

Journal of Combinatorial Theory

On mod (2p + 1)-orientations of graphs

Hong-Jian Lai^a, Yehong Shao^b, Hehui Wu^c, Ju Zhou^d

^a Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^b Arts and Sciences, Ohio University Southern, Ironton, OH 45638, USA

^c Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

^d Department of Mathematics and Computer Science, Bridgewater State College, Bridgewater, MA 02325, USA

ARTICLE INFO

Article history: Received 10 July 2006 Available online 29 August 2008

Keywords: mod (2p + 1)-orientation Nowhere zero flows Orientation

ABSTRACT

It is shown that every $(2p + 1)\log_2(|V(G)|)$ -edge-connected graph *G* has a mod (2p+1)-orientation, and that a (4p+1)-regular graph *G* has a mod (2p + 1)-orientation if and only if V(G) has a partition (V^+, V^-) such that $\forall U \subseteq V(G)$,

 $|\partial_G(U)| \ge (2p+1)||U \cap V^+| - |U \cap V^-||.$

These extend former results by Da Silva and Dahab on nowhere zero 3-flows of 5-regular graphs, and by Lai and Zhang on highly connected graphs with nowhere zero 3-flows.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite loopless graphs. Undefined notations and terminology will follow [1]. Throughout this paper, **Z** denotes the set of all integers, and \mathbf{Z}^+ the set of all nonnegative integers. For a positive integer *m*, \mathbf{Z}_m denotes the set of integers modulo *m*, as well as the additive cyclic group on *m* elements.

If *D* is an orientation of a graph *G*, and if $S \subseteq V(G)$, then $D^+(S)$ denotes the set of edges with tails in *S* and $\delta^+(S) = |D^+(S)|$, $D^-(S)$ denotes the set of edges with heads in *S* and $\delta^-(S) = |D^-(S)|$. When $S = \{v\}$, then $d_D^+(v) = \delta^+(\{v\})$ is the out-degree of *v* and $d_D^-(v) = \delta^-(\{v\})$ is the in-degree of *v*. For a function $f : E(G) \mapsto \{1, -1\}$, define $\partial f(v) = \sum_{w \in D^+(\{v\})} f(v, w) - \sum_{w \in D^-(\{v\})} f(w, v)$. Note that when $f \equiv 1$, $\partial f(v) = d_D^+(v) - d_D^-(v)$.

Let k > 0 be an integer, and assume that *G* has a fixed orientation *D*. A mod *k*-orientation of *G* is a function $f: E(G) \mapsto \{1, -1\}$ such that $\forall v \in V(G), \partial f(v) \equiv 0 \pmod{k}$. The collection of all graphs admitting a mod *k*-orientation is denoted by M_k . Note that by definition, $K_1 \in M_k$.

0095-8956/\$ – see front matter $\ @$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2008.08.001

E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

For a graph *G*, a function $b: V(G) \mapsto \mathbb{Z}_m$ is a *zero sum* function in \mathbb{Z}_m if $\sum_{v \in V(G)} b(v) \equiv 0 \pmod{m}$. The set of all zero sum functions in \mathbb{Z}_m of *G* is denoted by $Z(G, \mathbb{Z}_m)$. When k = 2p + 1 > 0 is an odd number, we define M_{2p+1}^o to be the collection of graphs such that $G \in M_{2p+1}^o$ if and only if $\forall b \in Z(G, \mathbb{Z}_{2p+1}), \exists f : E(G) \mapsto \{1, -1\}$ such that $\forall v \in V(G), \partial f(v) \equiv b(v) \pmod{2p+1}$. The following proposition can be easily verified.

Proposition 1.1. $G \in M_{2p+1}^o$ if and only if $\forall b \in Z(G, \mathbb{Z}_{2p+1})$, *G* has an orientation *D* with the property that $\forall v \in V(G), d_D^+(v) = b(v) \pmod{2p+1}$.

Conjecture 1.2. *Let G be a graph, and* p > 0 *be an integer.*

- (i) (Tutte [14].) If G is 4-edge-connected, then $G \in M_3$.
- (ii) (Jaeger [7].) If G is (4p)-edge-connected, then $G \in M_{2p+1}$.
- (iii) (Jaeger et al. [8].) If G is 5-edge-connected, then $G \in M_3^0$.

All these conjectures are still open. It is well known that it suffices to prove Conjecture 1.2(ii) for (4p + 1)-regular graphs. The following related conjectures have also been proposed.

Conjecture 1.3. *Let G be a graph, and* p > 0 *be an integer.*

- (i) (Jaeger [7].) There exists a smallest integer $k \ge 4$ such that if G is k-edge-connected, then $G \in M_3$.
- (ii) There exists a smallest integer f(p) such that every f(p)-edge-connected graph G is in M_{2p+1}^{o} . (In [9], we also conjectured that f(p) = 4p + 1.)

There have been some results done on attacking these conjectures. The following theorem briefly summarizes these progresses.

Theorem 1.4. Let G be a graph.

- (i) (Grötzsch [4], Steinberg and Younger [13].) Every 4-edge-connected projective planar graph is in M₃.
- (ii) (Lai and Li [10].) Every 5-edge-connected planar graph is in M₃^o.
- (iii) (Lai and Zhang [11].) Every $4\lceil \log_2(|V(G)|) \rceil$ -edge-connected graph is in M₃.

We shall derive a necessary and sufficient condition for a (4p + 1)-regular graph to have a mod (2p + 1)-orientation, and show that for any integer p > 0, every $(2p + 1)\lceil \log_2(|V(G)|)\rceil$ -edge-connected graph is in M_{2p+1}^0 .

2. Orientation of graphs

Let *G* be a graph. For a subset $S \subseteq V(G)$, E(S) denotes the set of edges in *G* with both ends in *S* and $\partial_G(S)$ denotes the set of edges with just one end in *S*. When $S = \{v\}$, we denote $E_G(v) = \partial_G(\{v\})$. If $S_1, S_2 \subseteq V(G)$ and $S_1 \cap S_2 = \emptyset$, then $E(S_1, S_2)$ denotes the set of edges in E(G) with one end in S_1 and the other end in S_2 .

Let $c: V(G) \mapsto \mathbb{Z}^+$ be a function. For each $v \in V(G)$, define $X_v = \{v^1, v^2, \dots, v^{c(v)}\}$. We assume that these X_v 's are disjoint and so if $v \neq v'$ and $v, v' \in V(G)$, then $X_v \cap X_{v'} = \emptyset$. Construct a new bipartite graph G_c whose vertex bipartition is $(E(G), \bigcup_{v \in V(G)} X_v)$. An edge in G_c joins a vertex $e \in E(G)$ and a vertex $v^i \in X_v$ if and only if v is incident with e in G. Note that any perfect matching M of G_c corresponds to an orientation D of G in such a way that an edge in M joins e and v^i in G_c if and only if e is oriented away from v in D. Thus G_c has a perfect matching if and only if G has an orientation D such that $d_D^+(v) = c(v), \forall v \in V(G)$. By the Marriage Theorem of Frobenius ([3], or Corollary 2.5 on p. 185 in [12]), or by Hall's Theorem [6] on system of distinct representatives, we obtained the following theorem of Hakimi. **Theorem 2.1.** (See Hakimi, [5].) Let G be a graph, and let $c : V(G) \mapsto \mathbf{Z}$ be a function. Then G has an orientation D such that $d_D^+(v) = c(v), \forall v \in V(G)$ if and only if

$$\forall S \subseteq V(G), \quad \left| E(S) \right| \leqslant \sum_{\nu \in S} c(\nu) \leqslant \left| E(S) \right| + \left| \partial_G(S) \right|. \tag{1}$$

Theorem 2.1 can also be stated in terms of net out-degree at each vertex in an orientation.

Corollary 2.2. Let *G* be a graph and $b: V(G) \mapsto \mathbb{Z}$ be a function such that $\sum_{v \in V(G)} b(v) = 0$ and $b(v) \equiv d_G(v) \pmod{2}$, $\forall v \in V(G)$. Then *G* has an orientation *D* such that $d_D^+(v) - d_D^-(v) = b(v)$, $\forall v \in V(G)$ if and only if

$$\forall S \subseteq V(G), \quad \left| \sum_{v \in S} b(v) \right| \leq \left| \partial_G(S) \right|.$$
⁽²⁾

Proof. Let *G* be a graph with an orientation *D*. For a subset $S \subseteq V(G)$, let $\partial_D^+(S)$ denote the set of edges oriented from a vertex in *S* to a vertex not in *S*, or a boundary edge oriented from a vertex in *S*; and let $\partial_D^-(S) = \partial_G(S) - \partial_D^+(S)$.

Suppose that *G* has an orientation *D* such that $d_D^+(v) - d_D^-(v) = b(v)$, $\forall v \in V(G)$. Let $c(v) = d_D^-(v) + b(v)$, $\forall v \in V(G)$. By Theorem 2.1, *G* has an orientation *D* such that $d_D^+(v) = c(v)$ (which is equivalent to $d_D^+(v) - d_D^-(v) = b(v)$) if and only if (1) holds. Furthermore, (1) holds if and only if the following holds:

$$\forall S \subseteq V(G), \quad |E(S)| \leq \sum_{\nu \in S} d_D^-(\nu) + \sum_{\nu \in S} b(\nu) \leq |E(S)| + |\partial_G(S)|.$$

Substituting $\sum_{v \in S} d_D^-(v)$ by $|E(S)| + |\partial_D^-(S)|$ in the inequalities above, we conclude that (1) holds if and only if

$$\forall S \subseteq V(G), \quad -\left|\partial_{G}(S)\right| \leq -\left|\partial_{D}^{-}(S)\right| \leq \sum_{\nu \in S} b(\nu) \leq \left|\partial_{G}(S)\right| - \left|\partial_{D}^{-}(S)\right| \leq \left|\partial_{G}(S)\right|,$$

and so (2) must follow.

Conversely, suppose that (2) holds and that there is a function $b: V(G) \mapsto \mathbf{Z}$ such that $\sum_{v \in V(G)} b(v) = 0$ and $b(v) \equiv d_G(v) \pmod{2}$, $\forall v \in V(G)$. Define a function $c: V(G) \mapsto \mathbf{Z}$ as follows

$$c(v) = \frac{b(v) + d_G(v)}{2}, \quad \forall v \in V(G)$$

Since $\sum_{v \in V(G)} b(v) = 0$, $\sum_{v \in V(G)} c(v) = |E(G)|$. Then $\forall S \subseteq V(G)$,

$$2\sum_{\nu\in S}c(\nu) = \sum_{\nu\in S}b(\nu) + \sum_{\nu\in S}d_G(\nu) = \sum_{\nu\in S}b(\nu) + 2|E(S)| + |\partial_G(S)|.$$

Hence by (2), $|E(S)| \leq \sum_{v \in S} c(v) \leq |\partial_G(S)| + |E(S)|$. It follows by Theorem 2.1 that *G* has an orientation *D* with $d_D^+(v) = c(v) = \frac{b(v)+d_G(v)}{2}$, which is equivalent to $d_D^+(v) - d_D^-(v) = b(v)$, as $d_G(v) = d_D^+(v) + d_D^-(v)$. \Box

Theorem 2.3. Let p > 0 be an integer, and let G be a (4p + 1)-regular graph. The following are equivalent.

(i) $G \in M_{2p+1}$. (ii) V(G) has a partition (V^+, V^-) such that $\forall U \subseteq V(G)$, $|\partial_G(U)| \ge (2p+1)||U \cap V^+| - |U \cap V^-||$. **Proof.** In the proofs of both sufficiency and necessity, we let $b: V(G) \mapsto \mathbb{Z}$ be a map satisfying both $b^{-1}(\{2p+1\}) = V^+$ and $b^{-1}(\{-2p-1\}) = V^-$, when V^+ and V^- are defined in *G*. Note that as *G* is a (4p+1)-regular graph, $\forall v \in V(G)$, $b(v) \equiv d_G(v) \pmod{2}$.

Now we show that (ii) implies (i). Take U = V(G). Then $\partial(U) = \emptyset$, and so we must have $|V^+| = |V^-|$. It follows that $\sum_{v \in V(G)} b(v) = 0$. For any $S \subseteq V(G)$, by (ii) with U = S,

$$\left|\sum_{\nu\in S}b(\nu)\right| = (2p+1)\left|\left|S\cap V^{+}\right| - \left|S\cap V^{-}\right|\right| \leq \left|\partial_{G}(S)\right|,$$

and so by Corollary 2.2, $G \in M_{2p+1}$. Hence (i) must hold.

Conversely, suppose (i) holds. Then *G* has a mod (2p+1)-orientation *D*. Since *G* is (4p+1)-regular, it follows that $\forall v \in V(G)$, either $d_D^+(v) = 3p + 1$ or $d_D^+(v) = p$. Define $V^+ = \{v \in V(D): d_D^+(v) = 3p + 1\}$ and $V^- = V(D) - V^+$. By Corollary 2.2, for any $U \subseteq V(G)$,

$$(2p+1)\big|\big|U\cap V^+\big|-\big|U\cap V^-\big|\big|=\Big|\sum_{\nu\in U}b(\nu)\Big|\leqslant \big|\partial_G(U)\big|,$$

and so (ii) must hold. \Box

Theorem 2.4. (See Da Silva and Dahab, [2].) Let G be a 5-regular graph. Then $G \in M_3$ if and only if V(G) has a partition (V^+, V^-) with $|V^+| = |V^-|$ such that $\forall U \subseteq V(G)$,

$$\left|\partial_{G}(U)\right| \geq 3 \left| \left| U \cap V^{+} \right| - \left| U \cap V^{-} \right| \right|.$$

Proof. Take p = 1 in the theorem above. \Box

3. mod (2p + 1)-orientation of graphs

Let $T \subseteq V(G)$ be a vertex subset. The *contraction* G/T is obtained from G by identifying all vertices in T into a single vertex v_T , and then removing all edges in E(T). Note that if G is loopless, then any contraction G/T is also loopless.

Proposition 3.1. Let G be a graph. The following are equivalent.

(i) $G \in M^{0}_{2p+1}$. (ii) For any function $b : V(G) \mapsto \mathbb{Z}$ satisfying both

$$\sum_{v \in V(G)} b(v) \equiv 0 \pmod{2p+1}$$
(3)

and

$$b(v) \equiv d_G(v) \pmod{2}, \quad \forall v \in V(G), \tag{4}$$

G has an orientation *D* such that $d_D^+(v) - d_D^-(v) \equiv b(v) \pmod{2p+1}$, $\forall v \in V(G)$.

Proof. Suppose that $G \in M_{2p+1}^{0}$. Let $b: V(G) \mapsto \mathbb{Z}$ be a function satisfying (3) and (4). For each $v \in V(G)$, choose $b'(v) \in \mathbb{Z}$ with $0 \leq b'(v) \leq 2p$ and with $b'(v) \equiv b(v) \pmod{2p+1}$. By (3), $b' \in Z(G, \mathbb{Z}_{2p+1})$. Since $G \in M_{2p+1}^{0}$, by Proposition 1.1, *G* has an orientation *D* such that $d_{D}^{+}(v) - d_{D}^{-}(v) \equiv b(v) \pmod{2p+1}$, $\forall v \in V(G)$.

Suppose (ii) holds. Let $b' \in Z(G, \mathbb{Z}_{2p+1})$. We may assume that $\forall v \in V(G)$, $b'(v) \equiv i_v \pmod{2p+1}$ for some $i_v \in \mathbb{Z}$ with $0 \leq i_v \leq 2p$. Define $b : V(G) \mapsto \mathbb{Z}$ as follows

$$b(v) = \begin{cases} i_v & \text{if } i_v \equiv d_G(v) \pmod{2}, \\ i_v + 2p + 1 & \text{if } i_v + 1 \equiv d_G(v) \pmod{2}. \end{cases}$$

Then both (3) and (4) hold. By (ii), *G* has an orientation *D* such that such that $d_D^+(v) - d_D^-(v) \equiv b(v) \equiv b'(v) \pmod{2p+1}$, $\forall v \in V(G)$. It follows by Proposition 1.1 that $G \in M_{2p+1}^0$. \Box

Lemma 3.2. Let $b: V(G) \mapsto \mathbb{Z}$ be a function satisfying (3) and (4). Then $\exists b': V(G) \mapsto \mathbb{Z}$ satisfies (3), (4),

$$b'(v) \equiv b(v) \pmod{2p+1}, \quad \forall v \in V(G), \tag{5}$$

$$\sum_{\nu \in V(G)} b'(\nu) = 0, \tag{6}$$

and

$$\max\left\{b'(\nu): \nu \in V(G)\right\} - \min\left\{b'(\nu): \nu \in V(G)\right\} \leqslant 4p + 2.$$
(7)

Proof. Since *b* satisfies (4), $\sum_{v \in V(G)} b(v) \equiv \sum_{v \in V(G)} d_G(v) \equiv 0 \pmod{2}$. This, together with (3), implies

$$\sum_{v \in V(G)} b(v) \equiv 0 \pmod{4p+2}.$$
(8)

Among all functions $b': V(G) \mapsto \mathbb{Z}$ satisfying (3)–(5), choose one such that $|\sum_{v \in V(G)} b'(v)|$ is the smallest. We claim that $\sum_{v \in V(G)} b'(v) = 0$. If not, then by (8), $\sum_{v \in V(G)} b'(v)$ must be a multiple of 4p + 2. Without loss of generality, we may assume that $\sum_{v \in V(G)} b'(v) > 0$ and that $b'(v_1) = \max\{b'(v): v \in V(G)\}$. Define $b'': V(G) \mapsto \mathbb{Z}$ as follows

$$b''(v) = \begin{cases} b'(v) & \text{if } v \neq v_1, \\ b'(v_1) - (4p+2) & \text{if } v = v_1. \end{cases}$$

Then b'' satisfies (3)–(5), but $|\sum_{v \in V(G)} b'(v)| = |\sum_{v \in V(G)} b''(v)| + 4p + 2$, contrary to the choice of b'. Therefore, b' must satisfy (6) as well.

Among all functions $b' : V(G) \mapsto \mathbb{Z}$ satisfying (3)–(6), choose one such that

$$\max\{b'(v): v \in V(G)\} - \min\{b'(v): v \in V(G)\} \text{ is minimized},$$
(9)

and subject to (9)

$$\{z: b'(z) = \max\{b'(v): v \in V(G)\}\} \text{ is minimized.}$$
(10)

Relabelling the vertices if needed, we assume that

$$b'(v_1) \ge b'(v_2) \ge \dots \ge b'(v_n),\tag{11}$$

where n = |V(G)|. If $b'(v_1) - b'(v_n) \leq 4p + 2$, then we are done. Suppose that $b'(v_1) - b'(v_n) > 4p + 2$. Define $b''' : V(G) \mapsto \mathbb{Z}$ as follows

$$b'''(v) = \begin{cases} b'(v) & \text{if } v \notin \{v_1, v_n\} \\ b'(v_1) - (4p+2) & \text{if } v = v_1, \\ b'(v_n) + (4p+2) & \text{if } v = v_n. \end{cases}$$

Then b''' also satisfies (3)–(6). If $b'''(v_2) > b'''(v_1)$, then $\max\{b'''(v): v \in V(G)\} = \max\{b'(v): v \in V(G)\}$, and so as $b'''(v_1) < \max\{b'''(v): v \in V(G)\}$, this is contrary to the choice of (10). Therefore, we assume that $b'''(v_1) > b'''(v_2)$. Note now that for any i with $2 \le i \le n - 1$, $b'''(v_1) - b'''(v_1) > 4p + 2$ if and only if $b'(v_1) > b'(v_1)$, and so the occurrence of $b'''(v_1) - b'''(v_1) > 4p + 2$ would be contrary to (11). Hence $b'''(v_1) \ge b'''(v_1)$. Similarly, $b'''(v_1) \ge b'''(v_n)$. Thus $\max\{b'(v): v \in V(G)\} - \min\{b'(v): v \in V(G)\} + 8p + 4$, contrary to (9). This proves the lemma. \Box

Theorem 3.3. Let G be a graph with n = |V(G)|. If $G \notin M^0_{2p+1}$, then each of the following holds.

(i) V(G) can be expressed as a disjoint union $V(G) = V_1 \cup V_2$ with $|V_1| = k$, $|V_2| = n - k$, and

$$\left\lceil \frac{|E(V_1, V_2)| + 1}{k} \right\rceil + \left\lceil \frac{|E(V_1, V_2)| + 1}{n - k} \right\rceil \leqslant 4p + 2.$$
(12)

(ii) V(G) can be expressed as a disjoint union $V(G) = V_1 \cup V_2$ with $|V_1| = k$, $|V_2| = n - k$, and

$$|E(V_1, V_2)| \leq \frac{(4p+2)k(n-k)}{n} - 1.$$
 (13)

Proof. (i) If $G \notin M_{2p+1}^o$, then by Proposition 3.1, there exist a function $b: V(G) \mapsto \mathbb{Z}$ satisfying (3) and (4) but *G* does not have an orientation *D* such that $d_D^+(v) - d_D^-(v) \equiv b(v) \pmod{2p+1}$, $\forall v \in V(G)$. By Lemma 3.2, we may assume that *b* also satisfies (5)–(7). By Corollary 2.2, there must be a subset $V_1 \subseteq V(G)$ such that

$$\left|\sum_{v\in V_1} b(v)\right| > \left|\partial_G(V_1)\right|. \tag{14}$$

Let $V_2 = V(G) - V_1$. Then $\partial_G(V_1) = \partial_G(V_2) = E(V_1, V_2)$. By (6), $|\sum_{v \in V_1} b(v)| = |\sum_{v \in V_2} b(v)|$. Thus by (14) and (6), we may assume, without loss of generality, that

$$\sum_{\nu \in V_1} b(\nu) \ge \left| \partial_G(V_1) \right| + 1 \quad \text{and} \quad \sum_{\nu \in V_2} b(\nu) \le -\left| \partial_G(V_2) \right| - 1.$$
(15)

Let $k = |V_1|$. Then $|V_2| = n - k$. By (15),

$$\left|\partial_{G}(V_{1})\right|+1 \leq \sum_{\nu \in V_{1}} b(\nu) \leq k \max\{b(\nu): \nu \in V(G)\}.$$

and so

$$\max b(v) \ge \left\lceil \frac{|\partial_G(V_1)| + 1}{k} \right\rceil.$$
(16)

Similarly, we have

$$\min b(v) \leqslant -\left\lceil \frac{|\partial_G(V_2)| + 1}{n - k} \right\rceil.$$
(17)

Since *b* also satisfies (7), combining (16) and (17), we obtain (12). This proves (i).

(ii) Suppose that $G \notin M_{2p+1}^{o}$. By (i), V(G) has a partition (V_1, V_2) such that (12) holds. By (12),

$$\frac{|E(V_1, V_2)| + 1}{k} + \frac{|E(V_1, V_2)| + 1}{n - k} \leq 4p + 2,$$

and so

$$(n-k)(|E(V_1, V_2)|+1)+k(|E(V_1, V_2)|+1) \leq (4p+2)k(n-k).$$

Thus (13) follows also. \Box

Corollary 3.4. For any positive $p \in \mathbb{Z}$, $K_{4p+1} \in M_{2p+1}^{o}$.

Proof. Let n = 4p + 1. If $K_n \notin M_{2p+1}^o$, then by Theorem 3.3, $V(K_n)$ can be partitioned into two subsets V_1 and V_2 with $|V_1| = k$ and $|V_2| = n - k$ such that (12) holds. Since $|E(V_1, V_2)| = k(n - k)$, we have

$$\left\lceil \frac{|E(V_1, V_2)| + 1}{k} \right\rceil + \left\lceil \frac{|E(V_1, V_2)| + 1}{n - k} \right\rceil = \left\lceil \frac{k(n - k) + 1}{k} \right\rceil + \left\lceil \frac{k(n - k) + 1}{n - k} \right\rceil$$
$$= (n - k + 1) + (k + 1) = n + 2 > 4p + 2,$$

contrary to (12). Thus we must have $K_{4p+1} \in M_{2p+1}^o$. \Box

Lemma 3.5. Let $h(\lambda) = \frac{\log_2(\lambda)}{1-\lambda} + \frac{\log_2(1-\lambda)}{\lambda}$ be a function defined on the interval (0, 1). Then $h(\lambda) \leq h(1/2) = -4$.

404

Proof. Note that the derivative

$$h'(\lambda) = \frac{1}{\ln(2)\lambda(1-\lambda)} + \frac{\log_2 \lambda}{(1-\lambda)^2} - \frac{1}{\ln(2)\lambda(1-\lambda)} - \frac{\log_2(1-\lambda)}{\lambda^2} = \frac{\log_2 \lambda}{(1-\lambda)^2} - \frac{\log_2(1-\lambda)}{\lambda^2}.$$

Consider $g(\lambda) = \lambda^2 \log_2(\lambda) - (1 - \lambda)^2 \log_2(1 - \lambda)$. Suppose that $\lambda \leq \frac{1}{2}$. Set $t = \frac{1}{\lambda}$. Then $t \geq 2$, and so $(t - 1) - \log_2(t) \geq 0$. It follows that

$$g(\lambda) = \frac{1}{t^2} \left(\log_2\left(\frac{1}{t}\right) - (t-1)^2 \log_2\left(\frac{t-1}{t}\right) \right) = \frac{1}{t^2} \left((t-1)^2 \log_2\left(\frac{t}{t-1}\right) - \log_2(t) \right)$$
$$= \frac{1}{t^2} \left((t-1) \log_2\left(\left(1 + \frac{1}{t-1}\right)^{t-1}\right) - \log_2(t) \right) \ge \frac{1}{t^2} \left((t-1) - \log_2(t) \right) \ge 0.$$

It follows that $h'(\lambda) \ge 0$ when $\lambda \le \frac{1}{2}$. Similarly, $h'(\lambda) \le 0$ when $\lambda \ge \frac{1}{2}$. This proves that $h(\lambda) \le h(1/2) = -4$. \Box

Theorem 3.6. Let n, p be positive integers, and let $f(n) = \frac{(2p+1)n\lceil \log_2(n)\rceil}{2}$ be a function. If G is a graph with n vertices and if $|E(G)| \ge f(n)$, then G has a nontrivial subgraph H with $H \in M^0_{2p+1}$.

Proof. Since f(1) = 0 and f(2) = 2p + 1, the theorem holds when $n \in \{1, 2\}$. We argue by induction to prove the theorem and assume that the theorem holds for all smaller values of n, and that $n \ge 3$.

Suppose now $|E(G)| \ge f(n)$ but $G \notin M_{2p+1}^0$. By Theorem 3.3, V(G) can be partitioned into a disjoint subsets V_1 and V_2 with $|V_1| = k$ and $|V_2| = n - k$ such that (13) holds.

If one of the induced subgraphs $G[V_1]$ and $G[V_2]$ contains a desirable H, then theorem holds. Therefore we assume that neither $G[V_1]$ nor $G[V_2]$ contains a nontrivial subgraph H in M_{2p+1}^o . By induction hypothesis, we must have

$$\left| E\left(G[V_1]\right) \right| < f(k) \quad \text{and} \quad \left| E\left(G[V_2]\right) \right| < f(n-k). \tag{18}$$

By (13), $|E(V_1, V_2)| < \frac{(4p+2)k(n-k)}{n}$, and so by (18),

$$\begin{aligned} \left| E(G) \right| &= \left| E(V_1) \right| + \left| E(V_2) \right| + \left| E(V_1, V_2) \right| < f(k) + f(n-k) + \frac{(4p+2)k(n-k)}{n} \\ &= \frac{(2p+1)k}{2} \log_2(k) + \frac{(2p+1)(n-k)}{2} \log_2(n-k) + \frac{(4p+2)k(n-k)}{n}. \end{aligned}$$

Let $k = \lambda n$. Then we have, by Lemma 3.5,

$$\begin{split} \left| E(G) \right| &< \frac{(2p+1)n\lambda}{2} \log_2(n\lambda) + \frac{(2p+1)n(1-\lambda)}{2} \log_2(n(1-\lambda)) + (4p+2)n\lambda(1-\lambda) \\ &= (2p+1)n \left(\frac{\lambda \log_2(n)}{2} + \frac{\lambda \log_2(\lambda)}{2} + \frac{(1-\lambda) \log_2(n)}{2} + \frac{(1-\lambda) \log_2(1-\lambda)}{2} \right) \\ &+ (4p+2)n\lambda(1-\lambda) \\ &= \frac{(2p+1)n \log_2(n)}{2} + (2p+1)n \frac{\lambda(1-\lambda)}{2} \left(\frac{\log_2(\lambda)}{1-\lambda} + \frac{\log_2(1-\lambda)}{\lambda} + 4 \right) \\ &\leqslant \frac{(2p+1)n \log_2(n)}{2} + (2p+1)n \frac{\lambda(1-\lambda)}{2} (-4+4) \\ &= \frac{(2p+1)n \log_2(n)}{2} = f(n), \end{split}$$

contrary to the assumption that $|E(G)| \ge f(n)$. \Box

Proposition 3.7. (See [9].) For any integer $p \ge 1$, if H is a subgraph of G, and if $H, G/H \in M_{2p+1}^{o}$, then $G \in M_{2p+1}^{o}$.

The following corollary sharpens Theorem 1.4(iii) when p = 1.

Corollary 3.8. Let G be a graph with n vertices. If $\kappa'(G) \ge (2p+1)\log_2(n)$, then $G \in M^0_{2n+1}$.

Proof. By contradiction, we assume that *G* is a counterexample with |V(G)| minimized. By Theorem 3.6, *G* has a nontrivial subgraph $H \in M_{2p+1}^o$. Since $\kappa'(G/H) \ge \kappa'(G)$, by the minimality of *G*, $G/H \in M_{2p+1}^o$. It follows by the facts that $H \in M_{2p+1}^o$ and $G/H \in M_{2p+1}^o$, and by Proposition 3.7 that $G \in M_{2p+1}^o$. \Box

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [2] C.N. da Silva, R. Dahab, Tutte's 3-flow conjecture and matchings in bipartite graphs, Ars Combin. 76 (2005) 83-95.
- [3] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber König. Preuss. Akad. Wiss. XVIII (1917) 274-277.
- [4] H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz f
 ür dreikreisfreie Netze auf der Kugel, Weiss Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Nature Reihe 8 (1958/9) 109–120.
- [5] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (1965) 290-308.
- [6] P. Hall, On representatives of subsets, J. London Math. Soc. (2) 16 (1935) 26-30.
- [7] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, et al. (Eds.), Selected Topics in Graph Theory, vol. 3, Academic Press, London, New York, 1988, pp. 91–95.
- [8] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Group connectivity of graphs—A nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165–182.
- [9] H.-J. Lai, Mod (2p + 1)-orientations and $K_{1,2p+1}$ -decompositions, SIAM J. Discrete Math. 21 (2007) 844–850.
- [10] H.-J. Lai, X. Li, Group chromatic number of planar graphs with girth at least 4, J. Graph Theory 52 (2006) 51–72.
- [11] H.-J. Lai, C.Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete Math. 110 (1992) 179-183.
- [12] W.R. Pulleyblank, Matchings and extensions, in: R.L. Gramham, M. Grötschel, L. Lovàsz (Eds.), Handbook of Combinatorics, vol. 1, The MIT Press, New York, 1995.
- [13] R. Steinberg, D.H. Younger, Grötzsch theorem for the projective plane, Ars Combin. 28 (1989) 15-31.
- [14] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–50.