Note

On (s,t)-supereulerian graphs in locally highly connected graphs ${ }^{\star}$

Lan Lei ${ }^{\text {a,* }}$, Xiaomin Li ${ }^{\text {a }}$, Bin Wang ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$
${ }^{\text {a }}$ The college of mathematics and statistics, Chongqing, Technology and Business University, Chongqing 400067, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

A R T I C L E I N F O

Article history:

Received 19 March 2008
Received in revised form 5 August 2009
Accepted 25 August 2009
Available online 18 September 2009

Keywords:

(s, t)-supereulerian
Collapsible graph
Locally connected graphs
Locally k-edge-connected

Abstract

Given two nonnegative integers s and t, a graph G is (s, t)-supereulerian if for any disjoint sets $X, Y \subset E(G)$ with $|X| \leq s$ and $|Y| \leq t$, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s, t)-supereulerian, for any pair of nonnegative integers s and t with $s+t \leq k-1$. We further show that if $s+t \leq k$ and G is a connected, locally k-edge-connected graph, then for any disjoint sets $X, Y \subset E(G)$ with $|X| \leq s$ and $\mid Y \leq t$, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if $G-Y$ is not contractible to K_{2} or to $K_{2, l}$ with l odd.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this note are simple, nontrivial, and finite. We follow the notations of Bondy and Murty [2] unless otherwise stated. For a graph $G, O(G)$ denotes the set of all vertices of odd degree in G. A graph G with $O(G)=\emptyset$ is an even graph, and a connected even graph is an eulerian graph. A graph is supereulerian if it has a spanning eulerian subgraph. The collection of all supereulerian graphs will be denoted by $S L$. For a graph G with a connected subgraph H, the contraction G / H is the graph obtained from G by replacing H by a vertex v_{H}, such that the number of edges in G / H joining any $v \in V(G)-V(H)$ to v_{H} in G / H equals the number of edges joining v to v_{H} in G. A graph H is nontrivial if $E(H) \neq \emptyset$. As in [2], the connectivity, the edge-connectivity, the minimum degree, and the maximum degree of G are denoted by $\kappa(G), \kappa^{\prime}(G), \delta(G)$, and $\Delta(G)$, respectively.

For an integer $i \geq 1$, define $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$. For a vertex $v \in V(G), N_{G}(v)$ denotes the set of all vertices adjacent to v in G. When the graph G is understood from the context, we also use $N(v)$ for $N_{G}(v)$. A vertex v is a locally connected vertex if $G\left[N_{G}(v)\right]$, the subgraph induced by $N_{G}(v)$, is connected. A graph is locally connected if every $v \in V(G)$ is locally connected. For disjoint nonempty subsets $A, B \subset V(G),[A, B]_{G}$ denotes the set of edges with one end in A and the other end in B. When G is understood from the context, we also use $[A, B]$ for $[A, B]_{G}$. In particular, for $v \in V(G)$, we define $E_{G}(v)=[\{v\}, V(G)-\{v\}]$.

The problem of supereulerian graphs was initiated in [1], and it has been intensively studied by many authors (see [3-5, 7], among others). Given two nonnegative integers s and t, a graph G is (s, t)-supereulerian if for any disjoint sets $X, Y \subset E(G)$ with $|X| \leq s$ and $|Y| \leq t$, there is a spanning eulerian subgraph H of G that contains X and avoids Y. Clearly, G is supereulerian if and only if G is $(0,0)$-supereulerian. Since every supereulerian graph must be 2-edge-connected, it follows that any $(s, t)-$ supereulerian graph must be $(t+2)$-edge-connected. In [3], Catlin obtained the following theorem.

[^0]Theorem 1.1. If G is connected and locally connected, then $G \in S L$.
In order to extend Theorem 1.1, we here introduce some definitions and notations. A graph is collapsible if for every set $R \subset V(G)$ with $|R|$ even, there is a spanning connected subgraph H_{R} of G, such that $O\left(H_{R}\right)=R$. Thus K_{1} is both supereulerian and collapsible. Denote the family of collapsible graphs by $C L$. Let G be a collapsible graph and let $R=\emptyset$. By definition, G has a spanning connected subgraph H with $O(H)=\emptyset$, and so G is supereulerian. Therefore, we have $C L \subset S L$.

In [3], Catlin showed that every graph G has a unique collection of pairwise disjoint maximal collapsible subgraphs $H_{1}, H_{2}, \ldots, H_{c}$. The contraction of G obtained from G by contracting each H_{i} into a single vertex $(1 \leq i \leq c)$, is called the reduction of G. A graph is reduced if it is its own reduction.

Let G be a graph and let $e=u v$ be an edge of G. An elementary subdivision of G at e is a graph G_{e} obtained from $G-e$ by adding a new vertex $v(e)$ and by adding two new edges $u v(e)$ and $v(e) v$. We also say that we obtained G_{e} by subdividing the edge e. For a subset $X \subseteq E(G)$, define G_{X} to be the graph obtained from G by applying elementary subdivision to each edge of X (subdividing every edge in X).

Theorem 1.1 has been extended to (s, t)-supereulerian graphs by Lei et al. [8], for the special case when $s \leq 2$.
Theorem 1.2. Let s and t be nonnegative integers with $s \leq 2$. Suppose that G is $a(t+2)$-edge-connected locally connected graph on n vertices. For any disjoint sets $X, Y \subset E(G)$ with $|X| \leq s$ and $|Y| \leq t$, exactly one of the following holds:
(i) G has a spanning eulerian subgraph H such that $X \subset E(H)$ and $Y \cap E(H)=\emptyset$.
(ii) The reduction of $(G-Y)_{X}$ is a member of $\left\{K_{1}, K_{2}, K_{2, t}(t \geq 1)\right\}$.

The main purpose of this paper is to improve further these results on $(0,0)$-supereulerian and $(2, t)$-supereulerian locally connected graphs to (s, t)-supereulerian in locally k-edge-connected graphs. A graph is locally k-edge-connected if for every $v \in V(G), G[N(v)]$ is k-edge-connected. Our first result is as follows.

Theorem 1.3. Let $k \geq 1$ be an integer. If G is a connected, locally k-edge-connected graph, then G is (s, t)-supereulerian for all pairs of nonnegative integers s and t with $s+t \leq k-1$.

Consider a connected, locally k-edge-connected graph G with an edge cut D of $k+1$ edges (for example, $G \cong K_{k+2}$). Let $Y \subset D$ with $|Y|=k$. The graph G cannot have a spanning eulerian subgraph that avoids the edges of Y. Thus Theorem 1.3 is best possible in the sense that the bound $s+t \leq k-1$ cannot be relaxed. However, this example motivates the following theorem.

Theorem 1.4. For $k \geq 1$, let s and t be nonnegative integers such that $s+t \leq k$. Let G be a connected, locally k-edge-connected graph, then for any disjoint sets $X, Y \subset E(G)$ with $|X| \leq s$ and $|Y| \leq t$, there is a spanning eulerian subgraph H that contains X and avoids Y if and only if $G-Y$ is not contractible to K_{2} or to $K_{2, l}$ with l odd.

Corollary 1.5. Let G be a connected, locally k-edge-connected graph. Let s and t be nonnegative integers such that $s+t \leq k$.
(i) If $t<k$ and $k \geq 3$, then G is (s, t)-supereulerian.
(ii) If $\kappa^{\prime}(G) \geq k+2$ and $k \geq 3$, then G is ($\left.s, t\right)$-supereulerian.

The rest of this note is organized as follows: several lemmas that will be used in the subsequent section are established in Section 2, and the proofs of all the main results are deferred to Section 3.

2. Preliminary results

The following well-known result comes from Catlin [3].
Lemma 2.1. Let H be a collapsible subgraph of a graph G, then
(i) G is collapsible if and only if G / H is collapsible;
(ii) G is supereulerian if and only if G / H is supereulerian.

The next lemma follows immediately from Theorem 8 and Lemma 5 in Caltin [3].
Lemma 2.2. If G is reduced, then G is simple and contains no K_{3}. Moreover, if $\kappa^{\prime}(G) \geq 2$, then $\sum_{i=2}^{3}\left|D_{i}(G)\right| \geq 4$, and if $\sum_{i=2}^{3}\left|D_{i}(G)\right|=4$, then G is eulerian.

The following lemma follows from the definition and Lemma 2.1 immediately.
Lemma 2.3. Let G be a graph and let $X, Y \subseteq E(G)$ be disjoint subsets such that $|X| \leq s$ and $|Y| \leq t$. Then the following are equivalent.
(i) G has a spanning eulerian subgraph H that contains X and avoids Y.
(ii) $(G-Y)_{X}$ has a spanning eulerian subgraph.
(iii) The reduction of $(G-Y)_{X}$ is supereulerian.

Note that every supereulerian graph must be 2-edge-connected. The next result follows from Lemma 2.3.
Lemma 2.4. If G has a spanning eulerian subgraph H that contains X and avoids Y, then $\kappa^{\prime}(G-Y) \geq 2$.

3. Highly locally connected graphs

Before we prove the main results, note that G is a connected and locally k-edge-connected graph in this section, so we need to obtain the relative properties of G. It suffices to prove the following lemmas.
Lemma 3.1. Let $k \geq 1$ be an integer. If G is connected and locally k-edge-connected, then G is 2 -connected and $k+1$-edgeconnected.
Proof. If G is connected and has a cut-vertex u, then the neighborhood of u in G is disconnected, contradicting the assumption that G is locally k-edge-connected.

Let X be an edge cut of G, and let $e=u v \in X$. We will show that $|X| \geq k+1$. Since G is locally k-edge-connected, $\kappa^{\prime}(G[N(v)]) \geq k$, and so $|V(G[N(v)])| \geq k+1$. If $E_{G}(v) \subseteq X$, then $|X| \geq|V(G[N(v)])| \geq k+1$. Thus, we assume that $E_{G}(v) \nsubseteq X$, and so there must be a vertex $w \in N(v)-\{u\}$ such that v and w are in the same component of $G-X$. As $G[N(v)]$ is connected, $G[N(v)]$ has a (u, w)-path P, and so

$$
X^{\prime}=E(G[N(v)]) \cap X \supseteq E(P) \cap X \neq \emptyset
$$

Since u and w are in different components of $G-X, u$ and w must be in different components of $G[N(v)]-X$. It follows that $X^{\prime}-u v$ is an edge cut of $G[N(v)]$, whence $|X| \geq\left|X^{\prime}\right| \geq \kappa^{\prime}(G[N(v)]) \geq k$, then $|X| \geq k+1$.

A graph G is k-triangulated if every edge of G lies in at least k different triangles of G.
Lemma 3.2. Let G be a simple nontrivial graph, and let v be an arbitrary vertex in $V(G)$. If $\delta(G[N(v)]) \geq k$, then G is k triangulated. In particular, every connected, locally k-edge-connected graph is k-triangulated.

Proof. Let $e=u v$. In $H=G[N(v)]$, since $\delta(H) \geq k, u$ is adjacent to at least k different vertices. Thus u and v have at least k common vertices as neighbors, and $e=u v$ lies in at least k triangles.

Suppose that G is connected and locally k-edge-connected. For each $v \in V(G), \delta(G[N(v)]) \geq \kappa^{\prime}(G[N(v)]) \geq k$. Thus G must be k-triangulated.

Let G be a simple graph. For disjoint subsets X and Y of $E(G)$ with $|X \cup Y| \leq k$, we define $X^{\prime}=\{u v(e), v(e) v: u v=e \in$ $X, v(e)$ is a newly added vertex at $e\}$ and denote G^{\prime} the reduction of $(G-Y)_{X}$.

Lemma 3.3. Let $k>0$ be an integer. If G is a connected, locally k-edge-connected graph, X and Y are disjoint subsets of $E(G)$ with $|X \cup Y| \leq k$, and X^{\prime} is as defined above, then
(i) If $|X \cup Y| \leq k-1$, then $E\left(G^{\prime}\right) \subseteq X^{\prime}$.
(ii) If $|X \cup Y|=k \geq 3$, then either $\kappa^{\prime}\left(G^{\prime}\right)=1$, or $E\left(G^{\prime}\right) \subseteq X^{\prime}$.
(iii) If $|X \cup Y|=k \geq 3$, and $\kappa^{\prime}\left(G^{\prime}\right)=1$, then $\left|E\left(G^{\prime}\right)-X^{\prime}\right| \leq 1$.

Proof. We argue by contradiction and assume that $E\left(G^{\prime}\right)-X^{\prime}$ has an edge e, and so $e \in E(G)-(X \cup Y)$. By Lemma 3.2, G is k-triangulated, and so G has at least k triangles, denoted as $L_{1}, \ldots, Ł_{k}$, all containing e.
(i) Since $|X \cup Y| \leq k-1$ and since $e \notin X \cup Y$, there is at least one triangle that is disjoint from $X \cup Y$. Therefore, by Lemma 2.2, e lies in a collapsible subgraph of G^{\prime}. It follows that the reduced graph G^{\prime} has a triangle, contrary to Lemma 2.2.
(ii) and (iii). Now note that $k>2$ and suppose that $\left|E\left(G^{\prime}\right)-X^{\prime}\right| \geq 1$.

Claim 1. $\left|E\left(G^{\prime}\right)-X^{\prime}\right| \leq 1$.
If not, then $G^{\prime}-X^{\prime}$ has two edges e_{1} and e_{2}. By Lemma $3.2, G$ is k-triangulated, and so G has 3 -cycles $L_{1}^{j}, \ldots, L_{k}^{j}$, all containing e_{j}, for $j \in\{1,2\}$. Since G is simple, for each $i \neq i^{\prime}$ and $j \in\{1,2\}$ we have

$$
E\left(L_{i}^{j}\right) \cap E\left(L_{i^{\prime}}^{j}\right)=\left\{e_{j}\right\} .
$$

Since $e_{1} \neq e_{2}$, we have

$$
\left|\left\{L_{i}^{1}: i=1,2, \ldots, k\right\} \cap\left\{L_{i}^{2}: i=1,2, \ldots, k\right\}\right| \leq 1
$$

We assume that when the equality above holds, then $L_{1}^{1}=L_{1}^{2}$.
Since G^{\prime} is reduced, by Lemma 2.2, none of these 3-cycles are contained in G^{\prime} : they are broken by deleting Y or subdividing X. It follows by $|X \cup Y|=s+t \leq k$ that for $i \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\left|(X \cup Y) \cap E\left(L_{i}^{1}\right) \cap E\left(L_{i}^{2}\right)\right|=1, \text { and so } s+t=k \tag{1}
\end{equation*}
$$

First we assume that $L_{1}^{1} \neq L_{1}^{2}$. Since $e_{1} \neq e_{2}$, Lemma 3.2 implies that every edge of G lies in at least k triangles. Thus we need $2 k$ edges to be subdivided or deleted. It follows that e_{1} and e_{2} are adjacent. By (1), we may assume, relabelling if necessary, that $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{0} v_{2}$, and there exist $z_{1}, z_{2}, z_{3}, \ldots, z_{k}$ such that $e_{i}^{\prime}=v_{0} z_{i} \in X$ for $1 \leq i \leq s$, and $e_{i}^{\prime}=v_{0} z_{i} \in Y$ for $s+1 \leq i \leq s+t$. Note that $v\left(e_{i}^{\prime}\right)$ is a newly added vertex at e_{i}^{\prime}, thus $v_{0} v\left(e_{i}^{\prime}\right), v\left(e_{i}^{\prime}\right) z_{i} \in X^{\prime}$, for $1 \leq i \leq s$. See Fig. 1.

Fig. 1. $G\left[N_{G}\left(v_{1}\right)\right]$ and $G\left[N_{G}\left(v_{2}\right)\right]$.

Lemma 1A. $v_{j} z_{i} \in E\left(G^{\prime}\right)$ for $j=1,2$ and $i=1,2, \ldots, k$.
In fact, if one of them, say $v_{1} z_{1}$, is not in $E\left(G^{\prime}\right)$, then by the definition of $G^{\prime}, v_{1} z_{1}$ must be in a collapsible subgraph H^{\prime} of $(G-Y)_{X}$. It is clear that $H^{\prime} \cup(G-Y)_{X}\left[\left\{v_{1} z_{1}, v_{2} z_{1}, e_{1}, e_{2}\right\}\right] / H^{\prime} \cong K_{3}$, which consists of the edges e_{1}, e_{2}, $v_{2} z_{1}$. Since K_{3} is collapsible, it follows by Lemma 2.1 (i) that $H^{\prime} \cup(G-Y)_{X}\left[\left\{v_{1} z_{1}, v_{2} z_{1}, e_{1}, e_{2}\right\}\right]$ is also a collapsible subgraph of $(G-Y)_{X}$. Hence both e_{1} and e_{2} are in a collapsible subgraph of $(G-Y)_{X}$, which is contrary to the assumption that $e_{1}, e_{2} \in E\left(G^{\prime}\right)$. This proves Lemma 1A.

Lemma 2A. $N_{G}\left(v_{1}\right)=N_{G}\left(v_{2}\right)=\left\{v_{0}, z_{1}, z_{2}, \ldots, z_{k}\right\}$.
If not, then we may assume, without loss of generality, that there exists $z \in N_{G}\left(v_{1}\right)-\left\{v_{0}, z_{1}, z_{2}, \ldots, z_{k}\right\}$. Since G is locally connected, we may further assume that this vertex z is adjacent to z_{1} in G, and so in $(G-Y)_{X}$ as well. Now $G\left[\left\{v_{1}, z_{1}, z\right\}\right] \cong K_{3}$, and K_{3} is collapsible. Hence the definition of G^{\prime} yields $v_{1} z_{1}$, contrary to Lemma 1 A . This proves Lemma 2A.

By its definition, G^{\prime} is reduced. By Lemma 2.2, G^{\prime} cannot have any 3-cycles, and so $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ must be an independent set in G^{\prime}. It follows by the definition of G^{\prime} that $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ must also be an independent set in G. If $k>2$, then by Lemma 1A, $G\left[N\left(v_{1}\right)\right]$ cannot be k-edge-connected, and so we must have $k=1$ or $k=2$, contrary to the assumption that $k>2$. This contradiction establishes Claim 1 under the assumption that $L_{1}^{1} \neq L_{1}^{2}$.

If suppose that $L_{1}^{1}=L_{1}^{2}$, then $e_{0}=v_{1} v_{2} \in E(G)$, as $L_{1}^{1}=L_{1}^{2}=G\left[\left\{v_{0}, v_{1}, v_{2}\right\}\right]$. By Lemma 2.2, G^{\prime} cannot have any 3cycles, and so $v_{1} v_{2} \in X \cup Y$. With an argument like that used in the proof of Lemma 1 A , we conclude that $v_{j} z_{i} \in E\left(G^{\prime}\right)$ for $j \in\{1,2\}$ and $i \in\{2, \ldots, k\}$, and when $e_{0} \in X, v_{1} v\left(e_{0}\right), v_{2} v\left(e_{0}\right) \in E\left(G^{\prime}\right)$. With a similar argument used in the proof of Lemma 2A, we further conclude that $N_{G}\left(v_{1}\right)=\left\{v_{0}, v_{2}, z_{2}, \ldots, z_{k}\right\}$ and $N_{G}\left(v_{2}\right)=\left\{v_{0}, v_{1}, z_{2}, \ldots, z_{k}\right\}$. Since $k>2$, and the facts above imply that $G\left[N_{G}\left(v_{1}\right)\right]$ cannot be k-edge-connected, contrary to the assumption that G is locally k-edge-connected. This contradiction establishes Claim 1 under the assumption that $L_{1}^{1}=L_{1}^{2}$.

We now prove (ii) and (iii). Suppose that $k>2$ and $e \in E\left(G^{\prime}\right)-X^{\prime}$. By Lemma 3.2, G has at least k triangles, denoted by $L_{1}, \ldots L_{k}$, all containing e. It follows that $\left|E\left(\bigcup_{i=1}^{k} E\left(L_{i}\right)\right)\right|=2 k+1$. Since $|X \cup Y|=k>2$, each L_{i} must have exactly one edge in $X \cup Y$. Moreover, by Lemma 2.2, G^{\prime} contains no 3-cycles, and so if L_{i} in G contains an edge in X, then $E\left(L_{i}\right)-X \subseteq E\left(G^{\prime}\right)$. It follows that if $s>0$, then G^{\prime} contains at least two edges in $E\left(G^{\prime}\right)-X^{\prime}$, contrary to Claim 1 . Thus we must have $s=0$, and so $|Y|=k$. Using Claim 1 and the facts that $s=0$ and $t=|Y|=k$, we conclude that $\left|E\left(G^{\prime}\right)\right|=1$, and so $G^{\prime} \cong K_{2}$. This proves that if $\left|E\left(G^{\prime}\right)-X^{\prime}\right|=1$, then $G^{\prime} \cong K_{2}$, and so $\kappa^{\prime}\left(G^{\prime}\right)=1$. Otherwise, Claim 1 yields $\left|E\left(G^{\prime}\right)-X^{\prime}\right|=0$ and hence $E\left(G^{\prime}\right) \subseteq X^{\prime}$, thus (ii) holds.

We now turn to the proof of Theorem 1.3. We assume that G is a connected, locally k-edge-connected graph, and X and Y are disjoint subsets of $E(G)$ with $|X| \leq s$ and $|Y| \leq t$, and that G^{\prime} is the reduction of $(G-Y)_{X}$.

Proof of Theorem 1.3. By Lemma 3.1, $\kappa^{\prime}(G) \geq k+1$, further $G^{\prime} \cong K_{1}$ or $\kappa^{\prime}\left(G^{\prime}\right) \geq 2$ from the hypothesis $|X|+|Y| \leq k-1$. In the first case, G^{\prime} is supereulerian, and we are done. In the second case, let $v \in V\left(G^{\prime}\right)$ be an arbitrary vertex; note that $d_{G^{\prime}}(v) \neq 0$. Let H_{v} be the preimage of v, and let D denote the edge cut in G consisting of the edges with exactly one end in $V\left(H_{v}\right)$. Lemma 3.3(i) implies $E\left(G^{\prime}\right) \subseteq X^{\prime}$, and so $D \subseteq X \cup Y$. Now $k+1 \leq \kappa^{\prime}(G) \leq|D| \leq|X|+|Y| \leq k-1$, a contradiction. This proves Theorem 1.3.

Lemma 3.4 (Catlin, Lemma 1 of [6]). $K_{3,3}-e$ is collapsible.

Lemma 3.5. Let k be a positive integer, let s and t be nonnegative integers with $s+t=k$, and let G be a connected, locally k-edge-connected graph.
(i) If $k=2$, then G is ($s, t)$-supereulerian or $G^{\prime} \in\left\{K_{2}, K_{2,3}\right\}$;
(ii) If $k=1$, then G is (s, t)-supereulerian or $G^{\prime} \in\left\{K_{2}, K_{2, l}:\right.$ l is odd $\}$.

Proof. (i) Assume that G^{\prime} is nontrivial; otherwise, there is nothing to prove. If $E\left(G^{\prime}\right)-X^{\prime}=\emptyset$, i.e., $E\left(G^{\prime}\right) \subseteq X^{\prime}$, since $s \leq 2$, then G^{\prime} is a path whose length is 2 or 4 . So $\kappa^{\prime}\left(G^{\prime}\right)$ is 1 . However, if G^{\prime} is a path with length 2 , then $t \leq 1$. Now Lemma 2.4 implies that $\kappa^{\prime}(G-Y) \geq 2$, which contradicts G^{\prime} being a path. If G^{\prime} is a path with length 4 , then $t=0$; now Lemma 3.1 yields $\kappa^{\prime}(G-Y) \geq 3$, again a contradiction.

So we can assume there is an edge $e=u v \in E\left(G^{\prime}\right)-X^{\prime}$; that is, $E\left(G^{\prime}\right)-X^{\prime} \neq \emptyset$. Note that $e \in E(G)$. By Lemma 3.2, every edge of G lies in at least two triangles. By Lemma 2.2, none of these 3-cycles are contained in G^{\prime}, which is the reduction of $(G-Y)_{X}$. If e lies in at least three triangles in G, we can find a contradiction. Because when $s+t=2$, this edge e will be contracted even though two triangles disappear by deleting Y or subdividing X. Since $e \in E\left(G^{\prime}\right)-X^{\prime}$, this is a contradiction. Hence we may assume that e lies in exactly two triangles. Let L_{1} and L_{2} be triangles containing e. Denote the third vertex of L_{i} by z_{i}, for $i \in\{1,2\}$.
Case 1. $t=2$.
Since $e=u v \in G^{\prime}$, we must delete one edge respectively from triangle L_{1} and L_{2}.
Case 1.1. $e^{\prime}=z_{1} z_{2} \in E(G)$.
By symmetry, if we delete the two edges $\left\{u z_{1}, u z_{2}\right\}$, then $G^{\prime} \cong K_{2}$. If we delete the two edges $\left\{u z_{1}, v z_{2}\right\}$, then there is no edge lies in some other triangle since $e \in E\left(G^{\prime}\right)-X^{\prime}$, thus the G^{\prime} is a C_{4}, so that G is $(0,2)$-supereulerian.
Case 1.2. $e^{\prime}=z_{1} z_{2} \notin E(G)$.
Each edge of G lies in at least two triangles by Lemma 3.2. If we delete the two edges $\left\{u z_{1}, u z_{2}\right\}$ or $\left\{u z_{1}, v z_{2}\right\}$, the left edges of $G-e$ will be contracted and therefore $G^{\prime} \cong K_{2}$.
Case 2. $t=0, t=1$.
In this case, $e^{\prime}=z_{1} z_{2} \in E(G)$. If not, for $s=2$ or $s=1$, we must subdivide one edge from triangle L_{1} or L_{2}. Without loss of generality, we may assume that the edge $u z_{1}$ is subdivided from triangle L_{1} by adding a new vertex w at $u z_{1}$. The edge $z_{1} v$ of L_{1} lies in some other triangle by Lemma 3.2, so that $\left\{u w, w z_{1}, z_{1} v, u v\right\}$ will be contracted to K_{1}, which contradicts to $e=u v \in G^{\prime}$.
Case 2.1. $t=1$.
Without loss of generality, we suppose that one edge in L_{1} is subdivided and one edge in L_{2} is deleted. If we subdivide $u z_{1}$ and delete $u z_{2}$, then $G^{\prime} \cong K_{1}$, a contradiction. If we subdivide $u z_{1}$ and delete $v z_{2}$, then there is no edge lies in some other triangle since $e \in E\left(G^{\prime}\right)-X^{\prime}$, thus $G^{\prime} \cong K_{2,3}$. If we subdivide $u z_{2}$ and delete $v z_{1}$, then the same result can be obtained in the similar manner.
Case 2.2. $t=0$.
Clearly, if we subdivide the two edges $\left\{u z_{1}, u z_{2}\right\}$ or $\left\{v z_{1}, v z_{2}\right\}$, then $G^{\prime} \cong K_{1}$, a contradiction. If we subdivide the two edges $\left\{u z_{2}, v z_{1}\right\}$ or $\left\{u z_{1}, v z_{2}\right\}$, then G^{\prime} is $K_{3,3}-e$. By Lemma 3.4, $G^{\prime} \in C L \subseteq S L$. Therefore G is (2, 0)-supereulerian. So (i) holds.
(ii) By Lemma 3.2, each edge of G lies in at least one triangle. Since $k=1$, let $e_{1}=X \bigcup Y$, which is subdivided if $e_{1} \in X$ or deleted if $e_{1} \in Y$.

If e_{1} lies in exactly one triangle in G, then let L denote this triangle. First, we assume $s=0$ and $t=1$. Consider the other two edges of L after deleting e_{1}; we have three cases. If each edge lies in some triangle, then G is $(0,1)$-supereulerian. If only one edge lies in the other triangle, then $G^{\prime} \cong K_{2}$. If each edge only lies in L, then $G^{\prime} \cong K_{2,1}$.

Now, we consider $s=1$ and $t=0$. After we subdivide the edge e_{1}, if one of the other two edges of L lies in some triangle, then $G^{\prime} \cong K_{1}$. Otherwise, G^{\prime} is a 4-cycle, which is supereulerian. In these two cases, G is $(1,0)$-supereulerian.

If e_{1} lies in at least two triangles in G, then let L denote one of the triangles. Suppose $s=0$ and $t=1$. If some edge of L other than e_{1} lies in some other triangle, then $G^{\prime} \cong K_{1}$ and G is $(0,1)$-supereulerian. Otherwise, G is (s, t)-supereulerian if l is even, and $G^{\prime} \cong K_{2, l}$ if l is odd.

Again we consider $s=1$ and $t=0$. After we subdivide the edge e_{1}, if some edge of L lies in some other triangle, then $G^{\prime} \cong K_{1}$ and G is $(0,1)$-supereulerian. Otherwise, when l is odd, G^{\prime} is supereulerian and G is $(1,0)$-supereulerian; when l is even, $G^{\prime} \cong K_{2, l+1}$. This proves Lemma 3.5(ii).

Proof of Theorem 1.4. Necessity. If G is connected, then G is (s, t)-supereulerian, so $G-Y$ cannot be contracted to K_{2} or to $K_{2, l}$ for odd l.

Sufficiency. Let G be a connected, locally k-edge-connected graph and let $X, Y \subset E(G)$ be disjoint sets with $|X| \leq s$ and $|Y| \leq t$.

If $s+t<k$, then Theorem 1.3 implies that G is (s, t)-supereulerian, and so G has a spanning eulerian subgraph H with $X \subseteq E(H)$ and with $E(H) \cap Y=\emptyset$. Hence we assume that $s+t=k$.
Case $1 . k \geq 3$.
Note that a connected graph G cannot be contracted to K_{2} if and only if $\kappa^{\prime}(G) \geq 2$. Now we assume that $\kappa^{\prime}(G-Y) \geq 2$ to show that G has a spanning eulerian subgraph H with $X \subseteq E(H)$ and with $E(H) \cap Y=\emptyset$.

Again we use G^{\prime} to denote the reduction of $(G-Y)_{X}$, and we will show that G^{\prime} is supereulerian. Since $\kappa^{\prime}(G-Y) \geq 2$, we have either $G^{\prime} \cong K_{1}$ or $\kappa^{\prime}\left(G^{\prime}\right) \geq 2$. In the first case, G^{\prime} is supereulerian, and we are finished. In the second case, since $k \geq 3$, Lemma 3.2 implies that G is k-triangulated. By Lemma 3.3(ii), since $k \geq 3$, the assumption that G^{\prime} is 2-edge-connected implies that $E\left(G^{\prime}\right) \subseteq X^{\prime}$. Let $w \in V\left(G^{\prime}\right)$ be an arbitrary vertex; note that $d_{G^{\prime}}(w) \neq 0$. If $D^{\prime}=E_{G^{\prime}}(w)$, then D^{\prime} corresponds to an edge cut $D \subseteq X$ of $G-Y$, and so $D \cup Y$ contains an edge cut of G. By Lemma 3.1, $\kappa^{\prime}(G) \geq k+1$. We now have

$$
k+1 \leq \kappa^{\prime}(G) \leq|D|+|Y| \leq|X \cup Y|=s+t=k
$$

a contradiction, which implies that G^{\prime} must be a cycle, and so G^{\prime} is supereulerian.

Case 2. $k=1, k=2$.

By Lemma 3.5, if $k=1, k=2$, and G cannot be contracted to K_{2} or to $K_{2, l}$ for odd l, then G is (s, t)-supereulerian. Thus the proof is complete.

Proof of Corollary 1.5. Let X and Y be disjoint subsets of $E(G)$ such that $|X| \leq s$ and $|Y| \leq t$.
By Lemma 3.1, $\kappa^{\prime}(G) \geq k+1$. If $|Y| \leq t<k$ and $k \geq 3$, then $\kappa^{\prime}(G-Y) \geq 2$, and so $G-Y$ cannot be contracted to K_{2}. It follows by the proof of Theorem 1.4 that G has a spanning eulerian subgraph H with $X \subseteq E(H)$ and with $E(H) \cap Y=\emptyset$, and so by definition, G is (s, t)-supereulerian. This proves Corollary 1.5(i).

If $\kappa^{\prime}(G) \geq k+2$, then since $|Y| \leq t \leq k$ and $k \geq 3$, we conclude that $\kappa^{\prime}(G-Y) \geq 2$, and so $G-Y$ cannot be contracted to K_{2}. Again by the proof of Theorem 1.4, there is a spanning eulerian subgraph H that contains X and avoids Y, and so by definition, G is (s, t)-supereulerian. This proves Corollary $1.5(\mathrm{ii})$.

Acknowledgments

The authors are extremely grateful to the referees for suggestions that led to a remarkable improvement of the paper.

References

[1] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraph of Eulerian graphs, J. Graph Theory 1 (1977) 79-84.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, Amsterdan, 1976.
[3] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[4] P.A. Catlin, Supereulerian graphs: A survey, J. Graph Theory 16 (1992) 177-196.
[5] P.A. Catlin, Suppereulian graphs, collapsible graphs and four-cycles, Congr. Numer. 58 (1987) 233-246.
[6] Z.H. Chen, H.J. Lai, Supereulerian graphs and the Petersen graph, Ars Combin. 48 (1998) 271-282.
[7] H.J. Lai, Contractions and Hamiltonian line graphs, J. Graph Theory 1 (1988) 11-15.
[8] L. Lei, X.M. Li, B. Wang, On (s, t)-Supereulerian locally connected graphs, in: ICCS 2007, Proceedings, in: Lecture Notes in Computer Sciences, vol. 4489, 2007, pp. 384-388.

[^0]: तरh This research is supported in part by Natural Science Foundations of Chongqing municipality (2007BA2004), China.

 * Corresponding author.

 E-mail addresses: leilan@ctbu.edu.cn, moon_798@163.com (L. Lei).

