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It is shown that every (2p + 1) log2(|V (G)|)-edge-connected
graph G has a mod (2p +1)-orientation, and that a (4p +1)-regular
graph G has a mod (2p + 1)-orientation if and only if V (G) has
a partition (V +, V −) such that ∀U ⊆ V (G),∣∣∂G (U )

∣∣ � (2p + 1)
∣∣∣∣U ∩ V +∣∣ − ∣∣U ∩ V −∣∣∣∣.

These extend former results by Da Silva and Dahab on nowhere
zero 3-flows of 5-regular graphs, and by Lai and Zhang on highly
connected graphs with nowhere zero 3-flows.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

We consider finite loopless graphs. Undefined notations and terminology will follow [1]. Through-
out this paper, Z denotes the set of all integers, and Z+ the set of all nonnegative integers. For
a positive integer m, Zm denotes the set of integers modulo m, as well as the additive cyclic group
on m elements.

If D is an orientation of a graph G , and if S ⊆ V (G), then D+(S) denotes the set of edges with
tails in S and δ+(S) = |D+(S)|, D−(S) denotes the set of edges with heads in S and δ−(S) = |D−(S)|.
When S = {v}, then d+

D (v) = δ+({v}) is the out-degree of v and d−
D (v) = δ−({v}) is the in-degree of v .

For a function f : E(G) �→ {1,−1}, define ∂ f (v) = ∑
w∈D+({v}) f (v, w)−∑

w∈D−({v}) f (w, v). Note that

when f ≡ 1, ∂ f (v) = d+
D (v) − d−

D (v).
Let k > 0 be an integer, and assume that G has a fixed orientation D . A mod k-orientation of G is

a function f : E(G) �→ {1,−1} such that ∀v ∈ V (G), ∂ f (v) ≡ 0 (mod k). The collection of all graphs
admitting a mod k-orientation is denoted by Mk . Note that by definition, K1 ∈ Mk .
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For a graph G , a function b : V (G) �→ Zm is a zero sum function in Zm if
∑

v∈V (G) b(v) ≡ 0 (mod m).
The set of all zero sum functions in Zm of G is denoted by Z(G,Zm). When k = 2p + 1 > 0 is an
odd number, we define Mo

2p+1 to be the collection of graphs such that G ∈ Mo
2p+1 if and only if

∀b ∈ Z(G,Z2p+1), ∃ f : E(G) �→ {1,−1} such that ∀v ∈ V (G), ∂ f (v) ≡ b(v) (mod 2p +1). The following
proposition can be easily verified.

Proposition 1.1. G ∈ Mo
2p+1 if and only if ∀b ∈ Z(G,Z2p+1), G has an orientation D with the property that

∀v ∈ V (G), d+
D (v) − d−

D (v) ≡ b(v) (mod 2p + 1).

Conjecture 1.2. Let G be a graph, and p > 0 be an integer.

(i) (Tutte [14].) If G is 4-edge-connected, then G ∈ M3 .
(ii) (Jaeger [7].) If G is (4p)-edge-connected, then G ∈ M2p+1 .

(iii) (Jaeger et al. [8].) If G is 5-edge-connected, then G ∈ Mo
3 .

All these conjectures are still open. It is well known that it suffices to prove Conjecture 1.2(ii) for
(4p + 1)-regular graphs. The following related conjectures have also been proposed.

Conjecture 1.3. Let G be a graph, and p > 0 be an integer.

(i) (Jaeger [7].) There exists a smallest integer k � 4 such that if G is k-edge-connected, then G ∈ M3 .
(ii) There exists a smallest integer f (p) such that every f (p)-edge-connected graph G is in Mo

2p+1 . (In [9],
we also conjectured that f (p) = 4p + 1.)

There have been some results done on attacking these conjectures. The following theorem briefly
summarizes these progresses.

Theorem 1.4. Let G be a graph.

(i) (Grötzsch [4], Steinberg and Younger [13].) Every 4-edge-connected projective planar graph is in M3 .
(ii) (Lai and Li [10].) Every 5-edge-connected planar graph is in Mo

3 .
(iii) (Lai and Zhang [11].) Every 4
log2(|V (G)|)�-edge-connected graph is in M3 .

We shall derive a necessary and sufficient condition for a (4p + 1)-regular graph to have a
mod (2p + 1)-orientation, and show that for any integer p > 0, every (2p + 1)
log2(|V (G)|)�-edge-
connected graph is in Mo

2p+1.

2. Orientation of graphs

Let G be a graph. For a subset S ⊆ V (G), E(S) denotes the set of edges in G with both ends in S
and ∂G(S) denotes the set of edges with just one end in S . When S = {v}, we denote EG(v) = ∂G({v}).
If S1, S2 ⊆ V (G) and S1 ∩ S2 = ∅, then E(S1, S2) denotes the set of edges in E(G) with one end in S1
and the other end in S2.

Let c : V (G) �→ Z+ be a function. For each v ∈ V (G), define Xv = {v1, v2, . . . , vc(v)}. We assume
that these Xv ’s are disjoint and so if v = v ′ and v, v ′ ∈ V (G), then Xv ∩ Xv ′ = ∅. Construct a new bi-
partite graph Gc whose vertex bipartition is (E(G),

⋃
v∈V (G) Xv). An edge in Gc joins a vertex e ∈ E(G)

and a vertex vi ∈ Xv if and only if v is incident with e in G . Note that any perfect matching M of Gc

corresponds to an orientation D of G in such a way that an edge in M joins e and vi in Gc if
and only if e is oriented away from v in D . Thus Gc has a perfect matching if and only if G has
an orientation D such that d+

D (v) = c(v),∀v ∈ V (G). By the Marriage Theorem of Frobenius ([3], or
Corollary 2.5 on p. 185 in [12]), or by Hall’s Theorem [6] on system of distinct representatives, we
obtained the following theorem of Hakimi.



H.-J. Lai et al. / Journal of Combinatorial Theory, Series B 99 (2009) 399–406 401
Theorem 2.1. (See Hakimi, [5].) Let G be a graph, and let c : V (G) �→ Z be a function. Then G has an orienta-
tion D such that d+

D (v) = c(v),∀v ∈ V (G) if and only if

∀S ⊆ V (G),
∣∣E(S)

∣∣ �
∑
v∈S

c(v) �
∣∣E(S)

∣∣ + ∣∣∂G(S)
∣∣. (1)

Theorem 2.1 can also be stated in terms of net out-degree at each vertex in an orientation.

Corollary 2.2. Let G be a graph and b : V (G) �→ Z be a function such that
∑

v∈V (G) b(v) = 0 and b(v) ≡
dG(v) (mod 2), ∀v ∈ V (G). Then G has an orientation D such that d+

D (v) − d−
D (v) = b(v), ∀v ∈ V (G) if and

only if

∀S ⊆ V (G),

∣∣∣∣∑
v∈S

b(v)

∣∣∣∣ �
∣∣∂G(S)

∣∣. (2)

Proof. Let G be a graph with an orientation D . For a subset S ⊆ V (G), let ∂+
D (S) denote the set of

edges oriented from a vertex in S to a vertex not in S , or a boundary edge oriented from a vertex
in S; and let ∂−

D (S) = ∂G(S) − ∂+
D (S).

Suppose that G has an orientation D such that d+
D (v) − d−

D (v) = b(v), ∀v ∈ V (G). Let c(v) =
d−

D (v) + b(v), ∀v ∈ V (G). By Theorem 2.1, G has an orientation D such that d+
D (v) = c(v) (which

is equivalent to d+
D (v) − d−

D (v) = b(v)) if and only if (1) holds. Furthermore, (1) holds if and only if
the following holds:

∀S ⊆ V (G),
∣∣E(S)

∣∣ �
∑
v∈S

d−
D (v) +

∑
v∈S

b(v) �
∣∣E(S)

∣∣ + ∣∣∂G(S)
∣∣.

Substituting
∑

v∈S d−
D (v) by |E(S)| + |∂−

D (S)| in the inequalities above, we conclude that (1) holds if
and only if

∀S ⊆ V (G), −∣∣∂G(S)
∣∣ � −∣∣∂−

D (S)
∣∣ �

∑
v∈S

b(v) �
∣∣∂G(S)

∣∣ − ∣∣∂−
D (S)

∣∣ �
∣∣∂G(S)

∣∣,
and so (2) must follow.

Conversely, suppose that (2) holds and that there is a function b : V (G) �→ Z such that∑
v∈V (G) b(v) = 0 and b(v) ≡ dG(v) (mod 2), ∀v ∈ V (G). Define a function c : V (G) �→ Z as follows

c(v) = b(v) + dG(v)

2
, ∀v ∈ V (G).

Since
∑

v∈V (G) b(v) = 0,
∑

v∈V (G) c(v) = |E(G)|. Then ∀S ⊆ V (G),

2
∑
v∈S

c(v) =
∑
v∈S

b(v) +
∑
v∈S

dG(v) =
∑
v∈S

b(v) + 2
∣∣E(S)

∣∣ + ∣∣∂G(S)
∣∣.

Hence by (2), |E(S)| �
∑

v∈S c(v) � |∂G(S)| + |E(S)|. It follows by Theorem 2.1 that G has an orien-

tation D with d+
D (v) = c(v) = b(v)+dG (v)

2 , which is equivalent to d+
D (v) − d−

D (v) = b(v), as dG(v) =
d+

D (v) + d−
D (v). �

Theorem 2.3. Let p > 0 be an integer, and let G be a (4p + 1)-regular graph. The following are equivalent.

(i) G ∈ M2p+1 .
(ii) V (G) has a partition (V +, V −) such that ∀U ⊆ V (G),∣∣∂G(U )

∣∣ � (2p + 1)
∣∣∣∣U ∩ V +∣∣ − ∣∣U ∩ V −∣∣∣∣.
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Proof. In the proofs of both sufficiency and necessity, we let b : V (G) �→ Z be a map satisfying both
b−1({2p + 1}) = V + and b−1({−2p − 1}) = V − , when V + and V − are defined in G . Note that as G is
a (4p + 1)-regular graph, ∀v ∈ V (G), b(v) ≡ dG(v) (mod 2).

Now we show that (ii) implies (i). Take U = V (G). Then ∂(U ) = ∅, and so we must have |V +| =
|V −|. It follows that

∑
v∈V (G) b(v) = 0. For any S ⊆ V (G), by (ii) with U = S ,∣∣∣∣∑

v∈S

b(v)

∣∣∣∣ = (2p + 1)
∣∣∣∣S ∩ V +∣∣ − ∣∣S ∩ V −∣∣∣∣ �

∣∣∂G(S)
∣∣,

and so by Corollary 2.2, G ∈ M2p+1. Hence (i) must hold.
Conversely, suppose (i) holds. Then G has a mod (2p+1)-orientation D . Since G is (4p+1)-regular,

it follows that ∀v ∈ V (G), either d+
D (v) = 3p + 1 or d+

D (v) = p. Define V + = {v ∈ V (D): d+
D (v) =

3p + 1} and V − = V (D) − V + . By Corollary 2.2, for any U ⊆ V (G),

(2p + 1)
∣∣∣∣U ∩ V +∣∣ − ∣∣U ∩ V −∣∣∣∣ =

∣∣∣∣∑
v∈U

b(v)

∣∣∣∣ �
∣∣∂G(U )

∣∣,
and so (ii) must hold. �
Theorem 2.4. (See Da Silva and Dahab, [2].) Let G be a 5-regular graph. Then G ∈ M3 if and only if V (G) has
a partition (V +, V −) with |V +| = |V −| such that ∀U ⊆ V (G),∣∣∂G(U )

∣∣ � 3
∣∣∣∣U ∩ V +∣∣ − ∣∣U ∩ V −∣∣∣∣.

Proof. Take p = 1 in the theorem above. �
3. mod (2p + 1)-orientation of graphs

Let T ⊆ V (G) be a vertex subset. The contraction G/T is obtained from G by identifying all vertices
in T into a single vertex v T , and then removing all edges in E(T ). Note that if G is loopless, then any
contraction G/T is also loopless.

Proposition 3.1. Let G be a graph. The following are equivalent.

(i) G ∈ Mo
2p+1 .

(ii) For any function b : V (G) �→ Z satisfying both∑
v∈V (G)

b(v) ≡ 0 (mod 2p + 1) (3)

and

b(v) ≡ dG(v) (mod 2), ∀v ∈ V (G), (4)

G has an orientation D such that d+
D (v) − d−

D (v) ≡ b(v) (mod 2p + 1), ∀v ∈ V (G).

Proof. Suppose that G ∈ Mo
2p+1. Let b : V (G) �→ Z be a function satisfying (3) and (4). For each

v ∈ V (G), choose b′(v) ∈ Z with 0 � b′(v) � 2p and with b′(v) ≡ b(v) (mod 2p + 1). By (3), b′ ∈
Z(G,Z2p+1). Since G ∈ Mo

2p+1, by Proposition 1.1, G has an orientation D such that d+
D (v) − d−

D (v) ≡
b(v) (mod 2p + 1), ∀v ∈ V (G).

Suppose (ii) holds. Let b′ ∈ Z(G,Z2p+1). We may assume that ∀v ∈ V (G), b′(v) ≡ iv (mod 2p + 1)

for some iv ∈ Z with 0 � iv � 2p. Define b : V (G) �→ Z as follows

b(v) =
{

iv if iv ≡ dG(v) (mod 2),

iv + 2p + 1 if iv + 1 ≡ dG(v) (mod 2).

Then both (3) and (4) hold. By (ii), G has an orientation D such that such that d+
D (v)−d−

D (v) ≡ b(v) ≡
b′(v) (mod 2p + 1), ∀v ∈ V (G). It follows by Proposition 1.1 that G ∈ Mo

2p+1. �
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Lemma 3.2. Let b : V (G) �→ Z be a function satisfying (3) and (4). Then ∃b′ : V (G) �→ Z satisfies (3), (4),

b′(v) ≡ b(v) (mod 2p + 1), ∀v ∈ V (G), (5)∑
v∈V (G)

b′(v) = 0, (6)

and

max
{

b′(v): v ∈ V (G)
} − min

{
b′(v): v ∈ V (G)

}
� 4p + 2. (7)

Proof. Since b satisfies (4),
∑

v∈V (G) b(v) ≡ ∑
v∈V (G) dG(v) ≡ 0 (mod 2). This, together with (3), im-

plies ∑
v∈V (G)

b(v) ≡ 0 (mod 4p + 2). (8)

Among all functions b′ : V (G) �→ Z satisfying (3)–(5), choose one such that |∑v∈V (G) b′(v)| is the
smallest. We claim that

∑
v∈V (G) b′(v) = 0. If not, then by (8),

∑
v∈V (G) b′(v) must be a multiple

of 4p + 2. Without loss of generality, we may assume that
∑

v∈V (G) b′(v) > 0 and that b′(v1) =
max{b′(v): v ∈ V (G)}. Define b′′ : V (G) �→ Z as follows

b′′(v) =
{

b′(v) if v = v1,

b′(v1) − (4p + 2) if v = v1.

Then b′′ satisfies (3)–(5), but |∑v∈V (G) b′(v)| = |∑v∈V (G) b′′(v)| + 4p + 2, contrary to the choice of b′ .
Therefore, b′ must satisfy (6) as well.

Among all functions b′ : V (G) �→ Z satisfying (3)–(6), choose one such that

max
{

b′(v): v ∈ V (G)
} − min

{
b′(v): v ∈ V (G)

}
is minimized, (9)

and subject to (9)∣∣{z: b′(z) = max
{

b′(v): v ∈ V (G)
}}∣∣ is minimized. (10)

Relabelling the vertices if needed, we assume that

b′(v1) � b′(v2) � · · · � b′(vn), (11)

where n = |V (G)|. If b′(v1)−b′(vn) � 4p +2, then we are done. Suppose that b′(v1)−b′(vn) > 4p +2.
Define b′′′ : V (G) �→ Z as follows

b′′′(v) =
{

b′(v) if v /∈ {v1, vn},
b′(v1) − (4p + 2) if v = v1,

b′(vn) + (4p + 2) if v = vn.

Then b′′′ also satisfies (3)–(6). If b′′′(v2) > b′′′(v1), then max{b′′′(v): v ∈ V (G)} = max{b′(v): v ∈
V (G)}, and so as b′′′(v1) < max{b′′′(v): v ∈ V (G)}, this is contrary to the choice of (10). Therefore,
we assume that b′′′(v1) > b′′′(v2). Note now that for any i with 2 � i � n − 1, b′′′(vi) − b′′′(v1) >

4p + 2 if and only if b′(vi) > b′(v1), and so the occurrence of b′′′(vi) − b′′′(v1) > 4p + 2 would be
contrary to (11). Hence b′′′(v1) � b′′′(vi). Similarly, b′′′(vi) � b′′′(vn). Thus max{b′(v): v ∈ V (G)} −
min{b′(v): v ∈ V (G)} = max{b′′′(v): v ∈ V (G)} − min{b′(v): v ∈ V (G)} + 8p + 4, contrary to (9). This
proves the lemma. �
Theorem 3.3. Let G be a graph with n = |V (G)|. If G /∈ Mo

2p+1 , then each of the following holds.

(i) V (G) can be expressed as a disjoint union V (G) = V 1 ∪ V 2 with |V 1| = k, |V 2| = n − k, and⌈ |E(V 1, V 2)| + 1

k

⌉
+

⌈ |E(V 1, V 2)| + 1

n − k

⌉
� 4p + 2. (12)
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(ii) V (G) can be expressed as a disjoint union V (G) = V 1 ∪ V 2 with |V 1| = k, |V 2| = n − k, and∣∣E(V 1, V 2)
∣∣ � (4p + 2)k(n − k)

n
− 1. (13)

Proof. (i) If G /∈ Mo
2p+1, then by Proposition 3.1, there exist a function b : V (G) �→ Z satisfying (3)

and (4) but G does not have an orientation D such that d+
D (v) − d−

D (v) ≡ b(v) (mod 2p + 1), ∀v ∈
V (G). By Lemma 3.2, we may assume that b also satisfies (5)–(7). By Corollary 2.2, there must be
a subset V 1 ⊆ V (G) such that∣∣∣∣ ∑

v∈V 1

b(v)

∣∣∣∣ >
∣∣∂G(V 1)

∣∣. (14)

Let V 2 = V (G) − V 1. Then ∂G(V 1) = ∂G(V 2) = E(V 1, V 2). By (6), |∑v∈V 1
b(v)| = |∑v∈V 2

b(v)|. Thus
by (14) and (6), we may assume, without loss of generality, that∑

v∈V 1

b(v) �
∣∣∂G(V 1)

∣∣ + 1 and
∑
v∈V 2

b(v) � −∣∣∂G(V 2)
∣∣ − 1. (15)

Let k = |V 1|. Then |V 2| = n − k. By (15),∣∣∂G(V 1)
∣∣ + 1 �

∑
v∈V 1

b(v) � k max
{

b(v): v ∈ V (G)
}
,

and so

max b(v) �
⌈ |∂G(V 1)| + 1

k

⌉
. (16)

Similarly, we have

min b(v) � −
⌈ |∂G(V 2)| + 1

n − k

⌉
. (17)

Since b also satisfies (7), combining (16) and (17), we obtain (12). This proves (i).
(ii) Suppose that G /∈ Mo

2p+1. By (i), V (G) has a partition (V 1, V 2) such that (12) holds. By (12),

|E(V 1, V 2)| + 1

k
+ |E(V 1, V 2)| + 1

n − k
� 4p + 2,

and so

(n − k)
(∣∣E(V 1, V 2)

∣∣ + 1
) + k

(∣∣E(V 1, V 2)
∣∣ + 1

)
� (4p + 2)k(n − k).

Thus (13) follows also. �
Corollary 3.4. For any positive p ∈ Z, K4p+1 ∈ Mo

2p+1 .

Proof. Let n = 4p + 1. If Kn /∈ Mo
2p+1, then by Theorem 3.3, V (Kn) can be partitioned into two sub-

sets V 1 and V 2 with |V 1| = k and |V 2| = n − k such that (12) holds. Since |E(V 1, V 2)| = k(n − k), we
have ⌈ |E(V 1, V 2)| + 1

k

⌉
+

⌈ |E(V 1, V 2)| + 1

n − k

⌉
=

⌈
k(n − k) + 1

k

⌉
+

⌈
k(n − k) + 1

n − k

⌉
= (n − k + 1) + (k + 1) = n + 2 > 4p + 2,

contrary to (12). Thus we must have K4p+1 ∈ Mo
2p+1. �

Lemma 3.5. Let h(λ) = log2(λ)
1−λ

+ log2(1−λ)
λ

be a function defined on the interval (0,1). Then h(λ) �
h(1/2) = −4.
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Proof. Note that the derivative

h′(λ) = 1

ln(2)λ(1 − λ)
+ log2 λ

(1 − λ)2
− 1

ln(2)λ(1 − λ)
− log2(1 − λ)

λ2
= log2 λ

(1 − λ)2
− log2(1 − λ)

λ2
.

Consider g(λ) = λ2 log2(λ) − (1 − λ)2 log2(1 − λ). Suppose that λ � 1
2 . Set t = 1

λ
. Then t � 2, and so

(t − 1) − log2(t) � 0. It follows that

g(λ) = 1

t2

(
log2

(
1

t

)
− (t − 1)2 log2

(
t − 1

t

))
= 1

t2

(
(t − 1)2 log2

(
t

t − 1

)
− log2(t)

)

= 1

t2

(
(t − 1) log2

((
1 + 1

t − 1

)t−1)
− log2(t)

)
� 1

t2

(
(t − 1) − log2(t)

)
� 0.

It follows that h′(λ) � 0 when λ � 1
2 . Similarly, h′(λ) � 0 when λ � 1

2 . This proves that h(λ) �
h(1/2) = −4. �
Theorem 3.6. Let n, p be positive integers, and let f (n) = (2p+1)n
log2(n)�

2 be a function. If G is a graph with
n vertices and if |E(G)| � f (n), then G has a nontrivial subgraph H with H ∈ Mo

2p+1 .

Proof. Since f (1) = 0 and f (2) = 2p + 1, the theorem holds when n ∈ {1,2}. We argue by induction
to prove the theorem and assume that the theorem holds for all smaller values of n, and that n � 3.

Suppose now |E(G)| � f (n) but G /∈ Mo
2p+1. By Theorem 3.3, V (G) can be partitioned into a dis-

joint subsets V 1 and V 2 with |V 1| = k and |V 2| = n − k such that (13) holds.
If one of the induced subgraphs G[V 1] and G[V 2] contains a desirable H , then theorem holds.

Therefore we assume that neither G[V 1] nor G[V 2] contains a nontrivial subgraph H in Mo
2p+1. By

induction hypothesis, we must have∣∣E
(
G[V 1]

)∣∣ < f (k) and
∣∣E

(
G[V 2]

)∣∣ < f (n − k). (18)

By (13), |E(V 1, V 2)| < (4p+2)k(n−k)
n , and so by (18),

∣∣E(G)
∣∣ = ∣∣E(V 1)

∣∣ + ∣∣E(V 2)
∣∣ + ∣∣E(V 1, V 2)

∣∣ < f (k) + f (n − k) + (4p + 2)k(n − k)

n

= (2p + 1)k

2
log2(k) + (2p + 1)(n − k)

2
log2(n − k) + (4p + 2)k(n − k)

n
.

Let k = λn. Then we have, by Lemma 3.5,

∣∣E(G)
∣∣ <

(2p + 1)nλ

2
log2(nλ) + (2p + 1)n(1 − λ)

2
log2

(
n(1 − λ)

) + (4p + 2)nλ(1 − λ)

= (2p + 1)n

(
λ log2(n)

2
+ λ log2(λ)

2
+ (1 − λ) log2(n)

2
+ (1 − λ) log2(1 − λ)

2

)
+ (4p + 2)nλ(1 − λ)

= (2p + 1)n log2(n)

2
+ (2p + 1)n

λ(1 − λ)

2

(
log2(λ)

1 − λ
+ log2(1 − λ)

λ
+ 4

)

� (2p + 1)n log2(n)

2
+ (2p + 1)n

λ(1 − λ)

2
(−4 + 4)

= (2p + 1)n log2(n)

2
= f (n),

contrary to the assumption that |E(G)| � f (n). �
Proposition 3.7. (See [9].) For any integer p � 1, if H is a subgraph of G, and if H, G/H ∈ Mo

2p+1 , then
G ∈ Mo

2p+1 .
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The following corollary sharpens Theorem 1.4(iii) when p = 1.

Corollary 3.8. Let G be a graph with n vertices. If κ ′(G) � (2p + 1) log2(n), then G ∈ Mo
2p+1 .

Proof. By contradiction, we assume that G is a counterexample with |V (G)| minimized. By Theo-
rem 3.6, G has a nontrivial subgraph H ∈ Mo

2p+1. Since κ ′(G/H) � κ ′(G), by the minimality of G ,
G/H ∈ Mo

2p+1. It follows by the facts that H ∈ Mo
2p+1 and G/H ∈ Mo

2p+1, and by Proposition 3.7 that
G ∈ Mo

2p+1. �
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