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Abstract

A sequence d = (d1, d2, . . . , dn) is graphic if there is a simple graph G with degree sequence d , and such a graph G is
called a realization of d . A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is
supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic
sequence d = (d1, d2, . . . , dn) has a supereulerian realization if and only if dn ≥ 2 and that d is line-hamiltonian if and only if
either d1 = n − 1, or

∑
di=1 di ≤

∑
d j≥2(d j − 2).

c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider finite graphs in this note. Undefined terms can be found in [1]. Let G be a graph with vertex set V (G)
and edge set E(G). A vertex v ∈ V (G) is called a pendent vertex if d(v) = 1. Let D1(G) denote the set of all pendent
vertices of G. An edge e ∈ E(G) is called a pendent edge if one of its endpoints is a pendent vertex. If v ∈ V (G),
then NG(v) = {u : uv ∈ E(G)}; and if T ⊆ V (G), then NG(T ) = {u ∈ V (G) \ T : uv ∈ E(G) and v ∈ T }. When
the graph G is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A cycle C
of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains
a spanning eulerian subgraph.

If G has vertices v1, v2, . . . , vn , the sequence (d(v1), d(v2), . . . , d(vn)) is called a degree sequence of G. A
sequence d = (d1, d2, . . . , dn) is nonincreasing if d1 ≥ d2 ≥ · · · ≥ dn . A sequence d = (d1, d2, . . . , dn) is graphic
if there is a simple graph G with degree sequence d. Furthermore, such a simple graph G is called a realization of d.
Let G denote the set of all graphic degree sequences. A sequence d ∈ G is line-hamiltonian if d has a realization G
such that L(G) is hamiltonian.
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The sequence S is called a bipartite graphic sequence if there is a bipartite graph G with bipartition {X, Y }
such that {d(x1), . . . , d(xm)} = {s1, . . . , sm}, and {d(y1), . . . , d(yn)} = {t1, . . . , tn} where X = {x1, . . . , xm} and
Y = y1, . . . , yn and d(v) is the degree of a vertex v; the graph G is called a realization of S. In [9], Luo et al. proved
the following theorem.

Theorem 1.1 (Luo, Zang, and Zhang [9]). Every bipartite graphic sequence with the minimum degree δ ≥ 2 has a
realization that admits a nowhere-zero 4-flow.

In this paper, the following result is obtained.

Theorem 1.2. Let d = (d1, d2, . . . , dn) ∈ G be a nonincreasing sequence. Then d has a supereulerian realization if
and only if either n = 1 and d1 = 0, or n ≥ 3 and dn ≥ 2.

In [7], Jaeger proved the following result.

Theorem 1.3 (Jaeger [7]). Every supereulerian graph admits a nowhere-zero 4-flow.

Theorem 1.2, together with 1.3, implies a result analogous to Theorem 1.1.

Theorem 1.4 (Luo, Zang, and Zhang [9]). Let d = (d1, d2, . . . , dn) ∈ G be a nonincreasing sequence. Then d has a
realization that admits a nowhere-zero 4-flow if and only if dn ≥ 2.

The following characterization on line-hamiltonian graphic sequences is also obtained.

Theorem 1.5. Let d = (d1, d2, . . . , dn) ∈ G be a nonincreasing sequence with n ≥ 3. The following are equivalent.

(i) d is line-hamiltonian.
(ii) either d1 = n − 1, or∑

di=1

di ≤
∑
d j≥2

(d j − 2). (1)

(iii) d has a realization G such that G − D1(G) is supereulerian.

2. Collapsible sequences

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying the endpoints of each edge in
X and then deleting the resulting loops. Note that multiple edges may arise.

Let O(G) denote the set of vertices of odd degree in G. A graph G is collapsible if for any subset R ⊆ V (G) with
|R| ≡ 0 (mod 2), G has a connected spanning subgraph HR such that O(HR) = R. A sequence d = (d1, d2, . . . , dn)

is collapsible if d has a simple collapsible realization.

Theorem 2.1. Let G be a connected graph. Each of the following holds.

(i) (Catlin, Corollary of Lemma 3, [2]) If H is a collapsible subgraph of G, then G is collapsible if and only if
G/H is collapsible.

(ii) (Catlin, Corollary 1, [2]) If G contains a spanning tree T such that each edge of T is contained in a collapsible
subgraph of G, then G is collapsible.

(iii) (Caltin, Theorem 7, [2]) C2, K3 (circuits of 2 or 3 edges) are collapsible.
(iv) (Caltin, Theorem 2, [2]) If G is collapsible, then G is supereulerian.

Theorem 2.1(ii) and (iii) imply Corollary 2.2(i); Theorem 2.1(i) and (iii) imply Corollary 2.2(ii).

Corollary 2.2. (i) If every edge of a spanning tree of G lies in a K3, then G is collapsible.
(ii) If G − v is collapsible and if v has degree at least 2 in G, then G is collapsible.

Corollary 2.3. If d = (d1, d2, . . . , dn) is a nonincreasing graphic sequence with d1 = n − 1 and dn ≥ 2, then every
realization of d is collapsible.
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Fig. 1. G.

Proof. Let G be a realization of d with N (v1) = {v2, . . . , vn} and let T be the spanning tree with E(T ) = {v1vk : 2 ≤
k ≤ n}. Since dn ≥ 2 and N (v1) = {v2, . . . , vn}, for any vi ∈ {vk : 2 ≤ k ≤ n}, there is v j ∈ {vk : 2 ≤ k ≤ n} \ {vi }

such that viv j ∈ E(G). It follows that every edge of T lies in a K3, and so by Corollary 2.2(i), G is collapsible. �

Lemma 2.4. If d = (d1, d2, . . . , dn) is a nonincreasing graphic sequence with d3 = · · · = dn = 3, then d is
collapsible.

Proof. Let v1, v2 be two vertices and let

S =

{
{s1, s2, . . . , sd2} if d2 is even
{s1, s2, . . . , sd2−1} if d2 is odd

be a set of vertices other than {v1, v2} and let T = {t1, t2, . . . , td1−d2} be a set of d1 − d2 vertices not in S ∪ {v1, v2}.
Let H denote the graph obtained from {v1, v2} ∪ S ∪ T by joining v2 to each vertex of S and joining v1 to each vertex
of S ∪ T (if d2 is odd, then we also join v1 and v2). Note that dH (v1) = d2 + d1 − d2 = d1, dH (v2) = d2, dH (s) = 2
for s ∈ S and dH (t) = 1 for t ∈ T .
Case 1 d1 − d2 ≥ 3. Let C = t1t2 · · · td2−d1 t1 be a circuit passing through all vertices of T and let H ′ = H ∪ E(C).
As |S| is even, we join all vertices of S in pairs (i.e., s1s2, s3s4, . . .) in H ′ and denote the resulting graph by H ′′. Note
that dH ′′(v1) = d1, dH ′′(v2) = d2 and dH ′′(v) = 3 for v ∈ S ∪ T .

Also note that

|V (H ′′)| =

{
2+ d1 if d2 is even
1+ d1 if d2 is odd.

Let m = n − |V (H ′′)|. Then

m =

{
n − (2+ d1) if d2 is even
n − (1+ d1) if d2 is odd

is even as n and d1 have the same parity if d2 is even while n and d1 have different parity if d2 is odd. By
the construction of H ′′, H ′′ contains a triangle v1s1s2. We subdivide v1s1 and v1s2

m
2 times, respectively, and let

x1, x2, . . . , x m
2

and y1, y2, . . . , y m
2

be the new vertices resulted in subdividing v1s1 and v1s2, respectively. Then for
1 ≤ j ≤ m

2 , we join x j y j and denote the resulting graph by G (see Fig. 1). Hence, by the construction of G, G is a
realization of d .
Case 2 d1 − d2 = 2. Let G be the construction as in Case 1 except that we join t1 to s1, t1 to t2, t2 to s2, and delete
s1s2.
Case 3 d1 − d2 = 1. Let G be the construction as in Case 1 except that we join t1 to both s1 and s2, and delete s1s2.

By Theorem 2.1(iii), K3 is collapsible. If we contract v1x1 y1, then we get a triangle v1x2 y2 in the contraction, and
if we contract v1x2 y2, then we get a triangle v1x3 y3 in the contraction. Repeat this process by contracting a triangle
v1xi yi for each i with 1 ≤ i ≤ m

2 in the subsequent contraction. In Case 2 and Case 3, this process results in a graph in
which each edge lies in a triangle. In Case 1, this process eventually results in a triangle v1s1s2. After contracting v1t1t2
we obtained a graph in which each edge lies in a triangle. Since 2-circuit is collapsible, the contraction of a maximally
collapsible graph will result in a simple graph. By Corollary 2.2(i) and (ii), G is collapsible in each case. �

Theorem 2.5 (Havel [6], Hakimi [4]). Let d = (d1, d2, . . . , dn) be a nonincreasing sequence. Then d is graphic if
and only if d ′ = (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphic.



Author's personal copy

S. Fan et al. / Discrete Mathematics 308 (2008) 6626–6631 6629

Theorem 2.6 (Kleitman and Wang [8]). Let d = (d1, d2, . . . , dn) be a nonincreasing sequence. Then d is graphic if
and only if d ′ = (d1 − 1, . . . , ddk − 1, ddk+1, . . . , dk−1, dk+1, . . . , dn) is graphic.

Lemma 2.7. If d = (d1, d2, . . . , dn) is a nonincreasing sequence with n ≥ 4 and dn = 3, then d is graphic if and
only if d ′ = (d1 − 1, d2 − 1, d3 − 1, d4, . . . , dn−1) is graphic.

Proof. Theorem 2.6 implies Lemma 2.7 by letting k = n and dk = 3. �

Theorem 2.8. If d = (d1, d2, . . . , dn) is a nonincreasing graphic sequence with n ≥ 4 and dn ≥ 3, then d has a
collapsible realization.

Proof. We argue by induction on n. If n = 4, then the assumption that dn ≥ 3 forces that the only realization of d is
K4, and by Theorem 2.1(i), (iii), K4 is collapsible.

Next we assume that n ≥ 5. If dn ≥ 4, then d2− 1 ≥ d3− 1 ≥ · · · ≥ dd1+1− 1 ≥ 3 and dd1+2 ≥ · · · ≥ dn ≥ 3. By
Theorem 2.5 and the induction hypothesis, (d2−1, d3−1, . . . , dd1+1−1, dd1+2, . . . , dn) has a collapsible realization
H . Assume that V (H) = {v2, v3, . . . , vn} such that v2, v3, . . . , vd1+1 have degrees d2 − 1, d3 − 1, . . . , dd1+1 − 1 in
H , respectively, and such that vd1+2, . . . , vn have degrees dd1+2, . . . , dn in H , respectively. Then obtain a realization
H ′ of d from H by adding a new vertex v1 and joining v1 to v2, v3, . . . , vd1+1, respectively. By Corollary 2.2(ii) H ′

is collapsible.
Therefore, we may assume that dn = 3. If d3 = 3, then by Lemma 2.4, (d1, d2, 3, . . . , 3) is collapsible. Hence we

assume further that d3 ≥ 4.
In this case, d1 − 1 ≥ d2 − 1 ≥ d3 − 1 ≥ 3 and d4 ≥ · · · ≥ dn = 3. By Lemma 2.7, (d1 − 1, d2 − 1, d3 −

1, d4, . . . , dn−1) is graphic. By the induction hypothesis, (d1 − 1, d2 − 1, d3 − 1, d4, . . . , dn−1) has a collapsible
realization K with V (K ) = {u1, u2, . . . , un−1} such that u1, u2, u3 have degrees d1 − 1, d2 − 1, d3 − 1 in K ,
respectively, and such that u4, u5, . . . , un−1 have degrees d4, . . . , dn−1 in K , respectively. We obtain a realization
K ′ of d from K by adding a new vertex un and joining un to u1, u2, u3, respectively. By Corollary 2.2(ii) K ′ is
collapsible. �

3. Supereulerian sequence and Hamiltonian line graph

Let X and Y be two sets. Then X4Y = (X ∪ Y )− (X ∩ Y ) denotes the symmetric difference of X and Y . We start
with the following observation (Lemma 3.1) and a few other lemmas. Throughout this section, we assume that n ≥ 3.

Lemma 3.1 (Edmonds [3]). If d = (d1, d2, . . . , dn) is a nonincreasing graphic sequence with dn ≥ 2, then there
exists a 2-edge-connected realization of d.

Lemma 3.2. Let d = (d1, d2, . . . , dn) be a nonincreasing sequence with d1 ≤ n− 2 and dn = 2. Then d is graphic if
and only if either of the following holds.

(i) d ′ = (d1, d2, . . . , dn−1) is graphic, or
(ii) d ′′ = (d1, d2, . . . , di − 1, . . . , d j − 1, . . . , dn−1) is graphic for some di ≥ 3 and d j ≥ 3, or

(iii) both dn−1 = dn = 2, and for some j with 1 ≤ j < n − 1 and with d j ≥ 4, d ′′′ = (d1, d2, . . . , d j−1, d j −

2, d j+1, . . . , dn−2) is graphic, or
(iv) n = 3 and d = (2, 2, 2).

Proof. Suppose that d = (d1, d2, . . . , dn) is graphic. Then there exists a 2-edge-connected realization G of d with
d(vi ) = di for 1 ≤ i ≤ n. Suppose that N (vn) = {vi , v j }. If viv j 6∈ E(G), then G − vn + {viv j } is a realization of
(d1, d2, . . . , dn−1), and so (i) holds. Thus we assume that viv j ∈ E(G).

If both vi , v j have degree at least 3 in G, then d ′′ is graphic and so (ii) must hold. Thus we may assume further
that vi has degree 2. If v j also has degree 2 in G, then n = 3 and (iv) must hold. Therefore, we may assume that
v j has degree at least 3, and so v j is a cut-vertex of G. Since G is 2-edge-connected and since v j is a cut-vertex,
d j = d(v j ) ≥ 4. In this case, d ′′′ is the degree sequence of G − {vn, vi }, and so d ′′′ is graphic. The sufficiency can be
proved by reversing the arguments above. �

Proof of Theorem 1.2. If a nonincreasing graphic sequence d = (d1, d2, . . . , dn) has a supereulerian realization, then
we must have dn ≥ 2 as every supereulerian graph is 2-edge-connected.
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We argue by induction on n to prove the sufficiency. If n = 3, then since dn ≥ 2, K3, a supereulerian graph, is the
only realization of d .

Suppose that n ≥ 4 and that the theorem holds for all such graphic sequences with fewer than n entries. Let
d = (d1, d2, . . . , dn) ∈ G be a nonincreasing sequence with dn ≥ 2. If dn ≥ 3, then by Theorem 2.8, d has a
collapsible realization G. By Theorem 2.1(vi), G is supereulerian. If d1 = d2 = · · · = dn = 2, then Cn is a
supereulerian realization of d .

In the following, we assume that d1 > dn = 2. If d1 = n− 1, then by Corollary 2.3, d has a realization G such that
G is collapsible. By Theorem 2.1(iv), G is supereulerian. Thus d in this case must be supereulerian.

Thus we may assume that 2 < d1 ≤ n − 2. By Lemma 3.2, one of the conclusions of Lemma 3.2 (except
Lemma 3.2(iv)) must hold.

If Lemma 3.2(i) holds, then d ′ = (d1, d2, . . . , dn−1) is graphic. By induction, there is a supereulerian realization
G ′ of d ′. Let C ′ be a spanning eulerian subgraph of G ′ and e = uv be an edge of C ′. Then by subdividing e of G ′ into
uvn, vnv, we obtain a supereulerian realization of d as dn = 2.

If Lemma 3.2(ii) holds, then for some i, j , d ′′ = (d1, d2, . . . , di −1, . . . , d j −1, . . . , dn−1) is graphic, with di ≥ 3
and d j ≥ 3. By induction, there is a supereulerian realization G ′′ of d ′′. Let C ′′ be a spanning eulerian subgraph of
G ′′. If viv j ∈ E(G ′′), then let C1 = viv jvn and so G = G ′′ + {vivn, v jvn} is a supereulerian realization of d. If
viv j 6∈ E(G ′′), then we can get a realization G of d from G ′′ + {viv j } by subdividing an edge e = uv of C ′ into uvn
and vnv.

If Lemma 3.2(iii) holds, then both dn−1 = dn = 2, and for some j with 1 ≤ j < n − 1 and with di ≥ 4,
d ′′′ = (d1, d2, . . . , d j−1, d j − 2, d j+1, . . . , dn−2) is graphic. By induction, there is a supereulerian realization G ′′′ of
d ′′′. Let C ′′′ be a spanning eulerian subgraph of G ′′′. Obtain G from G ′′′ by adding two new vertices vn−1 and vn
and three new edges v jvn, vnvn−1, vn−1v j . Then G is a realization of d , and E(C ′′′) ∪ {v jvn, vnvn−1, vn−1v j } is a
spanning eulerian subgraph of G. �

In order to prove Theorem 1.5, we need the following result which shows the relationship between hamiltonian circuits
in the line graph L(G) and eulerian subgraph in G. A subgraph H of G is dominating if E(G − V (H)) = ∅.

Theorem 3.3 (Harary and Nash-Williams, [5]). Let |E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has a
dominating eulerian subgraph.

Proof of Theorem 1.5. (i)⇒ (ii). Let G be a realization of d such that L(G) is hamiltonian. By Theorem 3.3, G has
a dominating eulerian subgraph H . If d1 = n − 1, then we are done. Suppose that d1 ≤ n − 2. Then |V (H)| ≥ 2.
For any vi with d(vi ) = 1, vi must be adjacent to a vertex v j in H and so dG−E(H)(v j ) is no less than the number of
degree 1 vertices adjacent to v j . Furthermore, since H is eulerian and nontrivial, dH (v j ) ≥ 2 and so (1) must hold.
(ii) ⇒ (iii) Suppose d ∈ G is a nonincreasing sequence such that dn ≥ 1 and

∑
di=1 di ≤

∑
d j≥2(d j − 2). If

dn ≥ 2, then by Theorem 1.2, d has a supereulerian realization. So we assume that dn = 1.

Claim 3.4. Any realization of d contains a nontrivial circuit.

Suppose that there exists a realization G of d such that G is a tree. We may assume that di ≥ 2 for 1 ≤ i ≤ k and
d j = 1 for k + 1 ≤ j ≤ n. Then

k∑
i=1

di + (n − k) =
k∑

i=1

di +

n∑
i=k+1

di =

n∑
i=1

di = 2|E(G)| = 2(n − 1),

and so
k∑

i=1

(di − 2)+ (n − k) = 2(n − 1)− 2k.

Hence∑
d j≥2

(d j − 2) =
k∑

i=1

(di − 2) = 2(n − 1)− 2k − (n − k) = n − k − 2 < n − k =
∑
di=1

di ,

contrary to (1). This completes the proof of the claim.
Thus we assume that G is a realization of d containing a nontrivial circuit C .
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Claim 3.5. There is a realization G of d such that δ(G − D1(G)) ≥ 2.

As G contains a nontrivial circuit C , G−D1(G) is not empty. Let S = N (D1(G)). It suffices to show that for each
s ∈ S, NG−D1(G)(s) ≥ 2. Suppose, to the contrary, that there is s ∈ S such that NG−D1(G)(s) = 1. Choose G to be
a graph such that P(G) = {s : s ∈ S with dG(s) = dt ≥ 2 such that NG−D1(G)(s) = 1} is as small as possible. Let
x ∈ P(G). Then x 6∈ C . Choose e ∈ E(C) and we subdivide e and let ve denote the subdivision vertex. And we delete
dt − 1 pendent edges of x , add dt − 2 pendent edges to ve and denote the resulting graph Gx . (Note that if dt − 2 = 0,
then we subdivide e without adding any pendent edges.) Let N1(x) be the set of pendent vertices adjacent to x . So
dGx (ve) = 2+dt−2 = dt and |D1(Gx )| = |(D1(G)−N1(x))∪{x}|+dt−2 = |D1(G)|−(dt−1)+1+dt−2 = |D1(G)|
but |P(Gx )| < |P(G)|, contradicting the choice of G.
(iii) ⇒ (i) If G is a realization of d such that G − D1(G) is supereulerian, then by Theorem 3.3, L(G) is

hamiltonian. �
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