Hamilton-connected indices of graphs

Zhi-Hong Chen ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$, Liming Xiong ${ }^{\text {c,d,*, Huiya Yan }}{ }^{\text {b }}$, Mingquan Zhan ${ }^{\text {e }}$
${ }^{\text {a }}$ Department of Mathematics, Butler University, Indianapolis, IN 46208, USA
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {c }}$ Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, PR China
${ }^{\text {d }}$ Department of Mathematics, Jiangxi Normal University, PR China
${ }^{\mathrm{e}}$ Department of Mathematics, Millersville University, Millersville, PA 17551, USA

ARTICLE INFO

Article history:

Received 21 September 2007
Accepted 21 June 2008
Available online 30 July 2008

Keywords:

Hamilton-connected index
Iterated line graph
Diameter
Maximum degree
Connectivity

Abstract

Let G be an undirected graph that is neither a path nor a cycle. Clark and Wormald [L.H. Clark, N.C. Wormald, Hamiltonian-like indices of graphs, ARS Combinatoria 15 (1983) 131-148] defined $h c(G)$ to be the least integer m such that the iterated line graph $L^{m}(G)$ is Hamilton-connected. Let diam (G) be the diameter of G and k be the length of a longest path whose internal vertices, if any, have degree 2 in G. In this paper, we show that $k-1 \leq h c(G) \leq \max \{\operatorname{diam}(G), k-1\}$. We also show that $\kappa^{3}(G) \leq h c(G) \leq \kappa^{3}(G)+2$ where $\kappa^{3}(G)$ is the least integer m such that $L^{m}(G)$ is 3-connected. Finally we prove that $h c(G) \leq|V(G)|-\Delta(G)+1$. These bounds are all sharp.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We use [1] for terminology and notation not defined here and we consider finite, undirected graphs. We allow graphs to have multiple edges but not loops. The multi-graph of order 2 with two edges will be called a 2 -cycle and denoted by C_{2}. Let G be a graph. We use $\kappa(G)$ and $\kappa^{\prime}(G)$ to denote the connectivity and the edge-connectivity of G, respectively. Denote by $O(G)$ the set of all odd vertices of G. For each $i=0,1,2, \ldots$, let $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$, and $d_{i}(G)=\left|D_{i}(G)\right|$. A connected graph with at least two vertices is called a nontrivial graph. A lane in G is a nontrivial trail whose ends are not in $D_{2}(G)$ and whose internal vertices, if any, have degree 2 in G (and thus are in $D_{2}(G)$). Note that a lane may be a cycle. If the lane has length 1 , then it has no internal vertices. The length of a lane is defined to be the number of its edges.

Let G be a connected graph. For any two vertices $v_{1}, v_{2} \in V(G)$, the distance $d\left(v_{1}, v_{2}\right)$ between v_{1} and v_{2} is defined as the length of the shortest $\left(v_{1}, v_{2}\right)$-path in G. The diameter of G is $\operatorname{diam}(G)=\max _{v \in V(G)}\{\max \{d(v, w) \mid w \in V(G)\}\}$. For $X \subseteq E(G)$, the contraction G / X is obtained from G by contracting each edge of X and deleting the resulting loops. If $H \subseteq G$, we write G / H for $G / E(H)$.

The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are incident. The iterated line graph is defined recursively by $L^{0}(G)=G$ and $L^{k+1}(G)=L\left(L^{k}(G)\right)$ ($k \in \mathbf{N}$, where \mathbf{N} stands for the set of all natural numbers). Chartrand [6] showed that if G is a connected graph that is not a path, then for some integer $k>0, L^{k}(G)$ is hamiltonian.

A subgraph H of a graph G is dominating if $G-V(H)$ is edgeless. Let $v_{0}, v_{k} \in V(G)$. A (v_{0}, v_{k})-trail of G is a vertex-edge alternating sequence

$$
v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{k}, v_{k}
$$

[^0]such that all the e_{i} 's are distinct and for each $i=1,2, \ldots, k, e_{i}$ joins v_{i-1} with v_{i}. With the notation above, this (v_{0}, v_{k})-trail is also called an $\left(e_{1}, e_{k}\right)$-trail. All the vertices in $v_{1}, v_{2}, \ldots, v_{k-1}$ are internal vertices of the trail. A dominating $\left(e_{1}, e_{k}\right)$-trail T of G is an $\left(e_{1}, e_{k}\right)$-trail such that every edge of G is incident with an internal vertex of T. A spanning (e_{1}, e_{k}) -trail of G is an $\left(e_{1}, e_{k}\right)$-trail such that $V(T)=V(G)$. There is a close relationship between dominating eulerian subgraphs in graphs G and Hamilton cycles in $L(G)$. Xiong and Liu [13] extent this to the relationship between a certain even subgraph in G and Hamilton cycles in $L^{m}(G)$ for $m \geq 2$.

Theorem 1 (Harary and Nash-Williams, [9]). Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.

A graph is Hamilton-connected if for any two vertices $u, v \in V(G)$, there exists a (u, v)-path containing all vertices of G. With an argument similar to that in the proof of Theorem 1, one can obtain the following theorem for Hamilton-connected line graphs.

Theorem 2. Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is Hamilton-connected if and only if for any pair of edges $e_{1}, e_{2} \in E(G)$, G has a dominating $\left(e_{1}, e_{2}\right)$-trail.

Corollary 3. Let G be a graph that is not a cycle. For any $m \geq 0$ if $L^{m}(G)$ is Hamilton-connected, then $L^{n}(G)$ is Hamilton-connected for all $n \geq m$.

We say that an edge $e \in E(G)$ is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted by $v(e)$, has degree 2 in the resulting graph. The resulting two new edges are denoted by e^{\prime} and $e^{\prime \prime}$. The process of taking an edge e and replacing it by the path of length 2 is called subdividing e. For a graph G and edges $e_{1}, e_{2} \in E(G)$, let $G\left(e_{1}\right)$ denote the graph obtained from G by subdividing e_{1}, and let $G\left(e_{1}, e_{2}\right)$ denote the graph obtained from G by subdividing both e_{1} and e_{2}. Thus

$$
V\left(G\left(e_{1}, e_{2}\right)\right)-V(G)=\left\{v\left(e_{1}\right), v\left(e_{2}\right)\right\}
$$

From the definitions, one immediately has the following observation.
Proposition 4. For a graph G and two edges $e_{1}, e_{2} \in E(G)$, if $G\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, then G has a spanning $\left(e_{1}, e_{2}\right)$-trail.

In 1983, Clark and Wormald [8] introduced the concept of hamiltonian-connected index. Let G be an undirected graph that is neither a path nor a cycle. The hamiltonian index $h(G)$ (Hamilton-connected index $h c(G)$, respectively) is the least nonnegative integer k such that $L^{k}(G)$ is hamiltonian (Hamilton-connected, respectively).

Theorem 5 (Combining Catlin, Janakiraman and Srinivasan, [5], and Lai, [10]). Let G be a connected graph that is neither a path nor C_{2}. Let k be the length of the longest lane in G. Then $h(G) \leq \min \{\operatorname{diam}(G), k+1\}$.

In this paper, we consider the Hamilton-connected index of a graph. In Section 2, we will describe Catlin's reduction method and state some relevant theorems. In Section 3, we get some results of Hamilton-connected index associated with diameter. In Section 4, we present the relations between the Hamilton-connected index and the connectivity of a graph. In Section 5, we give some relations between the Hamilton-connected index and the minimum and maximum degrees of a graph.

2. Catlin's reduction method

In [2] Catlin defined collapsible graphs. Let G be a graph. For $R \subseteq V(G)$, a subgraph Γ of G is called an \mathbf{R}-subgraph if both $O(\Gamma)=R$ and $G-E(\Gamma)$ are connected. A graph is collapsible if G has an R-subgraph for every even set $R \subseteq V(G)$. In particular, K_{1} is collapsible. For a graph G and its connected subgraph $H, G / H$ denotes the graph obtained from G by contracting H, i.e. by replacing H by a vertex v_{H} such that the number of edges in G / H joining any $v \in V(G)-V(H)$ to v_{H} in G / H equals the number of edges joining v in G to H. A graph is contractible to a graph G^{\prime} if G contains pairwise vertex-disjoint connected subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ with $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$ such that G^{\prime} is obtained from G by successively contracting H_{1}, H_{2}, \ldots, H_{k}. The subgraph H_{i} of G is called the preimage of the vertex $v_{H_{i}}$ of G^{\prime}, and $v_{H_{i}}$ is called the image of H_{i}. For any vertex $v \in V\left(H_{i}\right)$, we also say that $v_{H_{i}}$ is the image of the vertex v. Catlin [3] showed that every graph G has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ such that $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$. The reduction of G is the graph obtained from G by successively contracting $H_{1}, H_{2}, \ldots, H_{k}$. A graph is reduced if it is the reduction of some graph. A nontrivial vertex in the reduction of G is a vertex which is the contraction image of a nontrivial connected subgraph of G.

Theorem 6 (Catlin, [2]). Let G be a connected graph. Then each of the following holds.
(i) If G has a spanning tree T such that each edge of T is in a collapsible subgraph of G, then G is collapsible.
(ii) If G is reduced, then G is a simple graph and has no cycle of length less than four.
(iii) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iv) Let G^{\prime} be the reduction of G. Then G is collapsible if and only if $G^{\prime}=K_{1}$.

Theorem 7 (Catlin, Han and Lai, [4]). Let G be a connected reduced graph. If $2|V(G)|-|E(G)| \leq 4$, then G is a K_{1}, or a K_{2} or a $K_{2, t}$ for some integer $t \geq 1$.

Theorem 8 (Lai, [11]). Let G be a 2-connected graph with $\delta(G) \geq 3$. If every edge of G is in a cycle of length at most 4 , then G is collapsible.

Lemma 9. If G is collapsible, then for any pair of vertices $u, v \in V(G), G$ has a spanning (u, v)-trail.
Proof. Let $R=(O(G) \cup\{u, v\})-(O(G) \cap\{u, v\})$. Then $|R|$ is even. Let Γ_{R} be an R-subgraph of G. Then $G-E\left(\Gamma_{R}\right)$ is a spanning (u, v)-trail of G.

Lemma 10. Let H be a collapsible subgraph of a graph G and $H^{\prime}=G / H$. Let $u, v \in V(G)$ and $u^{\prime}, v^{\prime} \in V\left(H^{\prime}\right)$ such that u^{\prime}, v^{\prime} are the images of u, v respectively. Then G has a spanning (u, v)-trail if and only if H^{\prime} has a spanning $\left(u^{\prime}, v^{\prime}\right)$-trail.
Proof. It is clear that H^{\prime} has a spanning $\left(u^{\prime}, v^{\prime}\right)$-trail if G has a spanning (u, v)-trail. So we only need to prove that G has a spanning (u, v)-trail if H^{\prime} has a spanning $\left(u^{\prime}, v^{\prime}\right)$-trail.

Suppose that Γ^{\prime} is a spanning (u^{\prime}, v^{\prime})-trail in H^{\prime}. Take one vertex $w_{0} \notin V(G)$ and let $\Gamma^{\prime \prime}$ be a trail in H^{\prime} with $V\left(\Gamma^{\prime \prime}\right)=V\left(\Gamma^{\prime}\right) \cup\left\{w_{0}\right\}$ and $E\left(\Gamma^{\prime \prime}\right)=E\left(\Gamma^{\prime}\right) \cup\left\{u^{\prime} w_{0}, v^{\prime} w_{0}\right\}$ if $u^{\prime} \neq v^{\prime}$, and let $\Gamma=\left\{\begin{array}{l}\Gamma^{\prime}, \text { if } u^{\prime}=v^{\prime} \\ \Gamma^{\prime \prime}, \text { if } u^{\prime} \neq v^{\prime}\end{array}\right.$. Then Γ is eulerian. Let $S=\{w \in V(H): w$ is incident with an odd number of edges in $E(\Gamma)\}$. Then $|S|$ is even and $S \oplus O(H)$ is even too. Note that H is collapsible. Then there exists $L \subseteq H$ such that L is a connected, spanning subgraph in H such that $O(L)=S \oplus O(H)$. Thus $\Gamma \cup L$ is a spanning eulerian subgraph in $G+w_{0}$. Therefore G has a spanning (u, v)-trail.

3. Hamilton-connected index and diameter

Let G be a graph. Denote $E^{\prime}=E^{\prime}(G)=\{e \in E(G): e$ is in a cycle of G of length at most 3$\}$ and $E^{\prime \prime}=E(G)-E^{\prime}(G)$.
Let H be an induced subgraph of G. The subgraph induced by the vertex set $E(H)$ in $L(G)$, denoted by $I_{1}(H)$, is called the 1-line-image of H, and H, denoted by $I_{1}^{-1}\left(I_{1}(H)\right)$, is called the 1-line-preimage of $I_{1}(H)$. The subgraph induced by the vertex set $E\left(I_{1}(H)\right)$ in $L^{2}(G)$, denoted by $I_{2}(H)$, is called the 2-line-image of H, and H, denoted by $I_{2}^{-1}\left(I_{2}(H)\right.$), is called the 2-linepreimage of $I_{2}(H)$. Generally, the subgraph induced by the vertex set $E\left(I_{k}(H)\right)$ in $L^{k+1}(G)$, denoted by $I_{k+1}(H)$, is called the $(k+1)$-line-image of H. Conversely, H, denoted by $I_{k+1}^{-1}\left(I_{k+1}(H)\right)$, is called the $(k+1)$-line-preimage of $I_{k+1}(H)$. We adopt $I_{k+1}^{-1}(e)$ when $I_{k+1}(H)$ is a path induced by an edge e.

Lemma 11. Let L be a lane in G with length d. Then $I_{k}(L)(k \leq d)$ is a lane in $L^{k}(G)$ with length (d $\left.-k\right)$. Particularly, $I_{d-1}(L) \in E^{\prime \prime}\left(L^{d-1}(G)\right)$.

Lemma 12. Let $e \in E^{\prime \prime}\left(I^{d-1}(G)\right)$. Then $I_{d-1}^{-1}(e)$ is in a lane in G with length at least d.
Theorem 13. Let G be a connected graph that is neither a path nor C_{n}. If the length of a longest lane is k, then $k-1 \leq h c(G) \leq$ $\max \{\operatorname{diam}(G), k-1\}$.
Proof. Since a longest lane of length k in G becomes a lane of length 2 in $L^{k-2}(G)$, and so $L^{k-2}(G)$ is not Hamilton-connected, $h c(G) \geq k-1$.

The proof of the second inequality remains. If $\operatorname{diam}(G)=1$, then G is spanned by K_{n}. Thus $h c(G)=0 \leq \max \{\operatorname{diam}(G), k-$ $1\}$. Next we prove that the theorem holds for $d=\max \{\operatorname{diam}(G), k-1\} \geq 2$ by contradiction.

Let $f_{1}=u_{1} v_{1}, f_{2}=u_{2} v_{2} \in E\left(L^{d-1}(G)\right)$ and H be the reduction of $L^{d-1}(G)\left(f_{1}, f_{2}\right)$. By Lemma 9, Proposition 4 and Theorem 2 , $H \neq K_{1}$. Note that

$$
d_{L^{d-1}(G)\left(f_{1}, f_{2}\right)}\left(v\left(f_{i}\right)\right)=2(i=1,2)
$$

Then either $\left\{f_{i}^{\prime}, f_{i}^{\prime \prime}\right\} \cap E(H)=\emptyset$ or $\left\{f_{i}^{\prime}, f_{i}^{\prime \prime}\right\} \subseteq E(H)(i=1,2)$. Let $H^{\prime}=H /\left(E(H) \cap\left\{f_{1}^{\prime \prime}, f_{2}^{\prime \prime}\right\}\right)$. Then $H^{\prime} \neq K_{2}$.
Claim 1. $E\left(H^{\prime}\right) \subseteq E\left(L^{d-1}(G)\right)$.
Proof. If $\left\{f_{1}^{\prime}, f_{1}^{\prime \prime}, f_{2}^{\prime}, f_{2}^{\prime \prime}\right\} \cap E(H)=\emptyset$, then $H^{\prime}=H$. Thus $E\left(H^{\prime}\right) \subseteq E\left(L^{d-1}(G)\right)$. If $\left\{f_{1}^{\prime}, f_{1}^{\prime \prime}, f_{2}^{\prime}, f_{2}^{\prime \prime}\right\} \cap E(H) \neq \emptyset$, without loss of generality, we assume $\left\{f_{1}^{\prime}, f_{1}^{\prime \prime}\right\} \subseteq E(H)$. Note that $H^{\prime}=H /\left(E(H) \cap\left\{f_{1}^{\prime \prime}, f_{2}^{\prime \prime}\right\}\right)$. Then $f_{1}=f_{1}^{\prime} \in E\left(H^{\prime}\right)$. Thus Claim 1 holds.

By the definition of $E^{\prime}\left(H^{\prime}\right)$ and Theorem 6(ii), we have the following claim.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Claim 2. Let $e \in E^{\prime}\left(H^{\prime}\right)$. If e is in some 3-cycle of H^{\prime}, then this cycle contains f_{1}^{\prime} or f_{2}^{\prime}. If e is in a 2-cycle, then the two edges of the 2 -cycle are f_{1}^{\prime} and f_{2}^{\prime}.

Claim 3. $E\left(H^{\prime}\right)-E^{\prime}\left(L^{d-1}(G)\right) \neq \emptyset$.
Proof. By contradiction. Suppose that $E\left(H^{\prime}\right) \subseteq E^{\prime}\left(L^{d-1}(G)\right)$. Let $e \in E\left(H^{\prime}\right)$. As $E^{\prime \prime}\left(H^{\prime}\right) \subseteq E^{\prime \prime}(H) \subseteq E^{\prime \prime}\left(L^{d-1}(G)\right)$, we have $e \in E^{\prime}\left(H^{\prime}\right)$. We consider three cases.

Case 1. e is in a 2-cycle of H^{\prime}.
Note that an m-cycle with $m \leq 3$ is collapsible. By Claim 2 and the assumption that $E\left(H^{\prime}\right) \subseteq E^{\prime}\left(L^{d-1}(G)\right)$, H^{\prime} must be the graph shown in Fig. 1. Thus, there exists a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in $L^{d-1}(G)\left(f_{1}, f_{2}\right)$ by Lemma 10 , a contradiction.
Case 2. e is in a 3-cycle of H^{\prime} containing exactly one of f_{1}^{\prime} and f_{2}^{\prime}.
Without loss of generality, we assume that this cycle contains f_{1}^{\prime} only. Note again that an m-cycle with $m \leq 3$ is collapsible. By the assumption that $E\left(H^{\prime}\right) \subseteq E^{\prime}\left(L^{d-1}(G)\right)$, the graph H^{\prime} must be the graph shown in Fig. 2, where $v\left(f_{2}\right)$ is in the preimage of some vertex. Thus, there exists a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in $L^{d-1}(G)\left(f_{1}, f_{2}\right)$ by Lemma 10 , a contradiction.
Case 3. e is in a 3-cycle of H^{\prime} containing both f_{1}^{\prime} and f_{2}^{\prime}.
Suppose that f_{1} and f_{2} are adjacent. Then the graph H^{\prime} must be one of the graphs in Fig. 3. Thus, there exists a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in $L^{d-1}(G)\left(f_{1}, f_{2}\right)$ by Lemma 10 , a contradiction. Now suppose that f_{1} and f_{2} are not adjacent. Then the graph H^{\prime} must be one of the graphs in Fig. 4. Again, there exists a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in $L^{d-1}(G)\left(f_{1}, f_{2}\right)$ by Lemma 10 , a contradiction. So Claim 3 holds.

Fig. 5.

Fig. 6.

Fig. 7.
By Claim 3, let $e \in E\left(H^{\prime}\right)-E^{\prime}\left(L^{d-1}(G)\right)$. Then $I_{d-1}^{-1}(e)$ is in a lane in G with length at least d. Let P_{1} be the maximal lane in G containing $I_{d-1}^{-1}(e)$. Suppose first P_{1} is a (u, v)-path (for the case that P_{1} is a cycle, we can argue similarly). Then $d_{G}(u), d_{G}(v) \geq 3$, and at least there exists another (v, u)-path P_{2} in $G-E\left(P_{1}\right)$ (otherwise, let $u_{1} \in N_{G}(u)-V\left(P_{1}\right)$ and $v_{1} \in N_{G}(v)-V\left(P_{1}\right)$, then $\operatorname{dist}\left(u_{1}, v_{1}\right)=d+2$, a contradiction). Let P_{2}, \ldots, P_{m} be all minimal (u, v)-paths in $G-E\left(P_{1}\right)$ with $E\left(P_{i}\right) \cap E\left(P_{j}\right)=\emptyset($ when $i \neq j)$.

Claim 4. There exists $a(u, v)$-path $P_{i}(i \neq 1)$ that contains a lane with length at most $d-1$.
Proof. By contradiction. Suppose that each P_{i} contains a lane with length at least d. Then $1 \leq\left|L^{d-1}\left(P_{i}\right) \cap E^{\prime \prime}\left(L^{d-1}(G)\right)\right| \leq 2$ and $\sum_{i=1}^{m}\left|L^{d-1}\left(P_{i}\right) \cap E^{\prime \prime}\left(L^{d-1}(G)\right)\right| \leq m+1$ since $d \geq \operatorname{diam}(G)$. If $m=2$, noting that $d_{G}(u) \geq 3, d_{G}(v) \geq 3$, so there always exist some $x \in N_{G}(u)$ and $\bar{y} \in N_{G}(v)$ such that $\operatorname{dist}_{G}(x, y) \geq d+1>\operatorname{diam}(G)$, a contradiction. So $m \geq 3$. If $f_{i} \notin \bigcup_{i=1}^{m} E\left(L^{d-1}\left(P_{i}\right)\right)$, then $e \notin E\left(H^{\prime}\right)$ since $m \geq 3$. So $\left\{f_{1}, f_{2}\right\} \subseteq \bigcup_{i=1}^{m} E\left(L^{d-1}\left(P_{i}\right)\right)$, and $H=C_{4}$ or $K_{2,3}$. If $H=K_{2,3}$, then there is a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in H. If $H=C_{4}$, then one of vertices in H is trivial. Thus there is a dominating $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail in H. In either case, $L^{d}(G)$ is Hamilton-connected, a contradiction. So Claim 4 holds.

By Claim 4, suppose that P_{2} contains a lane with length at most $d-1$. Note that $P_{1} \cup P_{2}$ is a cycle in G. Then $L^{d-1}\left(P_{1} \cup P_{2}\right)$ is still a cycle in $L^{d-1}(G), e \in L^{d-1}\left(P_{1} \cup P_{2}\right)$ and at most two edges in $L^{d-1}\left(P_{1} \cup P_{2}\right)$ are not in $E^{\prime}\left(L^{d-1}(G)\right)$. If $m \geq 3$, then $H=C_{4}, v\left(f_{1}\right), v\left(f_{2}\right) \in V\left(C_{4}\right)$ and one of the vertices of $V(H)$ is trivial. Thus $L^{d}(G)$ is Hamilton-connected. So we assume that $m=2$.

Claim 5. $\left|E\left(L^{d-1}\left(P_{1}\right)\right)\right|=2$.
Proof. By contradiction. Suppose that $E\left(L^{d-1}\left(P_{1}\right)\right)=\{e\}$. If $e \in\left\{f_{1}, f_{2}\right\}$, without loss of generality, we assume that $e=f_{1}$. Then H is the graph $K_{2,3}$ (see Fig. 5). Thus $L^{d-1}(G)$ has a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail by Lemma 10 . Hence $L^{d}(G)$ is Hamiltonconnected, a contradiction. Thus e $\notin\left\{f_{1}, f_{2}\right\}$.

Since each edge except e in $L^{d-1}\left(P_{1} \cup P_{2}\right)$ is in $E^{\prime}\left(L^{d-1}(G)\right)$ and $e \notin E^{\prime}\left(L^{d-1}(G)\right)$, we have $f_{1}, f_{2} \in E\left(L^{d-1}\left(P_{1} \cup P_{2}\right)\right)$. If f_{1}, f_{2} are in the same triangle, then $L^{d-1}\left(P_{1} \cup P_{2}\right)$ is collapsible, thus $e \notin E(H)$, a contradiction. Thus f_{1}, f_{2} are not in the same triangle. Hence H is the graph shown in Fig. 6. Thus $L^{d-1}(G)$ has a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail by Lemma 10 . Hence $L^{d}(G)$ is Hamilton-connected, a contradiction. So Claim 5 holds.

By Claim 5, $\left|E\left(L^{d-1}\left(P_{1}\right)\right)\right|=2$. Since each edge in $L^{d-1}\left(P_{1} \cup P_{2}\right)$ except $L^{d-1}\left(P_{1}\right)$ is in $E^{\prime}\left(L^{d-1}(G)\right)$ and $L^{d-1}\left(P_{1}\right) \cap$ $E^{\prime}\left(L^{d-1}(G)\right)=\emptyset$, we have $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1} \cup P_{2}\right)\right)\right| \geq 1$. If $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1} \cup P_{2}\right)\right)\right|=1$, without loss of generality, we assume that $f_{1} \in E\left(L^{d-1}\left(P_{1} \cup P_{2}\right)\right)$. Then $v\left(f_{2}\right)$ is contracted. Thus $f_{1} \notin E\left(L^{d-1}\left(P_{1}\right)\right)$. (Otherwise H is collapsible and $H=K_{1}$.) Moreover $H=K_{2,3}$ and x is trivial in H (see Fig. 7). Thus the preimage of a vertex in $V(H)-\left\{x, v\left(f_{1}\right)\right\}$ contains $v\left(f_{2}\right)$. It is easy to check that $L^{d-1}(G)$ contains a dominating $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail by Lemma 10 . Hence $L^{d}(G)$ is Hamilton-connected. This contradicts the assumption. Thus $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1} \cup P_{2}\right)\right)\right|=2$.

We break this into three cases to finish the proof.
Case 1. $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1}\right)\right)\right|=0$.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.
If f_{1}, f_{2} are in the same triangle in H^{\prime}, then H is the graph shown in Fig. 8.
If f_{1}, f_{2} are in two edge-disjoint triangles in H^{\prime}, then H is one of the graphs in Fig. 9. (In this and the following figures, the two $\boldsymbol{Q}_{\mathrm{s}}$ stand for the vertices $v\left(f_{1}\right)$ and $v\left(f_{2}\right)$, respectively $)$.

If f_{1}, f_{2} are in two triangles sharing an edge in H^{\prime}, then H is one of the graphs shown in Fig. 10.
In either graph, H contains a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right)$-trail. Thus $L^{d}(G)$ is Hamilton-connected, a contradiction.
Case 2. $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1}\right)\right)\right|=1$.
In this case, H is one of the graphs shown in Fig. 11. Note that $L^{d-1}\left(P_{1}\right)$ is a lane. Then the vertex x (see the graph) is trivial in H. Thus $L^{d-1}(G)$ contains a spanning $\left(v\left(f_{1}\right), v\left(f_{2}\right)\right.$-trail by Lemma 10. Hence $L^{d}(G)$ is Hamilton-connected, a contradiction.
Case 3. $\left|\left\{f_{1}, f_{2}\right\} \cap E\left(L^{d-1}\left(P_{1}\right)\right)\right|=2$.
Then H is the graph shown in Fig. 12, and x is trivial in H. Thus $L^{d}(G)$ is Hamilton-connected, a contradiction.
Having exhausted the cases, we have completed the proof of Theorem 13.
An obvious corollary is the following.
Corollary 14. Let G be a connected graph that is neither a path nor C_{n}. If the length of a longest lane is k with $k \geq \operatorname{diam}(G)+1$, then $h c(G)=k-1$.

Noting that $k \leq 2 \operatorname{diam}(G)-1$, we have the following corollary.

Corollary 15. Let G be a connected graph that is neither a path nor C_{n}. Then $h c(G) \leq 2(\operatorname{diam}(G)-1)$.
Let C be a cycle of length $2 d(d>1)$ and K be a complete graph of order $m>2$. G is a graph obtained by combining C and K so that C and K share exactly one edge. Then $L^{2 d-3}(G)$ has a 2 -cut so that $L^{2 d-3}(G)$ is not Hamilton-connected. On the other hand, $L^{2 d-2}(G)$ is Hamilton-connected. Therefore Corollary 15 is best possible.

Theorem 16. Let $d=\operatorname{diam}(G) \geq 3$. Then one of the following holds.
(i) $L^{d}(G)$ is Hamilton-connected;
(ii) $L^{d-1}(G)$ has a collapsible subgraph H such that $L^{d-1}(G) / H$ is a cycle of length at least 3.

Proof. Suppose (i) does not hold. It suffices to show (ii) holds. Since $L^{d}(G)$ is not Hamilton-connected, there exists a lane L in G with length $k \geq d+2$ by Theorem 13 . Suppose u and v are the two endvertices of L (possibly $u=v$ if L is a cycle), then $d(u) \geq 3$ and $d(v) \geq 3$ (otherwise $d>k$). Moreover, $G-L$ is connected. $L^{d-1}(L)$ is still a lane with length at least 3 and we assume $L^{\prime}=L^{d-1}(L)$ with two endvertices u^{\prime} and v^{\prime} in $L^{d-1}(G)$. Let $H=\left(L^{d-1}(G)-L^{\prime}\right) \cup\left\{u^{\prime}, v^{\prime}\right\}$. We are going to show that H is collapsible. Let H^{\prime} be the reduction of H and we only need to show $H^{\prime}=K_{1}$. For a contradiction, suppose there exists at least one edge $x y$ in H^{\prime}. Since H^{\prime} is reduced, $x y$ cannot be in a cycle of length at most 3 . Correspondingly, there exists at least one edge $x^{\prime} y^{\prime}$ in the preimage of $x y$ in H that is not contained in a cycle of length at most 3 . By Lemma 12, the preimage of $x^{\prime} y^{\prime}$ in G must be a lane with length at least d and suppose the lane is Q. Take the midpoint w of P and the midpoint z of Q, then $\operatorname{dist}(w, z) \geq k / 2+d / 2 \geq d+1$, a contradiction. Note that $L^{d-1}(G) / H$ is a cycle obtained by identifying the two endvertices of P^{\prime} and has length at least three. So we are done.

Then we have the following corollary by the above theorem:

Corollary 17. Let $d=\operatorname{diam}(G) \geq 3$. Then $L^{d}(G)$ is Hamilton-connected if and only if $\kappa\left(L^{d}(G)\right) \geq 3$.
Proof. Necessity. This direction is trivial.
Sufficiency. For a contradiction, suppose that $\kappa\left(L^{d}(G)\right) \geq 3$ and $L^{d}(G)$ is not Hamilton-connected, then $L^{d-1}(G)$ is essentially 3-edge-connected. By (ii) of Theorem $16, L^{d-1}(G)$ has an essential 2-edge-cut, a contradiction.

4. Hamilton-connected index and connectivity

Let $\kappa^{3}(G)=\min \left\{m \mid L^{m}(G)\right.$ is 3-connected $\}$. The following result shows that the Hamilton-connected index of G is not far from $\kappa^{3}(G)$.

Theorem 18. Let G be a graph which is neither a path nor a cycle. Then $\kappa^{3}(G) \leq h c(G) \leq \kappa^{3}(G)+2$.
Proof. Let $c=\kappa^{3}(G)$. Noticing that a Hamilton-connected graph should be 3-connected, we have $h c(G) \geq c$.
It suffices to prove that $h c(G) \leq c+2$. According to the definition of c, we know that $L^{c}(G)$ is 3-connected. So $\delta\left(L^{c}(G)\right) \geq 3$. Then $L^{c+1}(G)$ is the union of edge-disjoint complete subgraphs and $\delta\left(L^{c+1}(G)\right) \geq 4, \kappa\left(L^{c+1}(G)\right) \geq 3$. Hence each edge of $L^{c+1}(G)$ is in a triangle and $L^{c+1}(G)$ is collapsible by Theorem 8. Let $H=L^{c+1}(G)$. For any two edges e and f in H, we distinguish the following two cases.
Case 1. e and f are not in the same complete subgraph and, say, they are in two different complete subgraphs K_{s} and K_{t} of H respectively.

If both s and t are at least 4, then $H(e, f)$ is still collapsible since $K_{s}(e)$ and $K_{t}(f)$ have at least one triangle and exactly a C_{4}. Hence by Lemma $9, H(e, f)$ has a spanning $(v(e), v(f))$-trail and so $L(H)=L^{c+2}(G)$ is Hamilton-connected. In the case that at least one of $\{s, t\}$ is 3 , say $s=3$, since $\kappa\left(L^{c+1}(G)\right) \geq 3$, the two endvertices of e are connected by a path P with $E(P) \bigcap E\left(K_{s}\right)=\emptyset$ in which each edge is in a complete subgraph of order at least 3 , so the reduction of $H(e, f)$ is K_{1}, i.e., $H(e, f)$ is collapsible and so $L(H)=L^{c+2}(G)$ is Hamilton-connected.

Case 2. e and f are in the same complete subgraph K_{t} of H.
If $t \geq 5$, then $H(e, f)$ is still collapsible since $K_{t}(e, f)$ has at least a triangle. Hence by Lemma $9, H(e, f)$ has a spanning $(v(e), v(f))$-trail and so $L(H)=L^{c+2}(G)$ is Hamilton-connected. If $t=3$, since $\kappa\left(L^{c+1}(G)\right) \geq 3$, at least one of $\{e, f\}$, say e, has two endvertices that are connected by a path Q with $E(Q) \bigcap E\left(K_{t}\right)=\emptyset$ in which every edge is in a complete subgraph of order at least 3, so the reduction of $H(e, f)$ is K_{1}, i.e., $H(e, f)$ is collapsible and hence $L(H)=L^{c+2}(G)$ is Hamilton-connected. In the remaining case that $t=4$, if e and f are incident, then the reduction of $H(e, f)$ is K_{1} since $K_{t}(e, f)$ becomes a complete graph after contracting the unique triangle in it. Otherwise, if it is not collapsible, then the reduction of $H(e, f)$ must be the graph shown in Fig. 13. Then it has a spanning $(v(e), v(f))$-trail, so $L(H)=L^{c+2}(G)$ is Hamilton-connected.

In either case, there is a spanning $(v(e), v(f))$-trail in $H(e, f)$. Hence $h c(G) \leq c+2$.

Fig. 13.

Fig. 14.
To show the sharpness of Theorem 18 , we present an infinite family of graphs G with $h c(G)=\kappa^{3}(G)+2$. Let P_{10} denote the Petersen graph and let $s \geq 1$ be an integer. Let $G(s)$ be obtained from P_{10} by first replacing every edge of P_{10} by a path of $s+1$ edges, and then adding a pendent edge at each vertex of P_{10}.

Then $l(G(s))=s+1$ and $k^{3}(G(s))=s$. However, $L^{s}(G(s))$ can be contracted to a P_{10}, each of whose vertices has a preimage with at least 4 edges. Let H_{1} be the preimage of a vertex of P_{10} viewed as a contraction image of $L^{s}(G(s))$ (in fact, P_{10} is the reduction of $L^{s}(G(s))$ and we can just take H_{1} as the preimage of any vertex in the reduction). Take two edges e_{1}, e_{2} of $L^{s}(G(s))$ such that $e_{1}, e_{2} \in V\left(H_{1}\right)$. Let T be an $\left(e_{1}, e_{2}\right)$-trail of $L^{s}(G(s))$. In the process when $L^{s}(G(s))$ is contracted to P_{10}, T is also contracted to an even subgraph T^{\prime} (and so a cycle) of P_{10}, by the choices of e_{1} and e_{2}. It follows that T^{\prime} must miss at least one vertex of P_{10}, and so T cannot be an dominating $\left(e_{1}, e_{2}\right)$-trail of $L^{s}(G(s))$. This proves that $L^{s+1}(G(s))$ cannot be hamiltonian-connected, and so $h c(G(s))>\kappa^{3}(G(s))+1$. By Theorem 18, $h c(G(s))=\kappa^{3}(G(s))+2$.

5. Hamilton-connected index and degree

We start with some results on the hamiltonian index.
Theorem 19 (Chartrand and Wall, [7]). Let G be a connected graph with minimum degree at least 3 . Then $h(G) \leq 2$.
Theorem 20 (Saražin, [12]). Let G be a connected graph that is not a path. Then $h(G) \leq|V(G)|-\Delta(G)$.
Accordingly, we have the following two theorems:
Theorem 21. Let G be a connected graph with minimum degree at least 3 . Then $h c(G) \leq 3$.
Proof. Let $d, f \in E\left(L^{2}(G)\right)$ and H be the reduction of $L^{2}(G)(e, f)$. Since $\delta(G) \geq 3, \delta(L(G)) \geq 4$. Thus every edge in $L^{2}(G)$ lies in some $K_{t}(t \geq 4)$. According to the proof of Theorem $18, K_{t}(e)$ and $K_{t}(f)$ are collapsible. If H is not collapsible, then it must be as Fig. 13. Thus $L^{3}(G)$ is Hamilton-connected. This completes the proof of Theorem 21.

In the graph shown in Fig. 14, each cycle stands for complete graphs $K_{t}(t \geq 4)$. Then $\delta(G) \geq 3$. On the other hand, $L^{2}(G)$ is not Hamilton-connected since $L^{2}(G)$ is not 3-connected, but $L^{3}(G)$ is Hamilton-connected. So Theorem 21 is best possible.
Theorem 22. Let G be a connected graph that is neither a path nor a cycle. Then $h c(G) \leq|V(G)|-\Delta(G)+1$.
Proof. Since G is a connected graph that is neither a path nor a cycle, $\Delta(G) \geq 3$. Let $u \in V(G)$ with $d_{G}(u)=\Delta(G)$, and L be a longest lane with length k. Then

$$
\begin{aligned}
& \left|\left(N_{G}(u) \cup\{u\}\right) \cap V(L)\right| \leq \begin{cases}2, & \text { if } L \text { is a path } \\
3, & \text { if } L \text { is a cycle }\end{cases} \\
& |V(L)|= \begin{cases}k+1, & \text { if } L \text { is a path } \\
k, & \text { if } L \text { is a cycle }\end{cases}
\end{aligned}
$$

and $\left|N_{G}(u) \cup\{u\}\right|=\Delta(G)+1$. Thus

$$
\begin{aligned}
\left|\left(N_{G}(u) \cup\{u\}\right) \cup V(L)\right| & =\left|N_{G}(u) \cup\{u\}\right|+|V(L)|-\left|\left(N_{G}(u) \cup\{u\}\right) \cap V(L)\right| \\
& \geq \begin{cases}(\Delta+1)+(k+1)-2, & \text { if } L \text { is a path } \\
(\Delta+1)+k-3, & \text { if } L \text { is a cycle }\end{cases} \\
& \geq \Delta+k-2 .
\end{aligned}
$$

Fig. 15.
Therefore $n \geq \Delta(G)+k-2$. If $\operatorname{diam}(G) \leq k-1$, then $h c(G) \leq k-1 \leq n-\Delta(G)+1$ by Theorem 13 . Next we assume that $\operatorname{diam}(G) \geq k$. Then $h c(G) \leq \operatorname{diam}(G)$.

Let Q be a $\left(v_{1}, v_{2}\right)$-path satisfying $d_{G}\left(v_{1}, v_{2}\right)=\operatorname{diam}(G)$. Let $\left|\left(N_{G}(u) \cup\{u\}\right) \cap V(Q)\right|=t$. Then $\left|\left(N_{G}(u) \cup\{u\}\right) \cup V(Q)\right|=$ $\left|N_{G}(u) \cup\{u\}\right|+|V(Q)|-\left|\left(N_{G}(u) \cup\{u\}\right) \cap V(Q)\right|=(\Delta+1)+(\operatorname{diam}(G)+1)-t=\Delta+\operatorname{diam}(G)+2-t$. If $t \leq 2$, then $h c(G) \leq \operatorname{diam}(G) \leq n-\Delta(G)-2+t \leq n-\Delta$. Thus we assume $t \geq 3$. Now we only need to discuss two cases.

Case 1. $u \notin V(Q)$.
Then $\left|N_{G}(u) \cap V(Q)\right|=t$, so we can assume $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}=N_{G}(u) \cap V(Q)$ such that $u_{1}, u_{2}, \ldots, u_{t}$ occur on $V(Q)$ in the order of the indices. Note that Q is a path satisfying $d_{G}\left(v_{1}, v_{2}\right)=\operatorname{diam}(G)$. By the choice of Q, we have $u_{i} u_{i+1} \in E(Q)(1 \leq i \leq t-1)$ and t must be 3. (Otherwise, if $t \geq 4$, then $d_{G}\left(v_{1}, v_{2}\right)$ can be shortened by discarding vertices $u_{2}, u_{3}, \ldots, u_{t-1}$ and adding u to Q.) Thus $Q^{\prime}=Q-u_{2}+u$ is still a (v_{1}, v_{2})-path satisfying $d_{G}\left(v_{1}, v_{2}\right)=\operatorname{diam}(G)$. Note that $n \geq\left|\left(N_{G}(u) \cup\{u\}\right) \cup V\left(Q^{\prime}\right)\right|$. Then $n \geq \Delta(G)+\operatorname{diam}(G)+2-t=\Delta(G)+\operatorname{diam}(G)-1$. Thus $h c(G) \leq n-\Delta(G)+1$.
Case 2. $u \in V(Q)$.
Then $\left|N_{G}(u) \cap V(Q)\right|=t-1$, so we can assume $\left\{u_{1}, u_{2}, \ldots, u_{t-1}\right\}=N_{G}(u) \cap V(Q)$ such that $u_{1}, u_{2}, \ldots, u_{t-1}$ occur on $V(Q)$ in the order of the indices. Note that Q is a path satisfying $d_{G}\left(v_{1}, v_{2}\right)=\operatorname{diam}(G)$ and u is also on the path. This forces t to be 3 and $u_{1} u, u u_{2} \in E(Q)$. Note that $n \geq\left|\left(N_{G}(u) \cup\{u\}\right) \cup V(Q)\right|$. Then $n \geq \Delta(G)+\operatorname{diam}(G)+2-t=\Delta(G)+\operatorname{diam}(G)-1$. Thus $h c(G) \leq n-\Delta(G)+1$.

Let G_{0} be the (unique) tree on $n \geq 5$ vertices with exactly 3 leaves such that there are two leaves of G_{0} having distances $n-2$ from the third leaf. We have that $n=\left|V\left(G_{0}\right)\right|, \Delta(G)=3$ and $L^{n-\Delta\left(G_{0}\right)}\left(G_{0}\right)$ is not 3-connected (hence not Hamiltonconnected) and $L^{n-\Delta\left(G_{0}\right)+1}\left(G_{0}\right)$ is Hamilton-connected. For the case that $n=5$, see Fig. 15 . So Theorem 22 is best possible.

Acknowledgement

This work was supported by Nature Science Funds of China Contract Grant No. 10671014.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.
[2] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, Journal of Graph Theory 12 (1988) 29-44.
[3] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congressus Numerantium 56 (1987) 223-246.
[4] P.A. Catlin, Z.Y. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Mathematics 160 (1996) 81-91.
[5] P.A. Catlin, T.N. Janakiraman, N. Srinivasan, Hamilton cycles and closed trails in iterated line graphs, Journal of Graph Theory 3 (1990) $347-364$.
[6] G. Chartrand, On hamiltonian line-graphs, Transactions of the American Mathematical Society 134 (1968) 559-566.
[7] G. Chartrand, C.E. Wall, On the hamiltonian index of a graph, Studia Scientiarum Mathematicarum Hungarica 8 (1973) 43-48.
[8] L.H. Clark, N.C. Wormald, Hamiltonian-like indices of graphs, ARS Combinatoria 15 (1983) 131-148.
[9] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canadian Mathematical Bulletin 8 (1965) 701-710.
[10] H.-J. Lai, On the hamiltonian index, Discrete Mathematics 69 (1988) 43-53.
[11] H.-J. Lai, Graphs whose edges are in small cycles, Discrete Mathematics 94 (1991) 11-22.
[12] M.L. Saražin, A simple upper bound for the hamiltonian index of a graph, Discrete Mathematics 134 (1994) 85-91.
[13] L. Xiong, Z. Liu, Hamiltonian iterated line graphs, Discrete Mathematics 256 (2002) 407-422.

[^0]: * Corresponding author at: Department of Mathematics, Beijing Institute of Technology, Beijing, 100081, PR China.

 E-mail address: imxiong@eyou.com (L. Xiong).

