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Abstract

Let H1 and H2 be two subgraphs of a graph G. We say that G is the 2-sum of H1 and H2, denoted by
H1 ⊕2 H2, if E(H1) ∪ E(H2) = E(G), |V (H1) ∩ V (H2)| = 2, and |E(H1) ∩ E(H2)| = 1. A triangle-path
in a graph G is a sequence of distinct triangles T1T2 · · ·Tm in G such that for 1 � i � m − 1, |E(Ti) ∩
E(Ti+1)| = 1 and E(Ti) ∩ E(Tj ) = ∅ if j > i + 1. A connected graph G is triangularly connected if for
any two edges e and e′, which are not parallel, there is a triangle-path T1T2 · · ·Tm such that e ∈ E(T1) and
e′ ∈ E(Tm). Let G be a triangularly connected graph with at least three vertices. We prove that G has no
nowhere-zero 3-flow if and only if there is an odd wheel W and a subgraph G1 such that G = W ⊕2 G1,
where G1 is a triangularly connected graph without nowhere-zero 3-flow. Repeatedly applying the result, we
have a complete characterization of triangularly connected graphs which have no nowhere-zero 3-flow. As
a consequence, G has a nowhere-zero 3-flow if it contains at most three 3-cuts. This verifies Tutte’s 3-flow
conjecture and an equivalent version by Kochol for triangularly connected graphs. By the characterization,
we obtain extensions to earlier results on locally connected graphs, chordal graphs and squares of graphs.
As a corollary, we obtain a result of Barát and Thomassen that every triangulation of a surface admits all
generalized Tutte-orientations.
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1. Introduction

The graphs considered here may have parallel edges, but no loops. The vertex set and edge
set of a graph G are denoted by V (G) and E(G), respectively. The degree of a vertex v, denoted
by d(v), is the number of edges incident with v. For xy ∈ E(G), we call y a neighbor of x,
and the set of neighbors of x is denoted by NG(x), or simply N(x). An edge is contracted if
it is deleted and its two ends are identified into a single vertex. Let H be a connected subgraph
of G. G/H denotes the graph obtained from G by contracting all the edges of H and deleting all
the resulting loops. An edge-cut (vertex-cut) is a set of edges (vertices) whose removal leaves a
graph with more components. A connected graph is k-edge-connected (k-connected) if it has no
edge-cut (vertex-cut) of � edges (vertices) for any � < k. For simplicity, an edge-cut of k edges
is called a k-cut.

A k-circuit is a circuit of k edges. A wheel Wk is the graph obtained from a k-circuit by
adding a new vertex, called the center of the wheel, which is joined to every vertex of the k-
circuit. Wk is an odd (even) wheel if k is odd (even). For a technical reason, a single edge is
regarded as 1-circuit, and thus W1 is a triangle, called the trivial wheel.

Let G be a graph with an orientation. For each vertex v ∈ V (G), E+(v) is the set of non-loop
edges with tail v, and E−(v) is the set of non-loop edges with head v. Let Zk denote an abelian
group of k elements with identity 0. Let f be a function from E(G) to Zk . Set

f (v) =
∑

e∈E+(v)

f (e) −
∑

e∈E−(v)

f (e).

f is called a Zk-flow in G if f (v) = 0 for each vertex v ∈ V (G). The support of f is defined
by S(f ) = {e ∈ E(G): f (e) �= 0}. f is nowhere-zero if S(f ) = E(G). It is well known that a
graph G has a nowhere-zero Zk-flow if and only if there is an integer-valued function f on E(G)

such that 0 < |f (e)| < k for each e ∈ E(G), and f (v) = 0 for each v ∈ V (G), which is called
a nowhere-zero k-flow in G. Therefore, we also call a Zk-flow a k-flow. We shall restrict our
attention to the case that k = 3. Since loops play no role with respect to existence of nowhere-
zero flows, we only consider loopless graphs. The well-known 3-flow conjecture of Tutte (see
unsolved problem 48 of [2]) is that

Conjecture 1.1. Every 4-edge-connected graph has a nowhere-zero 3-flow.

Jaeger et al. [4] introduced the property of Zk-connectedness, which can be regarded as an
extension of Zk-flows. A graph G is Zk-connected if for any function b :V (G) → Zk with∑

v∈V (G) b(v) = 0, G has a nowhere-zero Zk-flow f such that f (v) = b(v) for each vertex
v ∈ V (G). Clearly, if G is Zk-connected, then it has a nowhere-zero k-flow (with b = 0). But,
the converse is not true. An n-circuit (n � 2) has a nowhere-zero k-flow for any k � 2, but it is not
Zk-connected if k � n. In the same paper, Jaeger et al. [4] constructed a 4-edge-connected graph
which is not Z3-connected, and conjectured that every 5-edge-connected graph is Z3-connected.
By a result of Kochol [6], the truth of this conjecture would imply the truth of Conjecture 1.1
above.

In this paper, instead of the Zk-connectedness, we use the concept of Zk-flow contractibility.
A connected graph H is Zk-flow contractible if for any graph G with H as a subgraph (it is
allowed that G = H ), any nowhere-zero Zk-flow f in G/H can be extended to a nowhere-zero
Zk-flow g in G such that f is the restriction of g on E(G/H). This definition is different from
the usual one, which does not require that f is the restriction of g on E(G/H). Thus, by our
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definition, the 4-circuit C4 is not Z4-flow contractible, while a nowhere-zero Z4-flow in G/C4
is indeed extendible to a nowhere-zero Z4-flow in G. The following proposition shows that the
Zk-flow contractibility is equivalent to the Zk-connectedness.

Proposition 1.2. A graph is Zk-connected if and only if it is Zk-flow contractible.

Proof. Suppose that H is a Zk-connected graph. We shall prove that H is Zk-flow contractible.
For any graph G with H as a subgraph, let f be a nowhere-zero Zk-flow in G/H . Consider each
vertex v ∈ V (H) as a vertex in G and f as a function on E(G) with f (e) = 0 for each e ∈ E(H).
Define a function b :V (H) → Zk by

b(v) = f (v) for each v ∈ V (H).

Since H is Zk-connected, there is a nowhere-zero function h :E(H) → Zk such that h(v) =
−b(v) for each v ∈ V (H). Consider h as a function on E(G) by setting h(e) = 0 if e ∈ E(G) \
E(H). Then, f + h is a nowhere-zero Zk-flow in G, whose restriction on E(G/H) is f .

Conversely, suppose that H is Zk-flow contractible. For any function b :V (H) → Zk with∑
v∈V (H) b(v) = 0, let X = {xi ∈ V (H): b(xi) �= 0}, and let G be the graph obtained from H by

adding a new vertex joined to each vertex xi ∈ X by an edge ei , 1 � i � |X|. By the definition
of Zk-flow contractibility, H is connected, and so G/H has a nowhere-zero Zk-flow f given by
f (ei) = b(xi), 1 � i � |X|. (If X = ∅, then G = H and f = ∅.) Since H is Zk-flow contractible,
f can be extended to a nowhere-zero Zk-flow g in G with g(ei) = f (ei), 1 � i � |X|. Let h

be the restriction of g on E(H). Then, h(v) = b(v) for each v ∈ V (H), and hence H is Zk-
connected. �

The following is a basic property of Zk-flow contractible graphs and was proved in [9] and [3].
We present here an alternative proof.

Observation 1.3. Let H be a Zk-flow contractible subgraph in G. If G/H is Zk-flow con-
tractible, then so is G.

Proof. Let G′ be a graph with G as a subgraph, and f ′ a nowhere-zero Zk-flow in G′/G. Let
F = G/H , and consider f ′ as a nowhere-zero Zk-flow in G′/F (= G′/G). Since F is Zk-flow
contractible, we can extend f ′ to a nowhere-zero Zk-flow f in G′/H , but H is also Zk-flow
contractible, and thus f , and so f ′, can be extended to a nowhere-zero Zk-flow in G′, which
shows that G is Zk-flow contractible. �

Let H1 and H2 be two subgraphs of a graph G. We say that G is the k-sum of H1 and H2,
denoted by H1 ⊕k H2, if E(H1) ∪ E(H2) = E(G), |V (H1) ∩ V (H2)| = k, and E(H1) ∩ E(H2)

is the complete graph on k vertices. In this paper, we restrict our attention to 2-sum.
Let G be a graph. A triangle-path in G is a sequence of distinct triangles T1T2 · · ·Tm in G

such that for 1 � i � m − 1,
∣∣E(Ti) ∩ E(Ti+1)

∣∣ = 1 and E(Ti) ∩ E(Tj ) = ∅ if j > i + 1. (1.1)

Furthermore, if m � 3 and (1.1) holds for all i, 1 � i � m, with the addition taken mod m, then
the sequence is called a triangle-cycle. The number m is the length of the triangle-path (triangle-
cycle). A connected graph G is triangularly connected if for any distinct e, e′ ∈ E(G), which are
not parallel, there is a triangle-path T1T2 · · ·Tm such that e ∈ E(T1) and e′ ∈ E(Tm). Trivially,
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a single edge is triangularly connected. This is technically useful for the representations of the
following main theorems, giving complete characterizations of triangularly connected graphs
which are not Z3-flow contractible or have no nowhere-zero 3-flow.

The main result of this paper is the following characterization of triangularly connected graphs
which are not Z3-flow contractible.

Theorem 1.4. Let G be a triangularly connected graph with |V (G)| � 3. Then G is not Z3-flow
contractible if and only if there is an odd wheel W and a subgraph G1 such that G = W ⊕2 G1,
where G1 is triangularly connected and not Z3-flow contractible.

In the above characterization, odd wheels include the trivial odd wheel (triangle). By exclud-
ing the trivial odd wheel, we have the following characterization of triangularly connected graphs
which have no nowhere-zero 3-flow.

Theorem 1.5. Let G be a triangularly connected graph with |V (G)| � 3. Then G has no
nowhere-zero 3-flow if and only if there is a nontrivial odd wheel W and a subgraph G1 such
that G = W ⊕2 G1, where G1 is a triangularly connected graph without nowhere-zero 3-flow.

A classical result on graph coloring is Grötzsch’s theorem: every 2-edge-connected planar
graph without triangle is 3-vertex-colorable (see [10]), which was extended to 2-edge-connected
planar graphs with at most three triangles by Grünbaum and Aksionov (see [5, p. 7]). A facial
triangle in a plane graph corresponds to 3-cut in its dual. A plane graph has a nowhere-zero 3-
flow if and only if it is 3-face-colorable. Hence, the dual version of the above-mentioned theorem
is that every 2-edge-connected planar graph with at most three 3-cuts has a nowhere-zero 3-flow.
It is interesting to note that Kochol [7] has proved that Conjecture 1.1 is equivalent to: every
2-edge-connected graph with at most three 3-cuts has a nowhere-zero 3-flow. In Section 4, as an
application of Theorem 1.5, we obtain the following corollary, which verifies Conjecture 1.1 and
the equivalent version by Kochol [7] for triangularly connected graphs.

Corollary 1.6. Let G be a triangularly connected graph with |V (G)| � 3. If G contains at most
three 3-cuts, then G has a nowhere-zero 3-flow.

As seen in Proposition 1.2, “Z3-flow contractible” is equivalent to “Z3-connected,” which is
the same as “admitting all generalized Tutte-orientations” defined by Barát and Thomassen [1].
Thus, Theorem 4.5 in [1] can be restated as:

Corollary 1.7. Let G be a triangulation of a surface. Then G is Z3-flow contractible, unless
G = K4 or K3.

Proof. Clearly, G is triangularly connected and |V (G)| � 3. Since G �= K4 or K3, it cannot be
the 2-sum of an odd wheel and a Z3-flow non-contractible graph. The corollary follows from
Theorem 1.4. �
2. ZZZ3-flow contractible graphs

In this section, we study graphs which are Z3-flow contractible. For the sake of simplicity,
throughout this section we abbreviate “Z3-flow contractible” to “contractible.” A graph is non-
contractible if it is not Z3-flow contractible. It is clear that a 2-circuit is contractible. However,
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a triangle is non-contractible, as demonstrated by K4, the complete graph on 4 vertices. It was
first observed by Lai [8] that the 2-sum of two non-contractible graphs is non-contractible. A full
version of this was given by DeVos et al. [3].

Lemma 2.1. (See [3, Proposition 2.5].) Let G = H1 ⊕2 H2.

(i) If neither H1 nor H2 has a nowhere-zero 3-flow, then G does not have a nowhere-zero 3-flow.
(ii) If neither H1 nor H2 is contractible, then G is not contractible.

The following is a technical lemma, which describes a useful property of triangularly con-
nected graphs. Roughly speaking, the lemma tells that in a triangularly connected graph, an edge
of zero flow-value can be “switched” to any place in the graph.

Lemma 2.2. Let f be a Z3-flow in a graph G and H = T1T2 · · ·Tm a triangle-path in G. Suppose
that g is another Z3-flow in G such that the restrictions of g and f on E(G/H) are identical,
and subject to this, |S(g) ∩ E(H)| is maximum. Then:

(i) If there is an edge a ∈ E(H) with g(a) = 0, then for any edge w ∈ E(H), there is a Z3-flow
φ in G such that S(φ) = (S(g) \ {w}) ∪ {a}.

(ii) There is at most one edge a ∈ E(H) with g(a) = 0.

Proof. (i) Let a ∈ E(Tp) and w ∈ E(Tq). We may assume q � p, and choose p,q such that
q − p is as small as possible. Let E(Tp) = {a, a′, a′′}, where a′ ∈ E(Tp) ∩ E(Tp+1). Choose
an orientation in G such that Tp is a directed triangle and let ϕ be a Z2-flow in G with S(ϕ) =
E(Tp). If {g(a′), g(a′′)} �= Z3 \ {0}, then there is α ∈ Z3 \ {0} such that φ = g +α ·ϕ is a Z3-flow
in G with |S(φ) ∩ E(H)| > |S(g) ∩ E(H)|, a contradiction. Thus, {g(a′), g(a′′)} = Z3 \ {0}. If
w ∈ {a′, a′′}, let φ = g − g(w) · ϕ, and then S(φ) = (S(g) \ {w}) ∪ {a}, as required. Therefore,
suppose that q > p. Let ψ = g + g(a′′) · ϕ. Then, S(ψ) = (S(g) \ {a′}) ∪ {a}. Now, ψ(a′) = 0
and a′ ∈ E(Tp+1). Repeat the arguments to Tp+1. Eventually, we have a Z3-flow φ in G such
that S(φ) = (S(g) \ {w}) ∪ {a}, as required by (i).

(ii) Suppose, to the contrary, that a1 and a2 are two distinct edges in H with g(a1) =
g(a2) = 0. Let a1 ∈ E(Tp) and a2 ∈ E(Tq). We may assume that q � p and q − p is as
small as possible. From (i), we see that a1 and a2 cannot be in the same triangle, that is,
q � p + 1. Let w be the edge of E(Tq−1) ∩ E(Tq). By (i), there is a Z3-flow φ in G such
that S(φ) = (S(g) \ {w})∪ {a1}. Now, φ(w) = 0, and w,a2 are in the same triangle Tq , a contra-
diction. This proves Lemma 2.2. �
Lemma 2.3. Let H = T1T2 · · ·Tm be a triangle-path, where m � 2. Suppose that V (T1) =
{x, y, z}, where {yz} = E(T1) ∩ E(T2). If x ∈ V (Ti) for some i �= 1, then H is contractible.

Proof. Let G be a graph containing H as a subgraph, and f a nowhere-zero Z3-flow in G/H .
Let H1 = T2T3 · · ·Tm and G′ = G \ {xy, xz}. Since x ∈ V (H1), G/H = G′/H1, and so, f is a
nowhere-zero Z3-flow in G′/H1. Since H1 is connected, we may extend f into a Z3-flow f ′
in G′ such that the restriction of f ′ on E(G′/H1) is f . We may suppose that f ′ has been chosen
so that |S(f ′) ∩ E(H1)| is maximum. By Lemma 2.2, either f ′ is nowhere-zero or yz is the only
edge with f ′(yz) = 0. Let ϕ be a Z2-flow with S(ϕ) = E(T1). Let α = f ′(yz) if f ′(yz) �= 0, and
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α ∈ Z3 \ {0} otherwise. Then φ = f ′ + α · ϕ is a nowhere-zero Z3-flow in G such that φ and f

have the same restriction on E(G/H). This shows that H is contractible. �
Lemma 2.4. Let G be a triangularly connected graph with |V (G)| � 2. Then G is contractible
if and only if it contains a nontrivial contractible subgraph.

Proof. If G is contractible, the statement is trivially true with the subgraph as G itself. Suppose
that G has a nontrivial contractible subgraph H . Since G is triangularly connected, there is a
sequence of graphs G1,G2, . . . ,Gm such that G1 = G/H , each Gi+1 is obtained from Gi by
contracting a 2-circuit, which is contractible, 1 � i � m − 1, and Gm is the trivial graph. By
Observation 1.3, each Gi is contractible, 1 � i � m, and so G is contractible. �
Lemma 2.5. Let H be a triangle-cycle. If H has two vertices of degree more than 3, then H is
contractible.

Proof. Let H = T1T2 · · ·Tm. Let x, y ∈ V (H) be two distinct vertices of degree more than 3,
say x ∈ V (Ti) and y ∈ V (Tj ), where 1 � i � j � m. Choose i and j such that j − i is as small
as possible. We claim that j = i, that is, Ti contains two vertices of degree more than 3. Let
V (Ti) = {x, x′, x′′}. If j > i, then by the choice of i and j , x /∈ V (Ti+1), and thus {x′x′′} =
E(Ti) ∩ E(Ti+1), which implies, by the definition of triangle-paths, that x ∈ V (Ti−1). Without
loss of generality, assume that xx′ ∈ E(Ti−1)∩E(Ti), and so d(x′) > 3, contradicting the choice
of i and j . This shows that j = i, as claimed. Thus, we may let y = x′. By the definition of
triangle-paths, either x ∈ V (Ti−1) or x ∈ V (Ti+1), say that x ∈ V (Ti−1).

(i) xy ∈ E(Ti−1) ∩ E(Ti). Let H ′ = TiTi+1 · · ·Ti−2. We have that either yx′′ ∈ E(Ti) ∩
E(Ti+1) or xx′′ ∈ E(Ti) ∩ E(Ti+1). In the former, x ∈ V (T�) since d(x) > 3, and in the lat-
ter y ∈ V (T�) since d(y) > 3, for some triangle T� in H ′ with � �= i. It follows from Lemma 2.3
that H ′ is contractible. But H ′ is a subgraph of H , which is triangularly connected, and therefore,
by Lemma 2.4, H is contractible.

(ii) xx′′ ∈ E(Ti−1)∩E(Ti). If yx′′ ∈ E(Ti)∩E(Ti+1), let H ′ = TiTi+1 · · ·Ti−2, and as above,
using d(x) > 3 we are done. If xy ∈ E(Ti)∩E(Ti+1), then, replacing i by i −1, we have case (i)
above. This completes the proof of Lemma 2.5. �
Lemma 2.6. A triangle-cycle is contractible if and only if it is not an odd wheel.

Proof. Let H be a triangle-cycle. By the definition, H contains at least three triangles. If H is an
odd wheel, then clearly H is non-contractible (in fact, H has no nowhere-zero Z3-flow). Suppose
conversely that H is not an odd wheel. If H contains two vertices of degree more than 3, then
by Lemma 2.5, we are done. Otherwise, H is an even wheel, and by a result of DeVos et al.
[3, Proposition 2.4], H is contractible. �
3. Proof of the main theorems

Proof of Theorem 1.4. If there are graphs W and G1, as described in the theorem, such that
G = W ⊕2 G1, then by Lemma 2.1(ii), G is not Z3-flow contractible.

Conversely, suppose that G is not Z3-flow contractible. We use induction on |V (G)|. If
|V (G)| = 3, then G is a triangle, and the theorem trivially holds with W = G and G1 being
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a single edge. Suppose therefore that |V (G)| � 4 and the theorem holds for every triangularly
connected graph G′ with |V (G′)| < |V (G)|.

Since G is triangularly connected and |V (G)| � 3, we see that G is 2-connected. If G has a
vertex-cut consisting of two vertices, say x and y, then xy ∈ E(G), and there are subgraphs G1

and G2 with |V (Gi)| � 3 (i = 1,2) such that G = G1 ⊕2 G2. Choose x and y such that V (G1)

is as small as possible, subject to |V (G1)| � 3. If G1 is an odd wheel, then by Lemma 2.4,
G2 is not Z3-flow contractible, and we are done. Suppose thus that this is not the case. Clearly,
G1 is triangularly connected, and by Lemma 2.4, G1 is not Z3-flow contractible. By the induction
hypothesis, there is an odd wheel W and a subgraph H of G1 such that G1 = W ⊕2 H , where
|V (H)| � 3 since G1 is not an odd wheel. Let x′y′ ∈ E(W) ∩ E(H). By the minimality of
|V (G1)|, x′y′ �= xy. By the definition of 2-sum, xy is entirely contained in W or H , in either
case, {x′, y′} is a vertex-cut of G contradicting the choice of {x, y}. We suppose therefore that G

is 3-connected, and shall show that

Claim. G contains a triangle-cycle.

Let H = T1T2 · · ·Tm be a longest triangle-path in G, where V (T1) = {x, y, z} and {yz} =
E(T1) ∩ E(T2). By Lemmas 2.3 and 2.4, x /∈ V (Ti) for all i � 2. Since G is 3-connected,
d(x) � 3 and there is triangle T containing x such that |E(T ) ∩ E(T1)| � 1.

(i) |E(T ) ∩ E(T1)| = 1, say E(T ) ∩ E(T1) = {xy}. Let w be the third vertex in T other than
x and y. Since x /∈ V (Ti) for all i � 2, we have that xw /∈ E(H). If yw ∈ E(Ts) for some s, then
T TsTs−1 · · ·T1 is a triangle-cycle, as claimed. Otherwise, yw /∈ E(H), and then T T1T2 · · ·Tm is
a longer triangle-path in G, a contradiction.

(ii) E(T ) ∩ E(T1) = ∅. Since G is triangularly connected, there is a triangle-path Q =
Q1Q2 · · ·Qt such that Q1 = T1 and Qt = T . Let e be the edge of E(Q1) ∩ E(Q2). If
e ∈ {xy, xz}, then we have (i) above with Q2 in place of T . Suppose thus that e = yz. But,
x ∈ V (Qt), it follows from Lemmas 2.3 and 2.4 that G is Z3-flow contractible, a contradiction.
This proves the claim.

By the claim above, let W be a triangle-cycle in G, and by Lemma 2.6, W is an odd wheel.
Let x be the center of W , and x1x2 · · ·xm be the circuit of W − x. Denote by Xi the triangle
on {x, xi, xi+1}, 1 � i � m, where xm+1 = x1, and so W can be expressed as X1X2 · · ·Xm. If
xsxt ∈ E(G) for some s < t − 1, then let T be the triangle on {x, xs, xt }. Since m is odd, either
T XsXs+1 · · ·Xt−1 or T XtXt+1 · · ·XmX1 · · ·Xs−1 is an even wheel, which is, by Lemmas 2.6
and 2.4, a contradiction to the fact that G is not Z3-flow contractible. This shows that W is an
induced subgraph of G. If G = W , let G1 be any edge of G, and then we have that G = W ⊕2 G1,
as required. Suppose therefore that |V (G)| > |V (W)|.

Since G is triangularly connected, there is an edge e∗ ∈ E(W) contained in some triangle
which has a vertex in V (G) \ V (W). An edge e ∈ E(G) \ E(W) is reachable from e∗ if there
is a triangle-path H = T1T2 · · ·Tm such that e∗ ∈ E(T1), e ∈ E(Tm), and E(H) ∩ E(W) = {e∗}.
Let R be the set of all the edges which is reachable from e∗. For simplicity, we also use R for the
subgraph induced by R. Clearly, V (e∗) ⊆ V (R).

If V (R) ∩ (V (W) \ V (e∗)) �= ∅, let H = T1T2 · · ·Tm be a triangle-path in R ∪ {e∗} such that
e∗ ∈ E(T1) and Tm contains a vertex in V (R) ∩ (V (W) \ V (e∗)), and subject to this, m is as
small as possible. Let V (Tm) = {a1, a2, a3}, where a1 ∈ V (R) ∩ (V (W) \ V (e∗)). By the choice
of m, E(Tm) ∩ E(Tm−1) = {a2a3}. Clearly, there is a triangle-path Q = Q1Q2 · · ·Qt in W such
that e∗ ∈ E(Q1) and a1 ∈ V (Qt). Then, TmTm−1 · · ·T2T1Q1 · · ·Qt is a triangle-path with the
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property described in Lemma 2.3, which together with Lemma 2.4 yields a contradiction. In
what follows, we suppose that V (R) ∩ V (W) = V (e∗).

Since G is 3-connected, there must be an edge with exactly one end in V (R) \ V (e∗), which
is triangularly connected to edges in W . Let wa be such an edge with a ∈ V (R) \ V (e∗) and
wa /∈ R. Since G is triangularly connected and W is an induced subgraph, there is a triangle-
path H = T1T2 · · ·Tm such that wa ∈ E(T1), Tm contains some edge e ∈ E(W) and E(H) ∩
E(W) = {e}. Since wa /∈ R, we see that e �= e∗.

(i) E(H) ∩ R �= ∅. Let e′ ∈ E(H) ∩ R. If e′ ∈ E(Ti) for some i < m, then, since Tm is the
only triangle in H which contains edges of W , we see that wa is reachable from e∗ through
a triangle-path from e∗ to e′ in R plus TiTi−1 · · ·T1, a contradiction. Thus, e′ ∈ E(Tm), which
implies that the three edges e∗, e′, e have a common end, denoted by z. Let P be a triangle-path
in R ∪ {e∗} connecting e∗ to e′. If z = x, then, since W is an odd wheel, e∗ and e are connected
by two triangle-paths W1 and W2 in W , whose lengths have different parity. Consequently, either
P ∪ Tm ∪ W1 or P ∪ Tm ∪ W2 is a triangle-cycle of even length, which is, by Lemmas 2.6
and 2.4, a contradiction. Otherwise, z = xi for some i. If x is not the other end of e∗, say e∗ =
xixi+1, then, Xi+1Xi+2 · · ·XmX1 · · ·Xi−1TmP (recall that Xi is the triangle on {x, xi, xi+1})
is a triangle-path with the property as described in Lemma 2.3 (Xi+1 and xi+1 play the same
role as T1 and x there), a contradiction. If x is the other end of e∗, then e = xixi+1 or xixi−1.
Without loss of generality, suppose that e = xixi+1. Then Xi+1Xi+2 · · ·XmX1 · · ·Xi−1PTm is a
triangle-path yielding a contradiction again.

(ii) E(H) ∩ R = ∅. Let P be a triangle-path in R ∪ {e∗} from e∗ to the vertex a, and let Q be
a triangle-path connecting e∗ and e in W . Note that a ∈ V (T1). Let t be the largest integer such
that a ∈ V (Tt ). Then, a /∈ V (Tt+1), and TtTt+1 · · ·TmQP is a triangle-path with the property as
described in Lemma 2.3 (Tt and a play the same role as T1 and x there), a contradiction again.
This completes the proof of Theorem 1.4. �
Proof of Theorem 1.5. If there are graphs W and G1, as described in the theorem, such that
G = W ⊕2 G1, then it follows from Lemma 2.1(i) that G does not have a nowhere-zero 3-flow.
Conversely, suppose that G has no nowhere-zero 3-flow. Thus, G is not Z3-flow contractible,
and by Theorem 1.4, there is an odd wheel W and a subgraph G1 such that G = W ⊕2 G1,
where G1 is triangularly connected and not Z3-flow contractible. If W is a triangle, let E(W) =
{e1, e2, e3}, where e3 is the edge in E(W) ∩ E(G1). Let G∗ = G/e2. Then G∗ has a 2-circuit,
which implies, by Lemma 2.4, that G∗ is Z3-flow contractible, and so has a nowhere-zero 3-
flow f , which can be extended to a nowhere-zero 3-flow in G by assigning f (e1) to e2. This is
a contradiction, and thus, W is a nontrivial odd wheel. We claim that G1 has no nowhere-zero
3-flow. If not so, let f1 be a nowhere-zero 3-flow in G1. It is easy to see that the removal of any
edge from a nontrivial odd wheel results in a graph having a nowhere-zero 3-flow. Let f2 be a
nowhere-zero 3-flow in W \ {e3}. Then the combination of f1 and f2 is a nowhere-zero 3-flow
in G. This contradiction shows that G1 has no nowhere-zero 3-flow, and completes the proof of
Theorem 1.5. �
4. Triangularly connected graphs

Theorem 4.1. Let G be a triangularly connected graph with |V (G)| � 3. If G has no nowhere-
zero 3-flow, then it contains at least four vertices of degree 3.

Proof. We use induction on |V (G)|. Clearly, |V (G)| � 4. If |V (G)| = 4, then G = K4, and the
theorem holds. Suppose that |V (G)| � 5 and the theorem is true for any triangularly connected
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graph G′ with |V (G′)| < |V (G)|. If G is an odd wheel, then G has |V (G)| − 1 vertices of
degree 3. Otherwise, by Theorem 1.5, there is an odd wheel W and a subgraph G1 such that
G = W ⊕2 G1, where G1 is triangularly connected and has no nowhere-zero 3-flow. Since G is
not an odd wheel, we have that |V (G1)| � 3. By the induction hypothesis, G1 has at least four
vertices of degree 3. Clearly, W has at least four vertices of degree 3. But |V (W) ∩ V (G1)| = 2,
and so G has at least four vertices of degree 3. �

In the characterization of Theorem 1.4, we may have triangles, which give vertices of degree 2.
In the proof of Theorem 4.1 above, if we use Theorem 1.4 instead of Theorem 1.5, then we have
that

Theorem 4.2. Let G be a triangularly connected graph with |V (G)| � 3. If G is not Z3-flow
contractible, then it contains either two vertices of degree 2 or at least three vertices of degree at
most 3.

Let G be the graph consisting of m copies H1,H2, . . . ,Hm of K4 such that |V (Hi) ∩
V (Hi+1)| = 2, 1 � i � m − 1, and V (Hi) ∩ V (Hj ) = ∅ if j > i + 1. Then G is triangularly
connected and has no nowhere-zero 3-flow. G has exactly 4 vertices of degree 3. In this sense,
Theorem 4.1 is best possible. If H1 and Hm are replaced by triangles, then we have an example
showing Theorem 4.2 is best possible.

A connected graph G is locally connected if the neighbors of each vertex in G induce a
connected subgraph. It is known that a locally connected graph is triangularly connected. Lai [9]
proved that if the neighbors of each vertex in G induce a 3-edge-connected subgraph (locally
3-edge-connected), then G has a nowhere-zero 3-flow. This was extended by DeVos et al. [3],
who prove that every triangularly connected graph with minimum degree at least 4 is Z3-flow
contractible [3, Theorem 1.4], which is now an immediate consequence of Theorem 4.2. Since
the 3 edges incident with a vertex of degree 3 form an edge-cut, it is clear that Corollary 1.6 is
an immediate consequence of Theorem 4.1.

To conclude this section, we present the following equivalent version of Theorem 1.4.

Theorem 4.3. Let G be a triangularly connected graph. Then G is not Z3-flow contractible if
and only if G belongs to the following family W F of graphs:

(1) All odd wheels, including triangles, are members of W F ;
(2) G1 ⊕2 G2 ∈ W F if both G1,G2 ∈ W F .

5. Chordal graphs

A chordal graph is one that contains no induced circuit of length more than 3. Let G be
a 2-edge-connected chordal graph. It is easy to see that if G is simple, then every edge of G

is contained in a triangle. However, a 2-edge-connected chordal graph is not necessary to be
triangularly connected. A T -block of a graph G is a maximal triangularly connected subgraph
of G. Thus, if B is a T -block of G, then any subgraph with B as a proper subgraph is not
triangularly connected. Clearly, if every edge of G is contained in a triangle, then E(G) can be
partitioned into edge-disjoint T -blocks. The following lemma shows that for a chordal graph, the
T -blocks are identical with blocks (maximal nonseparable subgraphs).
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Lemma 5.1. Let G be a chordal graph. Two edges of G are contained in a T -block if and only if
they lie on a common circuit.

Proof. Let e and e′ be two edges of G. If they are contained in a T -block B , then either
|V (B)| = 2, in which e and e′ lie on a 2-circuit, or |V (B)| � 3, in which B is 2-connected
and e, e′ lie on a common circuit. Conversely, suppose that e and e′ lie on a common circuit C.
We shall prove, by induction on |E(C)|, that e and e′ are contained in a T -block. It is trivially
true if |E(C)| � 3. Suppose therefore |E(C)| � 4 and the statement holds for any circuit C′
with |E(C′)| < |E(C)|. Since G is a chordal graph, C has a chord xy, where x, y ∈ V (C) and
xy /∈ E(C). Let P1 and P2 be the two segments of C divided by x and y. Then Ci = Pi ∪ {xy}
is a circuit with |E(Ci)| < |E(C)|, i = 1,2. If e and e′ are contained in the same circuit Ci ,
then by the induction hypothesis, they are in the same T -block, and we are done. Without loss of
generality, suppose thus that e ∈ E(C1) and e′ ∈ E(C2). By the induction hypothesis, e and xy

are contained in a T -block, and xy and e′ are contained in a T -block, which implies that e and
e′ are in the same T -block. This completes the proof of the lemma. �
Theorem 5.2. A 2-edge-connected chordal graph has a nowhere-zero 3-flow if it contains at most
three 3-cuts.

Proof. Let G be a 2-edge-connected chordal graph without nowhere-zero 3-flow. We shall prove
that G contains at least four 3-cuts. Let B1,B2, . . . ,Bn be T -blocks of G. If each Bi has a
nowhere-zero 3-flow fi , 1 � i � n, then the combination of fi (1 � i � n) is a nowhere-zero
3-flow in G. Thus, there is a T -block, say B1, having no nowhere-zero 3-flow. Since G is 2-
edge-connected, it follows from Lemma 5.1 that |V (B1)| � 3. By Corollary 1.6, B1 contains at
least four 3-cuts, and by Lemma 5.1, each such cut is also an edge-cut of G, which gives four
3-cuts of G. This proves the theorem. �

In the proof above, if the graph G is not Z3-flow contractible, then at least one of the T -blocks
is not Z3-flow contractible. Using Theorem 4.2 instead of Corollary 1.6, the same arguments
yield that

Theorem 5.3. A 2-edge-connected chordal graph is Z3-flow contractible if it contains at most
one �-cut for some � � 3.

As an immediate consequence, Theorem 5.3 gives a result of Lai [8] that every 4-edge-
connected chordal graph is Z3-flow contractible.

6. Square of a graph

The square of a graph G, denoted by G2, is the graph obtained from G by adding new edges
joining every pair of vertices at distance 2 in G.

Proposition 6.1. The square of a connected graph is triangularly connected.

Proof. Let G be a connected graph. It is easy to see that the neighbors of a vertex of G induce
a complete subgraph in G2. Then G2 is locally connected, and thus, it is triangularly connected
by the connectedness of G. �
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Let F be the set of nontrivial trees with maximum degree 3 and F ∗ the set of graphs which
are trees in F , or hamiltonian simple graphs on 4 vertices, or obtained from a tree T in F by
adding edges between some leaves at distance 2 in T . The following theorem was proved by
DeVos et al. [3], which strengthens a result of Xu and Zhang [11]. We present here an alternative
proof, as an application of Theorem 1.4.

Theorem 6.2. Let G be a connected graph. Then G2 is not Z3-flow contractible if and only if
G is a member of F ∗.

Proof. Suppose G is a member of F ∗. We shall prove, by induction on |V (G)|, that G2 is not
Z3-flow contractible. If |V (G)| � 4, then G2 is a single edge, or a triangle, or a K4, or the 2-sum
of two triangles, and so the theorem holds. Suppose now that |V (G)| � 5 and the theorem holds
for every graph G′ with |V (G′)| < |V (G)|. Since |V (G)| � 5 and G ∈ F ∗, there is an edge e

such that the deletion of e from G leaves two nontrivial components H1 and H2. Let Gi =
Hi ∪ {e}, i = 1,2. Then Gi ∈ F ∗ and |V (Gi)| < |V (G)|, and by the induction hypothesis, G2

i is
not Z3-flow contractible, i = 1,2. But G2 = G2

1 ⊕2 G2
2, and so G2 is not Z3-flow contractible by

Lemma 2.1(ii).
Conversely, suppose that G2 is not Z3-flow contractible, we shall prove that G ∈ F ∗ by in-

duction on |V (G)|. If |V (G)| � 4, it is clear that G ∈ F ∗. We assume thus that |V (G)| � 5 and
the theorem holds for every G′ with |V (G′)| < |V (G)|. By Proposition 6.1, G2 is triangularly
connected. It follows from Theorem 1.4 that

G2 = W ⊕2 G1,

where W is an odd wheel and G1 is triangularly connected and not Z3-flow contractible. If
|V (G1)| = 2, then G2 = W . Let x be the center of W and x1x2 · · ·xk the circuit of W − x. Since
W is an odd wheel with |V (W)| � 5, we have that k � 5. By the definition of the square of a
graph, the neighbors (in G) of x are consecutive on the circuit x1x2 · · ·xk , and thus dG(x) � 2.
Suppose that x1 and x2 are the possible neighbors of x in G. Now, the edge xx4 implies that
x4 and x are at distance 2 in G, which is impossible. Thus, |V (G1)| � 3. Suppose that {yz} =
E(W) ∩ E(G1). Note that {y, z} forms a vertex-cut of G2. By the definition of the square of a
graph, it follows that NG(y) and NG(z) are entirely contained in different one of W and G1, say
that

NG(y) ⊆ V (W) and NG(z) ⊆ V (G1), (6.1)

which implies that yz ∈ E(G). Let H1 and H2 be the subgraphs of G such that W = H 2
1 and

G1 = H 2
2 . By the induction hypothesis, Hi ∈ F ∗, i = 1,2. Now, G = H1 ⊕2 H2, which is,

by (6.1), a member of F ∗. This completes the proof of Theorem 6.2. �
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