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a b s t r a c t

Given two nonnegative integers s and t , a graph G is (s, t)-supereulerian if for any disjoint
sets X, Y ⊂ E(G) with |X | ≤ s and |Y | ≤ t , there is a spanning eulerian subgraph H of G
that contains X and avoids Y . We prove that if G is connected and locally k-edge-connected,
thenG is (s, t)-supereulerian, for any pair of nonnegative integers s and t with s+t ≤ k−1.
We further show that if s + t ≤ k and G is a connected, locally k-edge-connected graph,
then for any disjoint sets X, Y ⊂ E(G)with |X | ≤ s and |Y ≤ t , there is a spanning eulerian
subgraph H that contains X and avoids Y , if and only if G− Y is not contractible to K2 or to
K2,l with l odd.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this note are simple, nontrivial, and finite. We follow the notations of Bondy and Murty [2] unless otherwise
stated. For a graph G, O(G) denotes the set of all vertices of odd degree in G. A graph Gwith O(G) = ∅ is an even graph, and
a connected even graph is an eulerian graph. A graph is supereulerian if it has a spanning eulerian subgraph. The collection
of all supereulerian graphs will be denoted by SL. For a graph G with a connected subgraph H , the contraction G/H is the
graph obtained from G by replacing H by a vertex vH , such that the number of edges in G/H joining any v ∈ V (G) − V (H)
to vH in G/H equals the number of edges joining v to vH in G. A graph H is nontrivial if E(H) 6= ∅. As in [2], the connectivity,
the edge-connectivity, the minimum degree, and the maximum degree of G are denoted by κ(G), κ ′(G), δ(G), and ∆(G),
respectively.
For an integer i ≥ 1, define Di(G) = {v ∈ V (G)|dG(v) = i}. For a vertex v ∈ V (G), NG(v) denotes the set of all vertices

adjacent to v in G. When the graph G is understood from the context, we also use N(v) for NG(v). A vertex v is a locally
connected vertex if G[NG(v)], the subgraph induced by NG(v), is connected. A graph is locally connected if every v ∈ V (G) is
locally connected. For disjoint nonempty subsets A, B ⊂ V (G), [A, B]G denotes the set of edges with one end in A and the
other end in B. When G is understood from the context, we also use [A, B] for [A, B]G. In particular, for v ∈ V (G), we define
EG(v) = [{v}, V (G)− {v}].
The problem of supereulerian graphs was initiated in [1], and it has been intensively studied by many authors (see [3–5,

7], among others). Given two nonnegative integers s and t , a graphG is (s, t)-supereulerian if for any disjoint sets X, Y ⊂ E(G)
with |X | ≤ s and |Y | ≤ t , there is a spanning eulerian subgraphH ofG that containsX and avoids Y . Clearly,G is supereulerian
if and only if G is (0, 0)-supereulerian. Since every supereulerian graph must be 2-edge-connected, it follows that any (s, t)-
supereulerian graph must be (t + 2)-edge-connected. In [3], Catlin obtained the following theorem.
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Theorem 1.1. If G is connected and locally connected, then G ∈ SL.
In order to extend Theorem 1.1, we here introduce some definitions and notations. A graph is collapsible if for every set

R ⊂ V (G)with |R| even, there is a spanning connected subgraph HR of G, such that O(HR) = R. Thus K1 is both supereulerian
and collapsible. Denote the family of collapsible graphs by CL. Let G be a collapsible graph and let R = ∅. By definition, G has
a spanning connected subgraph H with O(H) = ∅, and so G is supereulerian. Therefore, we have CL ⊂ SL.
In [3], Catlin showed that every graph G has a unique collection of pairwise disjoint maximal collapsible subgraphs

H1,H2, . . . ,Hc . The contraction of G obtained from G by contracting each Hi into a single vertex (1 ≤ i ≤ c), is called
the reduction of G. A graph is reduced if it is its own reduction.
Let G be a graph and let e = uv be an edge of G. An elementary subdivision of G at e is a graph Ge obtained from G− e by

adding a new vertex v(e) and by adding two new edges uv(e) and v(e)v. We also say that we obtained Ge by subdividing the
edge e. For a subset X ⊆ E(G), define GX to be the graph obtained from G by applying elementary subdivision to each edge
of X (subdividing every edge in X).
Theorem 1.1 has been extended to (s, t)-supereulerian graphs by Lei et al. [8], for the special case when s ≤ 2.

Theorem 1.2. Let s and t be nonnegative integers with s ≤ 2. Suppose that G is a (t + 2)-edge-connected locally connected
graph on n vertices. For any disjoint sets X, Y ⊂ E(G) with |X | ≤ s and |Y | ≤ t, exactly one of the following holds:
(i) G has a spanning eulerian subgraph H such that X ⊂ E(H) and Y ∩ E(H) = ∅.
(ii) The reduction of (G− Y )X is a member of {K1, K2, K2,t (t ≥ 1)}.

Themain purpose of this paper is to improve further these results on (0, 0)-supereulerian and (2, t)-supereulerian locally
connected graphs to (s, t)-supereulerian in locally k-edge-connected graphs. A graph is locally k-edge-connected if for every
v ∈ V (G), G[N(v)] is k-edge-connected. Our first result is as follows.

Theorem 1.3. Let k ≥ 1 be an integer. If G is a connected, locally k-edge-connected graph, then G is (s, t)-supereulerian for all
pairs of nonnegative integers s and t with s+ t ≤ k− 1.

Consider a connected, locally k-edge-connected graph G with an edge cut D of k+ 1 edges (for example, G ∼= Kk+2). Let
Y ⊂ Dwith |Y | = k. The graph G cannot have a spanning eulerian subgraph that avoids the edges of Y . Thus Theorem 1.3 is
best possible in the sense that the bound s+ t ≤ k− 1 cannot be relaxed. However, this example motivates the following
theorem.

Theorem 1.4. For k ≥ 1, let s and t be nonnegative integers such that s+ t ≤ k. Let G be a connected, locally k-edge-connected
graph, then for any disjoint sets X, Y ⊂ E(G) with |X | ≤ s and |Y | ≤ t, there is a spanning eulerian subgraph H that contains X
and avoids Y if and only if G− Y is not contractible to K2 or to K2,l with l odd.

Corollary 1.5. Let G be a connected, locally k-edge-connected graph. Let s and t be nonnegative integers such that s+ t ≤ k.
(i) If t < k and k ≥ 3, then G is (s, t)-supereulerian.
(ii) If κ ′(G) ≥ k+ 2 and k ≥ 3, then G is (s, t)-supereulerian.

The rest of this note is organized as follows: several lemmas that will be used in the subsequent section are established
in Section 2, and the proofs of all the main results are deferred to Section 3.

2. Preliminary results

The following well-known result comes from Catlin [3].

Lemma 2.1. Let H be a collapsible subgraph of a graph G, then
(i) G is collapsible if and only if G/H is collapsible;
(ii) G is supereulerian if and only if G/H is supereulerian.

The next lemma follows immediately from Theorem 8 and Lemma 5 in Caltin [3].

Lemma 2.2. If G is reduced, then G is simple and contains no K3. Moreover, if κ ′(G) ≥ 2, then
∑3
i=2 |Di(G)| ≥ 4, and if∑3

i=2 |Di(G)| = 4, then G is eulerian.

The following lemma follows from the definition and Lemma 2.1 immediately.

Lemma 2.3. Let G be a graph and let X, Y ⊆ E(G) be disjoint subsets such that |X | ≤ s and |Y | ≤ t. Then the following are
equivalent.
(i) G has a spanning eulerian subgraph H that contains X and avoids Y .
(ii) (G− Y )X has a spanning eulerian subgraph.
(iii) The reduction of (G− Y )X is supereulerian.

Note that every supereulerian graph must be 2-edge-connected. The next result follows from Lemma 2.3.

Lemma 2.4. If G has a spanning eulerian subgraph H that contains X and avoids Y , then κ ′(G− Y ) ≥ 2.



L. Lei et al. / Discrete Mathematics 310 (2010) 929–934 931

3. Highly locally connected graphs

Before we prove the main results, note that G is a connected and locally k-edge-connected graph in this section, so we
need to obtain the relative properties of G. It suffices to prove the following lemmas.

Lemma 3.1. Let k ≥ 1 be an integer. If G is connected and locally k-edge-connected, then G is 2-connected and k + 1-edge-
connected.

Proof. IfG is connected andhas a cut-vertexu, then theneighborhoodofu inG is disconnected, contradicting the assumption
that G is locally k-edge-connected.
Let X be an edge cut of G, and let e = uv ∈ X . We will show that |X | ≥ k + 1. Since G is locally k-edge-connected,

κ ′(G[N(v)]) ≥ k, and so |V (G[N(v)])| ≥ k + 1. If EG(v) ⊆ X , then |X | ≥ |V (G[N(v)])| ≥ k + 1. Thus, we assume that
EG(v) 6⊆ X , and so there must be a vertexw ∈ N(v)−{u} such that v andw are in the same component of G−X . As G[N(v)]
is connected, G[N(v)] has a (u, w)-path P , and so

X ′ = E(G[N(v)]) ∩ X ⊇ E(P) ∩ X 6= ∅.

Since u andw are in different components of G− X , u andwmust be in different components of G[N(v)] − X . It follows
that X ′ − uv is an edge cut of G[N(v)], whence |X | ≥ |X ′| ≥ κ ′(G[N(v)]) ≥ k, then |X | ≥ k+ 1. �

A graph G is k-triangulated if every edge of G lies in at least k different triangles of G.

Lemma 3.2. Let G be a simple nontrivial graph, and let v be an arbitrary vertex in V (G). If δ(G[N(v)]) ≥ k, then G is k-
triangulated. In particular, every connected, locally k-edge-connected graph is k-triangulated.

Proof. Let e = uv. In H = G[N(v)], since δ(H) ≥ k, u is adjacent to at least k different vertices. Thus u and v have at least k
common vertices as neighbors, and e = uv lies in at least k triangles.
Suppose that G is connected and locally k-edge-connected. For each v ∈ V (G), δ(G[N(v)]) ≥ κ ′(G[N(v)]) ≥ k. Thus G

must be k-triangulated. �

Let G be a simple graph. For disjoint subsets X and Y of E(G)with |X ∪ Y | ≤ k, we define X ′ = {uv(e), v(e)v : uv = e ∈
X, v(e) is a newly added vertex at e} and denote G′ the reduction of (G− Y )X .

Lemma 3.3. Let k > 0 be an integer. If G is a connected, locally k-edge-connected graph, X and Y are disjoint subsets of E(G)
with |X ∪ Y | ≤ k, and X ′ is as defined above, then
(i) If |X ∪ Y | ≤ k− 1, then E(G′) ⊆ X ′.
(ii) If |X ∪ Y | = k ≥ 3, then either κ ′(G′) = 1, or E(G′) ⊆ X ′.
(iii) If |X ∪ Y | = k ≥ 3, and κ ′(G′) = 1, then |E(G′)− X ′| ≤ 1.

Proof. We argue by contradiction and assume that E(G′)− X ′ has an edge e, and so e ∈ E(G)− (X ∪ Y ). By Lemma 3.2, G is
k-triangulated, and so G has at least k triangles, denoted as L1, . . . , Łk, all containing e.

(i) Since |X ∪ Y | ≤ k− 1 and since e 6∈ X ∪ Y , there is at least one triangle that is disjoint from X ∪ Y . Therefore,
by Lemma 2.2, e lies in a collapsible subgraph of G′. It follows that the reduced graph G′ has a triangle, contrary
to Lemma 2.2.

(ii) and (iii) . Now note that k > 2 and suppose that |E(G′)− X ′| ≥ 1. �

Claim 1. |E(G′)− X ′| ≤ 1.

If not, then G′ − X ′ has two edges e1 and e2. By Lemma 3.2, G is k-triangulated, and so G has 3-cycles L
j
1, . . . , L

j
k, all

containing ej, for j ∈ {1, 2}. Since G is simple, for each i 6= i′ and j ∈ {1, 2}we have

E(Lji) ∩ E(L
j
i′) = {ej}.

Since e1 6= e2, we have

|{L1i : i = 1, 2, . . . , k} ∩ {L
2
i : i = 1, 2, . . . , k}| ≤ 1.

We assume that when the equality above holds, then L11 = L
2
1.

SinceG′ is reduced, by Lemma 2.2, none of these 3-cycles are contained inG′: they are broken by deleting Y or subdividing
X . It follows by |X ∪ Y | = s+ t ≤ k that for i ∈ {1, . . . , k},

|(X ∪ Y ) ∩ E(L1i ) ∩ E(L
2
i )| = 1, and so s+ t = k. (1)

First we assume that L11 6= L
2
1. Since e1 6= e2, Lemma 3.2 implies that every edge of G lies in at least k triangles. Thus

we need 2k edges to be subdivided or deleted. It follows that e1 and e2 are adjacent. By (1), we may assume, relabelling if
necessary, that e1 = v0v1 and e2 = v0v2, and there exist z1, z2, z3, . . . , zk such that e′i = v0zi ∈ X for 1 ≤ i ≤ s, and
e′i = v0zi ∈ Y for s+ 1 ≤ i ≤ s+ t . Note that v(e

′

i) is a newly added vertex at e
′

i , thus v0v(e
′

i), v(e
′

i)zi ∈ X
′, for 1 ≤ i ≤ s. See

Fig. 1.
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Fig. 1. G[NG(v1)] and G[NG(v2)].

Lemma 1A. vjzi ∈ E(G′) for j = 1, 2 and i = 1, 2, . . . , k.

In fact, if one of them, say v1z1, is not in E(G′), then by the definition of G′, v1z1 must be in a collapsible subgraph H ′ of
(G − Y )X . It is clear that H ′ ∪ (G − Y )X [{v1z1, v2z1, e1, e2}]/H ′ ∼= K3, which consists of the edges e1, e2, v2z1. Since K3 is
collapsible, it follows by Lemma 2.1(i) that H ′ ∪ (G − Y )X [{v1z1, v2z1, e1, e2}] is also a collapsible subgraph of (G − Y )X .
Hence both e1 and e2 are in a collapsible subgraph of (G− Y )X , which is contrary to the assumption that e1, e2 ∈ E(G′). This
proves Lemma 1A.

Lemma 2A. NG(v1) = NG(v2) = {v0, z1, z2, . . . , zk}.

If not, thenwemay assume, without loss of generality, that there exists z ∈ NG(v1)−{v0, z1, z2, . . . , zk}. Since G is locally
connected, wemay further assume that this vertex z is adjacent to z1 inG, and so in (G−Y )X aswell. NowG[{v1, z1, z}] ∼= K3,
and K3 is collapsible. Hence the definition of G′ yields v1z1, contrary to Lemma 1A. This proves Lemma 2A.
By its definition, G′ is reduced. By Lemma 2.2, G′ cannot have any 3-cycles, and so {z1, z2, . . . , zk}must be an independent

set in G′. It follows by the definition of G′ that {z1, z2, . . . , zk} must also be an independent set in G. If k > 2, then by
Lemma 1A, G[N(v1)] cannot be k-edge-connected, and so we must have k = 1 or k = 2, contrary to the assumption that
k > 2. This contradiction establishes Claim 1 under the assumption that L11 6= L

2
1.

If suppose that L11 = L
2
1, then e0 = v1v2 ∈ E(G), as L11 = L

2
1 = G[{v0, v1, v2}]. By Lemma 2.2, G

′ cannot have any 3-
cycles, and so v1v2 ∈ X ∪ Y . With an argument like that used in the proof of Lemma 1A, we conclude that vjzi ∈ E(G′) for
j ∈ {1, 2} and i ∈ {2, . . . , k}, and when e0 ∈ X , v1v(e0), v2v(e0) ∈ E(G′). With a similar argument used in the proof of
Lemma 2A, we further conclude that NG(v1) = {v0, v2, z2, . . . , zk} and NG(v2) = {v0, v1, z2, . . . , zk}. Since k > 2, and the
facts above imply thatG[NG(v1)] cannot be k-edge-connected, contrary to the assumption thatG is locally k-edge-connected.
This contradiction establishes Claim 1 under the assumption that L11 = L

2
1.

We now prove (ii) and (iii). Suppose that k > 2 and e ∈ E(G′)− X ′. By Lemma 3.2, G has at least k triangles, denoted by
L1, . . . Lk, all containing e. It follows that |E(

⋃k
i=1 E(Li))| = 2k+1. Since |X∪Y | = k > 2, each Limust have exactly one edge

in X ∪ Y . Moreover, by Lemma 2.2, G′ contains no 3-cycles, and so if Li in G contains an edge in X , then E(Li)− X ⊆ E(G′). It
follows that if s > 0, then G′ contains at least two edges in E(G′)− X ′, contrary to Claim 1. Thus we must have s = 0, and so
|Y | = k. Using Claim 1 and the facts that s = 0 and t = |Y | = k, we conclude that |E(G′)| = 1, and so G′ ∼= K2. This proves
that if |E(G′)− X ′| = 1, then G′ ∼= K2, and so κ ′(G′) = 1. Otherwise, Claim 1 yields |E(G′)− X ′| = 0 and hence E(G′) ⊆ X ′,
thus (ii) holds. �

We now turn to the proof of Theorem 1.3. We assume that G is a connected, locally k-edge-connected graph, and X and
Y are disjoint subsets of E(G)with |X | ≤ s and |Y | ≤ t , and that G′ is the reduction of (G− Y )X .

Proof of Theorem 1.3. By Lemma 3.1, κ ′(G) ≥ k+ 1, further G′ ∼= K1 or κ ′(G′) ≥ 2 from the hypothesis |X | + |Y | ≤ k− 1.
In the first case, G′ is supereulerian, and we are done. In the second case, let v ∈ V (G′) be an arbitrary vertex; note that
dG′(v) 6= 0. Let Hv be the preimage of v, and let D denote the edge cut in G consisting of the edges with exactly one end in
V (Hv). Lemma 3.3(i) implies E(G′) ⊆ X ′, and so D ⊆ X ∪ Y . Now k+ 1 ≤ κ ′(G) ≤ |D| ≤ |X | + |Y | ≤ k− 1, a contradiction.
This proves Theorem 1.3. �

Lemma 3.4 (Catlin, Lemma 1 of [6]). K3,3 − e is collapsible.
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Lemma 3.5. Let k be a positive integer, let s and t be nonnegative integers with s + t = k, and let G be a connected, locally
k-edge-connected graph.

(i) If k = 2, then G is (s, t)-supereulerian or G′ ∈ {K2, K2,3};
(ii) If k = 1, then G is (s, t)-supereulerian or G′ ∈ {K2, K2,l : l is odd}.

Proof. (i) Assume that G′ is nontrivial; otherwise, there is nothing to prove. If E(G′)− X ′ = ∅, i.e., E(G′) ⊆ X ′, since s ≤ 2,
then G′ is a path whose length is 2 or 4. So κ ′(G′) is 1. However, if G′ is a path with length 2, then t ≤ 1. Now Lemma 2.4
implies that κ ′(G − Y ) ≥ 2, which contradicts G′ being a path. If G′ is a path with length 4, then t = 0; now Lemma 3.1
yields κ ′(G− Y ) ≥ 3, again a contradiction.
So we can assume there is an edge e = uv ∈ E(G′)− X ′; that is, E(G′)− X ′ 6= ∅. Note that e ∈ E(G). By Lemma 3.2, every

edge of G lies in at least two triangles. By Lemma 2.2, none of these 3-cycles are contained in G′, which is the reduction of
(G − Y )X . If e lies in at least three triangles in G, we can find a contradiction. Because when s + t = 2, this edge e will be
contracted even though two triangles disappear by deleting Y or subdividing X . Since e ∈ E(G′)− X ′, this is a contradiction.
Hence we may assume that e lies in exactly two triangles. Let L1 and L2 be triangles containing e. Denote the third vertex of
Li by zi, for i ∈ {1, 2}.
Case 1. t = 2.
Since e = uv ∈ G′, we must delete one edge respectively from triangle L1 and L2.

Case 1.1. e′ = z1z2 ∈ E(G).
By symmetry, if we delete the two edges {uz1, uz2}, then G′ ∼= K2. If we delete the two edges {uz1, vz2}, then there is no

edge lies in some other triangle since e ∈ E(G′)− X ′, thus the G′ is a C4, so that G is (0, 2)-supereulerian.
Case 1.2. e′ = z1z2 6∈ E(G).
Each edge of G lies in at least two triangles by Lemma 3.2. If we delete the two edges {uz1, uz2} or {uz1, vz2}, the left edges

of G− ewill be contracted and therefore G′ ∼= K2.
Case 2. t = 0, t = 1.
In this case, e′ = z1z2 ∈ E(G). If not, for s = 2 or s = 1, we must subdivide one edge from triangle L1 or L2. Without loss

of generality, we may assume that the edge uz1 is subdivided from triangle L1 by adding a new vertex w at uz1. The edge
z1v of L1 lies in some other triangle by Lemma 3.2, so that {uw,wz1, z1v, uv}will be contracted to K1, which contradicts to
e = uv ∈ G′.
Case 2.1. t = 1.
Without loss of generality, we suppose that one edge in L1 is subdivided and one edge in L2 is deleted. If we subdivide

uz1 and delete uz2, then G′ ∼= K1, a contradiction. If we subdivide uz1 and delete vz2, then there is no edge lies in some other
triangle since e ∈ E(G′)− X ′, thus G′ ∼= K2,3. If we subdivide uz2 and delete vz1, then the same result can be obtained in the
similar manner.
Case 2.2. t = 0.
Clearly, if we subdivide the two edges {uz1, uz2} or {vz1, vz2}, then G′ ∼= K1, a contradiction. If we subdivide the two

edges {uz2, vz1} or {uz1, vz2}, then G′ is K3,3 − e. By Lemma 3.4, G′ ∈ CL ⊆ SL. Therefore G is (2, 0)-supereulerian. So (i)
holds.
(ii) By Lemma 3.2, each edge of G lies in at least one triangle. Since k = 1, let e1 = X

⋃
Y , which is subdivided if e1 ∈ X

or deleted if e1 ∈ Y .
If e1 lies in exactly one triangle in G, then let L denote this triangle. First, we assume s = 0 and t = 1. Consider the other

two edges of L after deleting e1; we have three cases. If each edge lies in some triangle, then G is (0, 1)-supereulerian. If only
one edge lies in the other triangle, then G′ ∼= K2. If each edge only lies in L, then G′ ∼= K2,1.
Now, we consider s = 1 and t = 0. After we subdivide the edge e1, if one of the other two edges of L lies in some triangle,

then G′ ∼= K1. Otherwise, G′ is a 4-cycle, which is supereulerian. In these two cases, G is (1, 0)-supereulerian.
If e1 lies in at least two triangles in G, then let L denote one of the triangles. Suppose s = 0 and t = 1. If some edge of L

other than e1 lies in some other triangle, then G′ ∼= K1 and G is (0, 1)-supereulerian. Otherwise, G is (s, t)-supereulerian if l
is even, and G′ ∼= K2,l if l is odd.
Again we consider s = 1 and t = 0. After we subdivide the edge e1, if some edge of L lies in some other triangle, then

G′ ∼= K1 and G is (0, 1)-supereulerian. Otherwise, when l is odd, G′ is supereulerian and G is (1, 0)-supereulerian; when l is
even, G′ ∼= K2,l+1. This proves Lemma 3.5(ii). �

Proof of Theorem 1.4. Necessity. If G is connected, then G is (s, t)-supereulerian, so G− Y cannot be contracted to K2 or to
K2,l for odd l.
Sufficiency. Let G be a connected, locally k-edge-connected graph and let X, Y ⊂ E(G) be disjoint sets with |X | ≤ s and

|Y | ≤ t .
If s + t < k, then Theorem 1.3 implies that G is (s, t)-supereulerian, and so G has a spanning eulerian subgraph H with

X ⊆ E(H) and with E(H) ∩ Y = ∅. Hence we assume that s+ t = k.
Case 1. k ≥ 3.
Note that a connected graph G cannot be contracted to K2 if and only if κ ′(G) ≥ 2. Now we assume that κ ′(G − Y ) ≥ 2

to show that G has a spanning eulerian subgraph H with X ⊆ E(H) and with E(H) ∩ Y = ∅.
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Again we use G′ to denote the reduction of (G − Y )X , and we will show that G′ is supereulerian. Since κ ′(G − Y ) ≥ 2,
we have either G′ ∼= K1 or κ ′(G′) ≥ 2. In the first case, G′ is supereulerian, and we are finished. In the second case, since
k ≥ 3, Lemma 3.2 implies that G is k-triangulated. By Lemma 3.3(ii), since k ≥ 3, the assumption that G′ is 2-edge-connected
implies that E(G′) ⊆ X ′. Let w ∈ V (G′) be an arbitrary vertex; note that dG′(w) 6= 0. If D′ = EG′(w), then D′ corresponds to
an edge cut D ⊆ X of G− Y , and so D ∪ Y contains an edge cut of G. By Lemma 3.1, κ ′(G) ≥ k+ 1. We now have

k+ 1 ≤ κ ′(G) ≤ |D| + |Y | ≤ |X ∪ Y | = s+ t = k,

a contradiction, which implies that G′ must be a cycle, and so G′ is supereulerian.
Case 2. k = 1, k = 2.
By Lemma 3.5, if k = 1, k = 2, and G cannot be contracted to K2 or to K2,l for odd l, then G is (s, t)-supereulerian. Thus

the proof is complete. �

Proof of Corollary 1.5. Let X and Y be disjoint subsets of E(G) such that |X | ≤ s and |Y | ≤ t .
By Lemma 3.1, κ ′(G) ≥ k+ 1. If |Y | ≤ t < k and k ≥ 3, then κ ′(G− Y ) ≥ 2, and so G− Y cannot be contracted to K2. It

follows by the proof of Theorem 1.4 that G has a spanning eulerian subgraph H with X ⊆ E(H) and with E(H)∩ Y = ∅, and
so by definition, G is (s, t)-supereulerian. This proves Corollary 1.5(i).
If κ ′(G) ≥ k+ 2, then since |Y | ≤ t ≤ k and k ≥ 3, we conclude that κ ′(G− Y ) ≥ 2, and so G− Y cannot be contracted

to K2. Again by the proof of Theorem 1.4, there is a spanning eulerian subgraph H that contains X and avoids Y , and so by
definition, G is (s, t)-supereulerian. This proves Corollary 1.5(ii). �
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