Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Note

Degree sequence and supereulerian graphs

Suohai Fan ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b,* }}$, Yehong Shao ${ }^{\text {c }}$, Taoye Zhang ${ }^{\text {d }}$, Ju Zhou ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Jinan University Guangzhou 510632, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States
${ }^{\mathrm{c}}$ Arts and Science, Ohio University Southern, Ironton, OH 45638, United States
${ }^{\text {d }}$ Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, United States

Received 29 January 2007; received in revised form 5 November 2007; accepted 7 November 2007
Available online 20 February 2008

Abstract

A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that $L(G)$ is hamiltonian, and is supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a supereulerian realization if and only if $d_{n} \geq 2$ and that d is line-hamiltonian if and only if either $d_{1}=n-1$, or $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$.

(c) 2007 Elsevier B.V. All rights reserved.

Keywords: Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs

1. Introduction

We consider finite graphs in this note. Undefined terms can be found in [1]. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A vertex $v \in V(G)$ is called a pendent vertex if $d(v)=1$. Let $D_{1}(G)$ denote the set of all pendent vertices of G. An edge $e \in E(G)$ is called a pendent edge if one of its endpoints is a pendent vertex. If $v \in V(G)$, then $N_{G}(v)=\{u: u v \in E(G)\}$; and if $T \subseteq V(G)$, then $N_{G}(T)=\{u \in V(G) \backslash T: u v \in E(G)$ and $v \in T\}$. When the graph G is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A cycle C of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph.

If G has vertices $v_{1}, v_{2}, \ldots, v_{n}$, the sequence $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ is called a degree sequence of G. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is nonincreasing if $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with degree sequence d. Furthermore, such a simple graph G is called a realization of d. Let \mathcal{G} denote the set of all graphic degree sequences. A sequence $d \in \mathcal{G}$ is line-hamiltonian if d has a realization G such that $L(G)$ is hamiltonian.

[^0]The sequence S is called a bipartite graphic sequence if there is a bipartite graph G with bipartition $\{X, Y\}$ such that $\left\{d\left(x_{1}\right), \ldots, d\left(x_{m}\right)\right\}=\left\{s_{1}, \ldots, s_{m}\right\}$, and $\left\{d\left(y_{1}\right), \ldots, d\left(y_{n}\right)\right\}=\left\{t_{1}, \ldots, t_{n}\right\}$ where $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=y_{1}, \ldots, y_{n}$ and $d(v)$ is the degree of a vertex v; the graph G is called a realization of S. In [9], Luo et al. proved the following theorem.

Theorem 1.1 (Luo, Zang, and Zhang [9]). Every bipartite graphic sequence with the minimum degree $\delta \geq 2$ has a realization that admits a nowhere-zero 4-flow.

In this paper, the following result is obtained.
Theorem 1.2. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence. Then d has a supereulerian realization if and only if either $n=1$ and $d_{1}=0$, or $n \geq 3$ and $d_{n} \geq 2$.

In [7], Jaeger proved the following result.
Theorem 1.3 (Jaeger [7]). Every supereulerian graph admits a nowhere-zero 4-flow.
Theorem 1.2, together with 1.3, implies a result analogous to Theorem 1.1.
Theorem 1.4 (Luo, Zang, and Zhang [9]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence. Then d has a realization that admits a nowhere-zero 4-flow if and only if $d_{n} \geq 2$.

The following characterization on line-hamiltonian graphic sequences is also obtained.
Theorem 1.5. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence with $n \geq 3$. The following are equivalent.
(i) d is line-hamiltonian.
(ii) either $d_{1}=n-1$, or

$$
\begin{equation*}
\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right) \tag{1}
\end{equation*}
$$

(iii) d has a realization G such that $G-D_{1}(G)$ is supereulerian.

2. Collapsible sequences

Let $X \subseteq E(G)$. The contraction G / X is the graph obtained from G by identifying the endpoints of each edge in X and then deleting the resulting loops. Note that multiple edges may arise.

Let $O(G)$ denote the set of vertices of odd degree in G. A graph G is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a connected spanning subgraph H_{R} such that $O\left(H_{R}\right)=R$. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is collapsible if d has a simple collapsible realization.

Theorem 2.1. Let G be a connected graph. Each of the following holds.
(i) (Catlin, Corollary of Lemma 3, [2]) If H is a collapsible subgraph of G, then G is collapsible if and only if G / H is collapsible.
(ii) (Catlin, Corollary 1, [2]) If G contains a spanning tree T such that each edge of T is contained in a collapsible subgraph of G, then G is collapsible.
(iii) (Caltin, Theorem 7, [2]) C_{2}, K_{3} (circuits of 2 or 3 edges) are collapsible.
(iv) (Caltin, Theorem 2, [2]) If G is collapsible, then G is supereulerian.

Theorem 2.1(ii) and (iii) imply Corollary 2.2(i); Theorem 2.1(i) and (iii) imply Corollary 2.2(ii).
Corollary 2.2. (i) If every edge of a spanning tree of G lies in a K_{3}, then G is collapsible.
(ii) If $G-v$ is collapsible and if v has degree at least 2 in G, then G is collapsible.

Corollary 2.3. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{1}=n-1$ and $d_{n} \geq 2$, then every realization of d is collapsible.

Fig. 1. G.
Proof. Let G be a realization of d with $N\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{n}\right\}$ and let T be the spanning tree with $E(T)=\left\{v_{1} v_{k}: 2 \leq\right.$ $k \leq n\}$. Since $d_{n} \geq 2$ and $N\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{n}\right\}$, for any $v_{i} \in\left\{v_{k}: 2 \leq k \leq n\right\}$, there is $v_{j} \in\left\{v_{k}: 2 \leq k \leq n\right\} \backslash\left\{v_{i}\right\}$ such that $v_{i} v_{j} \in E(G)$. It follows that every edge of T lies in a K_{3}, and so by Corollary 2.2(i), G is collapsible.

Lemma 2.4. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{3}=\cdots=d_{n}=3$, then d is collapsible.

Proof. Let v_{1}, v_{2} be two vertices and let

$$
S= \begin{cases}\left\{s_{1}, s_{2}, \ldots, s_{d_{2}}\right\} & \text { if } d_{2} \text { is even } \\ \left\{s_{1}, s_{2}, \ldots, s_{d_{2}-1}\right\} & \text { if } d_{2} \text { is odd }\end{cases}
$$

be a set of vertices other than $\left\{v_{1}, v_{2}\right\}$ and let $T=\left\{t_{1}, t_{2}, \ldots, t_{d_{1}-d_{2}}\right\}$ be a set of $d_{1}-d_{2}$ vertices not in $S \cup\left\{v_{1}, v_{2}\right\}$. Let H denote the graph obtained from $\left\{v_{1}, v_{2}\right\} \cup S \cup T$ by joining v_{2} to each vertex of S and joining v_{1} to each vertex of $S \cup T$ (if d_{2} is odd, then we also join v_{1} and v_{2}). Note that $d_{H}\left(v_{1}\right)=d_{2}+d_{1}-d_{2}=d_{1}, d_{H}\left(v_{2}\right)=d_{2}, d_{H}(s)=2$ for $s \in S$ and $d_{H}(t)=1$ for $t \in T$.
Case $1 d_{1}-d_{2} \geq 3$. Let $C=t_{1} t_{2} \cdots t_{d_{2}-d_{1}} t_{1}$ be a circuit passing through all vertices of T and let $H^{\prime}=H \cup E(C)$. As $|S|$ is even, we join all vertices of S in pairs (i.e., $s_{1} s_{2}, s_{3} s_{4}, \ldots$) in H^{\prime} and denote the resulting graph by $H^{\prime \prime}$. Note that $d_{H^{\prime \prime}}\left(v_{1}\right)=d_{1}, d_{H^{\prime \prime}}\left(v_{2}\right)=d_{2}$ and $d_{H^{\prime \prime}}(v)=3$ for $v \in S \cup T$.

Also note that

$$
\left|V\left(H^{\prime \prime}\right)\right|= \begin{cases}2+d_{1} & \text { if } d_{2} \text { is even } \\ 1+d_{1} & \text { if } d_{2} \text { is odd. }\end{cases}
$$

Let $m=n-\left|V\left(H^{\prime \prime}\right)\right|$. Then

$$
m= \begin{cases}n-\left(2+d_{1}\right) & \text { if } d_{2} \text { is even } \\ n-\left(1+d_{1}\right) & \text { if } d_{2} \text { is odd }\end{cases}
$$

is even as n and d_{1} have the same parity if d_{2} is even while n and d_{1} have different parity if d_{2} is odd. By the construction of $H^{\prime \prime}, H^{\prime \prime}$ contains a triangle $v_{1} s_{1} s_{2}$. We subdivide $v_{1} s_{1}$ and $v_{1} s_{2} \frac{m}{2}$ times, respectively, and let $x_{1}, x_{2}, \ldots, x_{\frac{m}{2}}$ and $y_{1}, y_{2}, \ldots, y_{\frac{m}{2}}$ be the new vertices resulted in subdividing $v_{1} s_{1}$ and $v_{1} s_{2}$, respectively. Then for $1 \leq j \leq \frac{m}{2}$, we join $x_{j} y_{j}$ and denote the resulting graph by G (see Fig. 1). Hence, by the construction of G, G is a realization of d.
Case $2 d_{1}-d_{2}=2$. Let G be the construction as in Case 1 except that we join t_{1} to s_{1}, t_{1} to t_{2}, t_{2} to s_{2}, and delete $s_{1} s_{2}$.
Case $3 d_{1}-d_{2}=1$. Let G be the construction as in Case 1 except that we join t_{1} to both s_{1} and s_{2}, and delete $s_{1} s_{2}$.
By Theorem 2.1(iii), K_{3} is collapsible. If we contract $v_{1} x_{1} y_{1}$, then we get a triangle $v_{1} x_{2} y_{2}$ in the contraction, and if we contract $v_{1} x_{2} y_{2}$, then we get a triangle $v_{1} x_{3} y_{3}$ in the contraction. Repeat this process by contracting a triangle $v_{1} x_{i} y_{i}$ for each i with $1 \leq i \leq \frac{m}{2}$ in the subsequent contraction. In Case 2 and Case 3, this process results in a graph in which each edge lies in a triangle. In Case 1 , this process eventually results in a triangle $v_{1} s_{1} s_{2}$. After contracting $v_{1} t_{1} t_{2}$ we obtained a graph in which each edge lies in a triangle. Since 2 -circuit is collapsible, the contraction of a maximally collapsible graph will result in a simple graph. By Corollary 2.2 (i) and (ii), G is collapsible in each case.

Theorem 2.5 (Havel [6], Hakimi [4]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence. Then d is graphic if and only if $d^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ is graphic.

Theorem 2.6 (Kleitman and Wang [8]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence. Then d is graphic if and only if $d^{\prime}=\left(d_{1}-1, \ldots, d_{d_{k}}-1, d_{d_{k}+1}, \ldots, d_{k-1}, d_{k+1}, \ldots, d_{n}\right)$ is graphic.

Lemma 2.7. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing sequence with $n \geq 4$ and $d_{n}=3$, then d is graphic if and only if $d^{\prime}=\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-1}\right)$ is graphic.
Proof. Theorem 2.6 implies Lemma 2.7 by letting $k=n$ and $d_{k}=3$.
Theorem 2.8. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $n \geq 4$ and $d_{n} \geq 3$, then d has a collapsible realization.
Proof. We argue by induction on n. If $n=4$, then the assumption that $d_{n} \geq 3$ forces that the only realization of d is K_{4}, and by Theorem 2.1(i), (iii), K_{4} is collapsible.

Next we assume that $n \geq 5$. If $d_{n} \geq 4$, then $d_{2}-1 \geq d_{3}-1 \geq \cdots \geq d_{d_{1}+1}-1 \geq 3$ and $d_{d_{1}+2} \geq \cdots \geq d_{n} \geq 3$. By Theorem 2.5 and the induction hypothesis, $\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ has a collapsible realization H. Assume that $V(H)=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ such that $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$ have degrees $d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1$ in H, respectively, and such that $v_{d_{1}+2}, \ldots, v_{n}$ have degrees $d_{d_{1}+2}, \ldots, d_{n}$ in H, respectively. Then obtain a realization H^{\prime} of d from H by adding a new vertex v_{1} and joining v_{1} to $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$, respectively. By Corollary 2.2(ii) H^{\prime} is collapsible.

Therefore, we may assume that $d_{n}=3$. If $d_{3}=3$, then by Lemma $2.4,\left(d_{1}, d_{2}, 3, \ldots, 3\right)$ is collapsible. Hence we assume further that $d_{3} \geq 4$.

In this case, $d_{1}-1 \geq d_{2}-1 \geq d_{3}-1 \geq 3$ and $d_{4} \geq \cdots \geq d_{n}=3$. By Lemma 2.7 , $\left(d_{1}-1, d_{2}-1, d_{3}-\right.$ $\left.1, d_{4}, \ldots, d_{n-1}\right)$ is graphic. By the induction hypothesis, $\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-1}\right)$ has a collapsible realization K with $V(K)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ such that u_{1}, u_{2}, u_{3} have degrees $d_{1}-1, d_{2}-1, d_{3}-1$ in K, respectively, and such that $u_{4}, u_{5}, \ldots, u_{n-1}$ have degrees d_{4}, \ldots, d_{n-1} in K, respectively. We obtain a realization K^{\prime} of d from K by adding a new vertex u_{n} and joining u_{n} to u_{1}, u_{2}, u_{3}, respectively. By Corollary 2.2(ii) K^{\prime} is collapsible.

3. Supereulerian sequence and Hamiltonian line graph

Let X and Y be two sets. Then $X \triangle Y=(X \cup Y)-(X \cap Y)$ denotes the symmetric difference of X and Y. We start with the following observation (Lemma 3.1) and a few other lemmas. Throughout this section, we assume that $n \geq 3$.

Lemma 3.1 (Edmonds [3]). If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{n} \geq 2$, then there exists a 2-edge-connected realization of d.

Lemma 3.2. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence with $d_{1} \leq n-2$ and $d_{n}=2$. Then d is graphic if and only if either of the following holds.
(i) $d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ is graphic, or
(ii) $d^{\prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{i}-1, \ldots, d_{j}-1, \ldots, d_{n-1}\right)$ is graphic for some $d_{i} \geq 3$ and $d_{j} \geq 3$, or
(iii) both $d_{n-1}=d_{n}=2$, and for some j with $1 \leq j<n-1$ and with $\bar{d}_{j} \geq 4, d^{\prime \prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{j-1}, d_{j}-\right.$ $\left.2, d_{j+1}, \ldots, d_{n-2}\right)$ is graphic, or
(iv) $n=3$ and $d=(2,2,2)$.

Proof. Suppose that $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic. Then there exists a 2 -edge-connected realization G of d with $d\left(v_{i}\right)=d_{i}$ for $1 \leq i \leq n$. Suppose that $N\left(v_{n}\right)=\left\{v_{i}, v_{j}\right\}$. If $v_{i} v_{j} \notin E(G)$, then $G-v_{n}+\left\{v_{i} v_{j}\right\}$ is a realization of $\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$, and so (i) holds. Thus we assume that $v_{i} v_{j} \in E(G)$.

If both v_{i}, v_{j} have degree at least 3 in G, then $d^{\prime \prime}$ is graphic and so (ii) must hold. Thus we may assume further that v_{i} has degree 2. If v_{j} also has degree 2 in G, then $n=3$ and (iv) must hold. Therefore, we may assume that v_{j} has degree at least 3 , and so v_{j} is a cut-vertex of G. Since G is 2-edge-connected and since v_{j} is a cut-vertex, $d_{j}=d\left(v_{j}\right) \geq 4$. In this case, $d^{\prime \prime \prime}$ is the degree sequence of $G-\left\{v_{n}, v_{i}\right\}$, and so $d^{\prime \prime \prime}$ is graphic. The sufficiency can be proved by reversing the arguments above.

Proof of Theorem 1.2. If a nonincreasing graphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a supereulerian realization, then we must have $d_{n} \geq 2$ as every supereulerian graph is 2-edge-connected.

We argue by induction on n to prove the sufficiency. If $n=3$, then since $d_{n} \geq 2, K_{3}$, a supereulerian graph, is the only realization of d.

Suppose that $n \geq 4$ and that the theorem holds for all such graphic sequences with fewer than n entries. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence with $d_{n} \geq 2$. If $d_{n} \geq 3$, then by Theorem 2.8 , d has a collapsible realization G. By Theorem $2.1(\mathrm{vi}), G$ is supereulerian. If $d_{1}=d_{2}=\cdots=d_{n}=2$, then C_{n} is a supereulerian realization of d.

In the following, we assume that $d_{1}>d_{n}=2$. If $d_{1}=n-1$, then by Corollary $2.3, d$ has a realization G such that G is collapsible. By Theorem 2.1(iv), G is supereulerian. Thus d in this case must be supereulerian.

Thus we may assume that $2<d_{1} \leq n-2$. By Lemma 3.2, one of the conclusions of Lemma 3.2 (except Lemma 3.2(iv)) must hold.

If Lemma 3.2(i) holds, then $d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ is graphic. By induction, there is a supereulerian realization G^{\prime} of d^{\prime}. Let C^{\prime} be a spanning eulerian subgraph of G^{\prime} and $e=u v$ be an edge of C^{\prime}. Then by subdividing e of G^{\prime} into $u v_{n}, v_{n} v$, we obtain a supereulerian realization of d as $d_{n}=2$.

If Lemma 3.2(ii) holds, then for some $i, j, d^{\prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{i}-1, \ldots, d_{j}-1, \ldots, d_{n-1}\right)$ is graphic, with $d_{i} \geq 3$ and $d_{j} \geq 3$. By induction, there is a supereulerian realization $G^{\prime \prime}$ of $d^{\prime \prime}$. Let $C^{\prime \prime}$ be a spanning eulerian subgraph of $G^{\prime \prime}$. If $v_{i} v_{j} \in E\left(G^{\prime \prime}\right)$, then let $C_{1}=v_{i} v_{j} v_{n}$ and so $G=G^{\prime \prime}+\left\{v_{i} v_{n}, v_{j} v_{n}\right\}$ is a supereulerian realization of d. If $v_{i} v_{j} \notin E\left(G^{\prime \prime}\right)$, then we can get a realization G of d from $G^{\prime \prime}+\left\{v_{i} v_{j}\right\}$ by subdividing an edge $e=u v$ of C^{\prime} into $u v_{n}$ and $v_{n} v$.

If Lemma 3.2(iii) holds, then both $d_{n-1}=d_{n}=2$, and for some j with $1 \leq j<n-1$ and with $d_{i} \geq 4$, $d^{\prime \prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{j-1}, d_{j}-2, d_{j+1}, \ldots, d_{n-2}\right)$ is graphic. By induction, there is a supereulerian realization $G^{\prime \prime \prime}$ of $d^{\prime \prime \prime}$. Let $C^{\prime \prime \prime}$ be a spanning eulerian subgraph of $G^{\prime \prime \prime}$. Obtain G from $G^{\prime \prime \prime}$ by adding two new vertices v_{n-1} and v_{n} and three new edges $v_{j} v_{n}, v_{n} v_{n-1}, v_{n-1} v_{j}$. Then G is a realization of d, and $E\left(C^{\prime \prime \prime}\right) \cup\left\{v_{j} v_{n}, v_{n} v_{n-1}, v_{n-1} v_{j}\right\}$ is a spanning eulerian subgraph of G.
In order to prove Theorem 1.5, we need the following result which shows the relationship between hamiltonian circuits in the line graph $L(G)$ and eulerian subgraph in G. A subgraph H of G is dominating if $E(G-V(H))=\emptyset$.

Theorem 3.3 (Harary and Nash-Williams, [5]). Let $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.

Proof of Theorem 1.5. (i) \Rightarrow (ii). Let G be a realization of d such that $L(G)$ is hamiltonian. By Theorem 3.3, G has a dominating eulerian subgraph H. If $d_{1}=n-1$, then we are done. Suppose that $d_{1} \leq n-2$. Then $|V(H)| \geq 2$. For any v_{i} with $d\left(v_{i}\right)=1, v_{i}$ must be adjacent to a vertex v_{j} in H and so $d_{G-E(H)}\left(v_{j}\right)$ is no less than the number of degree 1 vertices adjacent to v_{j}. Furthermore, since H is eulerian and nontrivial, $d_{H}\left(v_{j}\right) \geq 2$ and so (1) must hold.
(ii) \Rightarrow (iii) Suppose $d \in \mathcal{G}$ is a nonincreasing sequence such that $d_{n} \geq 1$ and $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$. If $d_{n} \geq 2$, then by Theorem 1.2, d has a supereulerian realization. So we assume that $d_{n}=1$.

Claim 3.4. Any realization of d contains a nontrivial circuit.
Suppose that there exists a realization G of d such that G is a tree. We may assume that $d_{i} \geq 2$ for $1 \leq i \leq k$ and $d_{j}=1$ for $k+1 \leq j \leq n$. Then

$$
\sum_{i=1}^{k} d_{i}+(n-k)=\sum_{i=1}^{k} d_{i}+\sum_{i=k+1}^{n} d_{i}=\sum_{i=1}^{n} d_{i}=2|E(G)|=2(n-1)
$$

and so

$$
\sum_{i=1}^{k}\left(d_{i}-2\right)+(n-k)=2(n-1)-2 k
$$

Hence

$$
\sum_{d_{j} \geq 2}\left(d_{j}-2\right)=\sum_{i=1}^{k}\left(d_{i}-2\right)=2(n-1)-2 k-(n-k)=n-k-2<n-k=\sum_{d_{i}=1} d_{i}
$$

contrary to (1). This completes the proof of the claim.
Thus we assume that G is a realization of d containing a nontrivial circuit C.

Claim 3.5. There is a realization G of d such that $\delta\left(G-D_{1}(G)\right) \geq 2$.
As G contains a nontrivial circuit $C, G-D_{1}(G)$ is not empty. Let $S=N\left(D_{1}(G)\right)$. It suffices to show that for each $s \in S, N_{G-D_{1}(G)}(s) \geq 2$. Suppose, to the contrary, that there is $s \in S$ such that $N_{G-D_{1}(G)}(s)=1$. Choose G to be a graph such that $P(G)=\left\{s: s \in S\right.$ with $d_{G}(s)=d_{t} \geq 2$ such that $\left.N_{G-D_{1}(G)}(s)=1\right\}$ is as small as possible. Let $x \in P(G)$. Then $x \notin C$. Choose $e \in E(C)$ and we subdivide e and let v_{e} denote the subdivision vertex. And we delete $d_{t}-1$ pendent edges of x, add $d_{t}-2$ pendent edges to v_{e} and denote the resulting graph G_{x}. (Note that if $d_{t}-2=0$, then we subdivide e without adding any pendent edges.) Let $N_{1}(x)$ be the set of pendent vertices adjacent to x. So $d_{G_{x}}\left(v_{e}\right)=2+d_{t}-2=d_{t}$ and $\left|D_{1}\left(G_{x}\right)\right|=\left|\left(D_{1}(G)-N_{1}(x)\right) \cup\{x\}\right|+d_{t}-2=\left|D_{1}(G)\right|-\left(d_{t}-1\right)+1+d_{t}-2=\left|D_{1}(G)\right|$ but $\left|P\left(G_{x}\right)\right|<|P(G)|$, contradicting the choice of G.
(iii) \Rightarrow (i) If G is a realization of d such that $G-D_{1}(G)$ is supereulerian, then by Theorem 3.3, $L(G)$ is hamiltonian.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[3] J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degree, J. Res. Nat. Bur. Stand., Ser. B 68 (1964) 7374.
[4] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) $496-506$.
[5] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) $701-709$.
[6] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955) 477-480.
[7] F. Jaeger, On interval hypergraphs and nowhere-zero flow in graphs, Research Report of Mathematics Application and Information, Universite Scientifique et Medicale et Institut National Polytechnique de Grenoble, No. 126, Juillet, 1978.
[8] D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973) 7988.
[9] R. Luo, W.A. Zang, C.-Q. Zhang, Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial latin squares, Combinatorica 24 (4) (2004) 641-657.

[^0]: * Corresponding author.

 E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

