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Abstract

Given a graph G, for an integer c ∈ {2, . . . , |V (G)|}, define λc(G) = min{|X | : X ⊆ E(G), ω(G − X) ≥ c}. For a graph G
and for an integer c = 1, 2, . . . , |V (G)| − 1, define,

τc(G) = min
X⊆E(G) and ω(G−X)>c

|X |

ω(G − X)− c
,

where the minimum is taken over all subsets X of E(G) such that ω(G − X) − c > 0. In this paper, we establish a relationship
between λc(G) and τc−1(G), which gives a characterization of the edge-connectivity of a graph G in terms of the spanning tree
packing number of subgraphs of G. The digraph analogue is also obtained. The main results are applied to show that if a graph G is
s-hamiltonian, then L(G) is also s-hamiltonian, and that if a graph G is s-hamiltonian-connected, then L(G) is also s-hamiltonian-
connected.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Graphs considered in this paper are finite graphs. Undefined notation and terminology will follow those in [1].
Let G be a graph. As in [1], κ ′(G) and ω(G) denote the edge-connectivity and the number of components of
G, respectively. The spanning tree packing number of G, denoted τ(G), is the maximum number of edge-disjoint
spanning trees of G.

Over ten years ago, Catlin left an unpublished note [2] proving a theorem which characterizes the edge-connectivity
of a connected graph G in terms of the spanning tree packing numbers of its subgraphs.
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Theorem 1.1 (Catlin, [2]). Let G be a connected graph and let k ≥ 1 be an integer. Each of the following holds.

(i) κ ′(G) ≥ 2k if and only if ∀X ′ ⊆ E(G) with |X ′| ≤ k, τ (G − X ′) ≥ k.
(ii) κ ′(G) ≥ 2k + 1 if and only if ∀X ′ ⊆ E(G) with |X ′| ≤ k + 1, τ (G − X ′) ≥ k.

Using the fact that for a graph G and an integer m > 0, κ ′(G) ≥ m + 1 if and only if ∀e ∈ E(G), κ ′(G − e) ≥ m,
one can easily see that Theorem 1.1(ii) follows from Theorem 1.1(i). This theorem of Catlin has been very useful,
which motivates the other two authors to seek possible extensions of Theorem 1.1.

The following generalizations of the edge-connectivity and the spanning tree packing number of a graph have been
considered in the literature. In [5], Chen et al. defined the higher order of edge-connectivity as follows.

Given a graph G, for an integer c ∈ {2, . . . , |V (G)|}, define

λc(G) = min{|X | : X ⊆ E(G), ω(G − X) ≥ c}.

For c ≥ 1, a c-forest of G is a spanning forest of G with exactly c components. For a graph G and for an integer
c = 1, 2, . . . , |V (G)| − 1, the higher order of edge-toughness of G, is defined as

τc(G) = min
X⊆E(G) and ω(G−X)>c

|X |

ω(G − X)− c
,

where the minimum is taken over all subsets X of E(G) such that ω(G − X)− c > 0.
Chen, Koh and Peng [5] first determined the relationship between τc(G) and the maximum number of edge-disjoint

c-forests of G. When c = 1, Theorem 1.2 below has been obtained by Nash-Williams [9]. In [6], Chen and Lai
presented a short proof of Theorem 1.2 by showing that it is a matroid truncation version of an earlier result in [4].

Theorem 1.2 (Nash-Williams [9], Chen, Koh and Peng [5], Chen and Lai [6]). For integers k ≥ 0 and c = 1,
2, . . . , |V (G)| − 1, G has k edge-disjoint c-forests if and only if τc(G) ≥ k.

As λ2(G) = κ ′(G) and τ1(G) = τ(G), λc(G) and τc(G) are natural generalizations of κ ′(G) and τ(G). In this
paper, we shall extend Theorem 1.1 to show that a similar relation exists between λc(G) and τc−1(G). As indicated
earlier Theorem 1.1(ii) follows immediately from Theorem 1.1(i), it suffices to generalize Theorem 1.1(i).

Theorem 1.3. Let G be a connected graph and let k ≥ 1 and c = 2, . . . , |V (G)| be integers. Then the following
statements are equivalent.

(i) λc(G) ≥ 2(c − 1)2k.
(ii) ∀X ′ ⊆ E(G) with |X ′| ≤ (2c2

− 4c + 1)k, G − X ′ has k edge-disjoint (c − 1)-forests.
(iii) ∀X ′ ⊆ E(G) with |X ′| ≤ (2c2

− 4c + 1)k, τc−1(G − X ′) ≥ k.
(iv) ∀X, X ′ ⊆ E(G) with |X ′| ≤ (2c2

− 4c + 1)k and with ω(G − (X ′ ∪ X)) ≥ c,

|X |

ω(G − (X ′ ∪ X))− (c − 1)
≥ k.

Let D = (V, A) be a digraph. The elements of A are called arcs. We use e = (u, v) for an arc with tail u and head
v (that is, e is oriented from u to v). For S ⊆ V , let ∆+(S) denote the set of arcs with tail in S and head in V − S. We
use the notation ∆−(S) = ∆+(V − S), δ+(S) = |∆+(S)|, δ−(S) = |∆+(V − S)|.

A digraph D is called an arborescence if D arises from a tree by orienting the edges in such a way that every
vertex but one has one entering arc. A digraph D = (V, A) is strongly connected if there is a directed path from every
vertex to any other; k-arc-connected if deleting any subset of arcs of less than k elements leaves a strongly connected
digraph. It is well known that the condition that D = (V, A) is k-arc-connected is equivalent to the condition that
δ+(X) ≥ k for any ∅ 6= X ⊂ V .

The following theorem characterizes the arc-connectivity of a digraph in terms of the number of arc-disjoint
arborescences of its subgraphs.

Theorem 1.4. A digraph D = (V, A) is k-arc-connected if and only if ∀Y ⊆ A(D) with |Y | ≤ k, D − Y has k
arc-disjoint spanning arborescences.
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It is straightforward to see that when c = 2, Theorem 1.3 gives Theorem 1.1(i). By the remark after Theorem 1.1,
Theorem 1.1 becomes a special case of Theorem 1.3. In fact, Theorem 1.4 also implies Theorem 1.1, as shown in
Section 4.

The proofs of Theorems 1.3 and 1.4 will be given in Sections 2 and 3, respectively. In Section 4, we present some
of the applications of the main results.

2. Proof of Theorem 1.3

By Theorem 1.2, Theorem 1.3(ii) and Theorem 1.3(iii) are equivalent. The equivalence between Theorem 1.3(iii)
and Theorem 1.3(iv) follows from the definition of higher order of edge-toughness, as Theorem 1.3(iv) is a restatement
of Theorem 1.3(iii). Thus it suffices to show that Theorem 1.3(i) and Theorem 1.3(iv) are equivalent.

We shall first show that Theorem 1.3(i) implies Theorem 1.3(iv). For disjoint subsets X, Y ⊂ V (G), [X, Y ] denotes
the set of edges in G with one end in X and the other in Y , and ∂(X) = [X, V (G)− X ]. If H is a subgraph of G, then
∂(H) = ∂(V (H)).

Let Y ⊆ E(G) with ω = ω(G − Y ) ≥ c ≥ 1. Suppose that W1,W2, . . . ,Wω are the components of G − Y . For
each (c − 1)-subset {Wi1 ,Wi2 , . . . ,Wic−1} ⊆ {W1,W2, . . . ,Wω}, let

X i1,i2,...,ic−1 =

c−1⋃
j=1

∂(Wi j ).

Since G − X i1,i2,...,ic−1 has at least c components, we have, for each (c− 1)-subset {i1, i2, . . . , ic−1} of {1, 2, . . . , ω},

|X i1,i2,...,ic−1 | ≥ λc(G). (1)

Since we have
(

ω

c − 1

)
ways to choose these c − 1 components, it follows by (1) that

∑
{i1,i2,...,ic−1}⊆{1,2,...,ω}

|X i1,i2,...,ic−1 | ≥ λc(G)

(
ω

c − 1

)
. (2)

For each edge ei j ∈ [Wi ,W j ] ⊆ Y with i 6= j , ei j ∈ X i1,i2,...,ic−1 if and only if at least one member of {Wi ,W j }

is in {Wi1 ,Wi2 , . . . ,Wic−1}. By the Inclusion–Exclusion Theorem, ei j occurs in exactly 2
(
ω − 1
c − 2

)
−

(
ω − 2
c − 3

)
of the

X i1,i2,...,ic−1 ’s, and so by (2),[
2
(
ω − 1
c − 2

)
−

(
ω − 2
c − 3

)]
· |Y | =

∑
{i1,i2,...,ic−1}⊆{1,2,...,ω}

|X i1,i2,...,ic−1 | ≥ λc(G)

(
ω

c − 1

)
. (3)

Now we assume X, X ′ ⊆ E(G) with |X ′| ≤ (2c2
− 4c + 1)k, Y = X ∪ X ′ and X ∩ X ′ = ∅. By (3) and by

|X ′| ≤ (2c2
− 4c + 1)k, we have[

2
(
ω − 1
c − 2

)
−

(
ω − 2
c − 3

)] [
|X | + (2c2

− 4c + 1)k
]
≥ λc(G)

(
ω

c − 1

)
. (4)

Since λc(G) ≥ 2(c − 1)2k, (4) gives

|X | + (2c2
− 4c + 1)k ≥ 2(c − 1)2k

(
ω

c − 1

)
2
(
ω − 1
c − 2

)
−

(
ω − 2
c − 3

) . (5)

Straightforward algebraic manipulation yields

ω!
(c−1)!(ω−c+1)!

2(ω−1)!
(c−2)!(ω−c+1)! −

(ω−2)!
(c−3)!(ω−c+1)!

=

ω(ω−1)(ω−2)!
(c−1)(c−2)(c−3)!

2(ω−1)(ω−2)!
(c−2)(c−3)! −

(ω−2)!
(c−3)!

=
ω(ω − 1)

(2ω − c)(c − 1)
,
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and so (
ω

c − 1

)
2
(
ω − 1
c − 2

)
−

(
ω − 2
c − 3

) = ω(ω − 1)
(2ω − c)(c − 1)

. (6)

Combine (5) and (6) to get

|X | + (2c2
− 4c + 1)k ≥ 2(c − 1)2k

ω(ω − 1)
(2ω − c)(c − 1)

= 2(c − 1)k
ω(ω − 1)

2ω − c
. (7)

Hence

|X | ≥ 2(c − 1)k
ω(ω − 1)

2ω − c
− (2c2

− 4c + 1)k

= k

[
2(c − 1)ω(ω − 1)

2ω − c
−
(2c2
− 4c + 1)(2ω − c)

2ω − c

]
= k

[
2(c − 1)ω2

− 2(c − 1)ω
2ω − c

−
(4c2
− 8c + 2)ω − (2c3

− 4c2
+ c)

2ω − c

]
= k

2(c − 1)ω2
− 2(c − 1)ω − (4c2

− 8c + 2)ω + (2c3
− 4c2

+ c)

2ω − c
.

It follows that

|X |

ω − c + 1
≥ k

2(c − 1)ω2
− 2(c − 1)ω − (4c2

− 8c + 2)ω + (2c3
− 4c2

+ c)

(2ω − c)(ω − c + 1)
. (8)

By (8) and by Theorem 1.2, it suffices to show that

2(c − 1)ω2
− 2(c − 1)ω − (4c2

− 8c + 2)ω + (2c3
− 4c2

+ c)

(2ω − c)(ω − c + 1)
≥ 1. (9)

By algebraic manipulations, the inequality

2(c − 1)ω2
− 2(c − 1)ω − (4c2

− 8c + 2)ω + (2c3
− 4c2

+ c) ≥ (2ω − c)(ω − c + 1) (10)

can be expressed as

(2c − 2)ω2
− 2(c − 1)ω − (4c2

− 8c + 2)ω + (2c3
− 4c2

+ c) ≥ 2ω2
− cω − 2(c − 1)ω + c(c − 1).

By collecting like terms and by removing the common factor (c − 2), we can rewrite (10) as follows.

2(c − 2)ω2
− (c − 2)(4c − 1)ω + (c − 2)(2c − 1)c = 2(c − 2)ω2

− (4c2
− 9c + 2)ω + (2c3

− 5c2
+ 2c)

≥ 0.

Hence (10) is equivalent to

(c − 2)(ω − c)(2ω − 2c + 1) ≥ 0. (11)

It follows that whenω ≥ c ≥ 2, Inequality (11) holds, which implies Inequality (9). This proves that Theorem 1.3(i)
implies Theorem 1.3(iv).

Now we assume the truth of Theorem 1.3(iv) to prove Theorem 1.3(i). We argue by contradiction and assume that
there exists an edge subset Y ∈ E(G) with |Y | < 2(c − 1)2k such that ω(G − Y ) ≥ c. Let X, X ′ ⊆ E(G) be subsets
of Y such that Y = X ∪ X ′, X ∩ X ′ = ∅, and such that

|X ′| =

{
(2c2
− 4c + 1)k if |Y | ≥ (2c2

− 4c + 1)k
|Y | if |Y | < (2c2

− 4c + 1)k.
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Then |X | < k. But as ω(G − X ′ − X)− (c − 1) ≥ 1, |X | ≥ |X |
ω(G−X ′−X)−(c−1) ≥ k, a contradiction.

3. Proof of Theorem 1.4

Throughout this section, for a digraph D, V (D) and A(D) denote the vertex set and the arc set of D, respectively,
and ω(D) represents the connected components of the undirected graph obtained from D by converting all directed
edges to undirected edges. We need a theorem by Edmonds in our proof.

Theorem 3.1 (Edmonds, [7]). A nontrivial digraph D is has k-arc-disjoint spanning arborescences if and only if for
every family of disjoint nonempty sets X1, X2, . . . , X t ⊆ V (D),

t∑
i=1

δ+(X i ) ≥ k(t − 1),

if and only if

min
Y⊂A(G)

|Y |

ω(D − Y )− 1
≥ k, (12)

where the minimum runs over all subsets Y ⊂ A(G) such that ω(D − Y ) ≥ 2.

Proof of Theorem 1.4. (H⇒) Suppose that X ⊆ A(G) satisfies ω(D − X) ≥ 2. Count the minimum number k (say)
of outgoing arcs from components of D − X . Let W1,W2, . . . ,Wω be the ω(D − X) components. Each component
Wi of D − X is incident with at least δ+(Wi ) ≥ k edges of X .

|X | =
ω∑

i=1

δ+(Wi ) ≥ kω(D − X). (13)

Since (13) holds for all edge sets of the form X = Y ∪ Y ′, where

Y ⊆ A(G), |Y | ≤ k and Y ∩ Y ′ = ∅,

it follows that

|Y ′| + k ≥ |Y ∪ Y ′| = |X | ≥ kω(D − X) = kω((D − Y )− Y ′),

and so

|Y ′| ≥ k[ω((D − Y )− Y ′)− 1]. (14)

Since X ⊆ A(D) is arbitrary with Y ⊆ X and Y ′ runs over all subsets of A(D − Y ) for all Y ⊆ A(D) and |Y | ≤ k,
where ω((D − Y )− Y ′) ≥ 2, it follows by (14) that,

min
Y ′⊆A(D−Y )

|Y ′|

ω((D − Y )− Y ′)− 1
≥ k,

for all Y ⊆ A(D) and |Y | ≤ k. Thus (12) must hold with D replaced by D − Y , and so by Theorem 3.1, D − Y has k
arc-disjoint spanning arborescences.
(⇐H) We argue by contradiction. Suppose that ∀Y ⊆ A(D) with |Y | ≤ k, D − Y has k arc-disjoint spanning

arborescences but there exists a set V0 with ∅ 6= V0 ⊂ V (D) such that δ+(V0) < k. Let Y = [V0, V (D)− V0]. Then
ω(D − Y ) ≥ 2 and Y = ∆+(V0) ∪∆−(V0) with ∆+(V0) ∩∆−(V0) = ∅.

Therefore,

|∆+(V0)|

ω(G −∆−(V0)−∆+(V0))− 1
≤ |∆+(V0)| < k,

contrary to (12). �
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4. Applications

Let k ≥ 0 be an integer, G be a graph and D(G) be an orientation of G. If D(G) as a digraph is k-arc-connected,
then D(G) is a k-arc-connected orientation of G. Nash-Williams has characterized graphs that have a k-arc-connected
orientation.

Theorem 4.1 (Nash-Williams, [9]). A graph G has a k-arc-connected orientation if and only if G is 2k-edge-
connected.

The following two corollaries of Theorems 1.3 and 1.4 show that Theorem 1.1 also follows from Theorem 1.4.

Corollary 4.2. Let G be a graph and let k > 0 be an integer. The following are equivalent.

(i) κ ′(G) ≥ 2k.
(ii) G has a k-arc-connected orientation.

(iii) G has an orientation D = (V, A) = D(G) such that ∀X ⊆ A(D) with |X | ≤ k, D − X has k arc-disjoint
spanning arborescence.

(iv) ∀X ⊆ E(G) with |X | ≤ k, G − X has k edge-disjoint spanning trees.

Proof. By Theorem 4.1, (i)⇔ (ii). By Theorem 1.4(ii)⇔ (iii). Since every spanning arborescence in an orientation
of G is a spanning tree of G, thus (iii) implies (iv). We assume (iv) to prove (iii). Suppose that G has an edge cut W
such that |W | < 2k. Let X ⊆ W be such that |X | = min{k, |W |} ≤ k. Then W − X is an edge cut of G − X with
|W − X | ≤ k − 1 and so G − X cannot have k edge-disjoint spanning trees, contrary to (iv). �

Notice that κ ′(G) ≥ 2k + 1 if and only if ∀e ∈ E(G), κ ′(G − e) ≥ 2k. So Corollary 4.3 below follows directly
from Corollary 4.2.

Corollary 4.3. Let G be a graph and let k > 0 be an integer. The following are equivalent.

(i) κ ′(G) ≥ 2k + 1.
(ii) ∀e ∈ E(G), κ ′(G − e) ≥ 2k.

(iii) ∀e ∈ E(G), G − e has a k-arc-connected orientation.
(iv) ∀e ∈ E(G), G − e has an orientation D(G − e) such that ∀X ⊆ A(D(G − e)) with |X | ≤ k, D(G − e)− X has

k arc-disjoint spanning arborescences.
(v) ∀X ⊆ E(G) with |X | ≤ k + 1, G − X has k edge-disjoint spanning trees.

A graph G is hamiltonian-connected if ∀u, v ∈ V (G), G has a spanning (u, v)-path. The line graph of a graph G,
denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding
edges in G are adjacent. In 1986, Zhan proved:

Theorem 4.4 (Zhan, [11]). If G is a 4-edge-connected graph, then the line graph L(G) is hamiltonian-connected.

For integers n ≥ 3 and s ≥ 0 with s ≤ n − 3, a graph G of order n is s-hamiltonian, if the removal of any k
vertices, 0 ≤ k ≤ s, results in a hamiltonian graph. Lesniak-Foster proved a nice result.

Theorem 4.5 (Lesniak-Foster, Lemma 3 in [8]). If G is 1-hamiltonian, then L(G) is 1-hamiltonian.

We can easily extend Theorems 4.4 and 4.5 respectively by using Corollary 4.2 and the following Theorems 4.6
and 4.7.

For a graph G, let O(G) = {v ∈ V (G) : dG(v) is odd}. A connected graph G is eulerian if O(G) = ∅. A spanning
closed trail of G is also referred as a spanning eulerian subgraph of G. A subgraph H of G is dominating if G−V (H)
is edgeless. (Note the difference between a dominating vertex subset and a dominating subgraph.) If a closed trail C
of G satisfies E(G − V (C)) = ∅, then C is a dominating eulerian subgraph. A well known relationship between
dominating eulerian subgraphs in G and hamiltonian cycles in L(G) is given by Harary and Nash-Williams.

Theorem 4.6 (Harary and Nash-Williams, [10]). Let G be a connected graph with at least 3 edges. The line graph
L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.
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If P = v0v1 · · · vk denotes a trail (or path, respectively), of G, and if E(P) = {e1, e2, . . . , ek} is an edge set such
that for i = 1, 2, . . . , k, ei = vi−1vi , then P is called a (v0, vk)-trail (or path, respectively) of G, and an (e1, ek)-trail
(or path, respectively) of G. The vertices v1, v2, . . . , vk−1 are called the internal vertices of P . The edges e1, ek are
called the end edges of P . A trail P of G is dominating if every edge of G is incident with an internal vertex of P .
With similar arguments in [10] (see page 74 of [10]), the following can be similarly proved.

Theorem 4.7. Let G be a connected graph with |E(G)| ≥ 3. Then L(G) is hamiltonian-connected if and only if for
any pair of edges e1, e2 ∈ E(G), G has a dominating (e1, e2)-trail.

Theorem 4.8 (Catlin and Lai, [3]). Let G be a graph and e1, e2 ∈ E(G). If G has two edge-disjoint spanning trees,
then either G has a spanning (e1, e2)-trail, or {e1, e2} is an edge cut of G such that both components of G − {e1, e2}

contain at least one edge.

Let n ≥ 3 and s ≥ 0 be integers with 0 ≤ s ≤ n − 3. A graph G of order n is s-hamiltonian-connected, if the
removal of any k vertices, 0 ≤ k ≤ s, results in a hamiltonian-connected graph.

Corollary 4.9. Let s ≥ 2 be an integer. Each of the following holds.

(i) If a graph G is (s + 2)-edge-connected, then L(G) is s-hamiltonian.
(ii) If a graph G is s-hamiltonian, then L(G) is also s-hamiltonian.

Proof. (i) Let S ∈ V (L(G)) with |S| = s and S′ be the corresponding edge set in G. Let S′′ ⊂ S′ with
|S′′| = s − 2 ≥ 0. Since G is (s + 2)-edge-connected, G − S′′ is 4-edge-connected. By Corollary 4.2 (i) and
(iv), G − S′ has two edge-disjoint spanning trees, and so G − S′ has a spanning eulerian subgraph. By Theorem 4.6,
L(G − S) is hamiltonian. Thus L(G) is s-hamiltonian.

(ii) If G is s-hamiltonian, then κ ′(G) ≥ κ(G) ≥ s + 2. Thus by (i), L(G) must also be s-hamiltonian. �

Corollary 4.10. Let s ≥ 0 be an integer.

(i) If a graph G is (s + 4)-edge-connected, then L(G) is s-hamiltonian-connected.
(ii) If a graph G is s-hamiltonian-connected, then L(G) is also s-hamiltonian-connected.

Proof. (i) Let S ∈ V (L(G)) with |S| = s and S′ be the corresponding edge set in G. Since G is (s + 4)-edge-
connected, G − S′ is 4-edge-connected. By Corollary 4.2(i) and (iv), G − S′ has two edge-disjoint spanning trees.
Since G− S′ has no 2-edge-cut X such that both components of G− X contain at least one edge, by Theorem 4.8, for
any e1, e2 ∈ E(G − S′), G − S′ has a spanning (e1, e2)-trail. By Theorem 4.7, L(G − S) is hamiltonian-connected.
Thus L(G) is s-hamiltonian-connected.

(ii) When s = 0, by Theorem 4.7, it suffices to show that for any edges e1, e2 ∈ E(G), G has dominating (e1, e2)-
trail.

We assume that e1 = u1v1 and e2 = u2v2. Since G is hamiltonian-connected, G has a hamiltonian (u1, u2)-path
P . If e1, e2 ∈ E(P), then since P is a (u1, u2)-path, e1 and e2 must be the two end edges of the path and so P is
a dominating (e1, e2)-trail of G. If e1, e2 6∈ E(P), then G[E(P) ∪ {e1, e2}] is a dominating (e1, e2)-trail of G. If
|E(P)∩ {e1, e2}| = 1, then we may assume that e1 ∈ E(P) and e2 6∈ E(P). Since P is a (u1, u2)-path, e1 must be an
end edge of P , and so G[E(P) ∪ {e2}] is a dominating (e1, e2)-trail of G.

We assume that s ≥ 1. Since G is s-hamiltonian-connected, then κ ′(G) ≥ κ(G) ≥ s + 3. Let S ∈ V (L(G)) with
|S| = s and S′ be the corresponding edge set in G. Let S′′ ⊂ S′ with |S′′| = s − 1 ≥ 0. Since G is (s + 3)-edge-
connected, G − S′′ is 4-edge-connected. By Corollary 4.2(i) and (iv), G − S′ has two edge-disjoint spanning trees.
Since κ ′(G − S′) ≥ 3, G − S′ has no 2-edge-cut X such that both components of G − X contain at least one edge.
By Theorem 4.8, for any e1, e2 ∈ E(G − S′), G − S′ has a spanning (e1, e2)-trail. By Theorem 4.7, L(G − S) is
hamiltonian-connected. Thus L(G) is s-hamiltonian-connected. �
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