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a b s t r a c t

Let G be an undirected graph that is neither a path nor a cycle. Clark and Wormald [L.H.
Clark, N.C. Wormald, Hamiltonian-like indices of graphs, ARS Combinatoria 15 (1983)
131–148] defined hc(G) to be the least integerm such that the iterated line graph Lm(G) is
Hamilton-connected. Let diam(G) be the diameter of G and k be the length of a longest
path whose internal vertices, if any, have degree 2 in G. In this paper, we show that
k − 1 ≤ hc(G) ≤ max{diam(G), k − 1}. We also show that κ3(G) ≤ hc(G) ≤ κ3(G) + 2
where κ3(G) is the least integer m such that Lm(G) is 3-connected. Finally we prove that
hc(G) ≤ |V (G)| −∆(G)+ 1. These bounds are all sharp.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We use [1] for terminology and notation not defined here and we consider finite, undirected graphs. We allow graphs to
have multiple edges but not loops. The multi-graph of order 2 with two edges will be called a 2-cycle and denoted by C2. Let
G be a graph.We use κ(G) and κ ′(G) to denote the connectivity and the edge-connectivity of G, respectively. Denote by O(G)
the set of all odd vertices of G. For each i = 0, 1, 2, . . ., let Di(G) = {v ∈ V (G)|dG(v) = i}, and di(G) = |Di(G)|. A connected
graph with at least two vertices is called a nontrivial graph. A lane in G is a nontrivial trail whose ends are not in D2(G) and
whose internal vertices, if any, have degree 2 in G (and thus are in D2(G)). Note that a lane may be a cycle. If the lane has
length 1, then it has no internal vertices. The length of a lane is defined to be the number of its edges.
Let G be a connected graph. For any two vertices v1, v2 ∈ V (G), the distance d(v1, v2) between v1 and v2 is defined as the

length of the shortest (v1, v2)-path inG. The diameter ofG is diam(G) = maxv∈V (G){max{d(v,w)|w ∈ V (G)}}. For X ⊆ E(G),
the contraction G/X is obtained from G by contracting each edge of X and deleting the resulting loops. If H ⊆ G, we write
G/H for G/E(H).
The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, and two vertices in L(G) are adjacent if and only if

the corresponding edges inG are incident. The iterated line graph is defined recursively by L0(G) = G and Lk+1(G) = L(Lk(G))
(k ∈ N, where N stands for the set of all natural numbers). Chartrand [6] showed that if G is a connected graph that is not a
path, then for some integer k > 0, Lk(G) is hamiltonian.
A subgraph H of a graph G is dominating if G− V (H) is edgeless. Let v0, vk ∈ V (G). A (v0, vk) -trail of G is a vertex-edge

alternating sequence

v0, e1, v1, e2, . . . , ek, vk
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such that all the ei’s are distinct and for each i = 1, 2, . . . , k, ei joins vi−1 with vi. With the notation above, this (v0, vk)-trail
is also called an (e1, ek) -trail. All the vertices in v1, v2, . . . , vk−1 are internal vertices of the trail. A dominating (e1, ek) -trail
T of G is an (e1, ek)-trail such that every edge of G is incident with an internal vertex of T . A spanning (e1, ek) -trail of G is
an (e1, ek)-trail such that V (T ) = V (G). There is a close relationship between dominating eulerian subgraphs in graphs G
and Hamilton cycles in L(G). Xiong and Liu [13] extent this to the relationship between a certain even subgraph in G and
Hamilton cycles in Lm(G) form ≥ 2.

Theorem 1 (Harary and Nash-Williams, [9]). Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has a
dominating eulerian subgraph.

A graph isHamilton-connected if for any two vertices u, v ∈ V (G), there exists a (u, v)-path containing all vertices of G.
With an argument similar to that in the proof of Theorem 1, one can obtain the following theorem for Hamilton-connected
line graphs.

Theorem 2. Let G be a graph with |E(G)| ≥ 3. Then L(G) is Hamilton-connected if and only if for any pair of edges e1, e2 ∈ E(G),
G has a dominating (e1, e2)-trail.

Corollary 3. Let G be a graph that is not a cycle. For anym ≥ 0 if Lm(G) is Hamilton-connected, then Ln(G) is Hamilton-connected
for all n ≥ m.

We say that an edge e ∈ E(G) is subdividedwhen it is replaced by a path of length 2 whose internal vertex, denoted by
v(e), has degree 2 in the resulting graph. The resulting two new edges are denoted by e′ and e′′. The process of taking an
edge e and replacing it by the path of length 2 is called subdividing e. For a graph G and edges e1, e2 ∈ E(G), let G(e1) denote
the graph obtained from G by subdividing e1, and let G(e1, e2) denote the graph obtained from G by subdividing both e1 and
e2. Thus

V (G(e1, e2))− V (G) = {v(e1), v(e2)}.

From the definitions, one immediately has the following observation.

Proposition 4. For a graph G and two edges e1, e2 ∈ E(G), if G(e1, e2) has a spanning (v(e1), v(e2))-trail, then G has a spanning
(e1, e2)-trail.

In 1983, Clark and Wormald [8] introduced the concept of hamiltonian-connected index. Let G be an undirected graph
that is neither a path nor a cycle. The hamiltonian index h(G) (Hamilton-connected index hc(G), respectively) is the least
nonnegative integer k such that Lk(G) is hamiltonian (Hamilton-connected, respectively).

Theorem 5 (Combining Catlin, Janakiraman and Srinivasan, [5], and Lai, [10]). Let G be a connected graph that is neither a path
nor C2. Let k be the length of the longest lane in G. Then h(G) ≤ min{diam(G), k+ 1}.

In this paper, we consider the Hamilton-connected index of a graph. In Section 2, we will describe Catlin’s reduction
method and state some relevant theorems. In Section 3, we get some results of Hamilton-connected index associated with
diameter. In Section 4, we present the relations between the Hamilton-connected index and the connectivity of a graph. In
Section 5, we give some relations between the Hamilton-connected index and the minimum and maximum degrees of a
graph.

2. Catlin’s reduction method

In [2] Catlin defined collapsible graphs. Let G be a graph. For R ⊆ V (G), a subgraph Γ of G is called an R -subgraph if
both O(Γ ) = R and G − E(Γ ) are connected. A graph is collapsible if G has an R-subgraph for every even set R ⊆ V (G).
In particular, K1 is collapsible. For a graph G and its connected subgraph H , G/H denotes the graph obtained from G by
contracting H , i.e. by replacing H by a vertex vH such that the number of edges in G/H joining any v ∈ V (G)− V (H) to vH in
G/H equals the number of edges joining v inG toH . A graph is contractible to a graphG′ ifG contains pairwise vertex-disjoint
connected subgraphsH1,H2, . . . ,Hkwith

⋃k
i=1 V (Hi) = V (G) such thatG

′ is obtained fromG by successively contractingH1,
H2, . . . ,Hk. The subgraphHi of G is called the preimage of the vertex vHi of G

′, and vHi is called the image ofHi. For any vertex
v ∈ V (Hi), we also say that vHi is the image of the vertex v. Catlin [3] showed that every graph G has a unique collection
of pairwise vertex-disjoint maximal collapsible subgraphs H1, H2, . . . ,Hk such that

⋃k
i=1 V (Hi) = V (G). The reduction of

G is the graph obtained from G by successively contracting H1, H2, . . . ,Hk. A graph is reduced if it is the reduction of some
graph. A nontrivial vertex in the reduction of G is a vertex which is the contraction image of a nontrivial connected subgraph
of G.

Theorem 6 (Catlin, [2]). Let G be a connected graph. Then each of the following holds.

(i) If G has a spanning tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.
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(ii) If G is reduced, then G is a simple graph and has no cycle of length less than four.
(iii) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iv) Let G′ be the reduction of G. Then G is collapsible if and only if G′ = K1.

Theorem 7 (Catlin, Han and Lai, [4]). Let G be a connected reduced graph. If 2|V (G)| − |E(G)| ≤ 4, then G is a K1, or a K2 or a
K2,t for some integer t ≥ 1.

Theorem 8 (Lai, [11]). Let G be a 2-connected graph with δ(G) ≥ 3. If every edge of G is in a cycle of length at most 4, then G is
collapsible.

Lemma 9. If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a spanning (u, v)-trail.

Proof. Let R = (O(G)∪{u, v})− (O(G)∩{u, v}). Then |R| is even. Let ΓR be an R-subgraph of G. Then G−E(ΓR) is a spanning
(u, v)-trail of G. �

Lemma 10. Let H be a collapsible subgraph of a graph G and H ′ = G/H. Let u, v ∈ V (G) and u′, v′ ∈ V (H ′) such that u′, v′ are
the images of u, v respectively. Then G has a spanning (u, v)-trail if and only if H ′ has a spanning (u′, v′)-trail.

Proof. It is clear that H ′ has a spanning (u′, v′)-trail if G has a spanning (u, v)-trail. So we only need to prove that G has a
spanning (u, v)-trail if H ′ has a spanning (u′, v′)-trail.
Suppose that Γ ′ is a spanning (u′, v′)-trail in H ′. Take one vertex w0 6∈ V (G) and let Γ ′′ be a trail in H ′ with

V (Γ ′′) = V (Γ ′) ∪ {w0} and E(Γ ′′) = E(Γ ′) ∪ {u′w0, v′w0} if u′ 6= v′, and let Γ =
{
Γ ′, if u′ = v′

Γ ′′, if u′ 6= v′ . Then Γ is eulerian.
Let S = {w ∈ V (H) : w is incident with an odd number of edges in E(Γ )}. Then |S| is even and S ⊕ O(H) is even too. Note
that H is collapsible. Then there exists L ⊆ H such that L is a connected, spanning subgraph in H such that O(L) = S⊕O(H).
Thus Γ ∪ L is a spanning eulerian subgraph in G+ w0. Therefore G has a spanning (u, v)-trail. �

3. Hamilton-connected index and diameter

Let G be a graph. Denote E ′ = E ′(G) = {e ∈ E(G) : e is in a cycle of G of length at most 3} and E ′′ = E(G)− E ′(G).
Let H be an induced subgraph of G. The subgraph induced by the vertex set E(H) in L(G), denoted by I1(H), is called the

1-line-image of H , and H , denoted by I−11 (I1(H)), is called the 1-line-preimage of I1(H). The subgraph induced by the vertex
set E(I1(H)) in L2(G), denoted by I2(H), is called the 2-line-image of H , and H , denoted by I−12 (I2(H)), is called the 2-line-
preimage of I2(H). Generally, the subgraph induced by the vertex set E(Ik(H)) in Lk+1(G), denoted by Ik+1(H), is called the
(k + 1)-line-image of H . Conversely, H , denoted by I−1k+1(Ik+1(H)), is called the (k + 1)-line-preimage of Ik+1(H). We adopt
I−1k+1(e)when Ik+1(H) is a path induced by an edge e.

Lemma 11. Let L be a lane in G with length d. Then Ik(L)(k ≤ d) is a lane in Lk(G) with length (d − k). Particularly,
Id−1(L) ∈ E ′′(Ld−1(G)).

Lemma 12. Let e ∈ E ′′(Id−1(G)). Then I−1d−1(e) is in a lane in G with length at least d.

Theorem 13. Let G be a connected graph that is neither a path nor Cn. If the length of a longest lane is k, then k− 1 ≤ hc(G) ≤
max{diam(G), k− 1}.

Proof. Since a longest lane of length k in G becomes a lane of length 2 in Lk−2(G), and so Lk−2(G) is not Hamilton-connected,
hc(G) ≥ k− 1.
The proof of the second inequality remains. If diam(G) = 1, thenG is spanned byKn. Thus hc(G) = 0 ≤ max{diam(G), k−

1}. Next we prove that the theorem holds for d = max{diam(G), k− 1} ≥ 2 by contradiction.
Let f1 = u1v1, f2 = u2v2 ∈ E(Ld−1(G)) andH be the reduction of Ld−1(G)(f1, f2). By Lemma9, Proposition 4 andTheorem2,

H 6= K1. Note that

dLd−1(G)(f1,f2)(v(fi)) = 2(i = 1, 2).

Then either {f ′i , f
′′

i } ∩ E(H) = ∅ or {f
′

i , f
′′

i } ⊆ E(H)(i = 1, 2). Let H
′
= H/(E(H) ∩ {f ′′1 , f

′′

2 }). Then H
′
6= K2.

Claim 1. E(H ′) ⊆ E(Ld−1(G)).

Proof. If {f ′1, f
′′

1 , f
′

2, f
′′

2 } ∩ E(H) = ∅, then H
′
= H . Thus E(H ′) ⊆ E(Ld−1(G)). If {f ′1, f

′′

1 , f
′

2, f
′′

2 } ∩ E(H) 6= ∅, without loss of
generality, we assume {f ′1, f

′′

1 } ⊆ E(H). Note that H
′
= H/(E(H) ∩ {f ′′1 , f

′′

2 }). Then f1 = f
′

1 ∈ E(H
′). Thus Claim 1 holds. �

By the definition of E ′(H ′) and Theorem 6(ii), we have the following claim.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Claim 2. Let e ∈ E ′(H ′). If e is in some 3-cycle of H ′, then this cycle contains f ′1 or f
′

2 . If e is in a 2-cycle, then the two edges of
the 2-cycle are f ′1 and f

′

2 .

Claim 3. E(H ′)− E ′(Ld−1(G)) 6= ∅.

Proof. By contradiction. Suppose that E(H ′) ⊆ E ′(Ld−1(G)). Let e ∈ E(H ′). As E ′′(H ′) ⊆ E ′′(H) ⊆ E ′′(Ld−1(G)), we have
e ∈ E ′(H ′). We consider three cases.

Case 1. e is in a 2-cycle of H ′.
Note that anm-cycle withm ≤ 3 is collapsible. By Claim 2 and the assumption that E(H ′) ⊆ E ′(Ld−1(G)), H ′ must be the

graph shown in Fig. 1. Thus, there exists a spanning (v(f1), v(f2))-trail in Ld−1(G)(f1, f2) by Lemma 10, a contradiction.

Case 2. e is in a 3-cycle of H ′ containing exactly one of f ′1 and f
′

2 .
Without loss of generality,we assume that this cycle contains f ′1 only. Note again that anm-cyclewithm ≤ 3 is collapsible.

By the assumption that E(H ′) ⊆ E ′(Ld−1(G)), the graph H ′ must be the graph shown in Fig. 2, where v(f2) is in the preimage
of some vertex. Thus, there exists a spanning (v(f1), v(f2))-trail in Ld−1(G)(f1, f2) by Lemma 10, a contradiction.

Case 3. e is in a 3-cycle of H ′ containing both f ′1 and f
′

2 .
Suppose that f1 and f2 are adjacent. Then the graph H ′ must be one of the graphs in Fig. 3. Thus, there exists a spanning

(v(f1), v(f2))-trail in Ld−1(G)(f1, f2) by Lemma 10, a contradiction. Now suppose that f1 and f2 are not adjacent. Then the
graphH ′must be one of the graphs in Fig. 4. Again, there exists a spanning (v(f1), v(f2))-trail in Ld−1(G)(f1, f2) by Lemma 10,
a contradiction. So Claim 3 holds. �
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Fig. 5.

Fig. 6.

Fig. 7.

By Claim 3, let e ∈ E(H ′) − E ′(Ld−1(G)). Then I−1d−1(e) is in a lane in G with length at least d. Let P1 be the maximal
lane in G containing I−1d−1(e). Suppose first P1 is a (u, v)-path (for the case that P1 is a cycle, we can argue similarly). Then
dG(u), dG(v) ≥ 3, and at least there exists another (v, u)-path P2 in G − E(P1) (otherwise, let u1 ∈ NG(u) − V (P1) and
v1 ∈ NG(v)−V (P1), then dist(u1, v1) = d+ 2, a contradiction). Let P2, . . . , Pm be all minimal (u, v)-paths in G− E(P1)with
E(Pi) ∩ E(Pj) = ∅ (when i 6= j).

Claim 4. There exists a (u, v)-path Pi (i 6= 1) that contains a lane with length at most d− 1.

Proof. By contradiction. Suppose that each Pi contains a lane with length at least d. Then 1 ≤ |Ld−1(Pi) ∩ E ′′(Ld−1(G))| ≤ 2
and

∑m
i=1 |L

d−1(Pi) ∩ E ′′(Ld−1(G))| ≤ m + 1 since d ≥ diam(G). If m = 2, noting that dG(u) ≥ 3, dG(v) ≥ 3, so there
always exist some x ∈ NG(u) and y ∈ NG(v) such that distG(x, y) ≥ d + 1 > diam(G), a contradiction. So m ≥ 3. If
fi 6∈

⋃m
i=1 E(L

d−1(Pi)), then e 6∈ E(H ′) since m ≥ 3. So {f1, f2} ⊆
⋃m
i=1 E(L

d−1(Pi)), and H = C4 or K2,3. If H = K2,3,
then there is a spanning (v(f1), v(f2))-trail in H . If H = C4, then one of vertices in H is trivial. Thus there is a dominating
(v(f1), v(f2))-trail in H . In either case, Ld(G) is Hamilton-connected, a contradiction. So Claim 4 holds. �

By Claim 4, suppose that P2 contains a lane with length at most d− 1. Note that P1 ∪ P2 is a cycle in G. Then Ld−1(P1 ∪ P2)
is still a cycle in Ld−1(G), e ∈ Ld−1(P1 ∪ P2) and at most two edges in Ld−1(P1 ∪ P2) are not in E ′(Ld−1(G)). If m ≥ 3, then
H = C4, v(f1), v(f2) ∈ V (C4) and one of the vertices of V (H) is trivial. Thus Ld(G) is Hamilton-connected. So we assume that
m = 2.

Claim 5. |E(Ld−1(P1))| = 2.

Proof. By contradiction. Suppose that E(Ld−1(P1)) = {e}. If e ∈ {f1, f2}, without loss of generality, we assume that e = f1.
Then H is the graph K2,3 (see Fig. 5). Thus Ld−1(G) has a spanning (v(f1), v(f2))-trail by Lemma 10. Hence Ld(G) is Hamilton-
connected, a contradiction. Thus e 6∈ {f1, f2}.
Since each edge except e in Ld−1(P1 ∪ P2) is in E ′(Ld−1(G)) and e 6∈ E ′(Ld−1(G)), we have f1, f2 ∈ E(Ld−1(P1 ∪ P2)). If f1, f2

are in the same triangle, then Ld−1(P1 ∪ P2) is collapsible, thus e 6∈ E(H), a contradiction. Thus f1, f2 are not in the same
triangle. Hence H is the graph shown in Fig. 6. Thus Ld−1(G) has a spanning (v(f1), v(f2))-trail by Lemma 10. Hence Ld(G) is
Hamilton-connected, a contradiction. So Claim 5 holds. �

By Claim 5, |E(Ld−1(P1))| = 2. Since each edge in Ld−1(P1 ∪ P2) except Ld−1(P1) is in E ′(Ld−1(G)) and Ld−1(P1) ∩
E ′(Ld−1(G)) = ∅, we have |{f1, f2} ∩ E(Ld−1(P1 ∪ P2))| ≥ 1. If |{f1, f2} ∩ E(Ld−1(P1 ∪ P2))| = 1, without loss of generality, we
assume that f1 ∈ E(Ld−1(P1 ∪ P2)). Then v(f2) is contracted. Thus f1 6∈ E(Ld−1(P1)). (Otherwise H is collapsible and H = K1.)
Moreover H = K2,3 and x is trivial in H (see Fig. 7). Thus the preimage of a vertex in V (H) − {x, v(f1)} contains v(f2). It is
easy to check that Ld−1(G) contains a dominating (v(f1), v(f2))-trail by Lemma 10. Hence Ld(G) is Hamilton-connected. This
contradicts the assumption. Thus |{f1, f2} ∩ E(Ld−1(P1 ∪ P2))| = 2.
We break this into three cases to finish the proof.

Case 1. |{f1, f2} ∩ E(Ld−1(P1))| = 0.
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Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

If f1, f2 are in the same triangle in H ′, then H is the graph shown in Fig. 8.
If f1, f2 are in two edge-disjoint triangles in H ′, then H is one of the graphs in Fig. 9. (In this and the following figures, the

two♠s stand for the vertices v(f1) and v(f2), respectively).
If f1, f2 are in two triangles sharing an edge in H ′, then H is one of the graphs shown in Fig. 10.
In either graph, H contains a spanning (v(f1), v(f2))-trail. Thus Ld(G) is Hamilton-connected, a contradiction.

Case 2. |{f1, f2} ∩ E(Ld−1(P1))| = 1.
In this case,H is one of the graphs shown in Fig. 11. Note that Ld−1(P1) is a lane. Then the vertex x (see the graph) is trivial

in H . Thus Ld−1(G) contains a spanning (v(f1), v(f2)-trail by Lemma 10. Hence Ld(G) is Hamilton-connected, a contradiction.
Case 3. |{f1, f2} ∩ E(Ld−1(P1))| = 2.
Then H is the graph shown in Fig. 12, and x is trivial in H . Thus Ld(G) is Hamilton-connected, a contradiction.
Having exhausted the cases, we have completed the proof of Theorem 13. �

An obvious corollary is the following.

Corollary 14. Let G be a connected graph that is neither a path nor Cn. If the length of a longest lane is k with k ≥ diam(G)+ 1,
then hc(G) = k− 1.

Noting that k ≤ 2 diam(G)− 1, we have the following corollary.
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Corollary 15. Let G be a connected graph that is neither a path nor Cn. Then hc(G) ≤ 2(diam(G)− 1).

Let C be a cycle of length 2d(d > 1) and K be a complete graph of order m > 2. G is a graph obtained by combining C
and K so that C and K share exactly one edge. Then L2d−3(G) has a 2-cut so that L2d−3(G) is not Hamilton-connected. On the
other hand, L2d−2(G) is Hamilton-connected. Therefore Corollary 15 is best possible.

Theorem 16. Let d = diam(G) ≥ 3. Then one of the following holds.

(i) Ld(G) is Hamilton-connected;
(ii) Ld−1(G) has a collapsible subgraph H such that Ld−1(G)/H is a cycle of length at least 3.

Proof. Suppose (i) does not hold. It suffices to show (ii) holds. Since Ld(G) is not Hamilton-connected, there exists a lane L
in Gwith length k ≥ d+ 2 by Theorem 13. Suppose u and v are the two endvertices of L (possibly u = v if L is a cycle), then
d(u) ≥ 3 and d(v) ≥ 3 (otherwise d > k). Moreover, G− L is connected. Ld−1(L) is still a lane with length at least 3 and we
assume L′ = Ld−1(L)with two endvertices u′ and v′ in Ld−1(G). Let H = (Ld−1(G)− L′) ∪ {u′, v′}. We are going to show that
H is collapsible. Let H ′ be the reduction of H and we only need to show H ′ = K1. For a contradiction, suppose there exists
at least one edge xy in H ′. Since H ′ is reduced, xy cannot be in a cycle of length at most 3. Correspondingly, there exists at
least one edge x′y′ in the preimage of xy in H that is not contained in a cycle of length at most 3. By Lemma 12, the preimage
of x′y′ in Gmust be a lane with length at least d and suppose the lane is Q . Take the midpoint w of P and the midpoint z of
Q , then dist(w, z) ≥ k/2 + d/2 ≥ d + 1, a contradiction. Note that Ld−1(G)/H is a cycle obtained by identifying the two
endvertices of P ′ and has length at least three. So we are done. �

Then we have the following corollary by the above theorem:

Corollary 17. Let d = diam(G) ≥ 3. Then Ld(G) is Hamilton-connected if and only if κ(Ld(G)) ≥ 3.

Proof. Necessity. This direction is trivial.
Sufficiency. For a contradiction, suppose that κ(Ld(G)) ≥ 3 and Ld(G) is not Hamilton-connected, then Ld−1(G) is essentially
3-edge-connected. By (ii) of Theorem 16, Ld−1(G) has an essential 2-edge-cut, a contradiction. �

4. Hamilton-connected index and connectivity

Let κ3(G) = min{m|Lm(G) is 3-connected}. The following result shows that the Hamilton-connected index of G is not far
from κ3(G).

Theorem 18. Let G be a graph which is neither a path nor a cycle. Then κ3(G) ≤ hc(G) ≤ κ3(G)+ 2.

Proof. Let c = κ3(G). Noticing that a Hamilton-connected graph should be 3-connected, we have hc(G) ≥ c .
It suffices to prove that hc(G) ≤ c+2. According to the definition of c , we know that Lc(G) is 3-connected. So δ(Lc(G)) ≥ 3.

Then Lc+1(G) is the union of edge-disjoint complete subgraphs and δ(Lc+1(G)) ≥ 4, κ(Lc+1(G)) ≥ 3. Hence each edge of
Lc+1(G) is in a triangle and Lc+1(G) is collapsible by Theorem 8. Let H = Lc+1(G). For any two edges e and f in H , we
distinguish the following two cases.

Case 1. e and f are not in the same complete subgraph and, say, they are in two different complete subgraphs Ks and Kt of H
respectively.
If both s and t are at least 4, then H(e, f ) is still collapsible since Ks(e) and Kt(f ) have at least one triangle and exactly

a C4. Hence by Lemma 9, H(e, f ) has a spanning (v(e), v(f ))-trail and so L(H) = Lc+2(G) is Hamilton-connected. In the
case that at least one of {s, t} is 3, say s = 3, since κ(Lc+1(G)) ≥ 3, the two endvertices of e are connected by a path P
with E(P)

⋂
E(Ks) = ∅ in which each edge is in a complete subgraph of order at least 3, so the reduction of H(e, f ) is K1,

i.e., H(e, f ) is collapsible and so L(H) = Lc+2(G) is Hamilton-connected.

Case 2. e and f are in the same complete subgraph Kt of H .
If t ≥ 5, then H(e, f ) is still collapsible since Kt(e, f ) has at least a triangle. Hence by Lemma 9, H(e, f ) has a spanning

(v(e), v(f ))-trail and so L(H) = Lc+2(G) is Hamilton-connected. If t = 3, since κ(Lc+1(G)) ≥ 3, at least one of {e, f }, say e,
has two endvertices that are connected by a pathQ with E(Q )

⋂
E(Kt) = ∅ in which every edge is in a complete subgraph of

order at least 3, so the reduction of H(e, f ) is K1, i.e., H(e, f ) is collapsible and hence L(H) = Lc+2(G) is Hamilton-connected.
In the remaining case that t = 4, if e and f are incident, then the reduction of H(e, f ) is K1 since Kt(e, f ) becomes a complete
graph after contracting the unique triangle in it. Otherwise, if it is not collapsible, then the reduction of H(e, f )must be the
graph shown in Fig. 13. Then it has a spanning (v(e), v(f ))-trail, so L(H) = Lc+2(G) is Hamilton-connected.
In either case, there is a spanning (v(e), v(f ))-trail in H(e, f ). Hence hc(G) ≤ c + 2. �
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Fig. 13.

Fig. 14.

To show the sharpness of Theorem 18, we present an infinite family of graphs Gwith hc(G) = κ3(G)+ 2. Let P10 denote
the Petersen graph and let s ≥ 1 be an integer. Let G(s) be obtained from P10 by first replacing every edge of P10 by a path of
s+ 1 edges, and then adding a pendent edge at each vertex of P10.
Then l(G(s)) = s + 1 and k3(G(s)) = s. However, Ls(G(s)) can be contracted to a P10, each of whose vertices has a

preimage with at least 4 edges. Let H1 be the preimage of a vertex of P10 viewed as a contraction image of Ls(G(s)) (in fact,
P10 is the reduction of Ls(G(s)) and we can just take H1 as the preimage of any vertex in the reduction). Take two edges e1, e2
of Ls(G(s)) such that e1, e2 ∈ V (H1). Let T be an (e1, e2)-trail of Ls(G(s)). In the process when Ls(G(s)) is contracted to P10,
T is also contracted to an even subgraph T ′ (and so a cycle) of P10, by the choices of e1 and e2. It follows that T ′ must miss
at least one vertex of P10, and so T cannot be an dominating (e1, e2)-trail of Ls(G(s)). This proves that Ls+1(G(s)) cannot be
hamiltonian-connected, and so hc(G(s)) > κ3(G(s))+ 1. By Theorem 18, hc(G(s)) = κ3(G(s))+ 2.

5. Hamilton-connected index and degree

We start with some results on the hamiltonian index.

Theorem 19 (Chartrand and Wall, [7]). Let G be a connected graph with minimum degree at least 3. Then h(G) ≤ 2.

Theorem 20 (Saražin, [12]). Let G be a connected graph that is not a path. Then h(G) ≤ |V (G)| −∆(G).
Accordingly, we have the following two theorems:

Theorem 21. Let G be a connected graph with minimum degree at least 3. Then hc(G) ≤ 3.
Proof. Let d, f ∈ E(L2(G)) and H be the reduction of L2(G)(e, f ). Since δ(G) ≥ 3, δ(L(G)) ≥ 4. Thus every edge in L2(G) lies
in some Kt(t ≥ 4). According to the proof of Theorem 18, Kt(e) and Kt(f ) are collapsible. If H is not collapsible, then it must
be as Fig. 13. Thus L3(G) is Hamilton-connected. This completes the proof of Theorem 21. �

In the graph shown in Fig. 14, each cycle stands for complete graphs Kt(t ≥ 4). Then δ(G) ≥ 3. On the other hand, L2(G)
is not Hamilton-connected since L2(G) is not 3-connected, but L3(G) is Hamilton-connected. So Theorem 21 is best possible.

Theorem 22. Let G be a connected graph that is neither a path nor a cycle. Then hc(G) ≤ |V (G)| −∆(G)+ 1.
Proof. Since G is a connected graph that is neither a path nor a cycle,∆(G) ≥ 3. Let u ∈ V (G)with dG(u) = ∆(G), and L be
a longest lane with length k. Then

|(NG(u) ∪ {u}) ∩ V (L)| ≤
{
2, if L is a path
3, if L is a cycle

|V (L)| =
{
k+ 1, if L is a path
k, if L is a cycle

and |NG(u) ∪ {u}| = ∆(G)+ 1. Thus

|(NG(u) ∪ {u}) ∪ V (L)| = |NG(u) ∪ {u}| + |V (L)| − |(NG(u) ∪ {u}) ∩ V (L)|

≥

{
(∆+ 1)+ (k+ 1)− 2, if L is a path
(∆+ 1)+ k− 3, if L is a cycle

≥ ∆+ k− 2.
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Fig. 15.

Therefore n ≥ ∆(G)+ k− 2. If diam(G) ≤ k− 1, then hc(G) ≤ k− 1 ≤ n−∆(G)+ 1 by Theorem 13. Next we assume that
diam(G) ≥ k. Then hc(G) ≤ diam(G).
Let Q be a (v1, v2)-path satisfying dG(v1, v2) = diam(G). Let |(NG(u)∪ {u})∩ V (Q )| = t . Then |(NG(u)∪ {u})∪ V (Q )| =

|NG(u) ∪ {u}| + |V (Q )| − |(NG(u) ∪ {u}) ∩ V (Q )| = (∆+ 1)+ (diam(G)+ 1)− t = ∆+ diam(G)+ 2− t . If t ≤ 2, then
hc(G) ≤ diam(G) ≤ n−∆(G)− 2+ t ≤ n−∆. Thus we assume t ≥ 3. Now we only need to discuss two cases.

Case 1. u 6∈ V (Q ).
Then |NG(u) ∩ V (Q )| = t , so we can assume {u1, u2, . . . , ut} = NG(u) ∩ V (Q ) such that u1, u2, . . . , ut occur on

V (Q ) in the order of the indices. Note that Q is a path satisfying dG(v1, v2) = diam(G). By the choice of Q , we have
uiui+1 ∈ E(Q )(1 ≤ i ≤ t − 1) and t must be 3. (Otherwise, if t ≥ 4, then dG(v1, v2) can be shortened by discarding
vertices u2, u3, . . . , ut−1 and adding u to Q .) Thus Q ′ = Q − u2 + u is still a (v1, v2)-path satisfying dG(v1, v2) = diam(G).
Note that n ≥ |(NG(u)∪{u})∪V (Q ′)|. Then n ≥ ∆(G)+diam(G)+2− t = ∆(G)+diam(G)−1. Thus hc(G) ≤ n−∆(G)+1.

Case 2. u ∈ V (Q ).
Then |NG(u) ∩ V (Q )| = t − 1, so we can assume {u1, u2, . . . , ut−1} = NG(u) ∩ V (Q ) such that u1, u2, . . . , ut−1 occur on

V (Q ) in the order of the indices. Note that Q is a path satisfying dG(v1, v2) = diam(G) and u is also on the path. This forces t
to be 3 and u1u, uu2 ∈ E(Q ). Note that n ≥ |(NG(u)∪{u})∪V (Q )|. Then n ≥ ∆(G)+diam(G)+2− t = ∆(G)+diam(G)−1.
Thus hc(G) ≤ n−∆(G)+ 1. �

Let G0 be the (unique) tree on n ≥ 5 vertices with exactly 3 leaves such that there are two leaves of G0 having distances
n − 2 from the third leaf. We have that n = |V (G0)|, ∆(G) = 3 and Ln−∆(G0)(G0) is not 3-connected (hence not Hamilton-
connected) and Ln−∆(G0)+1(G0) is Hamilton-connected. For the case that n = 5, see Fig. 15. So Theorem 22 is best possible.
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