Journal of Combinatorial Theory

On mod ($2 p+1$)-orientations of graphs

Hong-Jian Lai ${ }^{\text {a }}$, Yehong Shao ${ }^{\text {b }}$, Hehui $\mathrm{Wu}^{\text {c }}$, Ju Zhou ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\mathrm{b}}$ Arts and Sciences, Ohio University Southern, Ironton, OH 45638, USA
${ }^{\text {c }}$ Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
${ }^{\text {d }}$ Department of Mathematics and Computer Science, Bridgewater State College, Bridgewater, MA 02325, USA

A R T I C L E I N F O

Article history:

Received 10 July 2006
Available online 29 August 2008

Keywords:

$\bmod (2 p+1)$-orientation
Nowhere zero flows
Orientation

Abstract

It is shown that every $(2 p+1) \log _{2}(|V(G)|)$-edge-connected graph G has a mod $(2 p+1)$-orientation, and that a $(4 p+1)$-regular graph G has a $\bmod (2 p+1)$-orientation if and only if $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$such that $\forall U \subseteq V(G)$, $$
\left|\partial_{G}(U)\right| \geqslant(2 p+1)| | U \cap V^{+}\left|-\left|U \cap V^{-}\right|\right| .
$$

These extend former results by Da Silva and Dahab on nowhere zero 3 -flows of 5 -regular graphs, and by Lai and Zhang on highly connected graphs with nowhere zero 3-flows.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite loopless graphs. Undefined notations and terminology will follow [1]. Throughout this paper, \mathbf{Z} denotes the set of all integers, and \mathbf{Z}^{+}the set of all nonnegative integers. For a positive integer m, \mathbf{Z}_{m} denotes the set of integers modulo m, as well as the additive cyclic group on m elements.

If D is an orientation of a graph G, and if $S \subseteq V(G)$, then $D^{+}(S)$ denotes the set of edges with tails in S and $\delta^{+}(S)=\left|D^{+}(S)\right|, D^{-}(S)$ denotes the set of edges with heads in S and $\delta^{-}(S)=\left|D^{-}(S)\right|$. When $S=\{v\}$, then $d_{D}^{+}(v)=\delta^{+}(\{v\})$ is the out-degree of v and $d_{D}^{-}(v)=\delta^{-}(\{v\})$ is the in-degree of v. For a function $f: E(G) \mapsto\{1,-1\}$, define $\partial f(v)=\sum_{w \in D^{+}(\{v\})} f(v, w)-\sum_{w \in D^{-}(\{v\})} f(w, v)$. Note that when $f \equiv 1, \partial f(v)=d_{D}^{+}(v)-d_{D}^{-}(v)$.

Let $k>0$ be an integer, and assume that G has a fixed orientation D. A $\bmod k$-orientation of G is a function $f: E(G) \mapsto\{1,-1\}$ such that $\forall v \in V(G), \partial f(v) \equiv 0(\bmod k)$. The collection of all graphs admitting a mod k-orientation is denoted by M_{k}. Note that by definition, $K_{1} \in M_{k}$.

[^0]For a graph G, a function $b: V(G) \mapsto \mathbf{Z}_{m}$ is a zero sum function in \mathbf{Z}_{m} if $\sum_{v \in V(G)} b(v) \equiv 0(\bmod m)$. The set of all zero sum functions in \mathbf{Z}_{m} of G is denoted by $Z\left(G, \mathbf{Z}_{m}\right)$. When $k=2 p+1>0$ is an odd number, we define $M_{2 p+1}^{0}$ to be the collection of graphs such that $G \in M_{2 p+1}^{0}$ if and only if $\forall b \in Z\left(G, \mathbf{Z}_{2 p+1}\right), \exists f: E(G) \mapsto\{1,-1\}$ such that $\forall v \in V(G), \partial f(v) \equiv b(v)(\bmod 2 p+1)$. The following proposition can be easily verified.

Proposition 1.1. $G \in M_{2 p+1}^{0}$ if and only if $\forall b \in Z\left(G, \mathbf{Z}_{2 p+1}\right)$, G has an orientation D with the property that $\forall v \in V(G), d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$.

Conjecture 1.2. Let G be a graph, and $p>0$ be an integer.
(i) (Tutte [14].) If G is 4-edge-connected, then $G \in M_{3}$.
(ii) (Jaeger [7].) If G is ($4 p$)-edge-connected, then $G \in M_{2 p+1}$.
(iii) (Jaeger et al. [8].) If G is 5-edge-connected, then $G \in M_{3}^{0}$.

All these conjectures are still open. It is well known that it suffices to prove Conjecture 1.2(ii) for $(4 p+1)$-regular graphs. The following related conjectures have also been proposed.

Conjecture 1.3. Let G be a graph, and $p>0$ be an integer.
(i) (Jaeger [7].) There exists a smallest integer $k \geqslant 4$ such that if G is k-edge-connected, then $G \in M_{3}$.
(ii) There exists a smallest integer $f(p)$ such that every $f(p)$-edge-connected graph G is in $M_{2 p+1}^{0}$. (In [9], we also conjectured that $f(p)=4 p+1$.)

There have been some results done on attacking these conjectures. The following theorem briefly summarizes these progresses.

Theorem 1.4. Let G be a graph.
(i) (Grötzsch [4], Steinberg and Younger [13].) Every 4-edge-connected projective planar graph is in M_{3}.
(ii) (Lai and Li [10].) Every 5-edge-connected planar graph is in M_{3}^{0}.
(iii) (Lai and Zhang [11].) Every $4\left\lceil\log _{2}(|V(G)|)\right\rceil$-edge-connected graph is in M_{3}.

We shall derive a necessary and sufficient condition for a $(4 p+1)$-regular graph to have a $\bmod (2 p+1)$-orientation, and show that for any integer $p>0$, every $(2 p+1)\left\lceil\log _{2}(|V(G)|)\right\rceil$-edgeconnected graph is in $M_{2 p+1}^{o}$.

2. Orientation of graphs

Let G be a graph. For a subset $S \subseteq V(G), E(S)$ denotes the set of edges in G with both ends in S and $\partial_{G}(S)$ denotes the set of edges with just one end in S. When $S=\{v\}$, we denote $E_{G}(v)=\partial_{G}(\{v\})$. If $S_{1}, S_{2} \subseteq V(G)$ and $S_{1} \cap S_{2}=\emptyset$, then $E\left(S_{1}, S_{2}\right)$ denotes the set of edges in $E(G)$ with one end in S_{1} and the other end in S_{2}.

Let $c: V(G) \mapsto \mathbf{Z}^{+}$be a function. For each $v \in V(G)$, define $X_{v}=\left\{v^{1}, v^{2}, \ldots, v^{c(v)}\right\}$. We assume that these X_{v} 's are disjoint and so if $v \neq v^{\prime}$ and $v, v^{\prime} \in V(G)$, then $X_{v} \cap X_{v^{\prime}}=\emptyset$. Construct a new bipartite graph G_{c} whose vertex bipartition is $\left(E(G), \bigcup_{v \in V(G)} X_{v}\right)$. An edge in G_{c} joins a vertex $e \in E(G)$ and a vertex $v^{i} \in X_{v}$ if and only if v is incident with e in G. Note that any perfect matching M of G_{c} corresponds to an orientation D of G in such a way that an edge in M joins e and v^{i} in G_{c} if and only if e is oriented away from v in D. Thus G_{c} has a perfect matching if and only if G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$. By the Marriage Theorem of Frobenius ([3], or Corollary 2.5 on p. 185 in [12]), or by Hall's Theorem [6] on system of distinct representatives, we obtained the following theorem of Hakimi.

Theorem 2.1. (See Hakimi, [5].) Let G be a graph, and let $c: V(G) \mapsto \mathbf{Z}$ be a function. Then G has an orientation D such that $d_{D}^{+}(v)=c(v), \forall v \in V(G)$ if and only if

$$
\begin{equation*}
\forall S \subseteq V(G), \quad|E(S)| \leqslant \sum_{v \in S} c(v) \leqslant|E(S)|+\left|\partial_{G}(S)\right| . \tag{1}
\end{equation*}
$$

Theorem 2.1 can also be stated in terms of net out-degree at each vertex in an orientation.
Corollary 2.2. Let G be a graph and $b: V(G) \mapsto \mathbf{Z}$ be a function such that $\sum_{v \in V(G)} b(v)=0$ and $b(v) \equiv$ $d_{G}(v)(\bmod 2), \forall v \in V(G)$. Then G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v)=b(v), \forall v \in V(G)$ if and only if

$$
\begin{equation*}
\forall S \subseteq V(G), \quad\left|\sum_{v \in S} b(v)\right| \leqslant\left|\partial_{G}(S)\right| . \tag{2}
\end{equation*}
$$

Proof. Let G be a graph with an orientation D. For a subset $S \subseteq V(G)$, let $\partial_{D}^{+}(S)$ denote the set of edges oriented from a vertex in S to a vertex not in S, or a boundary edge oriented from a vertex in S; and let $\partial_{D}^{-}(S)=\partial_{G}(S)-\partial_{D}^{+}(S)$.

Suppose that G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v)=b(v), \forall v \in V(G)$. Let $c(v)=$ $d_{D}^{-}(v)+b(v), \forall v \in V(G)$. By Theorem 2.1, G has an orientation D such that $d_{D}^{+}(v)=c(v)$ (which is equivalent to $\left.d_{D}^{+}(v)-d_{D}^{-}(v)=b(v)\right)$ if and only if (1) holds. Furthermore, (1) holds if and only if the following holds:

$$
\forall S \subseteq V(G), \quad|E(S)| \leqslant \sum_{v \in S} d_{D}^{-}(v)+\sum_{v \in S} b(v) \leqslant|E(S)|+\left|\partial_{G}(S)\right| .
$$

Substituting $\sum_{v \in S} d_{D}^{-}(v)$ by $|E(S)|+\left|\partial_{D}^{-}(S)\right|$ in the inequalities above, we conclude that (1) holds if and only if

$$
\forall S \subseteq V(G), \quad-\left|\partial_{G}(S)\right| \leqslant-\left|\partial_{D}^{-}(S)\right| \leqslant \sum_{v \in S} b(v) \leqslant\left|\partial_{G}(S)\right|-\left|\partial_{D}^{-}(S)\right| \leqslant\left|\partial_{G}(S)\right|,
$$

and so (2) must follow.
Conversely, suppose that (2) holds and that there is a function $b: V(G) \mapsto \mathbf{Z}$ such that $\sum_{v \in V(G)} b(v)=0$ and $b(v) \equiv d_{G}(v)(\bmod 2), \forall v \in V(G)$. Define a function $c: V(G) \mapsto \mathbf{Z}$ as follows

$$
c(v)=\frac{b(v)+d_{G}(v)}{2}, \quad \forall v \in V(G) .
$$

Since $\sum_{v \in V(G)} b(v)=0, \sum_{v \in V(G)} c(v)=|E(G)|$. Then $\forall S \subseteq V(G)$,

$$
2 \sum_{v \in S} c(v)=\sum_{v \in S} b(v)+\sum_{v \in S} d_{G}(v)=\sum_{v \in S} b(v)+2|E(S)|+\left|\partial_{G}(S)\right| .
$$

Hence by (2), $|E(S)| \leqslant \sum_{v \in S} c(v) \leqslant\left|\partial_{G}(S)\right|+|E(S)|$. It follows by Theorem 2.1 that G has an orientation D with $d_{D}^{+}(v)=c(v)=\frac{b(v)+d_{G}(v)}{2}$, which is equivalent to $d_{D}^{+}(v)-d_{D}^{-}(v)=b(v)$, as $d_{G}(v)=$ $d_{D}^{+}(v)+d_{D}^{-}(v)$.

Theorem 2.3. Let $p>0$ be an integer, and let G be a $(4 p+1)$-regular graph. The following are equivalent.
(i) $G \in M_{2 p+1}$.
(ii) $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geqslant(2 p+1)| | U \cap V^{+}|-| U \cap V^{-} \| .
$$

Proof. In the proofs of both sufficiency and necessity, we let $b: V(G) \mapsto \mathbf{Z}$ be a map satisfying both $b^{-1}(\{2 p+1\})=V^{+}$and $b^{-1}(\{-2 p-1\})=V^{-}$, when V^{+}and V^{-}are defined in G. Note that as G is a $(4 p+1)$-regular graph, $\forall v \in V(G), b(v) \equiv d_{G}(v)(\bmod 2)$.

Now we show that (ii) implies (i). Take $U=V(G)$. Then $\partial(U)=\emptyset$, and so we must have $\left|V^{+}\right|=$ $\left|V^{-}\right|$. It follows that $\sum_{v \in V(G)} b(v)=0$. For any $S \subseteq V(G)$, by (ii) with $U=S$,

$$
\left|\sum_{v \in S} b(v)\right|=(2 p+1)| | S \cap V^{+}\left|-\left|S \cap V^{-}\right|\right| \leqslant\left|\partial_{G}(S)\right|
$$

and so by Corollary 2.2, $G \in M_{2 p+1}$. Hence (i) must hold.
Conversely, suppose (i) holds. Then G has a $\bmod (2 p+1)$-orientation D. Since G is $(4 p+1)$-regular, it follows that $\forall v \in V(G)$, either $d_{D}^{+}(v)=3 p+1$ or $d_{D}^{+}(v)=p$. Define $V^{+}=\left\{v \in V(D): d_{D}^{+}(v)=\right.$ $3 p+1\}$ and $V^{-}=V(D)-V^{+}$. By Corollary 2.2, for any $U \subseteq V(G)$,

$$
(2 p+1)\left|\left|U \cap V^{+}\right|-\left|U \cap V^{-}\right|\right|=\left|\sum_{v \in U} b(v)\right| \leqslant\left|\partial_{G}(U)\right|,
$$

and so (ii) must hold.

Theorem 2.4. (See Da Silva and Dahab, [2].) Let G be a 5-regular graph. Then $G \in M_{3}$ if and only if $V(G)$ has a partition $\left(V^{+}, V^{-}\right)$with $\left|V^{+}\right|=\left|V^{-}\right|$such that $\forall U \subseteq V(G)$,

$$
\left|\partial_{G}(U)\right| \geqslant 3| | U \cap V^{+}|-| U \cap V^{-} \| .
$$

Proof. Take $p=1$ in the theorem above.

3. $\bmod (2 p+1)$-orientation of graphs

Let $T \subseteq V(G)$ be a vertex subset. The contraction G / T is obtained from G by identifying all vertices in T into a single vertex v_{T}, and then removing all edges in $E(T)$. Note that if G is loopless, then any contraction G / T is also loopless.

Proposition 3.1. Let G be a graph. The following are equivalent.
(i) $G \in M_{2 p+1}^{0}$.
(ii) For any function $b: V(G) \mapsto \mathbf{Z}$ satisfying both

$$
\begin{equation*}
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
b(v) \equiv d_{G}(v)(\bmod 2), \quad \forall v \in V(G) \tag{4}
\end{equation*}
$$

G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1), \forall v \in V(G)$.
Proof. Suppose that $G \in M_{2 p+1}^{0}$. Let $b: V(G) \mapsto \mathbf{Z}$ be a function satisfying (3) and (4). For each $v \in V(G)$, choose $b^{\prime}(v) \in \mathbf{Z}$ with $0 \leqslant b^{\prime}(v) \leqslant 2 p$ and with $b^{\prime}(v) \equiv b(v)(\bmod 2 p+1)$. By (3), $b^{\prime} \in$ $Z\left(G, \mathbf{Z}_{2 p+1}\right)$. Since $G \in M_{2 p+1}^{0}$, by Proposition 1.1, G has an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv$ $b(v)(\bmod 2 p+1), \forall v \in V(G)$.

Suppose (ii) holds. Let $b^{\prime} \in Z\left(G, \mathbf{Z}_{2 p+1}\right)$. We may assume that $\forall v \in V(G), b^{\prime}(v) \equiv i_{v}(\bmod 2 p+1)$ for some $i_{v} \in \mathbf{Z}$ with $0 \leqslant i_{v} \leqslant 2 p$. Define $b: V(G) \mapsto \mathbf{Z}$ as follows

$$
b(v)= \begin{cases}i_{v} & \text { if } i_{v} \equiv d_{G}(v)(\bmod 2) \\ i_{v}+2 p+1 & \text { if } i_{v}+1 \equiv d_{G}(v)(\bmod 2)\end{cases}
$$

Then both (3) and (4) hold. By (ii), G has an orientation D such that such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v) \equiv$ $b^{\prime}(v)(\bmod 2 p+1), \forall v \in V(G)$. It follows by Proposition 1.1 that $G \in M_{2 p+1}^{0}$.

Lemma 3.2. Let $b: V(G) \mapsto \mathbf{Z}$ be a function satisfying (3) and (4). Then $\exists b^{\prime}: V(G) \mapsto \mathbf{Z}$ satisfies (3), (4),

$$
\begin{align*}
& b^{\prime}(v) \equiv b(v)(\bmod 2 p+1), \quad \forall v \in V(G), \tag{5}\\
& \sum_{v \in V(G)} b^{\prime}(v)=0 \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
\max \left\{b^{\prime}(v): v \in V(G)\right\}-\min \left\{b^{\prime}(v): v \in V(G)\right\} \leqslant 4 p+2 \tag{7}
\end{equation*}
$$

Proof. Since b satisfies (4), $\sum_{v \in V(G)} b(v) \equiv \sum_{v \in V(G)} d_{G}(v) \equiv 0(\bmod 2)$. This, together with (3), implies

$$
\begin{equation*}
\sum_{v \in V(G)} b(v) \equiv 0(\bmod 4 p+2) \tag{8}
\end{equation*}
$$

Among all functions $b^{\prime}: V(G) \mapsto \mathbf{Z}$ satisfying (3)-(5), choose one such that $\left|\sum_{v \in V(G)} b^{\prime}(v)\right|$ is the smallest. We claim that $\sum_{v \in V(G)} b^{\prime}(v)=0$. If not, then by (8), $\sum_{v \in V(G)} b^{\prime}(v)$ must be a multiple of $4 p+2$. Without loss of generality, we may assume that $\sum_{v \in V(G)} b^{\prime}(v)>0$ and that $b^{\prime}\left(v_{1}\right)=$ $\max \left\{b^{\prime}(v): v \in V(G)\right\}$. Define $b^{\prime \prime}: V(G) \mapsto \mathbf{Z}$ as follows

$$
b^{\prime \prime}(v)= \begin{cases}b^{\prime}(v) & \text { if } v \neq v_{1} \\ b^{\prime}\left(v_{1}\right)-(4 p+2) & \text { if } v=v_{1}\end{cases}
$$

Then $b^{\prime \prime}$ satisfies (3)-(5), but $\left|\sum_{v \in V(G)} b^{\prime}(v)\right|=\left|\sum_{v \in V(G)} b^{\prime \prime}(v)\right|+4 p+2$, contrary to the choice of b^{\prime}. Therefore, b^{\prime} must satisfy (6) as well.

Among all functions $b^{\prime}: V(G) \mapsto \mathbf{Z}$ satisfying (3)-(6), choose one such that $\max \left\{b^{\prime}(v): v \in V(G)\right\}-\min \left\{b^{\prime}(v): v \in V(G)\right\}$ is minimized,
and subject to (9)

$$
\begin{equation*}
\left|\left\{z: b^{\prime}(z)=\max \left\{b^{\prime}(v): v \in V(G)\right\}\right\}\right| \text { is minimized. } \tag{10}
\end{equation*}
$$

Relabelling the vertices if needed, we assume that

$$
\begin{equation*}
b^{\prime}\left(v_{1}\right) \geqslant b^{\prime}\left(v_{2}\right) \geqslant \cdots \geqslant b^{\prime}\left(v_{n}\right), \tag{11}
\end{equation*}
$$

where $n=|V(G)|$. If $b^{\prime}\left(v_{1}\right)-b^{\prime}\left(v_{n}\right) \leqslant 4 p+2$, then we are done. Suppose that $b^{\prime}\left(v_{1}\right)-b^{\prime}\left(v_{n}\right)>4 p+2$. Define $b^{\prime \prime \prime}: V(G) \mapsto \mathbf{Z}$ as follows

$$
b^{\prime \prime \prime}(v)= \begin{cases}b^{\prime}(v) & \text { if } v \notin\left\{v_{1}, v_{n}\right\}, \\ b^{\prime}\left(v_{1}\right)-(4 p+2) & \text { if } v=v_{1}, \\ b^{\prime}\left(v_{n}\right)+(4 p+2) & \text { if } v=v_{n} .\end{cases}
$$

Then $b^{\prime \prime \prime}$ also satisfies (3)-(6). If $b^{\prime \prime \prime}\left(v_{2}\right)>b^{\prime \prime \prime}\left(v_{1}\right)$, then $\max \left\{b^{\prime \prime \prime}(v): \quad v \in V(G)\right\}=\max \left\{b^{\prime}(v): v \in\right.$ $V(G)\}$, and so as $b^{\prime \prime \prime}\left(v_{1}\right)<\max \left\{b^{\prime \prime \prime}(v): v \in V(G)\right\}$, this is contrary to the choice of (10). Therefore, we assume that $b^{\prime \prime \prime}\left(v_{1}\right)>b^{\prime \prime \prime}\left(v_{2}\right)$. Note now that for any i with $2 \leqslant i \leqslant n-1, b^{\prime \prime \prime}\left(v_{i}\right)-b^{\prime \prime \prime}\left(v_{1}\right)>$ $4 p+2$ if and only if $b^{\prime}\left(v_{i}\right)>b^{\prime}\left(v_{1}\right)$, and so the occurrence of $b^{\prime \prime \prime}\left(v_{i}\right)-b^{\prime \prime \prime}\left(v_{1}\right)>4 p+2$ would be contrary to (11). Hence $b^{\prime \prime \prime}\left(v_{1}\right) \geqslant b^{\prime \prime \prime}\left(v_{i}\right)$. Similarly, $b^{\prime \prime \prime}\left(v_{i}\right) \geqslant b^{\prime \prime \prime}\left(v_{n}\right)$. Thus $\max \left\{b^{\prime}(v): v \in V(G)\right\}-$ $\min \left\{b^{\prime}(v): v \in V(G)\right\}=\max \left\{b^{\prime \prime \prime}(v): v \in V(G)\right\}-\min \left\{b^{\prime}(v): v \in V(G)\right\}+8 p+4$, contrary to (9). This proves the lemma.

Theorem 3.3. Let G be a graph with $n=|V(G)|$. If $G \notin M_{2 p+1}^{0}$, then each of the following holds.
(i) $V(G)$ can be expressed as a disjoint union $V(G)=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=k,\left|V_{2}\right|=n-k$, and

$$
\begin{equation*}
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil \leqslant 4 p+2 . \tag{12}
\end{equation*}
$$

(ii) $V(G)$ can be expressed as a disjoint union $V(G)=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=k,\left|V_{2}\right|=n-k$, and

$$
\begin{equation*}
\left|E\left(V_{1}, V_{2}\right)\right| \leqslant \frac{(4 p+2) k(n-k)}{n}-1 \tag{13}
\end{equation*}
$$

Proof. (i) If $G \notin M_{2 p+1}^{o}$, then by Proposition 3.1, there exist a function $b: V(G) \mapsto \mathbf{Z}$ satisfying (3) and (4) but G does not have an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1), \forall v \in$ $V(G)$. By Lemma 3.2, we may assume that b also satisfies (5)-(7). By Corollary 2.2, there must be a subset $V_{1} \subseteq V(G)$ such that

$$
\begin{equation*}
\left|\sum_{v \in V_{1}} b(v)\right|>\left|\partial_{G}\left(V_{1}\right)\right| . \tag{14}
\end{equation*}
$$

Let $V_{2}=V(G)-V_{1}$. Then $\partial_{G}\left(V_{1}\right)=\partial_{G}\left(V_{2}\right)=E\left(V_{1}, V_{2}\right)$. By (6), $\left|\sum_{v \in V_{1}} b(v)\right|=\left|\sum_{v \in V_{2}} b(v)\right|$. Thus by (14) and (6), we may assume, without loss of generality, that

$$
\begin{equation*}
\sum_{v \in V_{1}} b(v) \geqslant\left|\partial_{G}\left(V_{1}\right)\right|+1 \quad \text { and } \quad \sum_{v \in V_{2}} b(v) \leqslant-\left|\partial_{G}\left(V_{2}\right)\right|-1 \tag{15}
\end{equation*}
$$

Let $k=\left|V_{1}\right|$. Then $\left|V_{2}\right|=n-k$. By (15),

$$
\left|\partial_{G}\left(V_{1}\right)\right|+1 \leqslant \sum_{v \in V_{1}} b(v) \leqslant k \max \{b(v): v \in V(G)\},
$$

and so

$$
\begin{equation*}
\max b(v) \geqslant\left\lceil\frac{\left|\partial_{G}\left(V_{1}\right)\right|+1}{k}\right\rceil \tag{16}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\min b(v) \leqslant-\left\lceil\frac{\left|\partial_{G}\left(V_{2}\right)\right|+1}{n-k}\right\rceil \tag{17}
\end{equation*}
$$

Since b also satisfies (7), combining (16) and (17), we obtain (12). This proves (i).
(ii) Suppose that $G \notin M_{2 p+1}^{0}$. By (i), $V(G)$ has a partition (V_{1}, V_{2}) such that (12) holds. By (12),

$$
\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}+\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k} \leqslant 4 p+2
$$

and so

$$
(n-k)\left(\left|E\left(V_{1}, V_{2}\right)\right|+1\right)+k\left(\left|E\left(V_{1}, V_{2}\right)\right|+1\right) \leqslant(4 p+2) k(n-k)
$$

Thus (13) follows also.
Corollary 3.4. For any positive $p \in \mathbf{Z}, K_{4 p+1} \in M_{2 p+1}^{0}$.
Proof. Let $n=4 p+1$. If $K_{n} \notin M_{2 p+1}^{0}$, then by Theorem 3.3, $V\left(K_{n}\right)$ can be partitioned into two subsets V_{1} and V_{2} with $\left|V_{1}\right|=k$ and $\left|V_{2}\right|=n-k$ such that (12) holds. Since $\left|E\left(V_{1}, V_{2}\right)\right|=k(n-k)$, we have

$$
\begin{aligned}
\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{k}\right\rceil+\left\lceil\frac{\left|E\left(V_{1}, V_{2}\right)\right|+1}{n-k}\right\rceil & =\left\lceil\frac{k(n-k)+1}{k}\right\rceil+\left\lceil\frac{k(n-k)+1}{n-k}\right\rceil \\
& =(n-k+1)+(k+1)=n+2>4 p+2
\end{aligned}
$$

contrary to (12). Thus we must have $K_{4 p+1} \in M_{2 p+1}^{o}$.
Lemma 3.5. Let $h(\lambda)=\frac{\log _{2}(\lambda)}{1-\lambda}+\frac{\log _{2}(1-\lambda)}{\lambda}$ be a function defined on the interval $(0,1)$. Then $h(\lambda) \leqslant$ $h(1 / 2)=-4$.

Proof. Note that the derivative

$$
h^{\prime}(\lambda)=\frac{1}{\ln (2) \lambda(1-\lambda)}+\frac{\log _{2} \lambda}{(1-\lambda)^{2}}-\frac{1}{\ln (2) \lambda(1-\lambda)}-\frac{\log _{2}(1-\lambda)}{\lambda^{2}}=\frac{\log _{2} \lambda}{(1-\lambda)^{2}}-\frac{\log _{2}(1-\lambda)}{\lambda^{2}} .
$$

Consider $g(\lambda)=\lambda^{2} \log _{2}(\lambda)-(1-\lambda)^{2} \log _{2}(1-\lambda)$. Suppose that $\lambda \leqslant \frac{1}{2}$. Set $t=\frac{1}{\lambda}$. Then $t \geqslant 2$, and so $(t-1)-\log _{2}(t) \geqslant 0$. It follows that

$$
\begin{aligned}
g(\lambda) & =\frac{1}{t^{2}}\left(\log _{2}\left(\frac{1}{t}\right)-(t-1)^{2} \log _{2}\left(\frac{t-1}{t}\right)\right)=\frac{1}{t^{2}}\left((t-1)^{2} \log _{2}\left(\frac{t}{t-1}\right)-\log _{2}(t)\right) \\
& =\frac{1}{t^{2}}\left((t-1) \log _{2}\left(\left(1+\frac{1}{t-1}\right)^{t-1}\right)-\log _{2}(t)\right) \geqslant \frac{1}{t^{2}}\left((t-1)-\log _{2}(t)\right) \geqslant 0 .
\end{aligned}
$$

It follows that $h^{\prime}(\lambda) \geqslant 0$ when $\lambda \leqslant \frac{1}{2}$. Similarly, $h^{\prime}(\lambda) \leqslant 0$ when $\lambda \geqslant \frac{1}{2}$. This proves that $h(\lambda) \leqslant$ $h(1 / 2)=-4$.

Theorem 3.6. Let n, p be positive integers, and let $f(n)=\frac{(2 p+1) n\left[\log _{2}(n)\right]}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \geqslant f(n)$, then G has a nontrivial subgraph ${ }^{2}$ with $H \in M_{2 p+1}^{o}$.

Proof. Since $f(1)=0$ and $f(2)=2 p+1$, the theorem holds when $n \in\{1,2\}$. We argue by induction to prove the theorem and assume that the theorem holds for all smaller values of n, and that $n \geqslant 3$.

Suppose now $|E(G)| \geqslant f(n)$ but $G \notin M_{2 p+1}^{o}$. By Theorem 3.3, $V(G)$ can be partitioned into a disjoint subsets V_{1} and V_{2} with $\left|V_{1}\right|=k$ and $\left|V_{2}\right|=n-k$ such that (13) holds.

If one of the induced subgraphs $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ contains a desirable H, then theorem holds. Therefore we assume that neither $G\left[V_{1}\right]$ nor $G\left[V_{2}\right]$ contains a nontrivial subgraph H in $M_{2 p+1}^{o}$. By induction hypothesis, we must have

$$
\begin{equation*}
\left|E\left(G\left[V_{1}\right]\right)\right|<f(k) \text { and }\left|E\left(G\left[V_{2}\right]\right)\right|<f(n-k) . \tag{18}
\end{equation*}
$$

By (13), $\left|E\left(V_{1}, V_{2}\right)\right|<\frac{(4 p+2) k(n-k)}{n}$, and so by (18),

$$
\begin{aligned}
|E(G)| & =\left|E\left(V_{1}\right)\right|+\left|E\left(V_{2}\right)\right|+\left|E\left(V_{1}, V_{2}\right)\right|<f(k)+f(n-k)+\frac{(4 p+2) k(n-k)}{n} \\
& =\frac{(2 p+1) k}{2} \log _{2}(k)+\frac{(2 p+1)(n-k)}{2} \log _{2}(n-k)+\frac{(4 p+2) k(n-k)}{n} .
\end{aligned}
$$

Let $k=\lambda n$. Then we have, by Lemma 3.5,

$$
\begin{aligned}
|E(G)|< & \frac{(2 p+1) n \lambda}{2} \log _{2}(n \lambda)+\frac{(2 p+1) n(1-\lambda)}{2} \log _{2}(n(1-\lambda))+(4 p+2) n \lambda(1-\lambda) \\
= & (2 p+1) n\left(\frac{\lambda \log _{2}(n)}{2}+\frac{\lambda \log _{2}(\lambda)}{2}+\frac{(1-\lambda) \log _{2}(n)}{2}+\frac{(1-\lambda) \log _{2}(1-\lambda)}{2}\right) \\
& +(4 p+2) n \lambda(1-\lambda) \\
= & \frac{(2 p+1) n \log _{2}(n)}{2}+(2 p+1) n \frac{\lambda(1-\lambda)}{2}\left(\frac{\log _{2}(\lambda)}{1-\lambda}+\frac{\log _{2}(1-\lambda)}{\lambda}+4\right) \\
\leqslant & \frac{(2 p+1) n \log _{2}(n)}{2}+(2 p+1) n \frac{\lambda(1-\lambda)}{2}(-4+4) \\
= & \frac{(2 p+1) n \log _{2}(n)}{2}=f(n),
\end{aligned}
$$

contrary to the assumption that $|E(G)| \geqslant f(n)$.
Proposition 3.7. (See [9].) For any integer $p \geqslant 1$, if H is a subgraph of G, and if $H, G / H \in M_{2 p+1}^{o}$, then $G \in M_{2 p+1}^{0}$.

The following corollary sharpens Theorem 1.4 (iii) when $p=1$.

Corollary 3.8. Let G be a graph with n vertices. If $\kappa^{\prime}(G) \geqslant(2 p+1) \log _{2}(n)$, then $G \in M_{2 p+1}^{0}$.
Proof. By contradiction, we assume that G is a counterexample with $|V(G)|$ minimized. By Theorem 3.6, G has a nontrivial subgraph $H \in M_{2 p+1}^{o}$. Since $\kappa^{\prime}(G / H) \geqslant \kappa^{\prime}(G)$, by the minimality of G, $G / H \in M_{2 p+1}^{0}$. It follows by the facts that $H \in M_{2 p+1}^{0}$ and $G / H \in M_{2 p+1}^{0}$, and by Proposition 3.7 that $G \in M_{2 p+1}^{0}$.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] C.N. da Silva, R. Dahab, Tutte's 3-flow conjecture and matchings in bipartite graphs, Ars Combin. 76 (2005) 83-95.
[3] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber König. Preuss. Akad. Wiss. XVIII (1917) 274-277.
[4] H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Weiss Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Nature Reihe 8 (1958/9) 109-120.
[5] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (1965) 290-308.
[6] P. Hall, On representatives of subsets, J. London Math. Soc. (2) 16 (1935) 26-30.
[7] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, et al. (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, London, New York, 1988, pp. 91-95.
[8] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs-A nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[9] H.-J. Lai, Mod $(2 p+1)$-orientations and $K_{1,2 p+1}$-decompositions, SIAM J. Discrete Math. 21 (2007) 844-850.
[10] H.-J. Lai, X. Li, Group chromatic number of planar graphs with girth at least 4, J. Graph Theory 52 (2006) 51-72.
[11] H.-J. Lai, C.Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete Math. 110 (1992) 179-183.
[12] W.R. Pulleyblank, Matchings and extensions, in: R.L. Gramham, M. Grötschel, L. Lovàsz (Eds.), Handbook of Combinatorics, vol. 1, The MIT Press, New York, 1995.
[13] R. Steinberg, D.H. Younger, Grötzsch theorem for the projective plane, Ars Combin. 28 (1989) 15-31.
[14] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15-50.

[^0]: E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

