1(r, θ2),

x2
2 = y2

2 − k1,

x2
3 = y2

3 − c3(θ2),

x2
4 = y2

4 − c4(r, θ1, θ2)

Then, the coordinates of space-time T becomes:
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x1 = ir sin θ2θ1

x2 = 2r
√

cos 2θ2

x3 = r
√

cos 2θ2

x4 = ir sin θ1 sin θ2φ.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3)

Now, we apply Lagrangian equations

d

ds
(

∂T

∂Gi

)− ∂T

∂Gi
= 0, i = 1, 2, 3, 4.

to find a geodesic which is a subset of the space-time T . Since

T =
1

2
{−r2 cos 2θ2θ

′2
2 − r2 sin2 θ2θ

′2
1 + cos 2θ2r

′2 − r2 sin2 θ1 sin2 θ2φ
′2

−2r sin 2θ2θ
′
2r
′}

then, the Lagrangian equations for space-time T are:

d

ds
(r2 sin2 θ2θ

′
1) + (r2 sin θ1 cos θ1 sin2 θ2φ

′2) = 0 (4)

d
ds(r2 cos 2θ2θ

′
2 + r sin θ2r

′) + (r2 sin 2θ2θ
′2
2 + r2 sin θ2 cos θ2θ

′1
1

+ sin 2θ2r
′2 + r2 sin2 θ1 sin θ2 cos θ2φ

′2 + 2r cos 2θ2θ
′
2r′) = 0

(5)

d
ds(cos 2θ2r

′ − r sin 2θ2θ
′
2) + (r cos 2θ2θ

′2
2 + r sin2 θ2θ

′2
1 +

r sin2 θ1 sin2 θ2φ
′2 + sin 2θ2θ

′
2r′) = 0

(6)

d

ds
(r2 sin2 θ1 sin2 θ2φ

′) = 0. (7)

From equation (7) we obtain r2 sin2 θ1 sin2 θ2φ
1 = constant μ. If μ = 0, we obtain the following

cases:

(i) If r = 0, hence we get the coordinates of space-time T1, which are defined as

x1 = 0, x2 = 0, x3 = 0, x4 = 0,

which is a hypersphere T1, x2
1 − x2

2 − x2
3 − x2

4 = 0 on the null cone since the distance between

any two different points equal zero, it is a minimal retraction and geodesic.

(ii) If sin2θ1 = 0, we get

x1 = 0, x2 = 2r
√

cos 2θ2, x3 = r
√

cos 2θ2, x4 = 0.

Thus, x2
1+x2

2+x2
3+x2

4=5r2 cos 2θ2, which is a hypersphere S1 in space-time T with x1 = x4 = 0.

It is a geodesic and retraction.

(iii) If sin2 θ2 = 0 , then θ2 = 0 we obtain the following geodesic retraction
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x1 = 0, x2 = 2r, x3 = r, x4 = 0, x2
1 + x2

2 + x2
3 − x2

1 = 5r2,

which is the hypersphere S2 ⊂ T with x1 = x4 = 0.

(iv) If φ′ = 0 this yields the coordinate of T2 ⊂ T given by

x1 = ir sin θ2θ1, x2 = 2r
√

cos 2θ2, x3 = r
√

cos 2θ2, x4 = 0.

It is worth nothing that x4 = 0 is a hypersurface T2 ⊂ T . Hence, we can formulate the following

theorem.

Theorem 1 The retractions of space-time is null geodesic, geodesic hyperspher and hypersur-

face.

Lemma 1 In space-time the minimal retraction induces null-geodesic.

Lemma 2 A minimal geodesic in space-time is a necessary condition for minimal retration.

The deformation retract of the space-time T is defined as

ρ : T × I → T

where T is the space-time and I is the closed interval [0,1]. The retraction of the space-time T

is defined as

R : T → T1, T2, S1 and S2.

The deformation retract of space-time T into a geodesic T1 ⊂ T is defined by

ρ(m, t) = (1− t){ir sin θ2 θ1, 2r
√

cos 2θ2, r
√

cos 2θ2,

ir sin θ1 sin θ2φ}+ t{0, 0, 0, 0}.

where ρ(m, 0) = {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}, ρ(m, 1) = {0, 0, 0, 0}.

The deformation retract of space-time T into a geodesic T2 ⊂ T is defined as

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
+ t{ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of space-time T into a geodesic S1 ⊂ T is defined by

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
+ t{0, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.
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The deformation retract of space-time T into a geodesic S2 ⊂ T is defined as

ρ(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}+ t{0, 2r, r, 0}.

Now we are going to discuss the folding � of the space-time T . Let � : T → T , where

�(x1, x2, x3, x4) = (x1, x2, x3, |x4|) (8)

An isometric folding of the space-time T into itself may be defined as

� : {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, ir sin θ1 sin θ2φ}
→ {ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, |ir sin θ1 sin θ2φ|}.

The deformation retract of the folded space-time T into the folded geodesic T1 is

ρ	 : {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|} × I

→ {ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}

with

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}+ t{0, 0, 0, 0}.

The deformation retract of the folded space-time T into the folded geodesicT2 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{ir sin θ2θ1, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of the folded space-time T into the folded geodesic S1 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{0, 2r

√
cos 2θ2, r

√
cos 2θ2, 0}.

The deformation retract of the folded space-time T into the folded geodesic S2 is

ρ	(m, t) = (1− t){ir sin θ2θ1, 2r
√

cos 2θ2, r
√

cos 2θ2, |ir sin θ1 sin θ2φ|}
+ t{0, 2r, r, 0}

Then, the following theorem has been proved.

Theorem 2 Under the defined folding, the deformation retract of the folded space-time into

the folded geodesics is the same as the deformation retract of space-time into the geodesics.
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Now, let the folding be defined as:

�∗(x1, x2, x3, x4) = (x, |x2| , x3, x4). (9)

The isometric folded space-time �(T ) is

R̄ = {ir sin θ2θ1,
∣∣∣2r

√
cos 2θ2

∣∣∣ , r√cos 2θ2, ir sin θ1 sin θ2φ}.

Hence, we can formulate the following theorem.

Theorem 3 The deformation retract of the folded space-time ,i.e., ρ�∗(T ) is different from

the deformation retract of space-time under condition (9).

Now let �1 : T n → T n,

�2 : �1(T
n) → �1(T

n),

�3 : �2(�1(T
n))→ �2(�1(T

n)), · · · ,

�n : �n−1(�n−2 ...(�1(T
n))...)) → �n−1(�n−2...(�1(T

n))...)),

lim
n→∞

�n−1(�n−2 ...(�1(T
n))...)) = n− 1 dimensional space-time T n−1.

Let h1 : T n−1 → T n−1,

h2 : h1(T
n−1)→ h1(T

n−1),

h3 : h2(h1(T
n−1)) → h2(h1(T

n−1), ...,

hm : hm−1(hm−2 ...(h1(T
n−1))...)) → hm−1(hm−2 ...(h1(T

n−1))...)),

limhm(hm : hm−1(hm−2 ...(h1(T
n−1))...)) = n− 2 dimensional space-time T n−2.

Consequently, lim
s→∞

lim
m→∞

lim
n→∞

...ks(hm(�n(T n))) = 0-dimensional space-time. Hence, we

can formulate the following theorem.

Theorem 4 The end of the limits of the folding of space-time T n is a 0-dimensional geodesic,

it is a minimal retraction.

Now let f1 be the foldings and ri be the retractions. then we have

T n f1
1−→ T n

1

f1
2−→ T n

2 −→ · · ·T n
n−1

lim f1
i−→ T n−1,

T n r1
1−→ T n

1

r1
2−→ T n

2 −→ · · ·T n
n−1

lim r1
i−→ T n−1,

T n f2
1−→ T n−1

1

f2
2−→ T n−1

2 −→ · · ·T n
n−1

lim f2
i−→ T n−2, · · · ,

T n−1 r1
1−→ T n−1

1

r2
2−→ T n−1

2 −→ · · · T n
n−1

lim r2
i−→ T n−2, · · · ,

T 1 fn
1−→ T 1

1

fn
2−→ T 1

2 −→ · · ·T 1
n−1

lim fn
i−→ T 0,

T 1 rn
1−→ T 1

1

rn
2−→ T 1

2 −→ · · ·T 1
n−1

lim fn
i−→ T 0.

Then the end of the limits of foldings = the limit of retractions = 0-dimensional space-time.

Whence, the following theorem has been proved.
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Theorem 5 In space-time the end of the limits of foldings of T n into itself coincides with the

minimal retraction.
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Abstract: A Cayley graph is constructed out of a group Γ and its generating set X and it is

denoted by C(Γ, X). A Smarandachely n-Cayley graph is defined to be G = ZC(Γ, X), where

V (G) = Γ × Zn and E(G) = {((x, 0), (y, 1))a, ((x, 1), (y, 2))a, · · · , ((x,n − 2), (y, n − 1))a :

x, y ∈ Γ, a ∈ X such that y = x ∗ a}. Particularly, a Smarandachely 2-Cayley graph is

called as a Bi-Cayley graph, denoted by BC(Γ, X). Necessary and sufficient conditions for

the existence of an efficient dominating set and an efficient open dominating set in Bi-Cayley

graphs are determined.

Key Words: Cayley graphs, Smarandachely n-Cayley graph, Bi-Cayley graphs, efficient

domination, efficient open domination, covering of a graph.

AMS(2000): 05C69.

§1. Introduction

The terminology and notation in this paper follows that found in [3]. The fact that Cayley

graphs are excellent models for interconnection networks, investigated in connection with par-

allel processing and distributed computation. The concept of domination for Cayley graphs

has been studied by various authors and one can refer to [2, 4, 6]. I.J. Dejter, O. Serra [2],

J.Huang, J-M. Xu [4] obtained some results on efficient dominating sets for Cayley graphs.

The existence of independent perfect dominating sets in Cayley graphs was studied by J.Lee

[6]. Tamizh Chelvam and Rani [8-10], obtained the domination, independent domination, total

domination and connected domination numbers for some Cayley graphs constructed on Zn for

some generating set of Zn.

Let (Γ, ∗) be a group with e as the identity and X be a symmetric generating set(if a ∈ X ,

then a−1 ∈ X) with e /∈ X . The Cayley graph G = C(Γ, X), where V (G) = Γ and E(G) =

{(x, y)a/x, y ∈ V (G), a ∈ X such that y = x∗a}. Since X is a generating set for Γ, C(Γ, X) is a

connected and regular graph of degree |X |. The Bi-Cayley graph is defined as G = BC(Γ, X),

where V (G) = Γ × {0, 1} and E(G) = {((x, 0), (y, 1))a/x, y ∈ Γ, a ∈ X such that y = x ∗ a}.
Now the operation + is defined by (x, 0) + (y, 1) = (x ∗ y, 1) and (x, 0) + (y, 0) = (x ∗ y, 0).

1Received Oct.9, 2009. Accepted Nov. 20, 2009.
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The Smarandachely n-Cayley graph is defined to be G = ZC(Γ, X), where V (G) = Γ×Zn and

E(G) = {((x, 0), (y, 1))a, ((x, 1), (y, 2))a, · · · , ((x, n − 2), (y, n− 1))a : x, y ∈ Γ, a ∈ X such that

y = x ∗ a}. When n = 2, the Smarandachely n-Cayley graphs are called as Bi-Cayley graphs.

By the definition of Bi-Cayley graph, it is a regular graph of degree |X |.
A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex

v ∈ V − S is adjacent to an element u of S. The domination number γ(G) is the minimum

cardinality among all the dominating sets in G [3] and a corresponding dominating set is

called a γ-set. A dominating set S is called an efficient dominating set if for every vertex

v ∈ V, |N [v] ∩ S| = 1. Note that if S is an efficient dominating set then {N [v] : v ∈ S} is a

partition of V (G) and if G has an efficient dominating set, then all efficient dominating sets

in G have the same cardinality namely γ(G). A set S ⊆ V is called a total dominating set

if every vertex v ∈ V is adjacent to an element u(	= v) of S. The total domination number

γt(G) of G equals the minimum cardinality among all the total dominating sets in G [3] and a

corresponding total dominating set is called a γt-set. A dominating set S is called an efficient

open dominating set if for every vertex v ∈ V, |N(v) ∩ S| = 1.

A graph G̃ is called covering of G with projection f : G̃ → G if there is a surjection

f : V (G̃) → V (G) such that f |N(ṽ) : N(ṽ) → N(v) is a bijection for any vertex v ∈ V (G) and

ṽ ∈ f−1(v). Also the projection f : G̃→ G is said to be an n-fold covering if f is n−to-one.

In this paper, we prove that the Bi-Cayley graph obtained from Cayley graph for an Abelian

group (Γ, ∗) has an efficient dominating set if and only if it is a covering of the graph Kn ×K2.

It is also proved that the Bi-Cayley graph obtained from Cayley graph for an Abelian group

(Γ, ∗) has an efficient open dominating set if and only if it is a covering of the graph Kn,n.

Theorem 1.1([4]) Let G be a k−regular graph. Then γ(G) ≥ |V (G)|
k+1 , with the inequality if and

only if G has an efficient dominating set.

Theorem 1.2([6]) Let p : G̃ → G be a covering and let S be a perfect dominating set of G.

The p−1(S) is a perfect dominating set of G̃. Moreover, if S is independent, then p−1(S) is

independent.

Theorem 1.3([3]) If G has an efficient open dominating set S, then |S| = γt(G) and all

efficient open dominating sets have the same cardinality.

§2. Efficient Domination and Bi-Cayley Graphs

In this section, we find the necessary and sufficient condition for the existence of an efficient

dominating set in BC(Γ, X). Since BC(Γ, X) is regular bi-partite graph, in BC(Γ, X) every

efficient dominating set S is of the form S = A∪B where A ⊆ (Γ× 0)∩S and B ⊆ (Γ× 1)∩ S

with |A| = |B| = |S|
2 .

Through out this section, the vertex set of V (Kn ×K2) is taken to be {a1, a2, · · · , an, b1, b2,

· · · , bn} such that 〈{a1, a2, · · · , an}〉, 〈{b1, b2, · · · , bn}〉 are null graphs and (ai, bj) ∈ E(Kn ×K2)

if and only if i 	= j.
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Lemma 2.1 Let S1, S2, · · · , Sn be n efficient dominating sets of BC(Γ, X) which are mutually

pairwise disjoint. Then the induced subgraph G̃ =< S1 ∪ S2 ∪ · · · ∪ Sn > is a m−fold covering

graph of the graph G = Kn ×K2, where m = |Si|
2 for each i = 1, 2, · · · , n.

Proof Note that in a graph all the efficient dominating sets have the same cardinality.

Since S1 is efficient, S1 = A1 ∪ B1 where A1 ⊆ (Γ × 0) ∩ S1 and B1 ⊆ (Γ × 1) ∩ S1 with

|A1| = |B1| = |S1|
2 . Define Ai = N(B1) ∩ Si and Bi = N(A1) ∩ Si for 2 ≤ i ≤ n. Note that

Ai ⊂ Γ× 0 and Bi ⊂ Γ× 1 for 1 ≤ i ≤ n and G̃ =< A1 ∪B1 ∪A2 ∪B2 ∪ · · · ∪An ∪Bn >.

Let V (G) = {a1, a2, · · · , an, b1, b2, · · · , bn}. Define f : G̃ → G by f(s) = ai if s ∈ Ai

and f(s) = bi if s ∈ Bi for 1 ≤ i ≤ n. Let v ∈ V (G). Suppose v = ai. Then N(v) =

{b1, b2, . . . , bi−1, bi+1, bi+2, · · · , bn} and f−1(v) = Ai. Let ṽ ∈ f−1(v). Since Si’s are efficient,

N(ṽ) = {β1, β2, · · · , βi−1, βi+1, · · · , βn} where βj ∈ Bj for 1 ≤ j ≤ i − 1 and i + 1 ≤ j ≤ n.

By the definition of f , we have f(βj) = bj. Thus f : N(ṽ) → N(v) is a bijection when

v = ai. Similarly one can prove that f : N(ṽ) → N(v) is a bijection when v = bi. Since
|Si|
2 = |Ai| = |Bi| = m for all 1 ≤ i ≤ n, f is an m−fold covering of the graph Kn ×K2. �

Theorem 2.2 Let G = BC(Γ, X) and n be a positive integer. Then G is a covering graph of

Kn ×K2 if and only if G has a vertex partition of n efficient dominating sets.

Proof Suppose G is a covering of Kn ×K2. Since {ai, bi} is an efficient dominating

set in Kn ×K2, by Theorem 1.2, we have f−1({ai, bi}) is an efficient dominating set in G

for 1 ≤ i ≤ n. Since f is a function, f−1({ai, bi}) ∩ f−1({aj , bj}) = ∅ for i 	= j. Hence

{f−1({ai, bi}) : 1 ≤ i ≤ n} is a vertex partition of efficient dominating sets in G. The other

part follows from Lemma 2.1. �

Lemma 2.3 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ and let

S be an efficient dominating set for the Bi-Cayley graph G = BC(Γ, X). Then we have the

following:

(a) For each 1 ≤ i ≤ n, S + (xi, 0) is an efficient dominating set.

(b) {S, S + (x1, 0), S + (x2, 0), · · · , S + (xn, 0)} is a vertex partition in BC(Γ, X).

Proof (a) Let (v, 0) ∈ V (G). If (x−1
i ∗ v, 0) ∈ S, then (v, 0) ∈ S + (xi, 0). Suppose

(x−1
i ∗ v, 0) /∈ S. Since S is efficient, there exists unique (s, 1) ∈ S such that s = (x−1

i ∗ v)∗x for

some x ∈ X . That is xi∗s = v∗x. Hence the vertex (v, 0) is dominated by (xi∗s, 1) ∈ S+(xi, 0).

Thus in all the cases we have (v, 0) ∈ N [S + (xi, 0)]. Similarly when (v, 1) ∈ V (G), one can

prove that (v, 1) ∈ N [S + (xi, 0)]. Thus S + (xi, 0) is a dominating set for 1 ≤ i ≤ n. Since S is

efficient and |S + (xi, 0)| = |S|, by Theorem 1.1, we have S + (xi, 0) is an efficient dominating

set for 1 ≤ i ≤ n.

(b) Since S is a dominating set, for every (u, 0) ∈ V (G), we have (u, 0) ∈ S or (u, 0) is

adjacent to some vertex (s, 1) ∈ S and so u = s ∗ xi for some xi ∈ X . Similar thing is holds for

(u, 1) ∈ V (G). This means that V (G) = S ∪ (S + (x1, 0)) ∪ (S + (x2, 0)) ∪ · · · ∪ (S + (xn, 0)).

Since G is |X |−regular and S is an efficient dominating set, |S| = 2|Γ|
|X|+1 . That is 2|Γ| =

(|X | + 1)|S|. Since |S| = |S + (x1, 0)| = |S + (x2, 0)| = · · · = |S + (xn, 0)|, one can conclude
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that {S, S + (x1, 0), S + (x2, 0), · · · , S + (xn, 0)} is a vertex partition of G. �

From Lemmas 2.1, 2.3 one can have the following:

Corollary 2.4 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ and let S

be an efficient dominating set in BC(Γ, X). If (xi, 0)+S = S +(xi, 0) for each 1 ≤ i ≤ n, then

there exist a covering f : BC(Γ, X)→ Kn+1 ×K2 such that S, S + (x1, 0), S + (x2, 0), · · · , S +

(xn, 0) are the fibers of {ai, bi} under the map f .

Now we define the following: For S ⊂ V (BC(Γ, X)), define S0 = S ∪ {(e, 0)}.

Theorem 2.5 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ and let

M be a normal subset of Γ and S = (M × 0) ∪ (M × 1). Then the following are equivalent.

(a) S is an efficient dominating set in BC(Γ, X).

(b) There exists a covering f : BC(Γ, X) → Kn+1 ×K2 such that f−1({ai, bi}) = S for

some 1 ≤ i ≤ n.

(c) |S| = 2|Γ|
|X|+1 and S ∩ [S + (((X × 0)0 + (X × 0)0)− {(e, 0)})] = ∅.

Proof (a) ⇒ (b) : Since M is a normal subset, we have (xi, 0) + S = S + (xi, 0) for

1 ≤ i ≤ n and so the proof follows from Corollary 2.4.

(b)⇒ (a) : Since {ai, bi} is an efficient dominating set in Kn ×K2, the proof follows from

Theorem 1.2.

(a) ⇒ (c) : Since S is an efficient dominating set and G is |X |−regular, the fact |S| = 2|Γ|
|X|+1

follows from Theorem 1.1. Suppose S∩ [S +(((X×0)0 +(X×0)0)−{(e, 0)})] 	= ∅ . Then there

exist (s, 0)(or (s, 1)) ∈ S such that (s, 0) = (s1, 0)+ (x, 0)+ (x1, 0) with x, x1 ∈ X, x 	= x−1
1 and

(s1, 0) (or (s1, 1)) ∈ S. Since x 	= x−1
1 , we have s 	= s1. Thus s∗x−1 = s1 ∗x1 and so (s1 ∗x1, 1)

is adjacent to two vertices (s, 0), (s1, 0) ∈ S, a contradiction to S is efficient.

(c) ⇒ (a) : Let xi, xj ∈ X with xi 	= xj . Suppose (S + (xi, 0)) ∩ (S + (xj , 0)) 	= ∅. Let

a ∈ (S +(xi, 0))∩ (S +(xj , 0)). Then a = (s1, 0)+ (xi, 0) = (s2, 0)+ (xj , 0) or (s1, 1)+ (xi, 0) =

(s2, 1) + (xj , 0). Hence s1 ∗ xi = s2 ∗ xj and so s1 = s2 ∗ xj ∗ x−1
i . Since xi 	= xj , we have

x−1
i ∗xj 	= e. Thus (s1, 0) ∈ S∩ [S+(((X×0)0+(X×0)0)−{(e, 0)})], a contradiction. Suppose

S∩(S+(x, 0)) 	= ∅ for some x ∈ X . Then (s, 0) = (s1, 0)+(x, 0) or (s, 1) = (s1, 1)+(x, 0). Thus

(s, 0) = (s1, 0) + (x, 0) + (e, 0) or (s, 1) = (s1, 1) + (x, 0) + (e, 0). Since x 	= e, (s, 0) ∈ S ∩ [S +

(((X×0)0+(X×0)0)−{(e, 0)})], a contradiction. Thus S∪{S+(xi, 0) : 1 ≤ i ≤ n} is a collection

of pairwise disjoint sets. Now N [S] =
⋃

s∈S

N [s] =
⋃

s∈S

[s + (X × 0)0] =
⋃

(x,0)∈(X×0)0
[S + (x, 0)].

Since |S + (x, 0)| = |S|, |N [S]| = |S||(X × 0)0| = |S|(|X | + 1) = |S|(2|Γ|
|S| ) = 2|Γ|. Thus S is a

dominating set. Since |S| = 2|Γ|
|X|+1 , by Theorem 1.1, S is an efficient dominating set. �

§3. Efficient Open Domination and Bi-Cayley Graphs

In this section, we find the necessary and sufficient condition for the existence of an efficient

open dominating set in BC(Γ, X). Note that if S is an efficient open dominating set of a graph
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G, then {N(v) : v ∈ S} is a partition of V (G) and if G has an efficient open dominating set,

then all efficient open dominating sets in G have the same cardinality namely γt(G).

Through out this section, the vertex set of Kn,n is taken as {c1, c2, · · · , cn, d1, d2, · · · , dn}
where no two ci’s are adjacent and no two di’s are adjacent.

Remark 3.1 If S is an efficient open dominating set in G = BC(Γ, X), then |S| is even and

we can write S = C ∪D where |C| = |D| = |S|
2 and every edge of 〈C ∪D〉 has one end in C

and another end in D. Note that if G is a k−regular graph, then γt(G) ≥ |V (G)|
k and equality

holds if and only if G has an efficient open dominating set.

Lemma 3.1 Let S1, S2, · · · , Sn be n mutually pairwise disjoint efficient open dominating sets

of BC(Γ, X). Then the induced subgraph G̃ = 〈S1 ∪ S2 ∪ · · · ∪ Sn〉 is a m−fold covering graph

of G = Kn,n, where m = |Si|
2 for each i = 1, 2, · · · , n.

Proof Since Si is efficient open for each 1 ≤ i ≤ n, we have Si = Ci∪Di where Ci ⊆ (Γ×0)∩
Si and Di ⊆ (Γ×1)∩Si with |Ci| = |Di| = |Si|

2 and every edge in the induced subgraph 〈Ci ∪Di〉
has one end in Ci and other in Di. Note that G̃ = 〈C1 ∪D1 ∪C2 ∪D2 ∪ · · · ∪ Cn ∪Dn〉. Let

V (G) = {c1, c2, · · · , cn, d1, d2, · · · , dn}.
Define f : G̃ → G by f(s) = ci if s ∈ Ci and f(s) = di if s ∈ Di for 1 ≤ i ≤ n. Let

v ∈ V (G). Suppose v = ci. Then N(v) = {d1, d2, . . . , dn} and f−1(v) = Ci. Let ṽ ∈ f−1(v).

Since Si’s are efficient open, N(ṽ) = {β1, β2, · · · , βn} where βj ∈ Dj for 1 ≤ j ≤ n. By the

definition of f , we have f(βj) = dj . Thus f : N(ṽ)→ N(v) is a bijection when v = ci. Similarly

one can prove that f : N(ṽ) → N(v) is a bijection when v = di. Since |Si|
2 = |Ci| = |Di| = m

for all 1 ≤ i ≤ n, f is an m−fold covering of the graph Kn,n. �

Remark 3.3 Let f : G̃ → G be a covering and S be an efficient open dominating set of G.

By the definition of an efficient open domination, S is perfect and so by Theorem 1.2, f−1(S)

is perfect. That is |N(ṽ) ∩ f−1(S)| = 1 for all ṽ ∈ G̃ − f−1(S). Let ṽ ∈ f−1(S). Then

f(ṽ) = v ∈ S. Since S is an efficient open dominating set, there exist unique w ∈ S such that v

and w are adjacent. Since f |N(ṽ) : N(ṽ) → N(v) is a bijection, w̃ = f−1(w) is the only vertex

adjacent to ṽ in f−1(S). That is |N(ṽ) ∩ f−1(S)| = 1 for all ṽ ∈ f−1(S). Hence inverse image

of an efficient open dominating set under a covering function is an efficient open dominating

set.

Theorem 3.4 Let G = BC(Γ, X) and n be a positive integer. Then G is a covering of Kn,n if

and only if G has a vertex partition of efficient open dominating sets.

Proof Suppose G is a covering graph of Kn,n. Since the pair {ci, di} is an efficient open

dominating set in Kn,n, by Remark 3.3, f−1({ci, di}) is an efficient open dominating set in G

for 1 ≤ i ≤ n. Since f is a function, {f−1({ci, di}) : 1 ≤ i ≤ n} is a partition of efficient open

dominating sets in G. The other part follows from Lemma 3.2. �

Lemma 3.5 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ and let S

be an efficient open dominating set for the Bi-Cayley graph G = BC(Γ, X). Then we have the

following:
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(a) For each 1 ≤ i ≤ n, S + (xi, 0) is an efficient open dominating set.

(b) {S + (x1, 0), S + (x2, 0), · · · , S + (xn, 0)} is a vertex partition of BC(Γ, X).

Proof (a) Let (v, 0) ∈ V (G). Consider the vertex (x−1
i ∗ v, 0) ∈ V (G). Since S is an

open dominating set, there exists (s, 1) ∈ S such that s = (x−1
i ∗ v) ∗ x for some x ∈ X .

That is xi ∗ s = v ∗ x. Hence the vertex (v, 0) is dominated by (xi ∗ s, 1) ∈ S + (xi, 0) and so

(v, 0) ∈ N(S+(xi, 0)). Similarly when (v, 1) ∈ V (G), one can prove that (v, 1) ∈ N(S+(xi, 0)).

Thus S+(xi, 0) is an open dominating set for 1 ≤ i ≤ n. Since S is an efficient open dominating

set and |S| = |S + (xi, 0)|, by Remark 3.1, S + (xi, 0) is an efficient open dominating set for

1 ≤ i ≤ n.

(b) Since S is an open dominating set, for every (u, 0) ∈ V (G) there exists (s, 1) ∈ S such

that u = s ∗ xi for some xi ∈ X . Similar thing is holds for (u, 1) ∈ V (G). This means that

V (G) = (S + (x1, 0)) ∪ (S + (x2, 0)) ∪ · · · ∪ (S + (xn, 0)). Since G is |X |−regular and S is an

efficient open dominating set, |S| = 2|Γ|
|X| . That is 2|Γ| = |X | |S|. Since |S| = |S + (x1, 0)| =

|S+(x2, 0)| = · · · = |S+(xn, 0)|, one can conclude that {S, S+(x1, 0), S+(x2, 0), · · · , S+(xn, 0)}
is a vertex partition of G. �

From the proof of Lemma 3.2 and by Lemma 3.5, the following corollary follows:

Corollary 3.6 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ and let S

be an efficient dominating set in BC(Γ, X). If (xi, 0)+S = S +(xi, 0) for each 1 ≤ i ≤ n, then

there exists a covering f : BC(Γ, X) → Kn,n such that S + (x1, 0), S + (x2, 0), · · · , S + (xn, 0)

are the fibers of {ci, di} under the map f .

Theorem 3.7 Let X = {x1, x2, · · · , xn} be a symmetric generating set for a group Γ, M be a

normal subset of Γ and S = (M × 0) ∪ (M × 1). Then the following are equivalent.

(a) S is an efficient open dominating set in BC(Γ, X).

(b) There exists a covering f : BC(Γ, X) → Kn,n such that f−1({ci, di})
= S for some 1 ≤ i ≤ n.

(c) |S| = 2|Γ|
|X| and S ∩ [S + (((X × 0) + (X × 0))− {(e, 0)})] = ∅.

Proof (a) ⇒ (b) : Proof follows from Corollary 3.6.

(b)⇒ (a) : Since {ci, di} is an efficient open dominating set in Kn,n, the proof follows from

Remark 3.3.

(a) ⇒ (c) : Since S is an efficient open and G is |X |−regular, the fact |S| = 2|Γ|
|X| follows

from Remark 3.1. Suppose S ∩ [S + (((X × 0) + (X × 0)) − {(e, 0)})] 	= ∅ . Then there exist

(s, 0)(or (s, 1)) ∈ S such that (s, 0) = (s1, 0)+(x, 0)+(x1, 0) with x, x1 ∈ X, x 	= x−1
1 and (s1, 0)

(or (s1, 1)) ∈ S. Since x 	= x−1
1 , we have s 	= s1. Since s = s1 ∗ x ∗ x1, we have s ∗ x−1 = s1 ∗ x1

and so (s1+x1, 1) is adjacent with two vertices (s, 0), (s1, 0) ∈ S, a contradiction to S is efficient

open.

(c) ⇒ (a) : Let xi, xj ∈ X with xi 	= xj . Suppose (S + (xi, 0)) ∩ (S + (xj , 0)) 	= ∅. Let

a ∈ (S+(xi, 0))∩(S+(xj , 0)). Then a = (s1, 0)+(xi, 0) = (s2, 0)+(xj , 0) or a = (s1, 1)+(xi, 0) =

(s2, 1) + (xj , 0). Since xi ∗ x−1
j 	= e, (s1, 0) ∈ S ∩ [S + (((X × 0) + (X × 0)) − {(e, 0)})], a
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contradiction. Thus {S + (xi, 0) : 1 ≤ i ≤ n} is a collection of pairwise disjoint sets. Now

N(S) =
⋃

s∈S

N(s) =
⋃

s∈S

[s + (X × 0)] =
⋃

(x,0)∈(X×0)

[S + (x, 0)]. Since |S + (xi, 0)| = |S|,

|N(S)| = |S||(X × 0)| = |S||X | = |S|(2|Γ|
|S| ) = 2|Γ|. Thus S is an open dominating set. Since

|S| = 2|Γ|
|X| , one can conclude that S is an efficient open dominating set. �
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Abstract: A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer

k ≥ 1 if there exists M1, M2, · · · , Mk ⊂ V (G) such that fMi
(u) = {d(u, v) : v ∈ Mi} for

∀u ∈ V (G)−Mi is independent of the choice of u ∈ V (G)−Mi and integer i, 1 ≤ i ≤ k. Each

such set Mi, 1 ≤ i ≤ k is called a CDPU set [6, 7]. Particularly, for k = 1, a Smarandachely

uniform 1-graph is abbreviated to a complementary distance pattern uniform graph, i.e.,

CDPU graphs. This paper studies independent CDPU graphs.

Key Words: Smarandachely uniform k-graph, complementary distance pattern uniform,

independent CDPU.
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§1. Introduction

For all terminology and notation in graph theory, not defined specifically in this paper, we refer

the reader to Harary [4]. Unless mentioned otherwise, all the graphs considered in this paper

are simple, self-loop-free and finite.

Let G = (V, E) represent the structure of a chemical molecule. Often, a topological index

(TI), derived as an invariant of G, is used to represent a chemical property of the molecule.

There are a number of TIs based on distance concepts in graphs [5] and some of them could

be designed using distance patterns of vertices in a graph. There are strong indications in the

literature cited above that the notion of CDPU sets in G could be used to design a class of TIs

that represent certain stereochemical properties of the molecule.

Definition 1.1([6]) Let G = (V, E) be a (p, q) graph and M be any non-empty subset of V (G).

Each vertex u in G is associated with the set fM (u) = {d(u, v) : v ∈M}, where d(u, v) denotes

the usual distance between u and v in G, called the M -distance pattern of u.

1Received Oct.9, 2009. Accepted Nov. 24, 2009.
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A graph G = (V, E) is called to be Smarandachely uniform k-graph for an integer k ≥ 1 if

there exists M1, M2, · · · , Mk ⊂ V (G) such that fMi
(u) = {d(u, v) : v ∈Mi} for ∀u ∈ V (G)−Mi

is independent of the choice of u ∈ V (G) − Mi and integer i, 1 ≤ i ≤ k. Each such set

Mi, 1 ≤ i ≤ k is called a CDPU set. Particularly, for k = 1, a Smarandachely uniform 1-graph

is abbreviated to a complementary distance pattern uniform graph, i.e., CDPU graphs. The

least cardinality of the CDPU set is called the CDPU number denoted by σ(G).

The following are some of the results used in this paper.

Theorem 1.2([7]) Every connected graph has a CDPU set.

Definition 1.3([7]) The least cardinality of CDPU set in G is called the CDPU number of G,

denoted σ(G).

Remark 1.4([7]) Let G be a connected graph of order p and let (e1, e2, . . . , ek) be the non

decreasing sequence of eccentricities of its vertices. Let M consists of the vertices with eccen-

tricities e1, e2, . . . , ek−1 and let |V −M | = p −m where |M | = m. Then σ(G) � m, since all

the vertices in V −M have fM (v) = {1, 2, . . . , ek−1}.

Theorem 1.5([7]) A graph G has σ(G) = 1 if and only if G has at least one vertex of full

degree.

Corollary 1.6([7]) For any positive integer n, σ(G + Km) = 1.

Theorem 1.7([7]) For any integer n, σ(Pn) = n− 2.

Theorem 1.8([7]) For all integers a1 ≥ a2 ≥ · · · ≥ an ≥ 2, σ(Ka1,a2,...,an
) = n.

Theorem 1.9([7]) σ(Cn) = n− 2, if n is odd and

σ(Cn) = n/2, if n ≥ 8 is even. Also σ(C4) = σ(C6) = 2.

Theorem 1.10([7]) If σ(G1) = k1 and σ(G2) = k2, then σ(G1 + G2) = min(k1, k2).

Theorem 1.11([7]) Let T be a CDPU tree. Then σ(T ) = 1 if and only if T is isomorphic to

P2, P3 or K1,n.

Theorem 1.12([7]) The central subgraph of a maximal outerplanar graph has CDPU number

1 or 3.

Remark 1.13([7]) For a graph G which is not self centered, maxfM (v) = diam(G)− 1.

Theorem 1.14([7]) The shadow graph of a complete graph Kn has exactly two σ(Kn) disjoint

CDPU sets.

The following were the problems identified by B. D. Acharya [6, 7].

Problem 1.15 Characterize graphs G in which every minimal CDPU-set is independent.

Problem 1.16 What is the maximum cardinality of a minimal CDPU set in G.
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Problem 1.17 Determine whether every graph has an independent CDPU-set.

Problem 1.18 Characterize minimal CDPU-set.

Fig.1 following depicts an independent CDPU graph.

v1 v2

v3v4

{1}

{1}

Fig.1: An independent CDPU graph with M = {v2, v4}

§2. Main Results

Definition 2.1 A graph G is called an Independent CDPU graph if there exists an independent

CDPU set for G.

Following two observations are immediate.

Observations 2.2 Complete graphs are independent CDPU.

Observations 2.3 Star graph K1,n is an Independent CDPU graph.

Proposition 2.4 Cn with n even is an Independent CDPU graph.

Proof Let Cn be a cycle on n vertices and V (Cn) = {v1, v2, . . . , vn}, where n is even.

Choose M as the set of alternate vertices on Cn, say, {v2, v4, . . . , vn}. Then,

fM (vi) = {1, 3, 5, . . . , m− 1} for i = 1, 3, . . . , n− 1, if Cn = 2m and m is even and

fM (vi) = {1, 3, 5, . . . , m}, for i = 1, 3, . . . , n − 1 if Cn = 2m and m odd. Therefore, fM (vi) is

identical depending on whether m is odd or even. Hence, the alternate vertices {v2, v4, . . . , vn}
forms a CDPU set M . Also all the vertices in M are non-adjacent. Hence Cn, n even is an

independent CDPU graph. �

Theorem 2.5 A cycle Cn is an independent CDPU graph if and only if n is even.

Proof Let Cn be a cycle on n vertices. Suppose n is even. Then from Proposition 2.4, Cn

is an independent CDPU graph.

Conversely, suppose that Cn is an independent CDPU graph. That is, there exist vertices

in M such that every pair of vertices are non adjacent. We have to prove that n is even.

Suppose n is odd. Then from Theorem 1.9, σ(Cn) = n − 2, which implies that |M | ≥ n − 2.



66 Germina K.A. and Beena Koshy

But from n vertices, we cannot have n− 2 (or more) vertices which are non-adjacent. �

Theorem 2.6 A graph G which contains a full degree vertex is an independent CDPU.

Proof Let G be a graph which contains a full degree vertex v. Then, from Theorem 1.5,

G is CDPU with CDPU set M = {v}. Also M is independent. Therefore, G is an independent

CDPU. �

Remark 2.7 If the CDPU number of a graph G is 1, then clearly G is independent CDPU.

Theorem 2.8 A complete n-partite graph G is an independent CDPU graph for any n.

Proof Let G = Ka1,a2,...,an
be a complete n-partite graph. Then, V (G) can be partitioned

into n subsets V1, V2, . . . , Vn where |V1| = a1, |V2| = a2, . . . , |Vn| = an. Take all the vertices

from the partite set, say, Vi of Ka1,a2,...,an
to constitute the set M . Since each element of a

partite set is non-adjacent to the other vertices in it and is adjacent to all other partite sets,

we get, fM (u) = {1}, ∀u ∈ V (Ka1,a2,...,an
) −M . Hence, the complete n-partite graph G is an

independent CDPU graph for any n. �

Corollary 2.9 Complete n-partite graphs have n distinct independent CDPU sets.

Proof Let G = Ka1,a2,...,an
be a complete n-partite graph. Then, V (G) can be partitioned

into n subsets V1, V2, . . . , Vn where |V1| = a1, |V2| = a2, . . . , |Vn| = an. Take M1 as the vertices

corresponding to the partite set V1, M2 as the vertices corresponding to the partite set V2, . . . ,

Mi corresponds to the vertices of the partite set Vi, . . . , Mn corresponds to the vertices of the

partite set Vn. Then from Theorem 2.8, each Mi, 1 ≤ i ≤ n form a CDPU set. Hence there are

n distinct CDPU sets. �

Theorem 2.10 A path Pn is an independent CDPU graph if and only if n = 2, 3, 4, 5.

v1 v2

1

P2

v1 v2 v3 v1 v2 v3 v4

P3 P4

{1} {1} {1,2} {1,2}

v1 v2 v3 v4 v5

P5

{1,3} {1,3}

Fig.2: An independent CDPU paths

Proof Let Pn be a path on n vertices and V (Pn) = {v1, v2, . . . , vn}. When n = 2 and 3, P2

and P3 contains a vertex of full degree and hence from Theorem 2.6, P2 and P3 are independent
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CDPU. When n = 4, take M = {v1, v4}. Then fM (v2) = fM (v3) = {1, 2}, whence M is

independent CDPU. When n = 5, let V (G) = {v1, v2, . . . , v5} and choose M = {v1, v3, v5}.
Then, fM (v2) = fM (v4) = {1, 3}. Hence, P5 is an independent CDPU graph.

Conversely, suppose that Pn is an independent CDPU graph. That is, there exists a CDPU

set M such that no two of the vertices are adjacent. From n vertices, we can have at most
n
2 or n+1

2 vertices which are non adjacent. From Theorem 1.7, σ(Pn) = n − 2, n ≥ 3. When

n ≥ 6, we cannot choose a CDPU set M such that n− 2 vertices are non-adjacent. Hence Pn

is independent CDPU only for n = 2, 3, 4 and 5. �

0010 1010

0110 11100000 1000

0100 1100
0011 1011

11110111

0001 1001

1101

0101

{1,3}

{1,3} {1,3}

{1,3}

{1,3}

{1,3}

{1,3}

{1,3}

Q3

K2

Q3 ×K2

Fig.3 : Q4

Theorem 2.11 n-cube Qn is an independent CDPU graph with |M | = 2n−1.

Proof We have Qn = K2 × Qn−1 and has 2n vertices which may be labeled a1a2 . . . an,

where each ai is either 0 or 1. Also two points in Qn are adjacent if their binary representations

differ at exactly one place. Take M as the set of all vertices whose binary representation differ

at two places. Clearly the vertices in M are non adjacent and also maximal. We have to check

whether M is CDPU. For let M = {v1, v3, . . . , v2n−1}. Consider a vertex vi which does not

belong to M . Clearly vi is adjacent to a vertex vj in M . Hence 1 ∈ fM (vi). Then, since vj is in

M , vj is adjacent to a vertex vk not in M . Hence 2 does not belong to fM (vi). Since vk is not

an element of M and vk is adjacent to a vertex vl in M , 3 ∈ fM (vi). Proceeding in the same

manner, we get fM (vi) = {1, 3, . . . , n− 1}. Hence Qn is independent CDPU with |M | = 2n

2 . �

Theorem 2.12 Ladder Pn ×K2 is an independent CDPU graph if and only if n ≤ 4.

Proof First we have to prove that Pn ×K2 is an independent CDPU graph for n ≤ 4.

When n = 2, take M = {v2, v4}, so that fM (vi) = {1} for i = 1, 3.
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When n = 3, take M = {v1, v4}, so that fM (vi) = {1, 2}, for i = 2, 4, 6.

When n = 4, take M = {v1, v3, v5, v7}, so that fM (vi) = {1, 3} for i = 2, 4, 6, 8. Therefore,

Pn ×K2 is an independent CDPU graph for n ≤ 4.

1,3

v1 v2

v3v4

G1

1

1

v1 v2 v3

v4v5v6

{1,2}

{1,2}

{1,2}

{1,2}

v1

G2

v2 v3 v4 v5

v6v7v8

{1,3}
{1,3}

{1,3}

G3

Fig.4: Pn ×K2 for n ≤ 4

Conversely, suppose that Pn ×K2 is an independent CDPU graph. We have to prove that

n ≤ 4. If possible, suppose n = k ≥ 5. In Pn ×K2, since the number of vertices is even, and

the vertices in Pn × K2 forms a Hamiltonian cycle, then the only possibility of M to be an

independent CDPU set is to choose M as the set of all alternate vertices of the Hamiltonian

cycle. Clearly, in this case M is a maximal independent set. Denote M1 = {v1, v3, . . . , v2n−1}
and M2 = {v2, v4, . . . , v2n}. Consider M1 = {v2, v4, . . . , vi, . . . , v2n}.

Case 1 n is odd.

In this case, fM1(v1) = {1, 3, . . . , n}. Since n is odd we have two central vertices, say, vi

and vj in Pn×K2. Since vi and vj are of the same eccentricity and M1 is a maximal independent

set, vj does not belong to M1. Then, fM1(vj) = {1, 3, . . . , n+1
2 }.

Thus, fM1(v1) 	= fM1(vj). Hence M1 is not a CDPU.

Case 2 n is even.

In this case, fM1(v1) = {1, 3, . . . , n − 1}. Since n is even, there are four central vertices

vi, vj , vk, vl in Pn × K2. Clearly the graph induced by T = {vi, vj , vk, vl} is a cycle on four

vertices. Since M1 is maximal and consists of the alternate vertices of Pn ×Kn, vj , vl should

necessarily be outside M1. Thus, fM1(vj) = {1, 3, . . . , n
2 }.

Thus, fM1(v1) 	= fM1(vj). Hence M1 is not a CDPU.

Therefore Pn ×K2 is not independent CDPU for n ≥ 5. Hence the theorem. �

Theorem 2.13 If G1 and G2 are independent CDPU graphs, then G1 + G2 is also an inde-

pendent CDPU graph.
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Proof Since G1 and G2 are independent CDPU graphs, there exist M1 ⊂ V (G1) and

M2 ⊂ V (G2) such that no two vertices in M1 (and in M2) are adjacent. Now, in G1 +G2, every

vertex of G1 is adjacent to every vertices of G2. Then clearly, independent CDPU set M1 of

G1 (or M2 of G2) is an independent CDPU set for G1 + G2. Hence the theorem. �

Remark 2.14 If G1 and G2 are independent CDPU graphs, then the cartesian product G1×G2

need not have an independent CDPU set. But Gi × Gi is independent CDPU for i = 1, 2 as

illustrated in Fig.5.

G1

G2

{1} {1}

{1}

G1 ×G2

G2 ×G2

{1}

{1}

{1,2}

{1,2}

{1,2} {1,2}
{1,2}

{1,2}

G1 ×G1

Fig.5

Definition 2.15 An independent set that is not a proper subset of any independent set of G is

called maximal independent set of G. The number of vertices in the largest independent set of

G is called the independence number of G and is denoted by β(G).

§3. Independence CDPU Number

The least cardinality of the independent cdpu set in G is called the independent CDPU number

of G, denoted by σi(G). In general, for an independent CDPU graph, σi(G) ≤ β(G), where

β(G) is the independence number of G.

Theorem 3.1 If G is an independent CDPU graph with n vertices, then r(G) ≤ σi(G) ≤ �n
2 �,

where r(G) is the radius of G.

Proof We have, β(G) ≤ �n
2 � and hence σi(G) ≤ �n

2 �. Now we prove that r(G) ≤ σi(G).

Suppose r(G) = k. Then, there are vertices with eccentricities k, k + 1, k + 2, . . . , d, where d

is the diameter of G. Let v be the central vertex of G and e = uv. Since the central vertex

v of a graph on n(≥ 3) vertices cannot be a pendant vertex, there exists a vertex w which is

adjacent to v. Hence, w is of eccentricity k + 1. Also u is of eccentricity k + 1. By a similar
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argument there exists at least two vertices each of eccentricity k + 1, k + 2, . . . , d. Hence, the

CDPU set should necessarily consists of all vertices with eccentricity k, k + 1, k + 2, . . . , d− 1.

Thus, σ(G) ≥ 1 + {2 + 2 + . . . (d − 1 − k)times} ≥ k. Whence, σi(G) ≥ r(G). Therefore,

r(G) ≤ σi(G) ≤ �n
2 �. �

Theorem 3.2 A graph G has σi(G) = 1 if and only if G has at least one vertex of full degree.

Fig.6: A graph with σi(G) = 1

Proof Suppose that G has one vertex vi with full degree. Take M = {vi}. Then fM (u) =

{1}, for every u ∈ V −M . Also M is independent. Hence σi(G) = 1.

Conversely, suppose that G is a graph with σi(G) = 1. That is, there exists an independent

set M which contains only one vertex vi which is a CDPU set of G. Also, σi(G) = 1 implies,

vi is adjacent to all other vertices. Hence vi is a vertex with full degree. �

Corollary 3.3 The independent CDPU number of a complete graph is 1.

Corollary 3.4 If M is the maximal independent set of a graph G with |M | = 1, then G is an

independent CDPU.

Proof The result follows since M is a maximal independent set and |M | = 1, there is a

vertex v of full degree. �

Theorem 3.5 Peterson Graph is an independent CDPU graph with σi(G) = 4.

Proof Let G be a Peterson Graph with V (G) = {v1, v2, . . . , v10}. Let M be such that

M contains two non adjacent vertices from the outer cycle and two non-adjacent vertices from

the inner cycle. Let it be {v3, v5, v6, v7}. Clearly, M is a maximal independent set of G. Also

fM (vi) = {1, 2}, for every i = 1, 2, 4, 8, 9, 10. Thus, M is a CDPU set of G. Hence, G is an

independent CDPU graph with σi(G) ≤ 4. To prove that σi(G) = 4, it is enough to prove that

the deletion of any vertex from M does not form a CDPU set. For, let M1 = {v3, v5, v7}. Then,

fM (vi) = {1, 2}, for i = 1, 2, 4, 8, 9, 10 and fM (v6) = {2}. Hence M1 cannot be a CDPU set for

G. Thus σi(G) = 4. �
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v1

v2

v3v4

v5

v6

v7

v8
v9

v10

{1,2}

{1,2}
{1,2}

{1,2} {1,2}

Fig.7

Theorem 3.6 Shadow graphs of Kn are independent CDPU with |M | = n.

Proof Let v1, v2, . . . , vn be the vertices of Kn and v′1, v
′
2, . . . , v

′
n be the corresponding

shadow vertices. Clearly, M = {v′1, v′2, . . . , v′n} is a maximal independent set of S(Kn). Also,

from Theorem 1.14, M forms a CDPU set. Hence |M | = n. �

Definition 3.7 A set of points which covers all the lines of a graph G is called a point cover for

G. The smallest number of points in any point cover for G is called its point covering number

and is denoted by α0(G).

It is natural to rise the following question by definition:

Does there exist any connection between the point covering for a graph and independent

CDPU set?

Proposition 3.8 If α0(G) = 1, then σi(G) = 1

Proof Since α0(G) = 1, we have to cover every edges by a single vertex. This implies that

there exists a vertex of full degree. Hence from Theorem 3.2, σi(G) = 1. �

Remark 3.9 The converse of Proposition 3.8 need not be true. Note that in Figure 6, σi(G) = 1,

but α0(G) = 6.

Theorem 3.10 The central subgraph < C(G) > of a maximal outerplanr graph G is an

independent CDPU graph with σi(G) = 1, 2 or 3.

Proof Fig.8 depicts all the central subgraphs of maximal outerplanr graph [3]. Since

G1, G2, G3, G4, G5 have a full degree vertex, those graphs are independent CDPU and σi(Gj) =

1, for j = 1, 2, 3, 4, 5.

In G6, let M = {v1, v4}. Then, fM (vi) = {1, 2}, for every vi ∈ V − M . Since M is

independent, G6 is independent CDPU and σi(G6) = 2.
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In G7, let M = {v1, v3, v5}. Then, fM (vi) = {1, 2} for every vi ∈ V −M . Hence, G7 is

independent CDPU with σi(G7) = 3. �

G1 G2 G3 G4

G5 G6 G7

v1

v2 v1

v2

v3

v1
v2

v3v4

v1 v2 v3

v4v5

v1 v2 v3

v4v5v6

v1 v2 v3

v4

v5

v6

Fig.8: Central subgraphs of a maximal outerplanar graph

Theorem 3.11 The independent CDPU number of an even cycle Cn, n ≥ 8 is n
2 .

Proof From Proposition 2.4, the alternate vertices of the even cycle constitute the inde-

pendent CDPU set. As already proved, removal of any vertex from M does not give a cdpu

set. Hence, σi(Cn) = n
2 . �

Remark 3.12 σi(C6) = 2.

Theorem 3.13 For all integers a1 ≥ a2 ≥ · · · ≥ an ≥ 2, σi(Ka1,a2,...,an
) = min{a1, a2, . . . , an}.

Proof From Theorem 2.8 and Corollary 2.9, all the n partite sets form an independent

CDPU set. Hence the independent CDPU number is the minimum of all a′is. �

Theorem 3.14 If σi(G1) = k1 and σi(G2) = k2, then σi(G1 + G2) = min.{k1, k2}.

Proof From Theorem 2.13, either M1 or M2 is an independent cdpu set for G1 + G2. Also

σi(G1 + G2) is the minimum among M1 and M2. �

Theorem 3.15 If G1 and G2 are independent CDPU cycles with n, m(≥ 4) vertices respectively,

then G1 ×G2 is independent CDPU with |M | = mn
2 .

Proof Since G1 has n vertices and G2 has m vertices, then G1 × G2 has mn vertices.

Without loss of generality, assume that m > n. In the construction of G1 ×G2, G2 is drawn n

times and then the corresponding adjacency is given according as the adjacency in G1. Since

G2 is an independent CDPU cycle, from Theorem 3.11, σi(G2) = m
2 . Therefore in G1 × G2

there are mn
2 vertices in the CDPU set. �
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Remark 3.16 In Theorem 3.15, if any one of G1 or G2 is C3, then |M | = n, since σi(C3) = 1.

G1 G2 G3 G4

G5 G6 G7

v1

v2 v3

v4

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

Fig.9: Graphs whose subdivision graphs are bipartite complementary

Theorem 3.17 The connected graphs, whose subdivision graphs are bipartite complementary

are independent CDPU.

Proof Fig.9 depicts the seven graphs whose subdivision graphs are bipartite self-complementary

[2]. In G4, M1 = {v1, v2} gives fM1(v3) = fM1(v4) = {1, 2}.
In G5, M2 = {v1, v4} gives fM2(v3) = fM2(v2) = {1}.
In G6, M3 = {v2, v3} gives fM3(v1) = fM3(v4) = {1}.
In G7, M4 = {v1} gives fM4(v2) = fM4(v3) = fM4(v4) = {1}. Hence M1, M2, M3, M4

are independent CDPU sets. Thus the connected graphs G4, G5, G6 and G7 are independent

CDPU. �

§4. Conclusion and Scope

As already stated in the introduction, the concept under study has important applications in

the field of Chemistry. The study is interesting due to its applications in Computer Networks

and Engineering, especially in Control System. In a closed loop control system, signal flow

graph representation is used for gain analysis. So in certain control systems specified by certain

characteristics, we can find out M , a set consisting of two vertices such that one vertex will be

the take off point and other vertex will be the summing point.

Following are some problems that are under investigation:

1. Characterize independent CDPU trees.

2. Characterize unicyclic graphs which are independent CDPU.

3. What is the independent CDPU number for a generalized Peterson graph.

4. What are those classes of graphs with r(G) = σi(G), where r(G) is the radius of G.
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Abstract: A graph G is said to be Smarandachely harmonic graph with property P if its

vertices can be labeled 1, 2, · · · , n such that the function fP : A → Q defined by

fp(H) =

∏
v∈V (H)

f(v)∑
v∈V (H)

f(v)
, H ∈ A

is injective. Particularly, if A is the collection of all paths of length 1 in G (That is, A =

E(G)), then a Smarandachely harmonic graph is called Strongly harmonic graph. In this

paper we show that all cycles, wheels, trees and grids are strongly harmonic graphs. Also

we give an upper bound and a lower bound for μ(n), the maximum number of edges in a

strongly harmonic graph of order n.

Key Words: Graph labeling, Smarandachely harmonic graph, strongly harmonic graph.

AMS(2000): 05C78.

§1. Introduction

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain

conditions. After it was introduced in late 1960’s thousands of research articles on graph

labelings and their applications have been published.

Recently in 2001, L. W. Beineke and S. M. Hegde [7] introduced the concept of strongly

multiplicative graph. A graph with n vertices is said to be Strongly multiplicative if the vertices

of G can be labeled with distinct integers 1, 2, · · · , n such that the values on the edge obtained

as the product of the labels of their end vertices are all distinct. They have proved that certain

classes of graphs are strongly multiplicative. They have also obtained an upper bound for λ(n),

the maximum number of edges for a given strongly multiplicative graph of order n. In [3],

C. Adiga, H.N. Ramaswamy and D. D. Somashekara gave a sharper upper bound for λ(n).

Further C. Adiga, H. N. Ramaswamy and D. D. Somashekara [1] gave a lower bound for λ(n)

and proved that the complete bipartite graph Kr,r is strongly multiplicative if and only if r ≤ 4.

In 2003, C. Adiga, H. N. Ramaswamy and D. D. Somashekara [2] gave a formula for λ(n) and

1Received Sept.28, 2009. Accepted Nov. 28, 2009.
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also showed that every wheel is strongly multiplicative. Seoud and Zid [9] and Germina and

Ajitha [8] have made further contributions to this concept of strongly multiplicative graphs.

In 2000, C. Adiga, and D. D. Somashekara [4] have introduced the concept of Strongly

� - graph and showed that certain classes of graphs are strongly � - graphs. Also they have

obtained a formula, upper and lower bounds for the maximum number of edges in a strongly �

- graph of order n. Baskar Babujee and Vishnupriya [6] have also proved that certain class of

graphs are strongly � - graphs.

A graph with n vertices is said to be Strongly quotient graph if its vertices can be labeled

1, 2, · · · , n so that the values on the edges obtained as the quotient of the labels of their end

vertices are all distinct. In [5], C. Adiga, M. Smitha and R. Kaeshgas Zafarani showed that

certain class of graphs are strongly quotient graphs. They have also obtained a formula, upper

and two different lower bounds for the maximum number of edges in a strongly quotient graph

of order n.

In this sequel, we shall introduce the concept of Strongly Harmonic graphs.

Definition 1.1 A labeling of a graph G of order n is an injective mapping f : V (G) →
{1, 2, . . . , n}.

Definition 1.2 Let G be a graph of order n and A be the set of all paths in G. Then G is said

to be Smarandachely harmonic graph with property P if its vertices can be labeled 1, 2, · · · , n
such that the function fP : A → Q defined by

fp(H) =

∏
v∈V (H)

f(v)∑
v∈V (H)

f(v)
, H ∈ A

is injective. In particular if A is the collection of all paths of length 1 in G (That is, A = E(G)),

then a Smarandachely harmonic graph is called Strongly harmonic graph.

For example, the following graphs are strongly harmonic graphs.

1

23

1 2

4 3

5 6

7

1

2

34

5 6

8

7
9

10

8
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In Section 2, we show that certain class of graphs are strongly harmonic. In Section 3, we

give upper and lower bounds for μ(n), the maximum number of edges in a strongly harmonic

graph of order n.

§2. Some Classes of Strongly Harmonic Graphs

Theorem 2.1 The complete graph Kn is strongly harmonic graph if and only if n ≤ 11.

Proof For n ≤ 11 it is easy to see that Kn are strongly harmonic graphs. When n = 12,

we have
4 · 3
4 + 3

=
12

7
=

24

14
=

12 · 2
12 + 2

. Therefore K12 is not strongly harmonic graph and hence

any complete graph Kn, for n ≥ 12 is not strongly harmonic. �

Theorem 2.2 For all n ≥ 3, the cycle Cn is strongly harmonic graph.

Proof Let Cn = [v1, v2, . . . , vn, v1] be a cycle of order n. Then consider the following

labelling of the graph v1 = 1, v2 = 2, . . . , vn = n. Then the value of the edge vkvk+1 is
k(k + 1)

2k + 1
,

for 1 ≤ k < n. The value of the edge vnv1 is
n

n + 1
. Since

2

3
<

n

n + 1
<

6

5
< · · · <

n(n− 1)

2n− 1
for all n ≥ 3, it follows that the values of the edges are all distinct, proving that every cycle

Cn, n � 3, is strongly harmonic. �

Theorem 2.3 Every wheel is strongly harmonic.

Proof Consider the wheel Wn+1, whose rim is the cycle v1, v2, . . . , vn, v1 and whose hub is

the vertex w.

Case (i) n + 1 is odd.

Let p be a prime such that
n

2
< p < n. Such a prime p exists by Bertrand’s hypothesis.

Consider the following labeling of graphs:

v1 = 1, v2 = 2, · · · , vp−1 = p− 1, vp = p + 1, · · · , vn = n + 1, w = p.

The value of the edge vkvk+1 is
k(k + 1)

2k + 1
for 1 ≤ k < p−1 and the value of the edge vkvk+1

is
(k + 1)(k + 2)

2k + 3
for p ≤ k < n. The value of the edge vp−1vp is

(p− 1)(p + 1)

2p
and the value

of the edge vnv1 is
n + 1

n + 2
. Since

2

3
<

n + 1

n + 2
<

6

5
< · · · < (p− 2)(p− 1)

2p− 3
<

(p− 1)(p + 1)

2p
<

(p + 1)(p + 2)

2p + 3

< · · · < n(n + 1)

2n + 1
,

the value of the rim edges are all distinct.

The value of the spoke edges are
p

p + 1
,

2p

p + 2
, · · · ,

(n + 1)p

n + 1 + p
. Since

p

p + 1
<

2p

p + 2
<

· · · < (p− 1)p

2p− 1
<

(p + 1)p

2p + 1
< · · · < (n + 1)p

n + 1 + p
, the value of the spoke edges are all distinct. The
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numerator in the values of spoke edges are all divisible by p and the numerator in the values of

the rim edges are not divisible by p. Hence the value of the edges of the wheel are all distinct.

Hence when n + 1 is odd, the wheel is strongly harmonic.

Case (ii) n + 1 is even.

Let p be a prime such that
n + 1

2
< p < n+1. Proof follows in the same lines as in case(i).

Hence by the choice of p edges of the wheel are all distinct. Therefore wheel is strongly

harmonic. �

Theorem 2.4 Every tree is strongly harmonic graph.

Proof Label the vertices of the tree using breadth - first search method. To show that the

labeling is strongly harmonic it suffices to consider the following two cases.

Case (i) Let e1 = (a, b) and e2 = (a, c) be the edges with a common vertex as shown in the

Fig.2.1.

�

�

�

a

e2e1

b c

Fig.2.1

From the breadth - first search method of labelling it follows that a < b < c. This implies

that ab
a+b < ac

a+c . Hence the values of the edges with common vertex form a strictly increasing

sequence of rational numbers.

Case (ii) Let e1 = (a, c) and e2 = (b, d), where the edges e1 and e2 fall in the same level as

shown in the Fig.2.2 or in two consecutive level as shown in Fig.2.3.

� �

a

c d

b

e1
e2

b

d

a

c

e1

e2

�

�

�

�

Fig.2.2 Fig.2.3
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From the breadth - first search method of labeling it follows that a < b < c < d. This

implies that ac
a+c < bd

b+d . Hence as indicated by the arrows, the values of the edges form a

strictly increasing sequence of rational numbers.

Thus the values of the edges are all distinct. So each tree is strongly harmonic graph. �

Theorem 2.5 Every grid is strongly harmonic graph.

Proof Label the vertices of the grid using breadth - first search method. To show that the

labeling is strongly harmonic it suffices to consider the following three cases. The first three

cases are similar to the two cases considered in the proof of the Theorem 2.4. The last case is

when e1 = (a, c) and e2 = (b, c) as shown in the Fig.2.4.

� �

�

�

�a
e1

e2

c

b

Fig.2.4

In this case from the breadth - first search method of labeling it follows that a < b < c

which implies that ac
a+c < bc

b+c .

Therefore, as indicated by the arrows, the values of the edges form a strictly increasing

sequence of rational numbers. Thus, the values of the edges are all distinct proving that every

grid is strongly harmonic. �

§3. Upper and Lower Bounds for μ(n)

In this section we give an upper and a lower bound for μ(n).

Theorem 3.1 If μ(n) denotes the number of edges in a strongly harmonic graph of order n,

then

μ(n) ≤ n(n− 1)

2
−

2∑
k=1

[√
4nk + k2 + k

4k

]

−
[ n+12

48 ]∑
k=1

[√
(4k − 1)(4n + 4k − 1) + (4k − 1)

16k − 4

]
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−
[ n+24

96 ]∑
k=1

[√
(8k − 2)(4n + 8k − 2) + (8k − 2)

32k − 8

]

+2 +

[
n + 12

48

]
+

[
n + 24

96

]
, (1)

where [x] denotes the greatest integer less than or equal to x.

Proof Given n, the total number of edges in a complete graph of order n is
n(n− 1)

2
.

For 7k ≤ t ≤ n, and t ≡ −k(mod 4k) where 1 ≤ k ≤ 2 the values of the edges e1

with end vertices

(
t + k

4
,
t2 − k2

4k

)
and e2 with end vertices

(
t + k

2
,
t− k

2

)
are equal provided

t2 − k2

4k
≤ n or t ≤ √4nk + k2. Since t = 4km− k, for some positive integer m, we have

7k ≤ 4km− k ≤
√

4nk + k2.

This double inequality yields

2 ≤ m ≤
(√

4nk + k2 + k

4k

)
.

Therefore, the number of such pairs of edges with equal values is[√
4nk + k2 + k

4k

]
− 1. (2)

Next for 28k − 7 ≤ t ≤ n, and t ≡ −(4k − 1)(mod (16k − 4)) and 48k − 12 ≤ n, the

values of the edges e1 with end vertices

(
t + (4k − 1)

4
,
t2 − (4k − 1)2

16k − 4

)
and e2 with end vertices(

t + (4k − 1)

2
,
t− (4k − 1)

2

)
are equal provided

t2 − (4k − 1)2

16k − 4
≤ n or t ≤√

(4k − 1)(4n + 4k − 1).

Since t = (16k − 4)m− (4k − 1), for some positive integer m, we have

28k − 7 ≤ (16k − 4)m− (4k − 1) ≤
√

(4k − 1)(4n + 4k − 1).

This double inequality yields

2 ≤ m ≤
(√

(4k − 1)(4n + 4k − 1) + (4k − 1)

16k − 4

)
.

Therefore, the number of such pairs of edges with equal values is[√
(4k − 1)(4n + 4k − 1) + (4k − 1)

16k − 4

]
− 1. (3)

For 56k − 14 ≤ t ≤ n, and t ≡ −(8k − 2)(mod (32k − 8)) and 96k − 24 ≤ n, the val-

ues of the edges e1 with end vertices

(
t + (8k − 2)

4
,
t2 − (8k − 2)2

32k − 8

)
and e2 with end vertices
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(
t + (8k − 2)

2
,
t− (8k − 2)

2

)
are equal and proceeding as above we find that the number of

such pairs of edges with equal values is[√
(4k − 1)(2n + 4k − 1) + (4k − 1)

16k − 4

]
− 1. (4)

From equations (2), (3) and (4), we get

μ(n) ≤ n(n− 1)

2
−

2∑
k=1

([√
4nk + k2 + k

4k

]
− 1

)

−
[ n+12

48 ]∑
k=1

([√
(4k − 1)(4n + 4k − 1) + (4k − 1)

16k − 4

]
− 1

)

−
[ n+24

96 ]∑
k=1

([√
(4k − 1)(2n + 4k − 1) + (4k − 1)

16k − 4

]
− 1

)

which yields (1). �

Theorem 3.2

μ(n) ≥ n +
n−2∑
k=2

f(k), n ≥ 4, (5)

where f(k) = min

{
n−

[
nk(k − 1)

k(k − 1) + n

]
, n− k

}
.

Proof Let A =

{
rs

r + s
; 1 ≤ r < s ≤ n

}
. Then clearly μ(n) = |A|. Consider the array of

rational numbers:

1 · 2
1 + 2

1 · 3
1 + 3

1 · 4
1 + 4

· · · 1 · (n− 1)

1 + (n− 1)

1 · n
1 + n

2 · 3
2 + 3

2 · 4
2 + 4

· · · 2 · (n− 1)

2 + (n− 1)

2 · n
2 + n

3 · 4
3 + 4

· · · 3 · (n− 1)

3 + (n− 1)

3 · n
3 + n

· · ·
· · ·

(n− 2) · (n− 1)

(n− 2) + (n− 1)

(n− 2) · n
(n− 2) + n

(n− 1) · n
(n− 1) + n
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Now, let A1 denote the set of all elements of the first row. Let Ak, 2 ≤ k ≤ n− 2 denote

the set of all elements of the k-th row which are greater than
(k − 1) · n
(k − 1) + n

and hence greater

than every element of the (k − 1)-th row. Let An−1 =
(n− 1) · n
(n− 1) + n

. Clearly Ai ∩ Aj = ∅ for

i 	= j and Ai ⊂ A, for all i = 1, 2, . . . , n− 1. Hence

μ(n) = |A| ≥
n−1∑
i=1

|Ai|. (6)

Now one can easily see that

|A1| = n− 1,

|Ak| = n−max

{[
nk(k − 1)

k(k − 1) + n

]
, k

}
, 2 ≤ k ≤ n− 2

= min

{
n−

[
nk(k − 1)

k(k − 1) + n

]
, n− k

}
= f(k),

and |Ak| = 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Using (7) in (6) we obtain (5). �

The following table gives the values of μ(n) and upper and lower bounds for μ(n) found

using Theorems 3.1 and 3.2, respectively.

n μ(n) Upper bound Lower bound

4 6 6 6

5 10 10 10

6 15 15 15

7 21 21 21

8 28 28 28

9 36 36 34

10 45 45 41

11 55 55 48

12 64 65 55

13 76 77 63

14 89 90 71

15 102 104 80
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n μ(n) Upper bound Lower bound

16 117 119 90

17 133 135 97

18 150 152 107

19 168 170 117

20 183 191 127
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Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered

pair S = (G, σ) (S = (G, μ)), where G = (V, E) is a graph called the underlying graph of S

and σ : E → (e1, e2, · · · , ek) (μ : V → (e1, e2, · · · , ek)) is a function, where each ei ∈ {+,−}.

Particularly, a Smarandachely 2-singed graph or 2-marked graph is called abbreviated to

a singed graph or a marked graph. We characterize signed graphs S for which L(S) ∼ S,

S ∼ CE(S) and Lk(S) ∼ S, where ∼ denotes switching equivalence and L(S), S and CE(S)

are denotes line signed graph, complementary signed Graph and common-edge signed graph

of S respectively.

Key Words: Smarandachely k-signed graph, Smarandachely k-marked graph, signed

graphs, balance, switching, line signed graph, complementary signed graph, common-edge

signed graph.

AMS(2000): 05C22.

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [7]; the

non-standard will be given in this paper as and when required. We treat only finite simple

graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair S =

(G, σ) (S = (G, μ)), where G = (V, E) is a graph called the underlying graph of S and σ : E →
(e1, e2, · · · , ek) (μ : V → (e1, e2, · · · , ek)) is a function, where each ei ∈ {+,−}. Particularly, a

Smarandachely 2-singed graph or 2-marked graph is called abbreviated to a singed graph or a

marked graph. A signed graph S = (G, σ) is balanced if every cycle in S has an even number

of negative edges (See [8]). Equivalently a signed graph is balanced if product of signs of the

edges on every cycle of S is positive.

A marking of S is a function μ : V (G) → {+,−}; A signed graph S together with a marking

1Received Oct.8, 2009. Accepted Dec. 10, 2009.
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μ is denoted by Sμ.

The following characterization of balanced signed graphs is well known.

Proposition 1 (E. Sampathkumar [10]) A signed graph S = (G, σ) is balanced if, and only if,

there exist a marking μ of its vertices such that each edge uv in S satisfies σ(uv) = μ(u)μ(v).

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed

graph S as follows: L(S) is a signed graph such that (L(S))u ∼= L(Su) and an edge eiej in L(S)

is negative if, and only if, both ei and ej are adjacent negative edges in S. Another notion of line

signed graph introduced in [6],is as follows: The line signed graph of a signed graph S = (G, σ)

is a signed graph L(S) = (L(G), σ′), where for any edge ee′ in L(S), σ′(ee′) = σ(e)σ(e′) (see

also, E. Sampathkumar et al. [11]. In this paper, we follow the notion of line signed graph

defined by M. K. Gill [6].

Proposition 2 For any signed graph S = (G, σ), its line signed graph L(S) = (L(G), σ′) is

balanced.

Proof We first note that the labeling σ of S can be treated as a marking of vertices of

L(S). Then by definition of L(S) we see that σ′(ee′) = σ(e)σ(e′), for every edge ee′ of L(S)

and hence, by proposition-1, the result follows. �

Remark: In [2], M. Acharya has proved the above result. The proof given here is different

from that given in [2].

For any positive integer k, the kth iterated line signed graph, Lk(S) of S is defined as

follows:

L0(S) = S, Lk(S) = L(Lk−1(S))

Corollary For any signed graph S = (G, σ) and for any positive integer k, Lk(S) is balanced.

Let S = (G, σ) be a signed graph. Consider the marking μ on vertices of S defined

as follows: each vertex v ∈ V , μ(v) is the product of the signs on the edges incident at v.

Complement of S is a signed graph S = (G, σc), where for any edge e = uv ∈ G, σc(uv) =

μ(u)μ(v). Clearly, S as defined here is a balanced signed graph due to Proposition 1.

The idea of switching a signed graph was introduced by Abelson and Rosenberg [1] in

connection with structural analysis of marking μ of a signed graph S. Switching S with respect

to a marking μ is the operation of changing the sign of every edge of S to its opposite whenever

its end vertices are of opposite signs. The signed graph obtained in this way is denoted by

Sμ(S) and is called μ-switched signed graph or just switched signed graph. Two signed graphs

S1 = (G, σ) and S2 = (G′, σ′) are said to be isomorphic, written as S1
∼= S2 if there exists

a graph isomorphism f : G → G′ (that is a bijection f : V (G) → V (G′) such that if uv is

an edge in G then f(u)f(v) is an edge in G′) such that for any edge e ∈ G, σ(e) = σ′(f(e)).

Further, a signed graph S1 = (G, σ) switches to a signed graph S2 = (G′, σ′) (or that S1 and S2

are switching equivalent) written S1 ∼ S2, whenever there exists a marking μ of S1 such that

Sμ(S1) ∼= S2. Note that S1 ∼ S2 implies that G ∼= G′, since the definition of switching does

not involve change of adjacencies in the underlying graphs of the respective signed graphs.
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Two signed graphs S1 = (G, σ) and S2 = (G′, σ′) are said to be weakly isomorphic (see

[14]) or cycle isomorphic (see [15]) if there exists an isomorphism φ : G → G′ such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(See [15]).

Proposition 3 (T. Zaslavasky [15]) Two signed graphs S1 and S2 with the same underlying

graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Switching Equivalence of Iterated Line Signed Graphs and

Complementary Signed Graphs

In [12], we characterized signed graphs that are switching equivalent to their line signed graphs

and iterated line signed graphs. In this paper, we shall solve the equation Lk(S) ∼ S.

We now characterize signed graphs whose complement and line signed graphs are switching

equivalent. In the case of graphs the following result is due to Aigner [3] (See also [13] where

H ◦K denotes the corona of the graphs H and K [7].

Proposition 4 (M. Aigner [3]) The line graph L(G) of a graph G is isomorphic with G if, and

only if, G is either C5 or K3 ◦K1.

Proposition 5 For any signed graph S = (G, σ), L(S) ∼ S if, and only if, G is either C5 or

K3 ◦K1.

Proof Suppose L(S) ∼ S. This implies, L(G) ∼= G and hence by Proposition-4 we see that

the graph G must be isomorphic to either C5 or K3 ◦K1.

Conversely, suppose that G is a C5 or K3 ◦K1. Then L(G) ∼= G by Proposition-4. Now, if

S any signed graph on any of these graphs, By Proposition-2 and definition of complementary

signed graph, L(S) and S are balanced and hence, the result follows from Proposition 3. �

In [5], the authors define path graphs Pk(G) of a given graph G = (V, E) for any positive

integer k as follows: Pk(G) has for its vertex set the set Pk(G) of all distinct paths in G having

k vertices, and two vertices in Pk(G) are adjacent if they represent two paths P, Q ∈ Pk(G)

whose union forms either a path Pk+1 or a cycle Ck in G.

Much earlier, the same observation as above on the formation of a line graph L(G) of a

given graph G, Kulli [9] had defined the common-edge graph CE(G) of G as the intersection

graph of the family P3(G) of 2-paths (i.e., paths of length two) each member of which is treated

as a set of edges of corresponding 2-path; as shown by him, it is not difficult to see that

CE(G) ∼= L2(G), for any isolate-free graph G, where L(G) := L1(G) and Lt(G) denotes the tth

iterated line graph of G for any integer t ≥ 2.

In [12], we extend the notion of CE(G) to realm of signed graphs: Given a signed graph

S = (G, σ) its common-edge signed graph CE(S) = (CE(G), σ′) is that signed graph whose

underlying graph is CE(G), the common-edge graph of G, where for any edge (e1e2, e2e3) in

CE(S) , σ′(e1e2, e2e3) = σ(e1e2)σ(e2e3).
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Proposition 6(E. Sampathkumar et al. [12]) For any signed graph S = (G, σ), its common-

edge signed graph CE(S) is balanced.

We now characterize signed graph whose complement S and common-edge signed graph

CE(S) are switching equivalent. In the case of graphs the following result is due to Simic [13].

Proposition 7(S. K. Simic [13]) The common-edge graph CE(G) of a graph G is isomorphic

with G if, and only if, G is either C5 or K2 ◦K2.

Proposition 8 For any signed graph S = (G, σ), S ∼ CE(S) if, and only if, G is either C5 or

K2 ◦K2.

Proof Suppose S ∼ CE(S). This implies, G ∼= CE(G) and hence by Proposition-7, we see

that the graph G must be isomorphic to either C5 or K2 ◦K2.

Conversely, suppose that G is a C5 or K2 ◦K2. Then G ∼= CE(G) by Proposition-7. Now,

if S any signed graph on any of these graphs, By Proposition-6 and definition of complementary

signed graph, CE(S) and S are balanced and hence, the result follows from Proposition 3. �

We now characterize signed graphs whose complement and its iterated line signed graphs

Lk(S), where k ≥ 3 are switching equivalent. In the case of graphs the following result is due

to Simic [13].

Proposition 9(S. K. Simic [13]) For any positive integer k ≥ 3, Lk(G) is isomorphic with G

if, and only if, G is C5.

Proposition 10 For any signed graph S = (G, σ) and for any positive integer k ≥ 3, Lk(S) ∼ S

if, and only if, G is C5.

Proof Suppose Lk(S) ∼ S. This implies, Lk(G) ∼= G and hence by Proposition-9 we see

that the graph G is isomorphic to C5.

Conversely, suppose that G is isomorphic to C5. Then Lk(G) ∼= G by Proposition-9. Now,

if S any signed graph on C5, By Corollary-2.1 and definition of complementary signed graph,

Lk(S) and S are balanced and hence, the result follows from Proposition 3. �
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Abstract: Let G = (V, E) be a graph. Let V be a vector space of dimensional n. A

Smarandachely labeling on a graph G is labeling an edge uv ∈ E(G) by an vector v ∈ V

on (u, v) and −v on (v, u). Then turn the conception directional labeling as a special case

to Smarandachely labeling. By directional labeling (or d-labeling) of an edge x = uv of

G by an ordered n-tuple (a1, a2, ..., an), we mean a labeling of the edge x such that we

consider the label on uv as (a1, a2, ..., an) in the direction from u to v, and the label on

x as (an, an−1, ..., a1) in the direction from v to u. Here, we study graphs, called (n, d)-

sigraphs, in which every edge is d-labeled by an n-tuple (a1, a2, ..., an), where ak ∈ {+,−},

for 1 ≤ k ≤ n. In this paper, we obtain another characterization of i-balanced (n, d)-sigraphs,

introduced the notion of path balance and generalized the notion of local balance in sigraphs

to (n, d)-sigraphs. Further, we obtain characterization of path i-balanced (n, d)-sigraphs.

Key Words: Smarandachely labeling, sigraphs, directional labeling, complementation,

balance.

AMS(2000): 05C22.

§1. Introduction

For graph theory terminology and notation in this paper we follow the book [1]. All graphs

considered here are finite and simple.

Let V be a vector space of dimensional n. A Smarandachely labeling on a graph G is

labeling an edge uv ∈ E(G) by an vector v ∈ V on (u, v) and −v on (v, u). Then turn the

1Received Oct.18, 2009. Accepted Dec. 20, 2009.
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conception directional labeling as a special case to Smarandachely labeling.

There are two ways of labeling the edges of a graph by an ordered n-tuple (a1, a2, ..., an)

(See [7]).

1. Undirected labeling or labeling. This is a labeling of each edge uv of G by an ordered n-

tuple (a1, a2, ..., an) such that we consider the label on uv as (a1, a2, ..., an) irrespective of the

direction from u to v or v to u.

2. Directional labeling or d-labeling. This is a labeling of each edge uv of G by an ordered

n-tuple (a1, a2, ..., an) such that we consider the label on uv as (a1, a2, ..., an) in the direction

from u to v, and (an, an−1, ..., a1) in the direction from v to u.

Note that the d-labeling of edges of G by ordered n-tuples is equivalent to labeling the

symmetric digraph
−→
G = (V,

−→
E ), where uv is a symmetric arc in

−→
G if, and only if, uv is an edge

in G, so that if (a1, a2, ..., an) is the d-label on uv in G, then the labels on the arcs −→uv and −→vu

are (a1, a2, ..., an) and (an, an−1, ..., a1) respectively.

Let Hn be the n-fold sign group, Hn = {+,−}n = {(a1, a2, ..., an) : a1, a2, ..., an ∈ {+,−}}
with co-ordinate-wise multiplication. Thus, writing a = (a1, a2, ..., an) and t = (t1, t2, ..., tn)

then at := (a1t1, a2t2, ..., antn). For any t ∈ Hn, the action of t on Hn is at = at, the co-

ordinate-wise product.

Let n ≥ 1 be a positive integer. An n-sigraph (n-sidigraph) is a graph G = (V, E) in

which each edge (arc) is labeled by an ordered n-tuple of signs, i.e., an element of Hn. A

sigraph G = (V, E) is a graph in which each edge is labeled by + or −. Thus a 1-sigraph

is a sigraph. Sigraphs are well studied in literature (See for example [2]-[4], [8]-[9]). In this

paper, we study graphs in which each edge is labeled by an ordered n-tuple a = (a1, a2, ..., an)

of signs (i.e, an element of Hn) in one direction but in the other direction its label is the reverse:

ar = (an, an−1, ..., a1), called directionally labeled n-signed graphs (or (n, d)-sigraphs).

Note that an n-sigraph G = (V, E) can be considered as a symmetric digraph
−→
G = (V,

−→
E ),

where both −→uv and −→vu are arcs if, and only if, uv is an edge in G. Further, if an edge uv in G

is labeled by the n-tuple (a1, a2, ..., an), then in
−→
G both the arcs −→uv and −→vu are labeled by the

n-tuple (a1, a2, ..., an).

In [5,6], we have initiated a study of (3, d) and (4, d)-Sigraphs. Also, we discuss some

applications of (3, d) and (4, d)-Sigraphs in real life situations.

In [7], we introduce the notion of complementation and generalize the notion of balance

in sigraphs to the directionally n-signed graphs. We look at two kinds of complementation:

complementing some or all of the signs, and reversing the order of the signs on each edge. Also

we gave some motivation to study (n, d)-sigraphs in connection with relations among human

beings in society.

In this paper, we introduce the notion of path balance and we generalize the notion of local

balance in sigraphs (a graph whose edges have signs) to the more general context of graphs with

multiple signs on their edges.

In [7], we define complementation and isomorphism for (n, d)-sigraphs as follows: For any

t ∈ Hn, the t-complement of a = (a1, a2, ..., an) is: at = at. The reversal of a = (a1, a2, ..., an)

is: ar = (an, an−1, ..., a1). For any T ⊆ Hn, and t ∈ Hn, the t-complement of T is T t = {at :

a ∈ T }.
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For any t ∈ Hn, the t-complement of an (n, d)-sigraph G = (V, E), written Gt, is the same

graph but with each edge label a = (a1, a2, ..., an) replaced by at. The reversal Gr is the same

graph but with each edge label a = (a1, a2, ..., an) replaced by ar.

Let G = (V, E) and G′ = (V ′, E′) be two (n, d)-sigraphs. Then G is said to be isomorphic

to G′ and we write G ∼= G′, if there exists a bijection φ : V → V ′ such that if uv is an edge in

G which is d-labeled by a = (a1, a2, ..., an), then φ(u)φ(v) is an edge in G′ which is d-labeled

by a, and conversely.

For each t ∈ Hn, an (n, d)-sigraph G = (V, E) is t-self complementary, if G ∼= Gt. Further,

G is self reverse, if G ∼= Gr.

Proposition 1(E. Sampathkumar et al. [7]) For all t ∈ Hn, an (n, d)-sigraph G = (V, E) is

t-self complementary if, and only if, Ga is t-self complementary, for any a ∈ Hn.

Let v1, v2, ..., vm be a cycle C in G and (ak1, ak2, ..., akn) be the n-tuple on the edge

vkvk+1, 1 ≤ k ≤ m− 1, and (am1, am2, ..., amn) be the n-tuple on the edge vmv1.

For any cycle C in G, let P(
−→
C ) denotes the product of the n-tuples on C given by

(a11, a12, ..., a1n)(a21, a22, ..., a2n)...(am1, am2, ..., amn) and

P(
←−
C ) = (amn, am(n−1), ..., am1)(a(m−1)n, a(m−1)(n−1), ..., a(m−1)1)...(a1n, a1(n−1), ..., a11).

Similarly, for any path P in G, P(
−→
P ) denotes the product of the n-tuples on P given by

(a11, a12, ..., a1n)(a21, a22, ..., a2n)...(am−1,1, am−1,2, ..., am−1,n)

and

P(
←−
P ) = (a(m−1)n, a(m−1)(n−1), ..., a(m−1)1)...(a1n, a1(n−1), ..., a11).

An n-tuple (a1, a2, ..., an) is identity n-tuple, if each ak = +, for 1 ≤ k ≤ n, otherwise it is

a non-identity n-tuple. Further an n-tuple a = (a1, a2, ..., an) is symmetric, if ar = a, otherwise

it is a non-symmetric n-tuple. In (n, d)-sigraph G = (V, E) an edge labeled with the identity

n-tuple is called an identity edge, otherwise it is a non-identity edge.

Note that the above products P(
−→
C ) (P(

−→
P )) as well as P(

←−
C ) (P(

←−
P )) are n-tuples. In

general, these two products need not be equal. However, the following holds.

Proposition 2 For any cycle C (path P ) of an (n, d)-sigraph G = (V, E), P(
←−
C ) = P(

−→
C )r (P(

←−
P )

= P(
−→
P )r).

Proof By the definition, we have
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P(
←−
C )r

= ((amn, am(n−1), ..., am1)(a(m−1)n, a(m−1)(n−1), ..., a(m−1)1)...(a1n, a1(n−1), ..., a11))
r

= ((am1, am2, ...amn)r(a(m−1)1, a(m−1)2, ...a(m−1)n)r...(a11, a12, ...a1n)r)r

= ((am1, am2, ...amn)(a(m−1)1, a(m−1)2, ...a(m−1)n)...(a11, a12, ...a1n))

= P(
−→
C ).

Similarly, we can prove P(
←−
P ) = P(

−→
P )r. �

Corollary 2.1 For any cycle C (path P ), P(
←−
C ) = P(

−→
C ) (P(

←−
P ) = P(

−→
P )) if, and only if,

P(
−→
C ) (P(

−→
P )) is a symmetric n-tuple. Furthermore, P(

−→
C ) (P(

−→
P )) is the identity n-tuple if,

and only if, P(
←−
C ) (P(

←−
P )) is.

For any subset Y of
−→
E (G) = {(u, v) : uv is an edge in G}, the set of all arcs in G, the

product of the set Y is the product of the n-tuples of its arcs and it is denoted by P(Y ). If Y1

and Y2 are disjoint sets, the product of the union of Y1 and Y2 is the product of the n-tuples of

the two sets:

P(Y1 ∪ Y2) = P(Y1).P(Y2).

The following Proposition gives a similar result about the symmetric difference of two sets

of arcs.

Proposition 3 If Y1 and Y2 are two subsets of
−→
E (G) of an (n, d)-sigraph G = (V, E), then

P(Y1 ⊕ Y2) = P(Y1).P(Y2).

Proof We know that

Y1 = (Y1 − Y2) ∪ (Y1 ∩ Y2) and Y2 = (Y2 − Y1) ∪ (Y1 ∩ Y2).

Since each of these is a union of disjoin sets, we have

P(Y1) = P(Y1 − Y2).P(Y1 ∩ Y2) and P(Y2) = P(Y2 − Y1).P(Y1 ∩ Y2).

Multiplying these equations we get that

P(Y1).P(Y2) = P(Y1 − Y2).P(Y2 − Y1).P(Y1 ∩ Y2).P(Y1 ∩ Y2).

Since P(Y1∩Y2).P(Y1∩Y2) is always identity n-tuple, and since Y1−Y2 and Y2−Y1 are disjoint,

P(Y1).P(Y2) = P [(Y1 − Y2) ∪ (Y2 − Y1)].

Thus, P(Y1).P(Y2) = P(Y1 ⊕ Y2). �

Corollary 3.1 Two sets of edges Y1 and Y2 have the same n-tuple if, and only if, their

symmetric difference Y1 ⊕ Y2 is identity.
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§2. Balance in an (n, d)-sigraph

In [7], we defined two notions of balance in an (n, d)-sigraph G = (V, E) as follows.

Definition. Let G = (V, E) be an (n, d)-sigraph. Then,

(i) G is identity balanced (or i-balanced), if P (
−→
C ) on each cycle of G is the identity

n-tuple, and

(ii) G is balanced, if every cycle contains an even number of non-identity edges.

Note An i-balanced (n, d)-sigraph need not be balanced and conversely. For example, consider

the (4, d)-sigraphs in Fig.1. In Fig.1(a) G is an i-balanced but not balanced, and in Fig.1(b) G

is balanced but not i-balanced.

- + + -

+ - - + - - - -

++++

+ - - + - + + -

(a) (b)

Fig.1

2.1 Criteria for Balance

An (n, d)-sigraph G = (V, E) is i-balanced if each non-identity n-tuple appears an even number

of times in P (
−→
C ) on any cycle of G.

However, the converse is not true. For example see Fig.2(a). In Fig.2(b), the number of

non-identity 4-tuples is even and hence it is balanced. But it is not i-balanced, since the 4-tuple

(++−−) (as well as (−−++)) does not appear an even number of times in P (
−→
C ) of 4-tuples.

++++

+ - - + - - - -

-++-

++- -

++++ ++++

++- -

(a) (b)

Fig.2

In [7], we obtained following characterizations of balanced and i-balanced (n, d)-sigraphs.

Proposition 4(E. Sampathkumar et al. [7]) An (n, d)-sigraph G = (V, E) is balanced if, and

only if, there exists a partition V1 ∪ V2 of V such that each identity edge joins two vertices in
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V1 or V2, and each non-identity edge joins a vertex of V1 and a vertex of V2.

As earlier we defined, let P (C) denote the product of the n-tuples in P (
−→
C ) on any cycle

C in an (n, d)-sigraph G = (V, E).

Proposition 5(E. Sampathkumar et al. [7]) An (n, d)-sigraph G = (V, E) is i-balanced if, and

only if, for each k, 1 ≤ k ≤ n, the number of n-tuples in P (C) whose kth co-ordinate is − is

even.

In Hn, let S1 denote the set of non-identity symmetric n-tuples and S2 denote the set

of non-symmetric n-tuples. The product of all n-tuples in each Sk, 1 ≤ k ≤ 2 is the identity

n-tuple.

Proposition 6(E. Sampathkumar et al. [7]) An (n, d)-sigraph G = (V, E) is i-balanced, if

both of the following hold:

(i) In P (C), each n-tuple in S1 occurs an even number of times, or each n-tuple in S1

occurs odd number of times (the same parity, or equal mod 2).

(ii) In P (C), each n-tuple in S2 occurs an even number of times, or each n-tuple in S2

occurs an odd number of times.

In this paper, we obtained another characterization of i-balanced (n, d)-sigraphs as follows:

Proposition 7 An (n, d)-sigraph G = (V, E) is i-balanced if, and only if, any two vertices u

and v have the property that for any two edge distinct u− v paths
−→
P1 = (u = u0, u1, ..., um = v

and
−→
P2 = (u = v0, v1, ..., vn = v) in G, P(

−→
P1) = (P(

−→
P2))

r and P(
−→
P2) = (P(

−→
P1))

r.

Proof Suppose that G is i-balanced. The paths
−→
P1 and

−→
P2 may be combined to form is either

a cycle or union of cycles. That is, P1 ∪ P2 = (u = u0, u1, ..., um = v = vn, vn−1, ..., v0 = u).

Since P(
−→
P1 ∪←−P2)=identity n-tuple e.

P(
−→
P1). P(

←−
P2) = e, P(

−→
P1) = P(

←−
P2) = (P(

−→
P2))

r .

The converse is obvious. �

Corollary 7.1 In an i-balanced (n, d)-sigraph G if two vertices are joined by at least 3 paths

then the product of n tuples on any paths joining them must be symmetric.

A graph G = (V, E) is said to be k-connected for some positive integer k, if between any

two vertices there exists at least k disjoint paths joining them.

Corollary 7.2 If the underlying graph of an i-balanced (n, d)-sigraph is 3-connected, then all

the edges in G must be labeled by a symmetric n-tuple.

Corollary 7.3 A complete (n, d)-sigraph on p ≥ 4 is i-balanced then all the edges must be

labeled by symmetric n-tuple.
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2.2 Complete (n, d)-sigraphs

An (n, d)-sigraph is complete, if its underlying graph is complete.

Proposition 8 The four triangles constructed on four vertices {a, b, c, d} can be directed so

that given any pair of vertices say (a, b) the product of the edges of these 4 directed triangles is

the product of the n-tuples on the arcs
−→
ab and

−→
ba

Proof The four triangles constructed on these vertices are (abc), (adb), (cad), (bcd).

Consider the 4 directed triangles (
−→
abc), (

−→
adb), (

−→
cad), (

−→
bcd) for the pair ab. Then

P = P(
−→
abc).P(

−→
adb).P(

−→
acd).P(

−→
bcd)

= [P(
−→
ab).P(−→ca).P(

−→
bc)]. [P(

−→
ad).P(

−→
db).P(

−→
ba)]

[P(−→ca).P(
−→
ad).P(

−→
cd)][P(

−→
bc).P(

−→
db).P(

−→
cd)]

= [P(
−→
ab).P(

−→
ba)]. [P(−→ca).P(−→ca)]. [P(

−→
bc).P(

−→
bc)]

[P(
−→
ad).P(

−→
ad)]. [P(

−→
db).P(

−→
db)]. [P(

−→
cd).P(

−→
cd)]

= P(
−→
ab)P(

−→
ba)

�

Corollary 8.1 The product of the n-tuples of the four triangles constructed on four vertices

{a, b, c, d} is identity if at least one edge is labeled by a symmetric n-tuple.

The i-balance base with axis a of a complete (n, d)-sigraph G = (V, E) consists list of the

product of the n-tuples on the triangles containing a.

Proposition 9 If the i-balance base with axis a and n-tuple of an edge adjacent to a is known,

the product of the n-tuples on all the triangles of G can be deduced from it.

Proof Given a base with axis a and the n-tuple of the arc
−→
ab be (a1, a2, · · · , an).. Consider

a triangle (bcd) whose n-tuple is not given by the base. Let P ′ = P(
−→
abc).P(

−→
adb).P(

−→
acd). Hence,

P ′ is known from the base with axis a. Let P be defined as in Proposition-8; we then have

P = P ′. P(
−→
bcd). By Proposition-8, P = P(

−→
ab).P(

−→
ba). Thus, P(

−→
bcd) = P ′.P(

−→
ab).P(

−→
ba). �

Remark 10 In the statement of above Proposition, it is not necessary to know the n-tuple of

an edge incident at a. But it is sufficient that an edge incident at a is a symmetric n-tuple.

Proposition 11 A complete (n, d)-sigraph G = (V, E) is i-balanced if, and only if, all the

triangles of a base are identity.

Proof If all the triangles of a base are identity, all the triangles of the (n, d)-sigraph are

identity. Indeed, for any triangle (bed) not appearing in the base with axis a, we have

P−−−→(bcd) = P(
−→
abc). P(

−→
abd). P(

−→
acd)=identity.

Conversely, if the (n, d)-sigraph is i-balanced, all these triangles are identity and particular

those of a base. �
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Corollary 11.1 All the triangles of a complete (n, d)-sigraph G = (V, E) are i-unbalanced if,

and only if, all the triangles of a base are non-identity.

Proposition 12 The number of i-balanced complete (n, d)-sigraphs of m vertices is pm−1,

where p = 2�n/2.

Proof In a graph G of m vertices, there are (m − 1) edges containing a; each of these

edges has p = 2�n/2 possibilities,since each edge must be labelled by an symmetric n-tuple, by

Corollary-7.3. Hence in all, pm−1 possibilities, where p = 2�n/2. Starting from each of these

possibilities, a base with axis a can be constructed, of which all the triangles are identity. �

§3. Path Balance in an (n, d)-sigraph

Definition Let G = (V, E) be an (n, d)-sigraph. Then G is

1. Path i-balanced, if any two vertices u and v satisfy the property that for any u− v paths

P1 and P2 from u to v, P(
−→
P 1) = P(

−→
P 2).

2. Path balanced if any two vertices u and v satisfy the property that for any u− v paths

P1 and P2 from u to v have same number of non identity n-tuples.

Clearly, the notion of path balance and balance coincides. That is an (n, d)-sigraph is

balanced if, and only if, G is path balanced.

If an (n, d) sigraph G is i-balanced then G need not be path i-balanced and conversely.

The following result gives a characterization path i-balanced (n, d)-sigraphs.

Theorem 13 An (n, d)-sigraph is path i-balanced if, and only if, any two vertices u and

v satisfy the property that for any two vertex disjoint u − v paths P1 and P2 from u to v,

P(
−→
P 1) = P(

−→
P 2).

Proof Necessary: Suppose that G is path i-balanced. Then clearly for any two vertex

disjoint paths P1 and P2 from one vertex to another, P(
−→
P 1) = P(

−→
P 2).

Sufficiency: Suppose that for any two vertex disjoint paths P1 and P2 from one vertex to

another, P(
−→
P 1) = P(

−→
P 2) and that G is not path i-balanced. Let S = {(u, v) : there exists

paths P and Q from u to v with P(
−→
P ) 	= P(

−→
Q)}. Let (u, v) ∈ S such that there exists paths

P1 and P2 such that P1 has length d(u, v). Then by the hypothesis, the paths P1 and P2 must

have a common point say w Let P3 and P4 be the subpaths from u to w and P5 and P6 be the

subpaths from w to v. Now either (u, w) ∈ S or (w, v) ∈ S. This gives a contradiction to the

choice of u and v. This completes the proof. �

§4. Local Balance in an (n, d)-Signed Graph

The notion of local balance in signed graph was introduced by F. Harary [3]. A signed graph

S = (G, σ) is locally at a vertex v, or S is balanced at v, if all cycles containing v are balanced.

A cut point in a connected graph G is a vertex whose removal results in a disconnected graph.
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The following result due to Harary [3] gives interdependence of local balance and cut vertex of

a signed graph.

Theorem 14(F. Harary [3]) If a connected signed graph S = (G, σ) is balanced at a vertex u.

Let v be a vertex on a cycle C passing through u which is not a cut point, then S is balanced at

v.

We now extend the notion of local balance in signed graph to (n, d)-signed graphs.

Definition Let G = (V, E) be a (n, d)-sigraph. Then for any vertices v ∈ V (G), G is locally

i-balanced at v (locally balanced at v) if all cycles in G containing v is i-balanced (balanced).

Analogous to the theorem we have the following for an (n, d) sigraph.

Theorem 15 If a connected (n, d)-signed graph G = (V, E) is locally i-balanced (locally bal-

anced) at a vertex u and v be a vertex on a cycle C passing through u which is not a cut point,

then S is locally i-balanced(locally balanced) at v.

Proof Suppose that G is i-balanced at u and v be a vertex on a cycle C passing through

u which is not a cut point. Assume that G is not i-balanced at v. Then there exists a cycle C1

in G which is not i-balanced. Since G is balanced at u, the cycle C is i-balanced.

With out loss of generality we may assume that u /∈ C for if u is in C, then P(C) is identity,

since G is i-balanced at u. Let e = uw be an edge in C. Since v is not a cut point there exists

a cycle C0 containing e and v. Then C0 consists of two paths P1 and P2 joining u and v.

Let v1 be the first vertex in P1 and v2 be a vertex in P2 such that v1 	= v2 ∈ C, such points

do exist since v is not a cut point and v ∈ C. Since u, v ∈ C0. Let P3 be the path on C0 from

v1 and v2, P4 be a path in C containing v and P5 is the path from v1 to v2. Then P5 ∪ P4

and P3 ∪ P5 are cycles containing u and hence are i-balanced, since they contain u. That is

P(P3) = (P(P5))
r so that C = P3 ∪ P5 is i-balanced. This completes the proof. By using the

same arguments we can prove the result for local balance. �
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§1. Introduction

We consider finite connected graphs. Surfaces are orientable 2-dimensional compact manifolds

without boundaries. Embeddings of a graph considered are always assumed to be orientable

2-cell embeddings. Given a graph G and a surface S, a Smarandachely k-drawing of G on S is

a homeomorphism φ: G → S such that φ(G) on S has exactly k intersections in φ(E(G)) for

an integer k. If k = 0, i.e., there are no intersections between in φ(E(G)), or in another words,

each connected component of S − φ(G) is homeomorphic to an open disc, then G has an 2-cell

embedding on S. If G can be embedded on surfaces Sr and St with genus r and t respectively,

then it is shown in [1] that for any k with r � k � t, G has an embedding on Sk. Naturally, the

genus of a graph is defined to be the minimum genus of a surface on which the graph can be

embedded. Given a graph, how many distinct embeddings does it have on each surface? This is

the genus distribution problem, first investigated by Gross and Furst [4]. As determining the

genus of a graph is NP-complete [15], it appears more difficult and significant to determine the

genus distribution of a graph.

1Partially supported by NNSFC under Grants No. 10871021
2Received Oct.20, 2009. Accepted Dec. 25, 2009.
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There have been results on genus distribution for some particular types of graphs (see [3],

[5], [8], [9], [11]-[17], among others). In [6], Liu discovered the joint trees of a graph which

provide a substantial foundation for us to solve the genus distribution of a graph. For a given

embedding Gσ of a graph G, one can find the surface, embedding surface or associate surface,

which Gσ embeds on by applying the associated joint tree. In fact, genus distribution of G is

that of the set of all of its embedding surfaces. This paper first study genus distributions of

some sets of surfaces and then investigate the genus distribution of a generic graph by using

the surface sorting method developed in [16].

Preliminaries will be briefed in the next section. In Section 3, surfaces Qi
j will be intro-

duced. We shall investigate the genus distribution of surface sets Q0
j and Q1

j for 1 � j � 24, and

derive the related recursive formulas. In Section 4, a recursion formula of the genus distribution

for a cubic graph is given. In the last section, we show that the genus distribution of a general

graph can be transformed into genus distribution of some cubic graphs by using a technique we

develop in this paper.

§2. Preliminaries

For a graph G, a rotation at a vertex v is a cyclic permutation of edges incident with v. A

rotation system of G is obtained by giving each vertex of G a rotation. Let ρv denote the valence

of vertex v which is the number of edges incident with v. The number of rotations systems of G

is
∏

v∈V (G)

(ρv − 1)!. Edmonds found that there is a bijection between the rotations systems of a

graph and its embeddings [2]. Youngs provided the first proof published [18]. Thus, the number

of embeddings of G is
∏

v∈V (G)

(ρv − 1)!. Let gi(G) denote the number of embeddings of G with

the genus i (i ≥ 0). Then, the genus distribution of G is the sequence g0(G), g1(G), g2(G), · · · .

The genus polynomial of G is fG(x) =
∑
i≥0

gi(G)xi.

Given a spanning tree T of G, the joint trees of G are obtained by splitting each non-tree

edge e into two semi-edges e and e−. Given a rotation system σ of G, Gσ, T̃σ and Pσ
T̃

denote the

associated embedding, joint tree and embedding surface which Gσ embedded on respectively.

There is a bijection btween embeddings and joint trees of G such that Gσ corresponds to T̃σ.

Given a joint tree T̃ , a sub-joint tree T̃1 of T̃ is a graph consisting of T1 and semi-edges incident

with vertices of T1 where T1 is a tree and V (T1) ⊆ V (T ). A sub-joint tree T̃1 of T̃ is called

maximal if there is not a tree T2 such that V (T1) ⊂ V (T2) ⊆ V (T ).

A linear sequence S = abc · · · z is a sequence of letters satisfying with a relation a ≺ b ≺
c ≺ · · · ≺ z. Given two linear sequences S1 and S2, the difference sequence S1/S2 is obtained

by deleting letters of S2 in S1. Since a surface is obtained by identifying a letter with its inverse

letter on a special polygon along the direction, a surface is regarded as that polygon such that

a and a− occur only once for each a ∈ S in this sense.

Let S be the collection of surfaces. Let γ(S) be the genus of a surface S. In order to

determine γ(S), an equivalence is defined by Op1, Op2 and Op3 on S as follows:

Op 1. AB ∼ (Ae)(e−B) where e /∈ AB;
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Op 2. Ae1e2Be−2 e−1 ∼ AeBe− = Ae−Be where e /∈ AB;

Op 3. Aee−B ∼ AB where AB 	= ∅
where AB is a surface.

Thus, S is equivalent to one, and only one of the canonical forms of surfaces a0a
−
0 and

i∏
k=1

akbka−k b−k which are the sphere and orientable surfaces of genus i(i ≥ 1).

Lemma 2.1 ([6]) Let A and B be surfaces. If a, b /∈ B, and if A ∼ Baba−b−, then γ(A) =

γ(B) + 1.

Lemma 2.2 ([7]) Let A, B, C, D and E be linear sequences and let ABCDE be a surface. If

a, b /∈ ABCDE, then AaBbCa−Db−E ∼ ADCBEaba−b−.

Lemma 2.3 ([13],[16]) Let A, B, C and D be linear sequences and let ABCD be a surface. If

a 	= b 	= c 	= a− 	= b− 	= c− and if a, b, c /∈ ABCD, then each of the following holds.

(i) aABa−CD ∼ aBAa−CD ∼ aABa−DC.

(ii) AaBa−bCb−cDc− ∼ aBa−AbCb−cDc− ∼ aBa−bCb−AcDc−.

(iii) AaBa−bCb−cDc− ∼ BaAa−bCb−cDc− ∼ CaAa−bBb−cDc− ∼ DaAa−bBb−cCc−.

For a set of surfaces M , let gi(M) denote the number of surfaces with the genus i in

M . Then, the genus distribution of M is the sequence g0(M), g1(M), g2(M), · · · . The genus

polynomial is fM (x) =
∑
i≥0

gi(M)xi.

§3. Genus Distribution for Q1
j

Let a, b, c, d, a−, b−, c−, d− be distinct letters and let A0, B0, C, D0 be linear sequences. Then,

surface sets Qk
j are defined as follows for j = 1, 2, 3, · · · , 24:

Qk
1 = {AkBkCDk} Qk

2 = {AkCDkaBka−} Qk
3 = {AkBkCaDka−}

Qk
4 = {AkBkaCDka−} Qk

5 = {AkDkaBkCa−} Qk
6 = {AkDkCBk}

Qk
7 = {BkCDkaAka−} Qk

8 = {BkDkCaAka−} Qk
9 = {AkBkDkC}

Qk
10 = {AkDkCaBka−} Qk

11 = {AkBkDkaCa−} Qk
12 = {AkDkBkaCa−}

Qk
13 = {AkCBkDk} Qk

14 = {AkCBkaDka−} Qk
15 = {AkCDkBk}

Qk
16 = {AkCaBkDka−} Qk

17 = {AkDkBkC} Qk
18 = {CDkaAka−bBkb−}

Qk
19 = {BkDkaAka−bCb−} Qk

20 = {BkCaAka−bDkb−} Qk
21 = {AkDkaBka−bCb−}

Qk
22 = {AkCaBka−bDkb−} Qk

23 = {AkBkaCa−bDkb−} Qk
24 = {AkaBka−bCb−cDkc−}

where k = 0 and 1, A1 ∈ {dA0, A0d}, (B1, D1) ∈ {(B0d
−, D0), (B0, d

−D0)} and a, a−, b, b−,

c, c−, d, d− /∈ ABCD. Let fQ0
j
(x) denote the genus polynomial of Q0

j . If A0
1A

0
0D0B1B

0
2C0

2C1D1

= ∅, then fQ0
j
(x) = 1. Otherwise, suppose that fQ0

j
(x) are given for 1 � j � 24. Then,

Theorem 3.1 Let gij
(n) be the number of surfaces with genus i in Qn

j . Each of the following

holds.
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gij
(1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi2(0) + gi3(0) + gi4(0) + gi5(0), if j = 1

gi21(0) + gi22(0) + g(i−1)1(0) + g(i−1)15(0), if j = 2

gi22(0) + gi23(0) + g(i−1)1(0) + g(i−1)17(0), if j = 3

gi4(0) + gi18(0) + g(i−1)6(0) + g(i−1)9(0), if j = 4

gi5(0) + gi20(0) + g(i−1)6(0) + g(i−1)13(0), if j = 5

2gi6(0) + 2gi8(0), if j = 6

2g(i−1)15(0) + 2g(i−1)17(0), if j = 7 and 16

4g(i−1)6(0), if j = 8

2gi4(0) + 2gi10(0), if j = 9

gi10(0) + gi18(0) + g(i−1)6(0) + g(i−1)9(0), if j = 10

2gi21(0) + 2gi23(0), if j = 11

2gi12(0) + 2gi19(0), if j = 12

2gi5(0) + 2gi14(0), if j = 13

gi14(0) + gi20(0) + g(i−1)6(0) + g(i−1)13(0), if j = 14

gi7(0) + gi12(0) + gi15(0) + gi16(0), if j = 15

gi7(0) + gi12(0) + gi16(0) + gi17(0), if j = 17

2g(i−1)4(0) + 2g(i−1)10(0), if j = 18

4g(i−1)12(0), if j = 19

2g(i−1)5(0) + 2g(i−1)14(0), if j = 20

gi21(0) + gi24(0) + g(i−1)11(0) + g(i−1)12(0), if j = 21

g(i−1)2(0) + g(i−1)3(0) + g(i−1)10(0) + g(i−1)14(0), if j = 22

gi23(0) + gi24(0) + g(i−1)11(0) + g(i−1)12(0), if j = 23

2g(i−1)21(0) + 2g(i−1)23(0), if j = 24

Proof We shall prove the equation for gi6(1), and the proofs for others are similar. Let

U1 = {A0dd−D0CB0} U2 = {dA0D0CB0d
−}

U3 = {A0dD0CB0d
−} U4 = {dA0d

−D0CB0}.
By the definition of Q1

6, we have Q1
6 = {U1, U2, U3, U4}. By the definition of gi,

gi6(1) = gi(U1) + gi(U2) + gi(U3) + gi(U4).

By Op3,

A0dd−D0CB0 ∼ A0D0CB0, and dA0D0CB0d
− = A0D0CB0d

−d ∼ A0D0CB0.

It follows that

gi(U1) = gi(U2) = gi6(0). (8)

By Lemma 2.3 (i) and Op2, we have

A0dD0CB0d
− = D0CB0d

−A0d ∼ B0D0Cd−A0d ∼ B0D0CaA0a
−
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and

dA0d
−D0CB0 = B0D0CdA0d

− ∼ B0D0CaA0a
−.

So

gi(U3) = gi(U4) = gi8(0). (9)

Combining (1) and (2), we have

gi6(1) = 2gi6(0) + 2gi8(0).

§4. Embedding Surfaces of a Cubic Graph

Given a cubic graph G with n non-tree edges yl (1 � l � n), suppose that T is a spanning tree

such that T contains the longest path of G and that T̃ is an associated joint tree. Let Xl, Yl, Zl

and Fl be linear sequences for 1 ≤ l ≤ n such that Xl ∪ Yl = yl, Zl ∪ Fl = y−l , Xl 	= Yl and

Zl 	= Fl.

RECORD RULE: Choose a vertex u incident with two semi-edges as a starting vertex and

travel T̃ along with tree edges of T̃ . In order to write down surfaces, we shall consider three

cases below.

Case 1: If v is incident with two semi-edges ys and yt. Suppose that the linear sequence is

R when one arrives v. Then, write down RXsytYs going away from v.

Case 2: If v is incident with one semi-edge ys. Suppose that R1 is the linear sequence

when one arrives v in the first time. Then the sequence is R1Xs when one leaves v in the first

time. Suppose that R2 is the linear sequence when one arrives v in the second time. Then the

sequence is R2Ys when one leaves v in the second time.

Case 3: If v is not incident with any semi-edge. Suppose that R1, R2 and R3 are, respectively,

the linear sequences when one leaves v in the first time, the second time and the third time.

Then, the sequences are (R2/R1)R1(R3/R2) and R3 when one leaves v in the third time.

Here, 1 ≤ s, t ≤ n and s 	= t. If v is incident with a semi-edge y−s , then replace Xs with Zs

and replace Ys with Fs.

Lemma 4.1 There is a bijection between embedding surfaces of a cubic graph and surfaces

obtained by the record rule.

Proof Let T be a spanning tree such that T̃ is a joint tree of G above. Suppose that σv is
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a rotation of v and that R1, R2 and R3 are given above.

σv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ys, yt, er), if Xs = ys or Fs = y−s
and v is incident with ys, yt and er;

(yt, ys, er), if Ys = ys or Zs = y−s
and v is incident with ys, yt and er;

(ys, e1, e2), if Xs = ys or Fs = y−s
and v is incident with ys, ep and eq;

(e1, ys, e2), if Ys = ys or Zs = y−s
and v is incident with ys, ep and eq;

(e1, e2, e3), if the linear sequence is R3

and v is incident with ep, eq and er;

(e2, e1, e3), if the linear sequence is (R2/R1)R1(R3/R2)

and v is incident with ep, eq and er

where ep, eq and er are tree-edges for 1 � p, q, r � 2n−3 and ep 	= eq 	= er for p 	= q 	= r. Hence

the conclusion holds. �

By the definitions for Xl, Yl, Zl and Fl, we have the following observation:

Observation 4.2 A surface set H(0) of G has properties below.

(1) Either Xl, Yl ∈ H(0) or Xl, Yl /∈ H(0);

(2) Either Zl, Fl ∈ H(0) or Zl, Fl /∈ H(0);

(3) If for some l with 1 � l � n, Xl, Yl, Zl, Fl ∈ H(0), then H(0) has one of the follow-

ing forms XlA
(0)YlB

(0)ZlC
(0)Fl D(0), YlA

(0)XlB
(0)ZlC

(0)FlD
(0), XlA

(0)YlB
(0)FlC

(0)ZlD
(0) or

YlA
(0)XlB

(0)FlC
(0)ZlD

(0). These forms are regarded to have no difference through this paper.

If either Xl ∈ H(0), Zl /∈ H(0) or Xl /∈ H(0), Zl ∈ H(0), then replace Xl, Yl, Zl and Fl

according to the definition of Xl, Yl, Zl and Fl.

RECURSION RULE: Given a surface set H(0) = {XlA
(0)YlB

(0)ZlC
(0)FlD

(0)} where

A(0), B(0), C(0) and D(0) are linear sequences.

Step 1. Let A0 = A(0), B0 = B(0), C = C(0) and D0 = D(0). Q1
j is obtained for 2 � j � 5.

Then H
(1)
j is obtained by replacing a, a− and Q1

j with a1, a
−
1 and H

(1)
j respectively.

Step 2. Given a surface set H
(k)
j1,j2,j3,··· ,jk

for a positive integer k and 2 � j1, j2, j3, · · · , jk � 5,

without loss of generality, suppose that H
(k)
j1,j2,j3,··· ,jk

= {XsA
(k)YsB

(k)ZsC
(k)FsD

(k)} where

A(k), B(k), C(k) and D(k) are linear sequences for certain s (1 � s � n). Let A0 = A(k),

B0 = B(k), C = C(k) and D0 = D(k). Q1
j is obtained for 2 � j � 5. Then H

(k+1)
j1,j2,j3,··· ,jk,j is

obtained by replacing a, a− and Q1
j with ak+1, a

−
k+1 and H

(k+1)
j1,j2,j3,··· ,jk,j respectively.

Some surface sets H
(m)
j1,j2,j3,··· ,jm

which contain al, a
−
l , yl, y

−
l can be obtained by using step

2 for a positive integer m, 2 � j1, j2, j3, · · · , jm � 5 and 1 � l � n. It is easy to compute

f
H

(m)
j1,j2,j3,··· ,jm

(x).
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By Theorem 3.7,

gi(H
(r)
j1,j2,j3,··· ,jr

) = gi(H
(r+1)
j1,j2,j3,··· ,jr ,2) + gi(H

(r+1)
j1,j2,j3,··· ,jr ,3)

+ gi(H
(r+1)
j1,j2,j3,··· ,jr ,4) + gi(H

(r+1)
j1,j2,j3,··· ,jr ,5), (1)

if 0 ≤ r ≤ m− 1, 2 ≤ j1, j2, j3, · · · , jr ≤ 5.
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v0

v1

v2

v3

v4

v5

v6v7

v8

v9

y1

y2

y3

y4 y5

y6

v0
v1 v2

v3

v4 v5 v6 v7
v8

v9

y1

y2

y−1 y−2 y6 y5 y4 y−5 y−4

y−6
y3 y−3

G0
T̃0

Fig.1: G0 and T̃0

Example 4.3 The graph G0 is given in Fig.1. A joint tree T̃0 is obtained by splitting non-tree

edges yl (1 � l � 6). Travel T̃0 by regarded v0 as a starting point. By using record rule we

obtain surface sets

{X1y2Y1Z1Z2Z3y3F3Y6Y5Y4Z5Z4y
−
6 F4F5X4X5X6F2F1}

and

{X1y2Y1Z1Z2Y6Y5Y4Z5Z4y
−
6 F4F5X4X5X6F2F1Z3y3F3}.

By replacing Z2, F2, Z3, F3, X6 and Y6 according the definition 16 surface sets Ur (1 � r � 16)

are listed below.

U1 = {X1y2Y1Z1y
−
2 y−3 y3y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1}

U2 = {X1y2Y1Z1y
−
2 y−3 y3Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1}

U3 = {X1y2Y1Z1y
−
2 y3y

−
3 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1}

U4 = {X1y2Y1Z1y
−
2 y3y

−
3 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1}

U5 = {X1y2Y1Z1y
−
3 y3y6Y5Y4Z5Z4y

−
6 F4F5X4X5y

−
2 F1}

U6 = {X1y2Y1Z1y
−
3 y3Y5Y4Z5Z4y

−
6 F4F5X4X5y6y

−
2 F1}

U7 = {X1y2Y1Z1y3y
−
3 y6Y5Y4Z5Z4y

−
6 F4F5X4X5y

−
2 F1}

U8 = {X1y2Y1Z1y3y
−
3 Y5Y4Z5Z4y

−
6 F4F5X4X5y6y

−
2 F1}

U9 = {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1y

−
3 y3}
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U10 = {X1y2Y1Z1y
−
2 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1y

−
3 y3}

U11 = {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1y3y

−
3 }

U12 = {X1y2Y1Z1y
−
2 Y5Y4Z5Z4y

−
6 F4F5X4X5y6F1y3y

−
3 }

U13 = {X1y2Y1Z1y6Y5Y4Z5Z4y
−
6 F4F5X4X5y

−
2 F1y

−
3 y3}

U14 = {X1y2Y1Z1Y5Y4Z5Z4y
−
6 F4F5X4X5y6y

−
2 F1y

−
3 y3}

U15 = {X1y2Y1Z1y6Y5Y4Z5Z4y
−
6 F4F5X4X5y

−
2 F1y3y

−
3 }

U16 = {X1y2Y1Z1Y5Y4Z5Z4y
−
6 F4F5X4X5y6y

−
2 F1y3y

−
3 }.

The genus distribution of Ur can be obtained by using the recursion rule. Since the method

is similar, we shall calculate the genus distribution of U1 and leave the calculation of genus

distribution for others to readers.

U1 is reduced to {X1y2Y1Z1y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5F1} by Op2. Let H(0) = S1,

A0 = y2, C0 = y−2 y6Y5Y4Z5Z4y
−
6 F4F5X4X5 and B0 = D0 = ∅. Then H

(1)
2 = H

(1)
3 =

{y2y
−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5} and H

(1)
4 = H

(1)
5 = {y2a1y

−
2 y6Y5Y4Z5Z4y

−
6 F4F5X4X5a

−
1 }.

H
(1)
2 is reduced to {y6Y5Y4Z5Z4y

−
6 F4F5X4X5} by Op2. Let A0 = X5y6Y5, B0 = Z5,

C0 = y−6 and D0 = F5. Then H
(2)
2,2 = {X5y6Y5y

−
6 F5a2Z5a

−
2 }, H

(2)
2,3 = {X5y6Y5Z5y

−
6 a2F5a

−
2 },

H
(2)
2,4 = {X5y6Y5Z5a2y

−
6 F5a

−
2 } and H

(2)
2,5 = {X5y6Y5F5a2Z5y

−
6 a−2 }. H

(2)
4,2 = {X5a

−
1 y2a1y

−
2 y6Y5

y−6 F5a2Z5a
−
2 }, H

(2)
4,3 = {X5a

−
1 y2a1y

−
2 y6Y5Z5y

−
6 a2F5a

−
2 }, H

(2)
4,4 = {X5a

−
1 y2a1y

−
2 y6Y5Z5a2y

−
6 F5

a−2 } and H
(2)
4,5 = {X5a

−
1 y2a1y

−
2 y6Y5F5a2Z5y

−
6 a−2 } by letting A0 = X5a

−
1 y2a1y

−
2 y6Y5, B0 = Z5,

C0 = y−6 and D0 = F5.

Similarly, H
(3)
2,2,2 = {y6a2a

−
2 a3y

−
6 a−3 }, H

(3)
2,2,3 = {y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
2,2,4 = {y6y

−
6 a3a2a

−
2 a−3 }

and H
(3)
2,2,5 = {y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
2,3,2 = {y6y

−
6 a2a

−
2 }, H

(3)
2,3,3 = {y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
2,3,4 =

{y6a3y
−
6 a2a

−
2 a−3 } and H

(3)
2,3,5 = {y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
2,4,2 = {y6a2y

−
6 a−2 }, H

(3)
2,4,3 = {y6a2y

−
6 a3a

−
2

a−3 }, H
(3)
2,4,4 = {y6a3a2y

−
6 a−2 a−3 } and H

(3)
2,4,5 = {y6a

−
2 a3a2y

−
6 a−3 }. H

(3)
2,5,2 = {y6a2y

−
6 a−2 }, H

(3)
2,5,3 =

{y6a2a3y
−
6 a−2 a−3 }, H

(3)
2,5,4 = {y6a3a2y

−
6 a−2 a−3 } and H

(3)
2,5,5 = {y6y

−
6 a−2 a3a2a

−
3 }. H

(3)
4,2,2 = {a−1 y2a1

y−2 y6a2a
−
2 a3y

−
6 a−3 }, H

(3)
4,2,3 = {a−1 y2a1y

−
2 y6y

−
6 a2a3a

−
2 a−3 }, H

(3)
4,2,4 = {a−1 y2a1y

−
2 y6y

−
6 a3a2a

−
2 a−3 }

and H
(3)
4,2,5 = {a−1 y2a1y

−
2 y6a

−
2 a3y

−
6 a2a

−
3 }. H

(3)
4,3,2 = {a−1 y2a1y

−
2 y6y

−
6 a2a

−
2 }, H

(3)
4,3,3 = {a−1 y2a1y

−
2

y6y
−
6 a2a3a

−
2 a−3 }, H

(3)
4,3,4 = {a−1 y2a1y

−
2 y6a3y

−
6 a2a

−
2 a−3 } and H

(3)
4,3,5 = {a−1 y2a1y

−
2 y6 a−2 a3y

−
6 a2a

−
3 }.

H
(3)
4,4,2 = {a−1 y2a1y

−
2 y6a2y

−
6 a−2 }, H

(3)
4,4,3 = {a−1 y2a1y

−
2 y6a2y

−
6 a3a

−
2 a−3 }, H

(3)
4,4,4 = {a−1 y2a1y

−
2 y6a3a2

y−6 a−2 a−3 } and H
(3)
4,4,5 = {a−1 y2a1y

−
2 y6a

−
2 a3a2y

−
6 a−3 }. H

(3)
4,5,2 = {a−1 y2a1y

−
2 y6a2 y−6 a−2 }, H

(3)
4,5,3 =

{a−1 y2a1y
−
2 y6a2a3y

−
6 a−2 a−3 }, H

(3)
4,5,4 = {a−1 y2a1y

−
2 y6a3a2y

−
6 a−2 a−3 } and H

(3)
4,5,5 = {a−1 y2a1y

−
2 y6

y−6 a−2 a3a2a
−
3 }.

By using (1),

fU1(x) = 4 + 32x + 28x2.

Thus,

fG0(x) = 64 + 512x + 448x2.
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§5. Genus Distribution for a Graph

Theorem 5.1 Given a graph, the genus distribution of G is determined by using the genus

distribution of some cubic graphs.

Proof Given a finite graph G0, suppose that u is adjacent to k + 1 distinct vertices v0, v1,

v2, · · · , vk of G0 with k ≥ 3. Actually, the supposition always holds by subdividing some edges

of G.

A distribution decomposition of a graph is defined below: add a vertex us of valence 3 such

that us is adjacent to u, v0 and vs for each s with 1 ≤ s ≤ k and then obtain a graph Gs by

deleting the edges uv0 and uvs.

Choose the spanning trees Ts of Gs such that uvs, uus and usvs are tree edges for 0 ≤ s ≤ k.

Consider a joint tree T̃0 of G. Let T̃ ∗s be the maximal joint tree of T̃0 such that vs ∈ V (T ∗s )

and vt /∈ V (T ∗s ) for t 	= s and 0 � s, t � k.

Let vs be the starting vertex of T̃ ∗s for 0 � s � k. Suppose that As is the set of all sequences

by travelling T̃ ∗s and that Qs is the embedding surface set of Gs. Then

Q0 = {A0Ar1Ar2Ar3 · · ·Ark
|Arp

∈ Arp
, 1 � rp � k, rp 	= rq for p 	= q}

and for 1 � s � k

Qs = {A0AsAr1Ar2Ar3 · · ·Ark−1
, A0Ar1Ar2Ar3 · · ·Ark−1

As|Arp
∈ Arp

,

1 � rp � k, rp 	= s, 1 � p, q � k − 1, and rp 	= rq for p 	= q}.
Let fQs

(x) denote the genus distribution of Qs. It is obvious that

fQ0(x) =
1

2

k∑
s=1

fQs
(x).

Thus,

fG0(x) =
1

2

k∑
s=1

fGs
(x).

Since G0 has finite vertices, the genus distribution of G0 can be transformed into those of

some cubic graphs in homeomorphism by using the distribution decomposition. �

Next we give a simple application of Theorem 5.1.

Example 5.2 The graph W4 is shown in Fig.2. In order to calculate its genus distribution, we

use the distribution decomposition and then we obtain three graph Gs for 1 � s � 3 (Fig.2).

It is obvious that G2 are isomorphic to Möbius ladder ML3 and Gs are isomorphic to Ringel

ladder RL2 for s = 1 and 3. Since (see [8], [15])

fML3(x) = 40x + 24x2

and since (see [9], [15])

fRL2(x) = 2 + 38x + 24x2,
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fW4(x) =
1

2

3∑
s=1

fGs
(x)

=
1

2
[40x + 24x2 + 2(2 + 38x + 24x2)]

= 2 + 58x + 36x2.

W4

u
u

u
u

v0 v0 v0 v0v1 v1 v1 v1

v2 v2 v2 v2v3 v3 v3 v3

u1
u2 u3

G1 G2 G3

Fig.2: W4 and Gs
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The greatest lesson in life is to know that even fools are right sometimes.
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