This article was downloaded by: [West Virginia University]
On: 2 December 2009
Access details: Access Details: [subscription number 908592316]
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Linear and Multilinear Algebra

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713644116

Multi- g base index of primitive anti-symmetric sign pattern matrices

Yanting Liang ${ }^{\text {a }}$; Bolian Liu ${ }^{\text {b }}$; Hong-Jian Lai ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV, USA ${ }^{\text {b }}$ Department of Mathematics, South China Normal University, Guangzhou, P.R. China

To cite this Article Liang, Yanting, Liu, Bolian and Lai, Hong-Jian'Multi- g base index of primitive anti-symmetric sign pattern matrices', Linear and Multilinear Algebra, 57: 6, 535-546
To link to this Article: DOI: 10.1080/03081080701861849
URL: http://dx.doi.org/10.1080/03081080701861849

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


Multi-g base index of primitive anti-symmetric sign pattern matrices

Yanting Liang ${ }^{\text {a }}$, Bolian Liu ${ }^{\text {b* }}$ and Hong-Jian Lai ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, West Virginia University, Morgantown, WV, USA; ${ }^{b}$ Department of Mathematics, South China Normal University, Guangzhou, P.R. China
Communicated by J.-Y. Shao

(Received 20 June 2006; final version received 10 December 2007)

Abstract

In [Z. Li, F. Hall, and C. Eschenbach, On the period and base of a sign pattern matrix, Lin. Alg. Appl., 212/213 (1994), pp. 101-120], extended the concepts of base and period from non-negative matrices to powerful sign pattern matrices. In [L. You, J. Shao, and H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Lin. Alg. Appl., 427 (2007), pp. 285-300], extended the concept of base from powerful sign pattern matrices to non-powerful generalized sign pattern matrices. In $[\mathrm{Q} . \mathrm{Li}$ and B . Liu, Multi-g base index of non-powerful generalized sign pattern matrices, Ln. Multilin. Alg. (to appear)], extended the concept of k th multi- g base index from non-negative matrices to non-powerful generalized sign pattern matrices. In this article, we mainly study the bounds on k th multi- g base index, extremal graphs for the generalized base index for primitive anti-symmetric sign pattern matrices.

Keywords: k th multi- g base index; sign pattern matrices; extremal graph
AMS Subject Classification: 15A18; 15A48

1. Introduction

The sign of a real number a, denoted by $\operatorname{sgn}(a)$, is defined to be $1,-1$ or 0 , if $a>0, a<0$, or $a=0$ respectively. The sign pattern matrix of a real matrix A, denoted by $\operatorname{sgn}(A)$, is the $(0,1,-1)$-matrix obtained from A by replacing each entry by its sign.

The powers (especially the sign patterns of the powers) of square sign pattern matrices have been studied to some extent $[4,5,9,10]$. Notice that in the computation of (the signs of) the entries of the power A^{k}, an ambiguous sign may arise when we add a positive sign to a negative sign, so a new symbol ' $\#$ ' has been introduced to denote the ambiguous sign in [5]. The set $\Gamma=\{0,1,-1, \#\}$ is called generalized sign set, where ' $\#$ ' denotes the ambiguous sign. We define addition and multiplication involving the symbol '\#' as follows: for all $a \in \Gamma$ and for all $b \in \Gamma \backslash\{0\}$,

$$
\begin{array}{ll}
(-1)+1=1+(-1)=\# ; & a+\#=\#+a=\# ; \\
0 \cdot \#=\# \cdot 0=0 ; & b \cdot \#=\# \cdot b=\# .
\end{array}
$$

[^0]In [10], the matrices with entries in the set Γ are called generalized sign pattern matrices. The addition and multiplication of generalized sign pattern matrices are defined in the usual way, so that the sum and product of the generalized sign pattern matrices are still generalized sign pattern matrices.

It is well-known that graphical methods are often used in the study of the powers of square matrices $[3,6,8]$, so we now introduce some graphical concepts.

A signed digraph S is a digraph where each arc of S is assigned with a value 1 or -1 . A walk W is a sequence of arcs: $e_{1}, e_{2}, \ldots, e_{k}$ such that the terminal vertex of e_{i} is the same as the initial vertex of e_{i+1} for $i=1,2, \ldots, k-1$. The number k is called the length of walk W, denoted by $l(W)$. The sign of walk W, denoted by $\operatorname{sgn}(W)$, is defined to be $\Pi_{i=1}^{k} \operatorname{sgn}\left(e_{i}\right)$.

Two walks W_{1} and W_{2} in a signed digraph are called a pair of SSSD walks, if they have the same initial vertex, the same terminal vertex and the same length, but different signs.

Let $A=\left(a_{i j}\right)$ be a square generalized sign pattern matrix of order n. The associated digraph $D(A)$ of A is defined to be the digraph with vertex set $V=\{1,2, \ldots, n\}$ and arc set $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$. The associated signed digraph $S(A)$ of A is obtained from $D(A)$ by assigning the sign of $a_{i j}$ to each arc (i, j) in $D(A) ; A$ is called the associated matrix of $S(A)$.

We now use the associated signed digraph $S(A)$ to determine the generalized sign of the entry $\left(A^{k}\right)_{i j}$ of the power A^{k} of a square sign pattern matrix A. Notice that we have the following formula for $\left(A^{k}\right)_{i j}$:

$$
\left(A^{k}\right)_{i j}=\Sigma_{W \in W_{k}(i, j)} \operatorname{sgn}(W)
$$

where $W_{k}(i, j)$ denotes the set of walks of length k from vertex i to vertex j in $S(A)$.
From the expression of $\left(A^{k}\right)_{i j}$, we have these observations:
(i) $\left(A^{k}\right)_{i j}=0$ if and only if there is no walk of length k from i to j in $S(A)$ (i.e. $W_{k}(i, j)=\varnothing$).
(ii) $\left(A^{k}\right)_{i j}=1($ or -1$)$ if and only if $W_{k}(i, j) \neq \varnothing$ and all walks of length k from i to j have the same sign 1 (or -1).
(iii) $\left(A^{k}\right)_{i j}=\#$ if and only if there is a pair of SSSD walks of length k from i to j.

A square generalized sign pattern matrix A is called powerful if each power of A contains no '\#' entry [5].

Let S be a signed digraph of order n. Then there is a sign pattern matrix A of order n whose associated signed digraph $S(A)$ is S. We say that S is powerful if A is powerful.

By the observation (iii) above, a sign pattern matrix A is powerful if and only if the associated signed digraph $S(A)$ contains no pair of $S S S D$ walks.
Definition 1.1 [9] Let A be a square generalized sign pattern matrix of order n and A, A^{2}, A^{3}, \ldots be the sequence of powers of A. (Since there are only a finite number of generalized sign pattern matrices of order n, there must be repetitions in the sequence.) If l is the least positive integer such that there is a positive integer p such that $A^{l}=A^{l+p}$, then l is called the generalized base of A, denoted by $l(A)$. Let S be the associated signed digraph of A. We define $l(S)=l(A)$.

Let A be a $(0,1)$-matrix. Following [1,7], we define $\exp _{A}(k)(k \leq n)$ to be the least positive integer p such that there exist k rows with all entries 1 in A^{p}, if such integer p exists. Let D be the associated graph of matrix A. We also define $\exp _{D}(k)=\exp _{A}(k)$, if $\exp _{A}(k)$ exists.

Definition 1.2 [4] Let A be a non-powerful primitive square sign pattern matrix of order n, and k be a positive integer with $1 \leq k \leq n$. Then we define $l_{A}(k)$ to be the least positive integer l such that there exist k rows with all entries ' $\#$ ' in A^{l}. The number $l_{A}(k)$ is called the k th multiple generalized base index of A, simply called multi- g base index. Let S be the associated signed digraph of A. We define $1_{S}(k)=l_{A}(k)$.

By Definitions 1.1 and 1.2, if S is the non-powerful primitive associated signed digraph of an $n \times n$ sign pattern matrix A, then $l_{A}(n)=l(A)=l(S)=l_{S}(n)$.

The symmetric digraphs are digraphs with the property that for any distinct vertices i and j there is an arc from i to j if and only if there is an arc from j to i. It is well-known that, a symmetric digraph is primitive if and only if it is connected and has an odd cycle (Theorem 3.3.3 in [7]).

Let v be a vertex of a primitive digraph D (see Definition 3.3.1 of [7]). The vertex exponent of v, denoted by $\exp _{D}(v)$, is defined to be the least integer k such that for each vertex u in D, there is a walk of length k from v to u. Let S be a non-powerful primitive signed digraph of order n and $d(S)$ denote the diameter of S. The ambiguous index of S, denoted by $r(S)$, is defined to be the least positive integer r such that there is a pair of $S S S D$ walks of length r in S. Let u and v be vertices of $S, r_{u, v}$ be the least positive integer r such that there is a pair of SSSD walks of length r from u to $v, d(u, v)$ be the length of a shortest path from u to v, and $l_{S}(u, v)$ be the least positive integer l such that for any integer $t \geq l$, there exists a pair of SSSD walks from u to v of length t.
Theorem 1.1 (Li and Liu, [4]) Let S be a primitive non-powerful signed digraph, u and v be vertices of S. Then

$$
\begin{equation*}
l_{S}(k) \leq \min \{d(S), k-1\}+r_{u, v}+\exp _{S}(v) \tag{1}
\end{equation*}
$$

For each positive odd integer $r \leq n$, let $S_{n}(r)$ denote the set of all connected graphs with vertex set $\{1, \ldots, n\}$ each of which has at least one cycle of length r but no cycle with odd length less than r.

Theorem 1.2 (Brualdi and Shao [2]) Let r be an odd integer with $1 \leq r \leq n$, and let $\exp _{S_{n}(r)}(k)=\max \left\{\exp _{G}(k) \mid G \in S_{n}(r)\right\}$. Then

$$
\begin{array}{rlr}
\exp _{S_{n}(r)}(k) & =\exp _{G_{n, r}}(k) & \\
& = \begin{cases}(n-1)+(k-r) & \text { if } r \leq k \leq n \\
\max \left\{n-\frac{r+1}{2}+\left\lfloor\frac{k+1}{2}\right\rfloor-1, r-1\right\} & \text { if } 1 \leq k \leq r-1\end{cases}
\end{array}
$$

where $G_{n, r}$ is the symmetric digraph obtained by adding a cycle of length r at one of the end vertices of a path of order $n-r$.

We call a matrix in $\mathcal{A}=\left\{\left(a_{i j}\right)_{n \times n} \mid a_{i j}=-a_{j i}, 1 \leq i<j \leq n\right\}$ an anti-symmetric matrix. In this article, we mainly study the k th multi- g base index and the extremal graphs with given generalized base index for a class of non-powerful generalized sign pattern matrices $\mathcal{A}_{n, r}=\left\{A=\left(a_{i j}\right)_{n \times n} \mid a_{i j}=-a_{j i}, 1 \leq i<j \leq n\right.$ and the length of the shortest odd cycle of the associated signed digraph of A is r \}. Let $S_{n, r}$ denote the set of all associated signed digraphs of $\mathcal{A}_{n, r}$. For any $S \in S_{n, r}$, the arcs (i, j) and $(j, i)(i \neq j)$ are called a pair of anti-signed arcs. If $W=v_{1} v_{2} \ldots v_{k}$ is a walk of S, then W^{-1} denotes the walk $v_{k} \ldots v_{2} v_{1}$ obtained by reversing W. Let r be an odd integer with $3 \leq r \leq n$ and $C_{r}=u_{1} u_{2} \ldots u_{r} u_{1}$ be an
odd cycle of S in its given order. Then C_{r}^{-1} denotes the cycle $u_{1} u_{r} \ldots u_{2} u_{1}$ obtained by reversing C_{r}. If S only has two cycles C_{r} and C_{r}^{-1}, then we call S a uniquely cyclic signed digraph. If C is a cycle of odd length in S and x, y are two vertices of C, then the shorter and longer paths from x to y in C are called minor and major sections of C from x to y, respectively. If $P=v_{0} v_{1} v_{2} \ldots v_{k}$ is a (u, v)-walk and $Q=u_{0} u_{1} u_{2} \ldots u_{t}$ is a (v, w)-walk, then $P+Q$, called the sum of P and Q, denotes the (u, w)-walk $v_{0} v_{1} v_{2} \ldots v_{k-1} u_{0} u_{1} u_{2} \ldots u_{t}$. If P is a closed walk, let $2 \cdot P=P+P$. For an integer $s>2$, define $s \cdot P=P+(s-1) \cdot P$. A walk may have several pairs of anti-signed arcs. For notational convenience, we sometimes will represent a walk W as a sum of some paths or cycles $P_{1}, P_{2}, \ldots, P_{k}$ and a multiset of pairs of anti-signed arcs not in the P_{i} 's. For example, $W=v_{1} v_{2} v_{3} v_{2} v_{3} v_{2} v_{3} v_{4}=v_{1} v_{2} v_{3} v_{4}+A$, where $A=\left\{v_{3} v_{2}, v_{2} v_{3}, v_{3} v_{2}, v_{2} v_{3}\right\}$ is the set of anti-signed arcs of W not in $v_{1} v_{2} v_{3} v_{4}$. For a (u, v)-walk $W=v_{0} v_{1} v_{2} \ldots v_{k}$ of length k, we define $F(W)$ to be the set of all (u, v)-walks of length k such that every arc has the same number of occurrence as it is in W.

Let S be an associated signed digraph of an anti-symmetric matrix. Then S can be obtained from a graph, which may have a loop at some of its vertices, by replacing each edge by a pair of anti-signed arcs, and replacing each loop by one signed arc. In this article, such digraphs will be represented as graphs with undirected edges.

2. The \boldsymbol{k} th multi- \boldsymbol{g} base index

Let r be an odd integer with $3 \leq r \leq n$. For convenience, $S_{1}^{(n)}, S_{r}^{(n)}, S_{2}^{(n)}$ and $S_{2}^{(n)}$ denote the sets of signed digraphs depicted in Figure 1 below such that loops (v_{1}, v_{1}) and (v_{n}, v_{n}) have the same sign for $S \in S_{2}^{(n)}$ and different signs for $S^{\prime} \in S_{2}^{(n)}$, and let $\mathcal{A}_{1}^{(n)}, \mathcal{A}_{r}^{(n)}, \mathcal{A}_{2}^{(n)}$ and $\mathcal{A}_{2}^{(n)}$ be the sets of anti-symmetric matrices that are the associated matrices of signed digraphs in $S_{1}^{(n)}, S_{r}^{(n)}, S_{2}^{(n)}$ and $S_{2}^{(n)}$, respectively. For convenience, we sometimes also refer a vertex at which a loop is attached as a loop-vertex. Let $S \in\left\{S_{1}^{(n)}, S_{r}^{(n)}, S_{2}^{(n)}, S_{2}^{(n)}\right\}$. For any two vertices v_{i} and v_{j} in $S, P\left(v_{i}, v_{j}\right)$ denotes the shortest path in S from v_{i} to v_{j}.
Lemma 2.1 For any $S \in S_{1}^{(n)}, l_{S}(k) \geq n+k$.
Proof Let

$$
X= \begin{cases}V \backslash\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\} & \text { if } k \geq 2 \\ V & \text { if } k=1\end{cases}
$$

By the definition of $S_{1}^{(n)}$, for any vertex $v_{\lambda} \in X, S$ has a unique path Q from v_{λ} to v_{n} of length $n-\lambda$. By the definition of $X,|X|=n-k+1$. We will show that S does not have a pair of $S S S D$ walks from v_{λ} to v_{n} of length $l=n+k-1$.

Suppose

$$
\begin{equation*}
W_{1} \text { and } W_{2} \text { are a pair of } S S S D \text { walks of length } l \text { from } v_{\lambda} \text { to } v_{n} . \tag{2}
\end{equation*}
$$

$$
S_{2}^{(n)} \text { or } S_{2}^{\prime(n)}
$$

Figure 1. The graphs $S_{1}^{(n)}$, $S_{r}^{(n)}, S_{2}^{(n)}$ and $S_{2}^{(n)}$.

Then W_{i} consists of a path Q, several loops $\left(v_{1}, v_{1}\right)$ and some pairs of anti-signed arcs, for $i=1,2$. So the number of loops contained in W_{1} has the same parity with the number of loops contained in W_{2}. We claim that at least one of W_{1} and W_{2} contains $\left(v_{1}, v_{1}\right)$. Otherwise, if $l-(n-\lambda)$ is odd, then both W_{1} and W_{2} contain (v_{1}, v_{1}), since the number of anti-signed arcs is even and $l-(n-\lambda)$ is the number of loops and anti-signed arcs, contrary to the fact that neither W_{1} nor W_{2} contains a loop. If $l-(n-\lambda)$ is even, $\operatorname{sgn}\left(W_{1}\right)=\operatorname{sgn}(Q) \cdot(-1)^{(l-(n-\lambda)) / 2}=\operatorname{sgn}\left(W_{2}\right)$ since the sign of a pair of anti-signed arcs is -1 , contrary to (2).

Let W be a walk from v_{λ} to v_{n} of length l and contain s loops $\left(v_{1}, v_{1}\right)$. Then $W=P\left(v_{\lambda}, v_{1}\right)+s \cdot\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{n}\right)+A$, where A is the set of pairs of anti-signed arcs. Letting $|A|=2 a$, we have $l(W)=(\lambda-1)+s+(n-1)+2 a=n+k-1$. Therefore, $2 a+s=k+1-\lambda$. Since $v_{\lambda} \in X, \lambda \geq k$. So $2 a+s \leq 1$. Thus $a=0$, and either $s=0$ or $s=1$, and $W=P\left(v_{\lambda}, v_{1}\right)+s \cdot\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{n}\right)$.

Without loss of generality, we assume the number of loops (v_{1}, v_{1}) contained in W_{1} is not less than that of loops $\left(v_{1}, v_{1}\right)$ contained in W_{2}. Since at least one of W_{1} and W_{2} contains $\left(v_{1}, v_{1}\right)$ and $s \leq 1, \quad W_{1}$ contains exactly one loop $\left(v_{1}, v_{1}\right)$. Then $W_{1}=$ $P\left(v_{\lambda}, v_{1}\right)+\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{n}\right) \quad$ and $\quad l=(\lambda-1)+(n-1)+1=n+\lambda-1$. Therefore, $l-(n-\lambda)=l-n+\lambda=2 \lambda-1$ is odd which implies that W_{2} also contains a loop. Thus both W_{1} and W_{2} contain the loop (v_{1}, v_{1}), and so $W_{1}=W_{2}$, contrary to (2). Hence, $l_{S}(k) \geq n+k$.
Lemma 2.2 For any $S \in S_{2}^{(n)}, l_{S}(1) \geq n+1$.
Proof Let $X=V$. By the definition of $S_{2}^{(n)}$, for any integer $1 \leq \lambda \leq n, S$ has a unique path from v_{λ} to $v_{n-\lambda+1}$. We claim that there is no pair of SSSD walks from v_{λ} to $v_{n-\lambda+1}$ of length n.

By contradiction, suppose

$$
\begin{equation*}
W_{1} \text { and } W_{2} \text { are a pair of } \operatorname{SSSD} \text { walks of length } n \text { from } v_{\lambda} \text { to } v_{n-\lambda+1} \text {. } \tag{3}
\end{equation*}
$$

Then for $i=1,2, W_{i}$ is a union of path $Q, \operatorname{loops}\left(v_{1}, v_{1}\right)$ and $\left(v_{n}, v_{n}\right)$, some pairs of anti-signed arcs. Without loss of generality, we assume the number of loops contained in W_{1} is not less than that of loops contained in W_{2} and $\lambda \leq n-\lambda+1$. Similar to the proof of Lemma 2.1, at least one of W_{1} and W_{2} contains a loop, and so we may assume $W_{1}=P\left(v_{\lambda}, v_{1}\right)+\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{\lambda}\right)+Q$ or $W_{1}=Q+P\left(v_{n-\lambda+1}, v_{n}\right)+\left(v_{n}, v_{n}\right)+P\left(v_{n}, v_{n-\lambda+1}\right)$. Since the number of loops contained in W_{1} and W_{2} have the same parity, W_{2} contains one loop, too. It follows that either $W_{2}=P\left(v_{\lambda}, v_{1}\right)+\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{\lambda}\right)+Q$ or $W_{2}=Q+P\left(v_{n-\lambda+1}, v_{n}\right)+\left(v_{n}, v_{n}\right)+P\left(v_{n}, v_{n-\lambda+1}\right)$. But

$$
\begin{aligned}
\operatorname{sgn} & \left(P\left(v_{\lambda}, v_{1}\right)+\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{\lambda}\right)+Q\right) \\
\quad & =\operatorname{sgn}(Q) \cdot \operatorname{sgn}\left(P\left(v_{\lambda}, v_{1}\right)+P\left(v_{1}, v_{\lambda}\right)\right) \cdot \operatorname{sgn}\left(v_{1}, v_{1}\right) \\
& =\operatorname{sgn}(Q) \cdot(-1)^{\lambda-1} \cdot \operatorname{sgn}\left(v_{1}, v_{1}\right) \\
& =\operatorname{sgn}(Q) \cdot(-1)^{\lambda-1} \cdot \operatorname{sgn}\left(v_{n}, v_{n}\right) \\
& =\operatorname{sgn}\left(P\left(v_{n-\lambda+1}, v_{n}\right)+\left(v_{n}, v_{n}\right)+P\left(v_{n}, v_{n-\lambda+1}\right)+Q\right) .
\end{aligned}
$$

So $\operatorname{sgn}\left(W_{1}\right)=\operatorname{sgn}\left(W_{2}\right)$, contrary to (3). Hence $l_{S}(1) \geq n+1$.

Lemma 2.3 For any $S \in S_{2}^{(n)} \bigcup S_{2}^{(n)}$ and $k \geq 2$, each of the following holds:
(i) For any $u, v \in V(S)$, let $d_{0}(v)$ and $d_{0}(u)$ be the shortest distances from a loop-vertex to v and u, respectively. Then

$$
\begin{equation*}
l_{S}(v, u) \leq 2 \min \left\{d_{0}(v), d_{0}(u)\right\}+2+d(v, u) . \tag{4}
\end{equation*}
$$

(ii) The kth multiple generalized base index $l_{S}(k)$ satisfies

$$
\begin{equation*}
l_{S}(k) \leq n+\left\lceil\frac{k}{2}\right\rceil<n+k . \tag{5}
\end{equation*}
$$

Proof Without loss of generality, we suppose $d_{0}(v) \leq d_{0}(u)$. Let P be a shortest path from v to $u,(w, w)$ be a loop closest to v and x be a vertex adjacent to w. Then $d_{0}(v)=d(w, v)$. Note that for any integer $t \geq 2 \min \left\{d_{0}(v), d_{0}(u)\right\}+2+d(v, u)$, there is a pair of SSSD walks from v to u of length t, namely, $W_{1}=P(v, w)+s \cdot(w, w)+P(w, v)+P$ and $W_{2}=P(v, w)+(w, x)+(x, w)+(s-2) \cdot(w, w)+P(w, v)+P, \quad$ where $\quad s=t-2 d_{0}(v)-$ $d(v, u) \geq 2$ since $\operatorname{sgn}\left(W_{1}\right)=(-1)^{d(w, v)} \cdot(\operatorname{sgn}(w, w))^{s} \cdot \operatorname{sgn}(P)=-\operatorname{sgn}\left(W_{2}\right)=(-1)^{d(w, v)} \cdot(-1)$. $(\operatorname{sgn}(w, w))^{s-2} \cdot \operatorname{sgn}(P)$. So $l_{S}(v, u) \leq 2 \min \left\{d_{0}(v), d_{0}(u)\right\}+2+d(v, u)$, which proves (4).

Suppose $S \in S_{2}^{(n)}$. For any integer $1 \leq i \leq(n+1 / 2)$, it follows by (4) that we have both

$$
\begin{aligned}
l_{S}\left(v_{i}\right) & =\max _{1 \leq j \leq n}\left\{l_{S}\left(v_{i}, v_{j}\right)\right\} \\
& \leq \max _{1 \leq j \leq n}\left\{2 \min \left\{d_{0}\left(v_{i}\right), d_{0}\left(v_{j}\right)\right\}+2+d\left(v_{i}, v_{j}\right)\right\} \\
& \leq \max _{1 \leq j \leq n}\left\{2(i-1)+2+d\left(v_{i}, v_{j}\right)\right\} \\
& =2 i+\max _{1 \leq j \leq n} d\left(v_{i}, v_{j}\right)=2 i+n-i=n+i
\end{aligned}
$$

and

$$
\begin{aligned}
l_{S}\left(v_{n-i+1}\right) & =\max _{1 \leq j \leq n}\left\{l_{S}\left(v_{n-i+1}, v_{j}\right)\right\} \\
& \leq \max _{1 \leq j \leq n}\left\{2 \min \left\{d_{0}\left(v_{n-i+1}\right), d_{0}\left(v_{j}\right)\right\}+2+d\left(v_{n-i+1}, v_{j}\right)\right\} \\
& \leq \max _{1 \leq j \leq n}\left\{2(i-1)+2+d\left(v_{n-i+1}, v_{j}\right)\right\} \\
& =2 i+\max _{1 \leq j \leq n} d\left(v_{n-i+1}, v_{j}\right)=2 i+(n-i+1-1)=n+i .
\end{aligned}
$$

Therefore, $l_{S}(k) \leq n+\lceil(k / 2)\rceil<n+k$. The proof for the case when $S \in S_{2}^{(n)}$ is similar.

Lemma 2.4 For any $S \in S_{2}^{(n)}, l_{S}(1) \leq n$.
Proof For any integer $1 \leq j \leq n-1, l_{S}\left(v_{1}, v_{j}\right) \leq 2 \times 0+2+d\left(v_{1}, v_{j}\right) \leq 2+j-1 \leq n$. So we only need to show that $l_{S}\left(v_{1}, v_{n}\right) \leq n$.

For any integer $t \geq n$, if $t-n \equiv 0(\bmod 2)$, then let $W_{1}=\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{n}\right)+$ $((t-n) / 2)\left(\left(v_{n}, v_{n-1}\right)+\left(v_{n-1}, v_{n}\right)\right) \quad$ and $\quad W_{2}=P\left(v_{1}, v_{n}\right)+\left(v_{n}, v_{n}\right)+((t-n) / 2)\left(\left(v_{n}, v_{n-1}\right)+\right.$ $\left.\left(v_{n-1}, v_{n}\right)\right)$. Since $\operatorname{sgn}\left(v_{1}, v_{1}\right)=-\operatorname{sgn}\left(v_{n}, v_{n}\right), W_{1}$ and W_{2} are a pair of SSSD walks from v_{1} to v_{n} of length t. If $t-n \equiv 1(\bmod 2)$, let $W_{3}=2 \cdot\left(v_{1}, v_{1}\right)+P\left(v_{1}, v_{n}\right)+$ $((t-n-1) / 2)\left(\left(v_{n}, v_{n-1}\right)+\left(v_{n-1}, v_{n}\right)\right) \quad$ and $\quad W_{4}=P\left(v_{1}, v_{n}\right)+((t-n+1) / 2)\left(\left(v_{n}, v_{n-1}\right)+\right.$ $\left.\left(v_{n-1}, v_{n}\right)\right)$. Since $\left.\operatorname{sgn}\left(2 \cdot\left(v_{1}, v_{1}\right)\right)=1=-\operatorname{sgn}\left(\left(v_{n}, v_{n-1}\right)+\left(v_{n-1}\right\}, v_{n}\right)\right), W_{3}$ and W_{4} are a pair of $S S S D$ walks from v_{1} to v_{n} of length t.

Thus $l_{S}\left(v_{1}\right)=\max _{1 \leq j \leq n}\left\{l_{s}\left(v_{1}, v_{j}\right)\right\} \leq n<n+1$.

Theorem 2.5 For any $S \in S_{n, 1}, l_{S}(k) \leq n+k(1 \leq k \leq n)$. Moreover, equality holds if and only if either $k=1$ and S is isomorphic to a member in $S_{1}^{(n)} \bigcup S_{2}^{(n)}$ or $k \geq 2$ and S is isomorphic to a member in $S_{1}^{(n)}$.

Proof Let v be a vertex of S with a loop and u be adjacent to v. Let $W_{1}=(v, v)+(v, v)$ and $W_{2}=(v, u)+(u, v)$. Since the associated matrix of S is an anti-symmetric matrix, $\operatorname{sgn}(v, u)=-\operatorname{sgn}(u, v)$. Therefore, $\operatorname{sgn}\left(W_{2}\right)=-1$. By definition, $\operatorname{sgn}\left(W_{1}\right)=1$. Thus W_{1} and W_{2} are a pair of SSSD walks from v to v, and so $r_{v, v}=2$.

Note that $d(S) \leq n-1$. Thus $\exp _{S}(v) \leq n-1$, since for any integer $t \geq n-1$ and for any vertex w of S, there is a walk $T=(t-p) \cdot(v, v)+P$ of length t, where P is the shortest path from v to w of length $p(p \leq n-1 \leq t)$. Further, equality holds if and only if S is a path and v is one of its end vertices. By (1),

$$
l_{S}(k) \leq \begin{cases}(k-1)+2+(n-1)=n+k & \text { if } k-1 \leq d(S) \\ d(S)+2+(n-1)<(k-1)+2+(n-1)=n+k & \text { if } k-1>d(S)\end{cases}
$$

By Lemmas 2.1 and 2.2, if S is isomorphic to a member in $S_{1}^{(n)} \cup S_{2}^{(n)}$, then $l_{S}(k)=n+k$ for $k=1$; if S is isomorphic to a member in $S_{1}^{(n)}$, then $l_{S}(k)=n+k$ for $2 \leq k \leq n$.

If S is not a path with loops, then $\exp _{S}(v)<n-1$. Therefore, $l_{S}(k)<n+k$. If there is a vertex x with a loop which is not an end vertex, then $\exp _{S}(x) \leq n-2$. Substituting x for v in the above discussion, we have $l_{S}(k) \leq n+k-1<n+k$. So if $l_{S}(k)=n+k$, then S must be a path and v is an end vertex with a loop. Therefore, S is isomorphic to a member in $S_{1}^{(n)} \cup S_{2}^{(n)} \bigcup S_{2}^{(n)}$. By Lemmas 2.1-2.4, $l_{S}(k)=n+k$ only if S is isomorphic to a member in $S_{1}^{(n)} \cup S_{2}^{(n)}$ for $k=1$ and S is isomorphic to a member in $S_{1}^{(n)}$ for $k \geq 2$.

Corollary 1 For any $S \in S_{n, 1}$,

$$
l(S)=l_{S}(n) \leq 2 n,
$$

where equality holds if and only if S is isomorphic to a member in $S_{1}^{(n)}$.
Lemma 2.6 Let r be an odd integer with $3 \leq r \leq n$. Then for any $S \in S_{n, r}$,

$$
\begin{array}{rlr}
l_{S}(k) & \leq \exp _{S_{n}(r)}(k)+r \\
& = \begin{cases}n-1+k & \text { if } r \leq k \leq n, \\
\max \left\{n+\frac{r-1}{2}+\left\lfloor\frac{k+1}{2}\right\rfloor-1,2 r-1\right\} & \text { if } 1 \leq k \leq r-1 .\end{cases}
\end{array}
$$

Proof Suppose $\exp \left(v_{1}\right) \leq \exp \left(v_{2}\right) \leq \cdots \leq \exp \left(v_{n}\right)$. For any integer $t \geq \exp _{S_{n}(r)}(k)+r$, and for any vertices v_{i}, v_{j} with $1 \leq i \leq k$ and $1 \leq j \leq n$, we will show that S has a pair of SSSD walks from v_{i} to v_{j} of length t. If S is not uniquely cyclic, then S contains a spanning subgraph S^{\prime} such that S^{\prime} is uniquely cyclic and $l_{S}(k) \leq l_{S^{\prime}}(k)$. Therefore, we may assume that S is a uniquely cyclic signed digraph with an r-cycle C_{r} and only need to prove $l_{S}(k) \leq \exp _{S_{n}(r)}(k)+r$. Note that $\operatorname{sgn}\left(C_{r}\right)=-\operatorname{sgn}\left(C_{r}^{-1}\right)$. We consider two cases:

Case 1: $v_{i} \in C_{r}$ or $v_{j} \in C_{r}$.
Since $t-r \geq \exp _{S_{n}(r)}(k), S$ has a walk W of length $t-r$ from v_{i} to v_{j}. Let $W_{1}=W+C_{r}$ and $W_{2}=W+C_{r}^{-1}$. Then W_{1} and W_{2} are a pair of SSSD walks of length t from v_{i} to v_{j}.

Case 2: $v_{i} \notin C_{r}$ and $v_{j} \notin C_{r}$.

Since $t-r, t-r+1 \geq \exp _{S_{n}(r)}(k), S$ has walks W_{1} and W_{2} from v_{i} to v_{j} of length $t-r$ and $t-r+1$, respectively. Then $W=W_{1}+W_{2}^{-1}$ is a closed walk from v_{i} to v_{i} of length $2(t-r)+1$. Therefore, W contains the odd cycle C_{r}.
Subcase 2.1: $\exists v_{s} \in C_{r} \bigcap W_{1}$.
Let P_{1} be the walk from v_{i} to v_{s} and P_{2} be the walk from v_{s} to v_{j} such that $W_{1}=P_{1}+P_{2}$. Then $W_{3}=P_{1}+C_{r}+P_{2}$ and $W_{4}=P_{1}+C_{r}^{-1}+P_{2}$ are a pair of SSSD walks of length t from v_{i} to v_{j}.
Subcase 2.2: $C_{r} \bigcap W_{1}=\varnothing$.
Then $C_{r} \subseteq W_{2}$. Suppose the first vertex of C_{r} contained in W_{2} is v_{s}. Let P_{1} be the walk from v_{i} to v_{s} and P_{2} be the walk from v_{s} to v_{j} such that $W_{2}=P_{1}+C_{r}+P_{2}$. Let u be a vertex adjacent to v_{j}. Then $W_{3}=P_{1}+C_{r}+P_{2}+((r-1) / 2) \cdot\left(\left(v_{j}, u\right)+\left(u, v_{j}\right)\right)$ and $W_{4}=P_{1}+C_{r}^{-1}+P_{2}+((r-1) / 2) \cdot\left(\left(v_{j}, u\right)+\left(u, v_{j}\right)\right)$ are a pair of SSSD walks of length t from v_{i} to v_{j}.

Thus $l_{S}(k) \leq \exp _{S_{n}(r)}(k)+r$.
Lemma 2.7 Let r be an odd integer with $3 \leq r \leq n, u$ and v be two vertices of $S \in S_{n, r}$. Then $l(u, v)=l(v, u)$.
Proof For any integer $t \geq l(v, u)$, let P_{1} and P_{2} be a pair of SSSD walks from v to u of length t. Then $\operatorname{sgn}\left(P_{1}\right)=-\operatorname{sgn}\left(P_{2}\right)$. Since $\operatorname{sgn}\left(P_{1}^{-1}\right)=(-1)^{t} \operatorname{sgn}\left(P_{1}\right)=(-1)^{t}\left(-\operatorname{sgn}\left(P_{2}\right)\right)=$ $-\operatorname{sgn}\left(P_{2}^{-1}\right), P_{1}^{-1}$ and P_{2}^{-1} are a pair of SSSD walks from u to v of length t. Thus $l(u, v) \leq l(v, u)$.

An analogous argument shows that $l(u, v) \geq l(v, u)$. Hence $l(u, v)=l(v, u)$.
Lemma 2.8 Let r be an odd integer with $3 \leq r \leq n$. For any $S \in S_{r}^{(n)}$, let C_{r} denote the r-cycle $v_{r} v_{r-2} \ldots v_{1} v_{2} v_{4} \ldots v_{r-1} v_{r}$ of S, then each of the following holds:
(i) For any $v \in C_{r}$,

$$
\begin{equation*}
l_{S}(v) \geq 2 r-1 \tag{6}
\end{equation*}
$$

(ii) The kth multiple generalized base index $l_{S}(k)$ satisfies

$$
\begin{aligned}
l_{S}(k) & \geq \exp _{S_{n}(r)}(k)+r \\
& = \begin{cases}n-1+k & \text { if } r \leq k \leq n, \\
\max \left\{n+\frac{r-1}{2}+\left\lfloor\frac{k+1}{2}\right\rfloor-1,2 r-1\right\} & \text { if } 1 \leq k \leq r-1 .\end{cases}
\end{aligned}
$$

Proof For any vertex $v \in V(S)$, we consider two cases:
Case 1: $v \in C_{r}=v_{r} v_{r-2} \ldots v_{1} v_{2} v_{4} \ldots v_{r-1} v_{r}$.
Let W be a walk from v to v of length $2 r-2$. Then for some non-negative integers x and $y, W \in F\left(x \cdot C_{r}+y \cdot C_{r}^{-1}+A\right)$ where A is the set of z pairs of anti-signed arcs. Therefore, $2 r-2=(x+y) \cdot r+2 z$. Clearly, $0 \leq x+y \leq 1$. If $x+y=1$, then $2 z=r-2$. But $r-2$ is odd, a contradiction. So $x+y=0, \operatorname{sgn}(W)=(-1)^{r-1}$. Hence there is no pair of $S S S D$ walks from v to v of length $2 r-2$. Thus $l_{S}(v) \geq 2 r-1$, which proves (6).

Suppose $v=v_{k}(1 \leq k \leq r)$. If $k=r$, let $A_{1}=\varnothing$ and $A_{2}=C_{r}$. Otherwise, let A_{1} and A_{2} be the minor and major sections of C_{r} from v_{k} to v_{r}, respectively.

Then $l\left(A_{1}\right)=\left((r+1) / 2-\lfloor(k+1) / 2\rfloor\right.$ and $l\left(A_{2}\right)=((r-1) / 2+\lfloor(k+1) / 2\rfloor$. Let W be a walk from v_{k} to v_{n} of length $n+((r-1) / 2)+\lfloor((k+1) / 2\rfloor-2$. Then $W \in F\left(A_{1}+x \cdot C_{r}+y \cdot C_{r}^{-1}+P\left(v_{r}, v_{n}\right)+A\right)$ or $W \in F\left(A_{2}+x \cdot C_{r}+y_{r}^{-1}+P\left(v_{r}, v_{n}\right)+A\right)$ where A is the set of z pairs of anti-signed arcs.

We first assume that $W \in F\left(A_{2}+x \cdot C_{r}+y \cdot C_{r}^{-1}+P\left(v_{r}, v_{n}\right)+A\right)$. Then $n+((r-1) / 2+\lfloor((k+1) / 2)\rfloor-2=(((r-1) / 2)+\lfloor((k+1) / 2)\rfloor)+(x+y) \cdot r+(n-r)+2 z$. Therefore, $2 z+(x+y) r=r-2$. So $x+y=0$ and $2 z=r-2$, contrary to the assumption that r is odd.

Thus we may assume that $W \in F\left(A_{1}+x \cdot C_{r}+y \cdot C_{r}^{-1}+P\left(v_{r}, v_{n}\right)+A\right)$. Then $\quad n+((r-1) / 2)+\lfloor((k+1) / 2)\rfloor-2=(((r+1) / 2)-\lfloor((k+1) / 2)\rfloor)+(x+y) \cdot r+$ $(n-r)+2 z$, from which $(x+y) \cdot r+2 z=r-3+2\lfloor((k+1) / 2)\rfloor \leq 2 r-2$. Therefore, $0 \leq x+y \leq 1$. If $x+y=1$, then $2 z=2\lfloor((k+1) / 2)\rfloor-3$, and so $3 \equiv 0(\bmod 2)$, a contradiction. So $x+y=0, \operatorname{sgn}(W)=(-1)^{(r-3+2\lfloor(k+1 / 2)\rfloor) / 2} \cdot \operatorname{sgn}\left(A_{1}\right) \cdot \operatorname{sgn}\left(P\left(v_{r}, v_{n}\right)\right)$

Thus S cannot have a pair of SSSD walks from v_{k} to v_{n} of length $n+((r-1) / 2)+\lfloor((k+1) / 2)\rfloor-2$. Hence

$$
l_{S}\left(v_{k}\right) \geq \max \left\{n+\frac{r-1}{2}+\left\lfloor\frac{k+1}{2}\right\rfloor-1,2 r-1\right\}, \quad 1 \leq k \leq r .
$$

Case 2: $v \notin C_{r}$.
In this case, there is an integer k with $r+1 \leq k \leq n$ such that $v=v_{k}$. Let W be a walk from v_{k} to v_{n} of length $n+k-2$. Then for some non-negative integers t, x and y, $W \in F\left(P\left(v_{k}, v_{n}\right)+x \cdot C_{r}+y \cdot C_{r}^{-1}+t\left(P\left(v_{k}, v_{r}\right)+P\left(v_{r}, v_{k}\right)\right)+A\right)$, where A is the set of z pairs of anti-signed arcs. Clearly, if $x+y \neq 0$, then $t \neq 0$. Then $n+k-2=(n-k)+(x+y) r+2 t(k-r)+2 z$, from which $(x+y) r+2 t(k-r)+2 z=2 k-2$. If $\quad x+y \neq 0$, then $t \geq 1, \quad(x+y) r+2 z=2 k-2-2 t(k-r) \leq 2 k-2-2 k+2 r=2 r-2$. So $x+y=1$ and $2 z=2 k-2-2 t(k-r)-r$, contrary to the assumption that r is odd. Hence $x+y=0, W$ is a union of $P\left(v_{k}, v_{n}\right)$ and $k-1$ pairs of anti-signed arcs. Then $\operatorname{sgn}(W)=(-1)^{k-1} \operatorname{sgn}\left(P\left(v_{k}, v_{n}\right)\right)$. Thus S does not have a pair of SSSD walks from v_{k} to v_{n} of length $n+k-2$. Hence,

$$
l_{S}\left(v_{k}\right) \geq n+k-1 \geq n+r \text { and } r+1 \leq k \leq n .
$$

Notice that if $k=r$, then $n+((r-1) / 2+\lfloor(k+1) / 2\rfloor-1=n+r-1$ and if $k \geq r, n+k-1 \geq 2 r-1$, so the statement (ii) holds.

By Lemmas 2.6 and 2.8, we have
Theorem 2.9 Let r be an odd integer with $3 \leq r \leq n$, and let $l_{S_{n, r}}(k)=\max \left\{l_{S}(k) \mid S \in S_{n, r}\right\}$. Then

$$
l_{S_{n, r}}(k)= \begin{cases}n-1+k & \text { if } r \leq k \leq n \\ \max \left\{n+\frac{r-1}{2}+\left\lfloor\frac{k+1}{2}\right\rfloor-1,2 r-1\right\} & \text { if } 1 \leq k \leq r-1\end{cases}
$$

Corollary 2 Let r be an odd integer with $3 \leq r \leq n$. Then for any $S \in S_{n, r}$,

$$
l(S)=l_{S}(n) \leq 2 n-1 .
$$

It is natural to consider the question when the equality holds in Corollary 2. In the next section, we will study the extremal graph S satisfying $l(S)=l_{S}(n)=2 n-1$.

3. The extremal graphs for the generalized base index

Lemma 3.1 Let P_{1} and P_{2}, Q_{1} and Q_{2} be two pairs of SSSD walks from vertex u to vertex v of length i and j, respectively, such that i and j have different parity. Then $l(u, v) \leq \max \{i-1, j-1\}$.
Proof Without loss of generality, suppose $i<j$. Let w be a vertex adjacent to v. For $s=1,2$ and any integer $k \geq j-1$, if k has the same parity with i, let $W_{s}=P_{s}+((k-i) / 2) \cdot((v, w)+(w, v))$. Otherwise, let $W_{s}=Q_{s}+((k-j) / 2)((v, w)+$ $(w, v))$. Then W_{1} and W_{2} are a pair of SSSD walks from u to v of length k. Therefore, $l(u, v) \leq j-1$.
Lemma 3.2 Let $S \in S_{n, 1} \backslash S_{1}^{(n)}$ with $n \geq 3$. Then $l(S) \leq 2 n-2$.
Proof First, we suppose S is the union of a tree T and loops. We consider two cases:
Case 1: T is a path.
Suppose both of the end vertices have loops. If $n=3$, it is easy to prove that $l\left(S_{2}^{(n)}\right)=4=2 n-2$ and $l\left(S_{2}^{(n)}\right)=3<2 n-2$. If $n \geq 4$, by (5), $l(S)=l_{S}(n) \leq n+\lceil n / 2\rceil$. Therefore, $l(S) \leq 2 n-2$.

Suppose there is an internal vertex with a loop. Let v be the internal vertex with loop and w be a vertex adjacent to v. For any vertices $u_{1}, u_{2} \in V(S)$ and any integer $t \geq 2 n-2$, let P_{1} and P_{2} be the unique paths from u_{1} to v of length p_{1} and from v to u_{2} of length p_{2}, respectively. Define $W_{1}=P\left(u_{1}, v\right)+\left(t-p_{1}-p_{2}\right) \cdot(v, v)+P\left(v, u_{2}\right)$ and $W_{2}=P\left(u_{1}, v\right)+$ $(v, w)+(w, v)+\left(t-p_{1}-p_{2}-2\right) \cdot(v, v)+P\left(v, u_{2}\right)$. Then W_{1} and W_{2} are a pair of SSSD walks from u_{1} to u_{2} of length t since $p_{1}, p_{2} \leq n-2$. Therefore, $l(S)=\max \left\{l\left(u_{1}, u_{2}\right) \mid u_{1}, u_{2} \in V(S)\right\} \leq 2 n-2$.
Case 2: T is not a path.
Since S is connected and not a path, $d(S) \leq n-2$. Let v be the vertex with loop. Then $\exp _{S}(v) \leq n-2$. By $(1), l(S) \leq(n-2)+2+(n-2)=2 n-2$.

If S is not the union of a tree and loops, then S has a spanning subgraph S^{\prime} such that S^{\prime} is the union of a tree and loops. Therefore, $l(S) \leq l\left(S^{\prime}\right) \leq 2 n-2$.
Remark 1 There is no signed digraph $S \in S_{n, 1}$ with $n \geq 3$ such that $l(S)=2 n-1$.
Let

$$
S_{n}=\bigcup_{1 \leq r \leq n, r \text { is odd }} S_{n, r}
$$

Parts (i) and (ii) of Theorem 3.3 below follow from Corollaries 1 and 2 in section 2.
Theorem 3.3 Let r be an odd integer with $3 \leq r \leq n(n \geq 3)$. Then
(i) $l(S) \leq 2 n$ for any $S \in S_{n}$;
(ii) $l(S)=2 n$ if and only if S is isomorphic to a member in $S_{1}^{(n)}$;
(iii) $l(S)=2 n-1$ if and only if S is isomorphic to a member in $S_{r}^{(n)}$ or C_{n} (if n is odd);
(iv) For any integer $3 \leq t \leq 2 n-2$, there exists signed digraph $S \in S_{n}$ such that $l(S)=t$.

Figure 2. The graphs in the proof of case 2.

Proof We only need to prove (iii) and (iv). Let x and y be any vertices of $S \in S_{n, r}$. By the definition of $S_{n, r}, S$ has an r-cycle. We consider two cases:

Case 1: There exists an r-cycle C_{r} such that $x \in C_{r}$ or $y \in C_{r}$.
Subcase 1.1: $x, y \in C_{r}$.
If $x=y$, let $P_{1}=\varnothing$ and $P_{2}=C_{r}$. Otherwise, let P_{1} and P_{2} be the minor and major sections of C_{r} from x to y of length p_{1} and p_{2}, respectively. Then $W_{1}=P_{1}+C_{r}$ and $W_{2}=P_{1}+C_{r}^{-1}$ are a pair of SSSD walks from x to y of length $p_{1}+r$. And $Q_{1}=P_{2}+C_{r}$ and $Q_{2}=P_{2}+C_{r}^{-1}$ are a pair of SSSD walks from x to y of length $p_{2}+r$. Since $p_{1}+p_{2}=r, p_{1}$ and p_{2} have different parity. By Lemma 3.1, $l(x, y) \leq p_{2}+r-1 \leq 2 r-1$. Furthermore, by (6), the equality holds only if $x=y$.
Subcase 1.2: $x \in C_{r}, y \notin C_{r}$ or $y \in C_{r}, x \notin C_{r}$.
Since $l(x, y)=l(y, x)$, we suppose $y \in C_{r}$ and $x \notin C_{r}$. Let P_{1} be the shortest path from x to C_{r} of length p_{1} and $\{v\}=V\left(P_{1}\right) \bigcap V\left(C_{r}\right)$. If $y=v$, let $P_{2}=\varnothing$ and $P_{3}=C_{r}$. Otherwise, let P_{2} and P_{3} be the minor and major sections of C_{r} from v to y of length p_{2} and p_{3}, respectively. Then $W_{1}=P_{1}+P_{2}+C_{r}$ and $W_{2}=P_{1}+P_{2}+C_{r}^{-1}$ are a pair of SSSD walks from x to y of length $p_{1}+p_{2}+r$. And $Q_{1}=P_{1}+P_{3}+C_{r}, Q_{2}=P_{1}+P_{3}+C_{r}^{-1}$ are a pair of SSSD walks from x to y of length $p_{1}+p_{3}+r$. By Lemma 3.1, $l(x, y) \leq p_{1}+p_{3}+$ $r-1 \leq(n-r)+r+r-1=n+r-1<2 n-1$.

Case 2: x and y are not contained in any r-cycle of S.
Then S contains at least one r-cycle C_{r}.
Subcase 2.1: For any path P from x to y in $S, V(P) \bigcap V\left(C_{r}\right) \neq \varnothing$ (Figure 2(a)).
Using a similar argument of Subcase 1.2, we can prove that $l(x, y)<2 n-1$.
Subcase 2.2: S has a path P from x to C_{r} such that $y \in P$ or from y to C_{r} such that $x \in P$.
Since $l(x, y)=l(y, x)$, we may assume that P is a path from x to C_{r} such that $y \in P$. Let v be the vertex such that $\{v\}=V(P) \bigcap V\left(C_{r}\right), P_{1}$ and P_{2} be the paths from x to y of length p_{1} and from y to v of length p_{2}, respectively, such that $P=P_{1}+P_{2}$. Then $W_{1}=P_{1}+$ $P_{2}+C_{r}+P_{2}^{-1}$ and $W_{2}=P_{1}+P_{2}+C_{r}^{-1}+P_{2}^{-1}$ are a pair of SSSD walks from x to y of length $p_{1}+2 p_{2}+r$. And $Q_{1}=P_{1}+P_{2}+2 C_{r}+P_{2}^{-1}, Q_{2}=P_{1}+P_{2}+C_{r}+C_{r}^{-1}+P_{2}^{-1}$ are a pair of SSSD walks from x to y of length $p_{1}+2 p_{2}+2 r$. By Lemma 3.1, $l(x, y) \leq p_{1}+2 p_{2}+2 r-1 \leq(n-r)+p_{2}+2 r-1=n+r+p_{2}-1 \leq 2 n-1$.

Now suppose that $l(x, y)=2 n-1$. Then both $p_{1}+p_{2}=n-r$ and $p_{2}+r=n$. Therefore, $p_{1}=0$. So the equality holds only if $x=y=v_{n}$ and S is isomorphic to a member in $S_{r}^{(n)}$.
Subcase 2.3: S has a path P from x to y such that $V(P) \bigcap V\left(C_{r}\right)=\varnothing$, but there is no path P_{2} from x to C_{r} such that $y \in P_{2}$ and no path P_{3} from y to C_{r} such that $x \in P_{3}$ Figure 2(b).

Similar to Subcase 2.2, $l(x, y)<2 n-1$.
Thus $l(S)=2 n-1$ if and only if S is isomorphic to a member in $S_{r}^{(n)}$ or C_{n} (if n is odd).

Figure 3. The graphs in the proof for Theorem 3.3(iv).

It is routine to check that $l\left(T_{3}\right)=3$ and $l\left(T_{5}\right)=5$ (Figure 3). Using Lemma 2.8 and similar proof of Theorem 3.3(iii), we can prove $l\left(M_{2 k-1}\right)=2 k-1$ with $3<k \leq n-1$ and k odd, $l\left(N_{2 k-1}\right)=2 k-1$ with $3<k \leq n-1$ and k even (Figure 3). Using Lemma 2.1 and similar argument of Theorem 2.5, we have $l\left(T_{2 k}\right)=2 k$ with $2 \leq k \leq n-1$ (Figure 3).

Hence (iv) holds.

Acknowledgements

The authors wish to thank the referees for their many helpful suggestions to improve the presentation of this article. This work is supported by NNSF of China(10771080).

References

[1] R.A. Brualdi and B. Liu, Generalized exponents of primitive directed graphs, J. Graph Theory, 14 (1990), pp. 483-499.
[2] R.A. Brualdi and J. Shao, Generalized exponents of primitive symmetric digraphs, Discrete Appl. Math., 74 (1997), pp. 275-293.
[3] Y. Gao and Y. Shao, The k-th upper generalized exponents of primitive symmetric digraphs, Acta Math. Appl. Sinica, 21 (1998), pp. 161-164.
[4] Q. Li and B. Liu, Multi-g base index of non-powerful generalized sign pattern matrices, Lin. Multilin. Alg. (to appear).
[5] Z. Li, F. Hall, and C. Eschenbach, On the period and base of a sign pattern matrix, Lin. Alg. Appl., 212/213 (1994), pp. 101-120.
[6] B. Liu, Generalized exponents of boolean matrices, Lin. Alg. Appl., 373 (2003), pp. 169-182.
[7] B. Liu and H.-J. Lai, Matrices in Combinatorics and Graph Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[8] J. Shao and S. Hwang, Generalized exponents of non-primitive graphs, Lin. Alg. Appl., 279 (1998), pp. 207-225.
[9] L. You, J. Shao, and H. Shan, Bounds on the bases of irreducible generalized sign pattern matrices, Lin. Alg. Appl., 427 (2007), pp. 285-300.
[10] J. Stuart, C. Eschenbach, and S. Kirkland, Irreducible k-potent sign pattern matrices, Lin. Alg. Appl., 294 (1999), pp. 85-92.

[^0]: *Corresponding author. Email: liubl@scnu.edu.cn

