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In [Z. Li, F. Hall, and C. Eschenbach, On the period and base of a sign pattern
matrix, Lin. Alg. Appl., 212/213 (1994), pp. 101–120], extended the concepts of
base and period from non-negative matrices to powerful sign pattern matrices. In
[L. You, J. Shao, and H. Shan, Bounds on the bases of irreducible generalized sign
pattern matrices, Lin. Alg. Appl., 427 (2007), pp. 285–300], extended the concept
of base from powerful sign pattern matrices to non-powerful generalized sign
pattern matrices. In [Q. Li and B. Liu, Multi-g base index of non-powerful
generalized sign pattern matrices, Ln. Multilin. Alg. (to appear)], extended the
concept of kth multi-g base index from non-negative matrices to non-powerful
generalized sign pattern matrices. In this article, we mainly study the bounds on
kth multi-g base index, extremal graphs for the generalized base index for
primitive anti-symmetric sign pattern matrices.

Keywords: kth multi-g base index; sign pattern matrices; extremal graph

AMS Subject Classification: 15A18; 15A48

1. Introduction

The sign of a real number a, denoted by sgn(a), is defined to be 1, �1 or 0, if a>0, a<0,

or a¼ 0 respectively. The sign pattern matrix of a real matrix A, denoted by sgn(A), is the

(0, 1,�1)-matrix obtained from A by replacing each entry by its sign.
The powers (especially the sign patterns of the powers) of square sign pattern

matrices have been studied to some extent [4,5,9,10]. Notice that in the computation

of (the signs of) the entries of the power Ak, an ambiguous sign may arise when we add a

positive sign to a negative sign, so a new symbol ‘#’ has been introduced to denote the

ambiguous sign in [5]. The set �¼ {0, 1,�1, #} is called generalized sign set, where ‘#’

denotes the ambiguous sign. We define addition and multiplication involving the symbol

‘#’ as follows: for all a2� and for all b2�\{0},

ð�1Þ þ 1 ¼ 1þ ð�1Þ ¼ #; aþ # ¼ #þ a ¼ #;

0 � # ¼ # � 0 ¼ 0; b � # ¼ # � b ¼ #:
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In [10], the matrices with entries in the set � are called generalized sign pattern

matrices. The addition and multiplication of generalized sign pattern matrices are defined

in the usual way, so that the sum and product of the generalized sign pattern matrices are

still generalized sign pattern matrices.
It is well-known that graphical methods are often used in the study of the powers of

square matrices [3,6,8], so we now introduce some graphical concepts.
A signed digraph S is a digraph where each arc of S is assigned with a value 1 or �1.

A walk W is a sequence of arcs: e1, e2, . . . , ek such that the terminal vertex of ei is the

same as the initial vertex of eiþ1 for i¼ 1, 2, . . . , k� 1. The number k is called the length

of walk W, denoted by l(W). The sign of walk W, denoted by sgn(W), is defined to

be �k
i¼1sgnðeiÞ.

Two walksW1 andW2 in a signed digraph are called a pair of SSSD walks, if they have

the same initial vertex, the same terminal vertex and the same length, but different signs.
Let A¼ (aij) be a square generalized sign pattern matrix of order n. The associated

digraph D(A) of A is defined to be the digraph with vertex set V¼ {1, 2, . . . , n} and arc set

E¼ {(i, j)jaij 6¼ 0}. The associated signed digraph S(A) of A is obtained from D(A) by

assigning the sign of aij to each arc (i, j) in D(A); A is called the associated matrix of S(A).
We now use the associated signed digraph S(A) to determine the generalized sign of the

entry (Ak)ij of the power Ak of a square sign pattern matrix A. Notice that we have the

following formula for (Ak)ij:

ðAkÞij ¼ �W2Wkði; jÞsgnðWÞ;

where Wk(i, j) denotes the set of walks of length k from vertex i to vertex j in S(A).
From the expression of (Ak)ij, we have these observations:

(i) (Ak)ij¼ 0 if and only if there is no walk of length k from i to j in S(A)

(i.e. Wk(i, j)¼Ø).
(ii) (Ak)ij¼ 1 (or �1) if and only if Wk(i, j) 6¼Ø and all walks of length k from i to j

have the same sign 1 (or �1).
(iii) (Ak)ij¼# if and only if there is a pair of SSSD walks of length k from i to j.

A square generalized sign pattern matrix A is called powerful if each power of A

contains no ‘#’ entry [5].
Let S be a signed digraph of order n. Then there is a sign pattern matrix A of order n

whose associated signed digraph S(A) is S. We say that S is powerful if A is powerful.
By the observation (iii) above, a sign pattern matrix A is powerful if and only if the

associated signed digraph S(A) contains no pair of SSSD walks.

Definition 1.1 [9] Let A be a square generalized sign pattern matrix of order n and A,A2,

A3, . . . be the sequence of powers of A. (Since there are only a finite number of generalized

sign pattern matrices of order n, there must be repetitions in the sequence.) If l is the least

positive integer such that there is a positive integer p such that Al
¼Alþp, then l is called

the generalized base of A, denoted by l(A). Let S be the associated signed digraph of A.

We define l(S)¼ l(A).

Let A be a (0, 1)-matrix. Following [1,7], we define expA(k) (k� n) to be the least

positive integer p such that there exist k rows with all entries 1 in Ap, if such integer p exists.

Let D be the associated graph of matrix A. We also define expD(k)¼ expA(k), if expA(k)

exists.
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Definition 1.2 [4] Let A be a non-powerful primitive square sign pattern matrix of

order n, and k be a positive integer with 1� k� n. Then we define lA(k) to be the least

positive integer l such that there exist k rows with all entries ‘#’ in Al. The number lA(k)

is called the kth multiple generalized base index of A, simply called multi-g base index.

Let S be the associated signed digraph of A. We define lS(k)¼ lA(k).

By Definitions 1.1 and 1.2, if S is the non-powerful primitive associated signed digraph

of an n� n sign pattern matrix A, then lA(n)¼ l(A)¼ l(S)¼ lS(n).
The symmetric digraphs are digraphs with the property that for any distinct vertices i

and j there is an arc from i to j if and only if there is an arc from j to i. It is well-known that,

a symmetric digraph is primitive if and only if it is connected and has an odd cycle

(Theorem 3.3.3 in [7]).
Let v be a vertex of a primitive digraph D (see Definition 3.3.1 of [7]). The vertex

exponent of v, denoted by expD(v), is defined to be the least integer k such that for each

vertex u in D, there is a walk of length k from v to u. Let S be a non-powerful primitive

signed digraph of order n and d(S) denote the diameter of S. The ambiguous index of S,

denoted by r(S), is defined to be the least positive integer r such that there is a pair of

SSSD walks of length r in S. Let u and v be vertices of S, ru,v be the least positive integer r

such that there is a pair of SSSD walks of length r from u to v, d(u, v) be the length of

a shortest path from u to v, and lS(u, v) be the least positive integer l such that for any

integer t� l, there exists a pair of SSSD walks from u to v of length t.

THEOREM 1.1 (Li and Liu, [4]) Let S be a primitive non-powerful signed digraph, u and v be

vertices of S. Then

lSðkÞ � minfdðSÞ; k� 1g þ ru;v þ expSðvÞ: ð1Þ

For each positive odd integer r� n, let Sn(r) denote the set of all connected graphs with

vertex set {1, . . . , n} each of which has at least one cycle of length r but no cycle with

odd length less than r.

THEOREM 1.2 (Brualdi and Shao [2]) Let r be an odd integer with 1� r� n, and let

expSn(r)
(k)¼max{expG(k)jG2Sn(r)}. Then

expSnðrÞðkÞ ¼ expGn;r
ðkÞ

¼

ðn� 1Þ þ ðk� rÞ if r � k � n

max n�
rþ 1

2
þ

kþ 1

2

� �
� 1; r� 1

� �
if 1 � k � r� 1

8<
:

where Gn,r is the symmetric digraph obtained by adding a cycle of length r at one of the end

vertices of a path of order n� r.

We call a matrix in A ¼ fðaijÞn�njaij ¼ �aji; 1 � i5j � ng an anti-symmetric matrix.

In this article, we mainly study the kth multi-g base index and the extremal graphs with

given generalized base index for a class of non-powerful generalized sign pattern matrices

An;r ¼ fA ¼ ðaijÞn�njaij ¼ �aji; 1 � i5j � n and the length of the shortest odd cycle of

the associated signed digraph of A is r}. Let Sn,r denote the set of all associated signed

digraphs of An;r. For any S2Sn,r, the arcs (i, j) and (j, i) (i 6¼ j) are called a pair of

anti-signed arcs. If W¼ v1v2 . . . vk is a walk of S, then W�1 denotes the walk vk . . . v2v1
obtained by reversing W. Let r be an odd integer with 3� r� n and Cr¼ u1u2 . . . uru1 be an
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odd cycle of S in its given order. Then C�1r denotes the cycle u1ur . . . u2u1 obtained by
reversing Cr. If S only has two cycles Cr and C�1r , then we call S a uniquely cyclic
signed digraph. If C is a cycle of odd length in S and x, y are two vertices of C, then the
shorter and longer paths from x to y in C are called minor and major sections of C from x
to y, respectively. If P¼ v0v1v2 . . . vk is a (u, v)-walk and Q¼ u0u1u2 . . . ut is a (v,w)-walk,
then PþQ, called the sum of P and Q, denotes the (u,w)-walk v0v1v2 . . . vk�1u0u1u2 . . . ut. If
P is a closed walk, let 2 �P¼PþP. For an integer s>2, define s �P¼Pþ (s� 1) �P. A
walk may have several pairs of anti-signed arcs. For notational convenience, we sometimes
will represent a walk W as a sum of some paths or cycles P1,P2, . . . ,Pk and a multiset of
pairs of anti-signed arcs not in the Pi’s. For example, W¼ v1v2v3v2v3v2v3v4¼ v1v2v3v4þA,
where A¼ {v3v2, v2v3, v3v2, v2v3} is the set of anti-signed arcs of W not in v1v2v3v4.
For a (u, v)-walk W¼ v0v1v2 . . . vk of length k, we define F(W) to be the set of all
(u, v)-walks of length k such that every arc has the same number of occurrence as it is inW.

Let S be an associated signed digraph of an anti-symmetric matrix. Then S can be
obtained from a graph, which may have a loop at some of its vertices, by replacing each
edge by a pair of anti-signed arcs, and replacing each loop by one signed arc. In this
article, such digraphs will be represented as graphs with undirected edges.

2. The kth multi-g base index

Let r be an odd integer with 3� r� n. For convenience, S
ðnÞ
1 , SðnÞr , S

ðnÞ
2 and S

0ðnÞ
2 denote the

sets of signed digraphs depicted in Figure 1 below such that loops (v1, v1) and (vn, vn) have
the same sign for S 2 S

ðnÞ
2 and different signs for S0 2 S

0ðnÞ
2 , and let A

ðnÞ
1 , AðnÞr , A

ðnÞ
2 and A

0ðnÞ
2

be the sets of anti-symmetric matrices that are the associated matrices of signed digraphs
in S

ðnÞ
1 , SðnÞr , S

ðnÞ
2 and S

0ðnÞ
2 , respectively. For convenience, we sometimes also refer a vertex

at which a loop is attached as a loop-vertex. Let S 2 fS
ðnÞ
1 ;S

ðnÞ
r ;S

ðnÞ
2 ;S

0ðnÞ
2 g. For any two

vertices vi and vj in S,P(vi, vj) denotes the shortest path in S from vi to vj.

LEMMA 2.1 For any S 2 S
ðnÞ
1 , lS(k)� nþ k.

Proof Let

X ¼
V n fv1; v2; . . . ; vk�1g if k � 2;

V if k ¼ 1:

�

By the definition of S
ðnÞ
1 , for any vertex v�2X,S has a unique path Q from v� to vn

of length n� �. By the definition of X, jXj ¼ n� kþ 1. We will show that S does not have
a pair of SSSD walks from v� to vn of length l¼ nþ k� 1.

Suppose

W1 and W2 are a pair of SSSD walks of length l from v� to vn: ð2Þ

Figure 1. The graphs SðnÞ1 ;S
ðnÞ
r ;S

ðnÞ
2 and S0ðnÞ2 .
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Then Wi consists of a path Q, several loops (v1, v1) and some pairs of anti-signed arcs, for

i¼ 1, 2. So the number of loops contained in W1 has the same parity with the number

of loops contained in W2. We claim that at least one of W1 and W2 contains (v1, v1).

Otherwise, if l� (n� �) is odd, then both W1 and W2 contain (v1, v1), since the number

of anti-signed arcs is even and l� (n� �) is the number of loops and anti-signed arcs,

contrary to the fact that neither W1 nor W2 contains a loop. If l� (n� �) is even,

sgn(W1)¼ sgn(Q) � (�1)(l�(n��))/2¼ sgn(W2) since the sign of a pair of anti-signed arcs

is �1, contrary to (2).
Let W be a walk from v� to vn of length l and contain s loops (v1, v1). Then

W¼P(v�, v1)þ s � (v1, v1)þP(v1, vn)þA, where A is the set of pairs of anti-signed arcs.

Letting jAj ¼ 2a, we have l(W)¼ (�� 1)þ sþ (n� 1)þ 2a¼ nþ k� 1. Therefore,

2aþ s¼ kþ 1� �. Since v�2X, �� k. So 2aþ s� 1. Thus a¼ 0, and either s¼ 0 or s¼ 1,

and W¼P(v�, v1)þ s � (v1, v1)þP(v1, vn).
Without loss of generality, we assume the number of loops (v1, v1) contained in W1 is

not less than that of loops (v1, v1) contained in W2. Since at least one of W1 and W2

contains (v1, v1) and s� 1, W1 contains exactly one loop (v1, v1). Then W1¼

P(v�, v1)þ (v1, v1)þP(v1, vn) and l¼ (�� 1)þ (n� 1)þ 1¼ nþ �� 1. Therefore,

l� (n� �)¼ l� nþ �¼ 2�� 1 is odd which implies that W2 also contains a loop. Thus

both W1 and W2 contain the loop (v1, v1), and so W1¼W2, contrary to (2). Hence,

lS(k)� nþ k. g

LEMMA 2.2 For any S 2 S
ðnÞ
2 , lS(1)� nþ 1.

Proof Let X¼V. By the definition of S
ðnÞ
2 , for any integer 1� �� n, S has a unique

path from v� to vn��þ1. We claim that there is no pair of SSSD walks from v� to vn��þ1
of length n.

By contradiction, suppose

W1 and W2 are a pair of SSSD walks of length n from v� to vn��þ1: ð3Þ

Then for i¼ 1, 2, Wi is a union of path Q, loops (v1, v1) and (vn, vn), some pairs of

anti-signed arcs. Without loss of generality, we assume the number of loops contained in

W1 is not less than that of loops contained in W2 and �� n� �þ 1. Similar to the proof

of Lemma 2.1, at least one of W1 and W2 contains a loop, and so we may assume

W1¼P(v�, v1)þ (v1, v1)þP(v1, v�)þQ or W1¼QþP(vn��þ1, vn)þ (vn, vn)þP(vn, vn��þ1).

Since the number of loops contained in W1 and W2 have the same parity, W2

contains one loop, too. It follows that either W2¼P(v�, v1)þ (v1, v1)þP(v1, v�)þQ or

W2¼QþP(vn��þ1, vn)þ (vn, vn)þP(vn, vn��þ1). But

sgnðPðv�; v1Þ þ ðv1; v1Þ þ Pðv1; v�Þ þQÞ

¼ sgnðQÞ � sgnðPðv�; v1Þ þ Pðv1; v�ÞÞ � sgnðv1; v1Þ

¼ sgnðQÞ � ð�1Þ��1 � sgnðv1; v1Þ

¼ sgnðQÞ � ð�1Þ��1 � sgnðvn; vnÞ

¼ sgnðPðvn��þ1; vnÞ þ ðvn; vnÞ þ Pðvn; vn��þ1Þ þQÞ:

So sgn(W1)¼ sgn(W2), contrary to (3). Hence lS(1)� nþ 1. g

Linear and Multilinear Algebra 539

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
W
e
s
t
 
V
i
r
g
i
n
i
a
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
3
8
 
2
 
D
e
c
e
m
b
e
r
 
2
0
0
9



LEMMA 2.3 For any S 2 S
ðnÞ
2

S
S
0ðnÞ
2 and k� 2, each of the following holds:

(i) For any u, v2V(S), let d0(v) and d0(u) be the shortest distances from a loop-vertex
to v and u, respectively. Then

lSðv; uÞ � 2minfd0ðvÞ; d0ðuÞg þ 2þ dðv; uÞ: ð4Þ

(ii) The kth multiple generalized base index lS(k) satisfies

lSðkÞ � nþ
k

2

� �
5nþ k: ð5Þ

Proof Without loss of generality, we suppose d0(v)� d0(u). Let P be a shortest path from
v to u, (w,w) be a loop closest to v and x be a vertex adjacent to w. Then d0(v)¼ d(w, v).
Note that for any integer t� 2 min{d0(v), d0(u)}þ 2þ d(v, u), there is a pair of SSSD
walks from v to u of length t, namely, W1¼P(v,w)þ s � (w,w)þP(w, v)þP and
W2¼P(v,w)þ (w, x)þ (x,w)þ (s� 2) � (w,w)þP(w, v)þP, where s¼ t� 2d0(v)�
d(v, u)� 2 since sgn(W1)¼ (�1)d(w,v) � (sgn(w,w))s � sgn(P)¼�sgn(W2)¼ (�1)d(w,v) � (�1) �
(sgn(w,w))s�2 � sgn(P). So lS(v, u)� 2 min {d0(v), d0(u)}þ 2þ d(v, u), which proves (4).

Suppose S 2 S
ðnÞ
2 . For any integer 1 � i � ðnþ 1=2Þ, it follows by (4) that we have both

lSðviÞ ¼ max
1�j�n
flSðvi; vjÞg

� max
1�j�n
f2minfd0ðviÞ; d0ðvjÞg þ 2þ dðvi; vjÞg

� max
1�j�n
f2ði� 1Þ þ 2þ dðvi; vjÞg

¼ 2iþ max
1�j�n

dðvi; vjÞ ¼ 2iþ n� i ¼ nþ i

and

lSðvn�iþ1Þ ¼ max
1�j�n
flSðvn�iþ1; vjÞg

� max
1�j�n
f2minfd0ðvn�iþ1Þ; d0ðvjÞg þ 2þ dðvn�iþ1; vjÞg

� max
1�j�n
f2ði� 1Þ þ 2þ dðvn�iþ1; vjÞg

¼ 2iþ max
1�j�n

dðvn�iþ1; vjÞ ¼ 2iþ ðn� iþ 1� 1Þ ¼ nþ i:

Therefore, lSðkÞ � nþ dðk=2Þe < nþ k. The proof for the case when S 2 S
0ðnÞ
2

is similar. g

LEMMA 2.4 For any S 2 S
0ðnÞ
2 , lS(1)� n.

Proof For any integer 1� j� n� 1, lS(v1, vj)� 2� 0þ 2þ d(v1, vj)� 2þ j� 1� n. So we
only need to show that lS(v1, vn)� n.

For any integer t� n, if t� n� 0 (mod 2), then let W1 ¼ ðv1; v1Þ þ Pðv1; vnÞþ
ððt� nÞ=2Þððvn; vn�1Þ þ ðvn�1; vnÞÞ and W2 ¼ Pðv1; vnÞ þ ðvn; vnÞ þ ððt� nÞ=2Þððvn; vn�1Þ þ
ðvn�1; vnÞÞ. Since sgn(v1, v1)¼�sgn(vn, vn), W1 and W2 are a pair of SSSD walks from
v1 to vn of length t. If t� n� 1 (mod 2), let W3 ¼ 2 � ðv1; v1Þ þ Pðv1; vnÞþ
ððt� n� 1Þ=2Þððvn; vn�1Þ þ ðvn�1; vnÞÞ and W4 ¼ Pðv1; vnÞ þ ððt� nþ 1Þ=2Þððvn; vn�1Þ þ
ðvn�1; vnÞÞ. Since sgn(2 � (v1, v1))¼ 1¼�sgn((vn, vn-1)þ (vn-1}, vn)), W3 and W4 are a pair
of SSSD walks from v1 to vn of length t.

Thus lS(v1)¼max1�j�n{lS(v1, vj)}� n< nþ 1. g
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THEOREM 2.5 For any S2Sn,1, lS(k)� nþ k (1� k� n). Moreover, equality holds if and

only if either k¼ 1 and S is isomorphic to a member in S
ðnÞ
1

S
S
ðnÞ
2 or k� 2 and S is isomorphic

to a member in S
ðnÞ
1 .

Proof Let v be a vertex of S with a loop and u be adjacent to v. LetW1¼ (v, v)þ (v, v) and

W2¼ (v, u)þ (u, v). Since the associated matrix of S is an anti-symmetric matrix,
sgn(v, u)¼�sgn(u, v). Therefore, sgn(W2)¼�1. By definition, sgn(W1)¼ 1. Thus W1 and

W2 are a pair of SSSD walks from v to v, and so rv, v¼ 2.
Note that d(S)� n� 1. Thus expS(v)� n� 1, since for any integer t� n� 1 and for any

vertex w of S, there is a walk T¼ (t� p) � (v, v)þP of length t, where P is the shortest path
from v to w of length p (p� n� 1� t). Further, equality holds if and only if S is a path and

v is one of its end vertices. By (1),

lSðkÞ �
ðk� 1Þ þ 2þ ðn� 1Þ ¼ nþ k if k� 1 � dðSÞ;

dðSÞ þ 2þ ðn� 1Þ5ðk� 1Þ þ 2þ ðn� 1Þ ¼ nþ k if k� 14dðSÞ:

�

By Lemmas 2.1 and 2.2, if S is isomorphic to a member in S
ðnÞ
1

S
S
ðnÞ
2 , then lS(k)¼ nþ k

for k¼ 1; if S is isomorphic to a member in S
ðnÞ
1 , then lS(k)¼ nþ k for 2� k� n.

If S is not a path with loops, then expS(v)< n� 1. Therefore, lS(k)< nþ k. If there is a

vertex x with a loop which is not an end vertex, then expS(x)� n� 2. Substituting x for v in

the above discussion, we have lS(k)� nþ k� 1< nþ k. So if lS(k)¼ nþ k, then Smust be a
path and v is an end vertex with a loop. Therefore, S is isomorphic to a member in

S
ðnÞ
1

S
S
ðnÞ
2

S
S
0ðnÞ
2 . By Lemmas 2.1–2.4, lS(k)¼ nþ k only if S is isomorphic to a member in

S
ðnÞ
1

S
S
ðnÞ
2 for k¼ 1 and S is isomorphic to a member in S

ðnÞ
1 for k� 2. g

COROLLARY 1 For any S2Sn,1,

lðSÞ ¼ lSðnÞ � 2n;

where equality holds if and only if S is isomorphic to a member in S
ðnÞ
1 .

LEMMA 2.6 Let r be an odd integer with 3� r� n. Then for any S2Sn,r,

lSðkÞ � expSnðrÞðkÞ þ r

¼

n� 1þ k if r � k � n;

max nþ
r� 1

2
þ

kþ 1

2

� �
� 1; 2r� 1

� �
if 1 � k � r� 1:

8<
:

Proof Suppose exp(v1)� exp(v2)� � � � � exp(vn). For any integer t� expSn(r)
(k)þ r, and

for any vertices vi, vj with 1� i� k and 1� j� n, we will show that S has a pair of SSSD

walks from vi to vj of length t. If S is not uniquely cyclic, then S contains a spanning

subgraph S0 such that S0 is uniquely cyclic and lS(k)� lS0(k). Therefore, we may assume
that S is a uniquely cyclic signed digraph with an r-cycle Cr and only need to prove

lS(k)� expSn(r)
(k)þ r. Note that sgnðCrÞ ¼ �sgnðC

�1
r Þ. We consider two cases:

Case 1: vi2Cr or vj2Cr.
Since t� r� expSn(r)

(k), S has a walk W of length t� r from vi to vj. Let W1¼WþCr

and W2 ¼Wþ C�1r . Then W1 and W2 are a pair of SSSD walks of length t from vi to vj.

Case 2: vi =2Cr and vj =2Cr.
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Since t� r, t� rþ 1� expSn(r)
(k), S has walks W1 and W2 from vi to vj of length t� r

and t� rþ 1, respectively. Then W ¼W1 þW�12 is a closed walk from vi to vi of length
2(t� r)þ 1. Therefore, W contains the odd cycle Cr.

Subcase 2.1: 9vs2Cr

T
W1.

Let P1 be the walk from vi to vs and P2 be the walk from vs to vj such thatW1¼P1þP2.
Then W3¼P1þCrþP2 and W4 ¼ P1 þ C�1r þ P2 are a pair of SSSD walks of length t
from vi to vj.

Subcase 2.2: Cr

T
W1¼Ø.

Then Cr�W2. Suppose the first vertex of Cr contained in W2 is vs. Let P1 be the
walk from vi to vs and P2 be the walk from vs to vj such that W2¼P1þCrþP2. Let u
be a vertex adjacent to vj. Then W3 ¼ P1 þ Cr þ P2 þ ððr� 1Þ=2Þ � ððvj; uÞ þ ðu; vjÞÞ and
W4 ¼ P1 þ C�1r þ P2 þ ððr� 1Þ=2Þ � ððvj; uÞ þ ðu; vjÞÞ are a pair of SSSD walks of length t
from vi to vj.

Thus lS(k)� expSn(r)
(k)þ r. g

LEMMA 2.7 Let r be an odd integer with 3� r� n, u and v be two vertices of S2Sn,r.
Then l(u, v)¼ l(v, u).

Proof For any integer t� l(v, u), let P1 and P2 be a pair of SSSD walks from v to u
of length t. Then sgn(P1)¼�sgn(P2). Since sgnðP

�1
1 Þ ¼ ð�1Þ

tsgnðP1Þ ¼ ð�1Þ
t
ð�sgnðP2ÞÞ ¼

�sgnðP�12 Þ, P�11 and P�12 are a pair of SSSD walks from u to v of length t. Thus
l(u, v)� l(v, u).

An analogous argument shows that l(u, v)� l(v, u). Hence l(u, v)¼ l(v, u). g

LEMMA 2.8 Let r be an odd integer with 3� r� n. For any S 2 SðnÞr , let Cr denote the
r-cycle vrvr�2 . . . v1v2v4 . . . vr�1vr of S, then each of the following holds:

(i) For any v2Cr,

lSðvÞ � 2r� 1: ð6Þ

(ii) The kth multiple generalized base index lS(k) satisfies

lSðkÞ � expSnðrÞðkÞ þ r

¼

n� 1þ k if r � k � n;

max nþ
r� 1

2
þ

kþ 1

2

� �
� 1; 2r� 1

� �
if 1 � k � r� 1:

8<
:

Proof For any vertex v2V(S), we consider two cases:

Case 1: v2Cr¼ vrvr�2 . . . v1v2v4 . . . vr�1vr.
Let W be a walk from v to v of length 2r� 2. Then for some non-negative integers

x and y, W 2 Fðx � Cr þ y � C�1r þ AÞ where A is the set of z pairs of anti-signed arcs.
Therefore, 2r� 2¼ (xþ y) � rþ 2z. Clearly, 0� xþ y� 1. If xþ y¼ 1, then 2z¼ r� 2. But
r� 2 is odd, a contradiction. So xþ y¼ 0, sgn(W)¼ (�1)r�1. Hence there is no pair of
SSSD walks from v to v of length 2r� 2. Thus lS(v)� 2r� 1, which proves (6).

Suppose v¼ vk (1� k� r). If k¼ r, let A1¼Ø and A2¼Cr. Otherwise, let A1 and
A2 be the minor and major sections of Cr from vk to vr, respectively.
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Then lðA1Þ ¼ ððrþ 1Þ=2� bðkþ 1Þ=2c and lðA2Þ ¼ ððr� 1Þ=2þ bðkþ 1Þ=2c. Let W be a

walk from vk to vn of length nþ ððr� 1Þ=2Þ þ bððkþ 1Þ=2c � 2. Then

W 2 FðA1 þ x � Cr þ y � C�1r þ Pðvr; vnÞ þ AÞ or W 2 FðA2 þ x � Cr þ y�1r þ Pðvr; vnÞ þ AÞ

where A is the set of z pairs of anti-signed arcs.
We first assume that W 2 FðA2 þ x � Cr þ y � C�1r þ Pðvr; vnÞ þ AÞ. Then

nþ ððr� 1Þ=2þ bððkþ 1Þ=2Þc�2 ¼ ðððr� 1Þ=2Þþ bððkþ 1Þ=2ÞcÞ þ ðxþ yÞ � rþ ðn� rÞ þ 2z.

Therefore, 2zþ (xþ y)r¼ r� 2. So xþ y¼ 0 and 2z¼ r� 2, contrary to the assumption

that r is odd.
Thus we may assume that W 2 FðA1 þ x � Cr þ y � C�1r þ Pðvr; vnÞ þ AÞ.

Then nþ ððr� 1Þ=2Þ þ bððkþ 1Þ=2Þc � 2 ¼ ðððrþ 1Þ=2Þ � bððkþ 1Þ=2ÞcÞ þ ðxþ yÞ � rþ

ðn� rÞ þ 2z, from which ðxþ yÞ � rþ 2z ¼ r� 3þ 2bððkþ 1Þ=2Þc � 2r� 2. Therefore,

0� xþ y� 1. If xþ y¼ 1, then 2z ¼ 2bððkþ 1Þ=2Þc � 3, and so 3� 0 (mod 2), a

contradiction. So xþ y¼ 0, sgnðWÞ ¼ ð�1Þðr�3þ2bðkþ1=2ÞcÞ=2 � sgnðA1Þ � sgnðPðvr; vnÞÞ
Thus S cannot have a pair of SSSD walks from vk to vn of length

nþ ððr� 1Þ=2Þ þ bððkþ 1Þ=2Þc � 2. Hence

lSðvkÞ � max nþ
r� 1

2
þ

kþ 1

2

� �
� 1; 2r� 1

� �
; 1 � k � r:

Case 2: v =2Cr.
In this case, there is an integer k with rþ 1� k� n such that v¼ vk. Let W be a walk

from vk to vn of length nþ k� 2. Then for some non-negative integers t, x and y,

W 2 FðPðvk; vnÞ þ x � Cr þ y � C�1r þ tðPðvk; vrÞ þ Pðvr; vkÞÞ þ AÞ, where A is the set of z

pairs of anti-signed arcs. Clearly, if xþ y 6¼ 0, then t 6¼ 0. Then

nþ k� 2¼ (n� k)þ (xþ y)rþ 2t(k� r)þ 2z, from which (xþ y)rþ 2t(k� r)þ 2z¼ 2k� 2.

If xþ y 6¼ 0, then t� 1, (xþ y)rþ 2z¼ 2k� 2� 2t(k� r)� 2k� 2� 2kþ 2r¼ 2r� 2.

So xþ y¼ 1 and 2z¼ 2k� 2� 2t(k� r)� r, contrary to the assumption that r is odd.

Hence xþ y¼ 0, W is a union of P(vk, vn) and k� 1 pairs of anti-signed arcs. Then

sgn(W)¼ (�1)k�1sgn(P(vk, vn)). Thus S does not have a pair of SSSD walks from vk to vn
of length nþ k� 2. Hence,

lSðvkÞ � nþ k� 1 � nþ r and rþ 1 � k � n:

Notice that if k¼ r, then nþ ððr� 1Þ=2þ bðkþ 1Þ=2c � 1 ¼ nþ r� 1 and if

k� r, nþ k� 1� 2r� 1, so the statement (ii) holds. g

By Lemmas 2.6 and 2.8, we have

THEOREM 2.9 Let r be an odd integer with 3� r� n, and let lSn,r
(k)¼max{lS(k)jS2Sn,r}.

Then

lSn;r
ðkÞ ¼

n� 1þ k if r � k � n;

max nþ
r� 1

2
þ

kþ 1

2

� �
� 1; 2r� 1

� �
if 1 � k � r� 1:

8<
:

COROLLARY 2 Let r be an odd integer with 3� r� n. Then for any S2Sn,r,

lðSÞ ¼ lSðnÞ � 2n� 1:
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It is natural to consider the question when the equality holds in Corollary 2. In the

next section, we will study the extremal graph S satisfying l(S)¼ lS(n)¼ 2n� 1.

3. The extremal graphs for the generalized base index

LEMMA 3.1 Let P1 and P2,Q1 and Q2 be two pairs of SSSD walks from vertex u to

vertex v of length i and j, respectively, such that i and j have different parity. Then

l(u, v)�max {i� 1, j� 1}.

Proof Without loss of generality, suppose i< j. Let w be a vertex adjacent to v.

For s¼ 1, 2 and any integer k� j� 1, if k has the same parity with i, let

Ws ¼ Ps þ ððk� iÞ=2Þ � ððv;wÞ þ ðw; vÞÞ. Otherwise, let Ws ¼ Qs þ ððk� jÞ=2Þððv;wÞþ
ðw; vÞÞ. Then W1 and W2 are a pair of SSSD walks from u to v of length k. Therefore,

l(u, v)� j� 1. g

LEMMA 3.2 Let S 2 Sn;1nS
ðnÞ
1 with n� 3. Then l(S)� 2n� 2.

Proof First, we suppose S is the union of a tree T and loops. We consider two cases:

Case 1: T is a path.
Suppose both of the end vertices have loops. If n¼ 3, it is easy to prove that

lðS
ðnÞ
2 Þ ¼ 4 ¼ 2n� 2 and lðS

0ðnÞ
2 Þ ¼ 3 < 2n� 2. If n� 4, by (5), lðSÞ ¼ lSðnÞ � nþ dn=2e.

Therefore, l(S)� 2n� 2.
Suppose there is an internal vertex with a loop. Let v be the internal vertex with loop

and w be a vertex adjacent to v. For any vertices u1, u22V(S) and any integer t� 2n� 2, let

P1 and P2 be the unique paths from u1 to v of length p1 and from v to u2 of length p2,

respectively. Define W1¼P(u1, v)þ (t� p1� p2) � (v, v)þP(v, u2) and W2¼P(u1, v)þ

(v,w)þ (w, v)þ (t� p1� p2� 2) � (v, v)þP(v, u2). Then W1 and W2 are a pair

of SSSD walks from u1 to u2 of length t since p1, p2� n� 2. Therefore,

l(S)¼max {l(u1, u2)ju1, u22V(S)}� 2n� 2.

Case 2: T is not a path.
Since S is connected and not a path, d(S)� n� 2. Let v be the vertex with loop.

Then expS(v)� n� 2. By (1), l(S)� (n� 2)þ 2þ (n� 2)¼ 2n� 2.
If S is not the union of a tree and loops, then S has a spanning subgraph S 0 such

that S0 is the union of a tree and loops. Therefore, l(S)� l(S 0)� 2n� 2. g

Remark 1 There is no signed digraph S2Sn,1 with n� 3 such that l(S)¼ 2n� 1.

Let

Sn ¼
[

1�r�n;r is odd

Sn;r:

Parts (i) and (ii) of Theorem 3.3 below follow from Corollaries 1 and 2 in section 2.

THEOREM 3.3 Let r be an odd integer with 3� r� n (n� 3). Then

(i) l(S)� 2n for any S2Sn;
(ii) l(S)¼ 2n if and only if S is isomorphic to a member in S

ðnÞ
1 ;

(iii) l(S)¼ 2n� 1 if and only if S is isomorphic to a member in SðnÞr or Cn (if n is odd);
(iv) For any integer 3� t� 2n� 2, there exists signed digraph S2Sn such that l(S)¼ t.
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Proof We only need to prove (iii) and (iv). Let x and y be any vertices of S2Sn,r.

By the definition of Sn,r,S has an r-cycle. We consider two cases:

Case 1: There exists an r-cycle Cr such that x2Cr or y2Cr.
Subcase 1.1: x, y2Cr.

If x¼ y, let P1¼Ø and P2¼Cr. Otherwise, let P1 and P2 be the minor and major

sections of Cr from x to y of length p1 and p2, respectively. Then W1¼P1þCr and

W2 ¼ P1 þ C�1r are a pair of SSSD walks from x to y of length p1þ r. And Q1¼P2þCr

and Q2 ¼ P2 þ C�1r are a pair of SSSD walks from x to y of length p2þ r. Since

p1þ p2¼ r, p1 and p2 have different parity. By Lemma 3.1, l(x, y)� p2þ r� 1� 2r� 1.

Furthermore, by (6), the equality holds only if x¼ y.

Subcase 1.2: x2Cr, y =2Cr or y 2 Cr, x =2Cr.
Since l(x, y)¼ l(y, x), we suppose y2Cr and x =2Cr. Let P1 be the shortest path from x

to Cr of length p1 and {v}¼V(P1)
T

V(Cr). If y¼ v, let P2¼Ø and P3¼Cr. Otherwise,

let P2 and P3 be the minor and major sections of Cr from v to y of length p2 and p3,

respectively. Then W1¼P1þP2þCr and W2 ¼ P1 þ P2 þ C�1r are a pair of SSSD walks

from x to y of length p1þ p2þ r. And Q1¼P1þP3þCr, Q2 ¼ P1 þ P3 þ C�1r are a pair

of SSSD walks from x to y of length p1þ p3þ r. By Lemma 3.1, l(x, y)� p1þ p3þ

r� 1� (n� r)þ rþ r� 1¼ nþ r� 1<2n� 1.

Case 2: x and y are not contained in any r-cycle of S.
Then S contains at least one r-cycle Cr.

Subcase 2.1: For any path P from x to y in S,V(P)
T

V(Cr) 6¼Ø (Figure 2(a)).
Using a similar argument of Subcase 1.2, we can prove that l(x, y)<2n� 1.

Subcase 2.2: S has a path P from x to Cr such that y2P or from y to Cr such that x2P.
Since l(x, y)¼ l(y, x), we may assume that P is a path from x to Cr such that y2P. Let v

be the vertex such that {v}¼V(P)
T

V(Cr), P1 and P2 be the paths from x to y of length p1
and from y to v of length p2, respectively, such that P¼P1þP2. Then W1 ¼ P1þ

P2 þ Cr þ P�12 and W2 ¼ P1 þ P2 þ C�1r þ P�12 are a pair of SSSD walks from x to y of

length p1þ 2p2þ r. And Q1 ¼ P1 þ P2 þ 2Cr þ P�12 , Q2 ¼ P1 þ P2 þ Cr þ C�1r þ P�12 are

a pair of SSSD walks from x to y of length p1þ 2p2þ 2r. By Lemma 3.1,

l(x, y)� p1þ 2p2þ 2r �1� (n� r)þ p2þ 2r� 1¼ nþ rþ p2� 1� 2n� 1.
Now suppose that l(x, y)¼ 2n�1. Then both p1þ p2¼ n� r and p2þ r¼ n. Therefore,

p1¼ 0. So the equality holds only if x¼ y¼ vn and S is isomorphic to a member in SðnÞr .

Subcase 2.3: S has a path P from x to y such that V(P)
T

V(Cr)¼Ø, but there is

no path P2 from x to Cr such that y2P2 and no path P3 from y to Cr such that x2P3

Figure 2(b).

Similar to Subcase 2.2, l(x, y)<2n� 1.

Thus l(S)¼ 2n� 1 if and only if S is isomorphic to a member in SðnÞr or Cn (if n is odd).

Figure 2. The graphs in the proof of case 2.
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It is routine to check that l(T3)¼ 3 and l(T5)¼ 5 (Figure 3). Using Lemma 2.8 and
similar proof of Theorem 3.3(iii), we can prove l(M2k�1)¼ 2k� 1 with 3< k� n� 1 and k
odd, l(N2k�1)¼ 2k� 1 with 3< k� n� 1 and k even (Figure 3). Using Lemma 2.1 and
similar argument of Theorem 2.5, we have l(T2k)¼ 2k with 2� k� n� 1 (Figure 3).

Hence (iv) holds.
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