Hamiltonian-connected graphs

Zhao Kewen ${ }^{\text {a,b,* }}$, Hong-Jian Lai ${ }^{\text {c }}$, Ju Zhou ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Qiongzhou University, Wuzhishan, Hainan, 572200, China
${ }^{\text {b }}$ Department of Mathematics, Hainan Normal University, Haikou, Hainan, 571100, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

Received 15 February 2007; received in revised form 21 September 2007; accepted 10 October 2007

Abstract

For a simple graph G, let $N C D(G)=\min \{|N(u) \cup N(v)|+d(w): u, v, w \in V(G), u v \notin E(G), w v$ or $w u \notin E(G)\}$. In this paper, we prove that if $N C D(G) \geq|V(G)|$, then either G is Hamiltonian-connected, or G belongs to a well-characterized class of graphs. The former results by Dirac, Ore and Faudree et al. are extended.

(c) 2008 Published by Elsevier Ltd

Keywords: Hamiltonian path; Hamiltonian graphs; Hamiltonian-connected graphs; Neighborhood union; Degree condition

1. Introduction

Graphs considered in this paper are finite and simple. Undefined notations and terminologies can be found in [1]. In particular, we use $V(G), E(G), \kappa(G), \delta(G)$ and $\alpha(G)$ to denote the vertex set, the edge set, the connectivity, the minimum degree and the independence number of G, respectively. If G is a graph and $u, v \in V(G)$, then a path in G from u to v is called a (u, v)-path of G. If $v \in V(G)$ and H is a subgraph of G, then $N_{H}(v)$ denotes the set of vertices in H that are adjacent to v in G. Thus, $d_{H}(v)$, the degree of v relative to H, is $\left|N_{H}(v)\right|$. We also write $d(v)$ for $d_{G}(v)$ and $N(v)$ for $N_{G}(v)$. If C and H are subgraphs of G, then $N_{C}(H)=\cup_{u \in V(H)} N_{C}(u)$, and $G-C$ denotes the subgraph of G induced by $V(G)-V(C)$. For vertices $u, v \in V(G)$, the distance between u and v, denoted by $d(u, v)$, is the length of a shortest (u, v)-path in G, or ∞ if no such path exists. Let $P_{m}=x_{1} x_{2} \cdots x_{m}$ denote a path of order m. Define $N_{P_{m}}^{+}(u)=\left\{x_{i+1} \in V\left(P_{m}\right): x_{i} \in N_{P_{m}}(u)\right\}$ and $N_{P_{m}}^{-}(u)=\left\{x_{i-1} \in V\left(P_{m}\right): x_{i} \in N_{P_{m}}(u)\right\}$. That means if $x_{1} \in N_{P_{m}}(u)$, then $\left|N_{P_{m}}^{-}(u)\right|=\left|N_{P_{m}}(u)\right|-1$ and if $x_{m} \in N_{P_{m}}(u)$, then $\left|N_{P_{m}}^{+}(u)\right|=\left|N_{P_{m}}(u)\right|-1$.

For a graph G, define $N C(G)=\min \{|N(u) \cup N(v)|: u, v \in V(G), u v \notin E(G)\}$ and $N C D(G)=$ $\min \{|N(u) \cup N(v)|+d(w): u, v, w \in V(G), u v \notin E(G)$, wv or $w u \notin E(G)\}$.

Let G and H be two graphs. We use $G \cup H$ to denote the disjoint union of G and H and $G \bigvee H$ to denote the graph obtained from $G \cup H$ by joining every vertex of G to every vertex of H. We use K_{n} and K_{n}^{c} to denote the complete graph on n vertices and the empty graph on n vertices, respectively. Let G_{n} denote the family of all simple graphs of order n. For notational convenience, we also use G_{n} to denote a simple graph of order n. As an example,

[^0]$G_{2} \in\left\{K_{2}, K_{2}^{c}\right\}$. Define $G_{2}: G_{n}$ to be the family of 2-connected graphs each of which is obtained from $G_{2} \cup G_{n}$ by joining every vertex of G_{2} to some vertices of G_{n} so that the resulting graph G satisfies $N C D(G) \geq|V(G)|=n+2$. For notational convenience, we also use $G_{2}: G_{n}$ to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-connected if for every pair of vertices $u, v \in$ $V(G), G$ has a spanning (u, v)-path. There have been intensive studies on sufficient degree and/or neighborhood union conditions for Hamiltonian graphs and Hamiltonian-connected graphs. The following is a summary of these results that are related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.
(i) (Dirac, [2]). If $\delta(G) \geq n / 2$, then G is Hamiltonian.
(ii) (Ore, [3]). If $d(u)+d(v) \geq n$ for each pair of nonadjacent vertices $u, v \in V(G)$, then G is Hamiltonian.
(iii) (Faudree et al., [4]). If G is 3 -connected, and if $N C(G) \geq(2 n+1) / 3$, then G is Hamiltonian-connected.
(iv) (Faudree et al., [5]). If G is 2 -connected, and if $N C(G) \geq n$, then G is Hamiltonian.
(v) (Wei, [6]). If G is a 2-connected, and if $\min \{d(u)+d(v)+d(w)-|N(u) \cap N(v) \cap N(w)|: u, v, w \in$ $V(G), u v, v w, w u \notin E(G)\} \geq n+1$, then G is Hamiltonian-connected with some well-characterized exceptional graphs.

Motivated by the results above, this paper aims to investigate the Hamiltonian and Hamiltonian-connected properties of graphs with relatively large $N C D(G)$. The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if $N C D(G) \geq n$, then one of the following must hold:
(i) G is Hamiltonian-connected,
(ii) $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}, G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right), G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.

Let $G=G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)$, and let x be a vertex in K_{s} and y a vertex in K_{h}. Then $d(x)+d(y)<|V(G)|$. Also, $G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)$ satisfies the condition that $d(x)+d(y) \geq n$ for any two nonadjacent vertices x, y if and only if $s=h=t=1$. Thus Corollary 1.3 below follows from Theorem 1.2 immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying $d(x)+d(y) \geq n$ for every pair of nonadjacent vertices $x, y \in V(G)$, then G is Hamiltonian-connected or $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}\right\}$.

Since none of $G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}, G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)$ and $G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)$ satisfies the condition that $d(x)+d(y) \geq n+1$ for every pair of nonadjacent vertices x, y, Theorem 1.2 also implies the following result of Ore [4].

Corollary 1.4 (Ore, [7]). If G is a 2-connected graph of order n satisfying $d(x)+d(y) \geq n+1$ for every pair of nonadjacent vertices $x, y \in V(G)$, then G is Hamiltonian-connected.

As $G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}$ and $G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)$ are all Hamiltonian, Theorem 1.2 implies the following Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that $N C D(G) \geq n$, then G is Hamiltonian or $G \in\left\{G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.

Clearly, Theorem 1.5 extends Theorem 1.1(iv). Note that for any graph $G, N C D(G) \geq N C(G)+\delta(G)$. Moreover, if $G=K_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)$ and if $\max \{s, h, t\} \neq \min \{s, h, t\}$, then $N C(G)+\delta(G) \leq|V(G)|-1$. Thus Theorem 1.2 also implies the following result.

Corollary 1.6. If G is a 2 -connected graph with n vertices such that $N C(G)+\delta(G) \geq n$, then G is Hamiltonianconnected or $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}, G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right), G_{3} \bigvee\left(K_{(n-3) / 3} \cup K_{(n-3) / 3} \cup K_{(n-3) / 3}\right)\right\}$.

2. Proof of Theorem 1.2

For a path $P_{m}=x_{1} x_{2} \cdots x_{m}$, we use $\left[x_{i}, x_{j}\right]$ to denote the section $x_{i} x_{i+1} \cdots x_{j}$ of the path P_{m} if $i<j$, and to denote the section $x_{i} x_{i-1} \cdots x_{j}$ of the path P_{m} if $i>j$. For notational convenience, we also use $\left[x_{i}, x_{j}\right]$ to denote the vertex set of this path. If P_{1} is an (x, y)-path and P_{2} is a (y, z)-path in a graph G such that $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\{y\}$, then $P_{1} P_{2}$ denotes the (x, z)-path of G induced by $E\left(P_{1}\right) \cup E\left(P_{2}\right)$.

Let G be a 2-connected graph on n vertices such that

$$
\begin{equation*}
N C D(G) \geq n . \tag{1}
\end{equation*}
$$

We shall assume that G is not Hamiltonian-connected to show that Theorem 1.2 (ii) must hold. Thus there exist $x, y \in V(G)$ such that G does not have a spanning (x, y)-path. Let

$$
\begin{equation*}
P_{m}=x_{1} x_{2} \cdots x_{m} \text { be a longest }(x, y) \text {-path in } G \tag{2}
\end{equation*}
$$

where $x_{1}=x$ and $x_{m}=y$. Since P_{m} is not a Hamiltonian path, $G-P_{m}$ has at least one component.
Lemma 2.1. Suppose that H is a component of $G-P_{m}$. Then each of the following holds.
(i) $\forall i$ with $1<i<m$, if $x_{i} \in N_{P_{m}}(H) \backslash\left\{x_{1}, x_{m}\right\}$, then $x_{i+1} \notin N_{P_{m}}(H)$ and $x_{i-1} \notin N_{P_{m}}(H)$; if $x_{1} \in N_{P_{m}}(H)$, then $x_{2} \notin N_{P_{m}}(H)$, and if $x_{m} \in N_{P_{m}}(H)$, then $x_{m-1} \notin N_{P_{m}}(H)$.
(ii) If $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1 \leq i<j<m$, then $x_{i+1} x_{j+1} \notin E(G)$; if $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1<i<j \leq m$, then $x_{i-1} x_{j-1} \notin E(G)$. Consequently, both $N_{P_{m}}^{+}(H)$ and $N_{P_{m}}^{-}(H)$ are independent sets.
(iii) Let $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1 \leq i<j<m$. If $x_{t} x_{j+1} \in E(G)$ for some vertex $x_{t} \in\left[x_{j+2}, x_{m}\right]$, then $x_{t-1} x_{i+1} \notin E(G)$ and $x_{t-1} \notin N_{P_{m}}(H)$; if $x_{t} x_{j+1} \in E(G)$ for some vertex $x_{t} \in\left[x_{i+1}, x_{j}\right]$, then $x_{t+1} x_{i+1} \notin E(G)$.
(iii)' Let $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1<i<j \leq m$. If $x_{t} x_{i-1} \in E(G)$ for some vertex $x_{t} \in\left[x_{1}, x_{i-2}\right]$, then $x_{t+1} x_{j-1} \notin E(G)$ and $x_{t+1} \notin N_{P_{m}}(H)$; if $x_{t} x_{i-1} \in E(G)$ for some vertex $x_{t} \in\left[x_{i+1}, x_{j}\right]$, then $x_{t-1} x_{j-1} \notin E(G)$.
(iv) If $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1 \leq i<j<m$, then no vertex of $G-\left(V\left(P_{m}\right) \cup V(H)\right)$ is adjacent to both x_{i+1} and x_{j+1}; if $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1<i<j \leq m$, then no vertex of $G-\left(V\left(P_{m}\right) \cup V(H)\right)$ is adjacent to both x_{i-1} and x_{j-1}.
(v) Suppose that $u \in V(H)$ and $\left\{x_{1}, x_{m}\right\} \subseteq N_{P_{m}}(u)$. If $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1 \leq i<j<m$, then for any $v \in V(G) \backslash\left(N_{P_{m}}^{+}(H) \cup\{u\}\right), v x_{i+1} \in E(G)$ or $v x_{j+1} \in E(G)$; if $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1<i<j \leq m$, then for any $v \in V(G) \backslash\left(N_{P_{m}}^{-}(H) \cup\{u\}\right)$, $v x_{i-1} \in E(G)$ or $v x_{j-1} \in E(G)$.
Proof. (i), (ii) and (iv) follow immediately from the assumption that P_{m} is a longest (x_{1}, x_{m})-path in G. It remains to show that (iii) and (v) must hold. Since $x_{i}, x_{j} \in N_{P_{m}}(H), \exists x_{i}^{\prime}, x_{j}^{\prime} \in V(H)$ such that $x_{i} x_{i}^{\prime}, x_{j} x_{j}^{\prime} \in E(G)$. Let P^{\prime} denote an $\left(x_{i}^{\prime}, x_{j}^{\prime}\right)$-path in H.
(iii) Suppose that the first part of (iii) fails. Then there exists a vertex $x_{t} \in\left\{x_{j+2}, x_{j+3}, \ldots, x_{m}\right\}$ such that $x_{t} x_{j+1} \in E(G)$ and $x_{t-1} x_{i+1} \in E(G)$. Then $\left[x_{1}, x_{i}\right] P^{\prime}\left[x_{j}, x_{i+1}\right]\left[x_{t-1}, x_{j+1}\right]\left[x_{t}, x_{m}\right]$ is a longer $\left(x_{1}, x_{m}\right)$-path, contrary to (2). Hence $x_{t} x_{j+1} \notin E(G)$. Next we assume that x_{t-1} is adjacent to some vertex $x_{t-1}^{\prime} \in V(H)$. Let $P^{\prime \prime}$ denote an $\left(x_{t-1}^{\prime}, x_{j}^{\prime}\right)$-path in H. Then $\left[x_{1}, x_{j}\right] P^{\prime \prime}\left[x_{t-1}, x_{j+1}\right]\left[x_{t}, x_{m}\right]$ is a longer $\left(x_{1}, x_{m}\right)$-path, contrary to (2). The proof for (iii)' is similar, and so it is omitted.
(v) For vertices $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1 \leq i<j<m$, by Lemma 2.1(i), we have $x_{i+1} \notin N(u)$, $x_{j+1} \notin N(u)$ and by Lemma 2.1(ii), we have $x_{i+1} x_{j+1} \notin E(G)$. By (2), N($\left.v_{i+1}\right) \cap\left(N_{P_{m}}^{+}(H) \cup\{u\}\right)=\emptyset$ and $N\left(v_{j+1}\right) \cap\left(N_{P_{m}}^{+}(H) \cup\{u\}\right)=\emptyset$, and so $N\left(v_{i+1}\right) \cup N\left(v_{j+1}\right) \subseteq V(G)-\left(N_{P_{m}}^{+}(H) \cup\{u\}\right)$. Furthermore, $d(u) \leq$ $\left|N_{P_{m}}(H)\right|=\left|N_{P_{m}}^{+}(H) \cup\{u\}\right|$. It follows that $\left|N\left(v_{i+1}\right) \cup N\left(v_{j+1}\right)\right|+d(u) \leq|V(G)|-\left|N_{P_{m}}^{+}(H) \cup\{u\}\right|+d(u) \leq n$. Since $x_{i+1} x_{j+1} \notin E(G), u x_{i+1} \notin E(G), u x_{j+1} \notin E(G)$, by $(1),\left|N\left(v_{i+1}\right) \cup N\left(v_{j+1}\right)\right|+d(u) \geq n$ and so we have $N\left(v_{i+1}\right) \cup N\left(v_{j+1}\right)=V(G)-\left(N_{P_{m}}^{+}(H) \cup\{u\}\right)$, which implies $\forall v \in V(G) \backslash\left(N_{P_{m}}^{+}(H) \cup\{u\}\right), v x_{i+1} \in E(G)$ or $v x_{j+1} \in E(G)$. Similarly, if $x_{i}, x_{j} \in N_{P_{m}}(H)$ with $1<i<j \leq m$, then for any $v \in V(G) \backslash\left(N_{P_{m}}^{-}(H) \cup\{u\}\right)$, $v x_{i-1} \in E(G)$ or $v x_{j-1} \in E(G)$. This proves (v).

Lemma 2.2. Each of the following holds.
(i) If there is a component H of $G-P_{m}$ such that $N_{P_{m}}(H)=\left\{x_{1}, x_{m}\right\}$, then $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ is a complete subgraph.
(ii) If $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then $G-P_{m}$ has at most 2 components.
(iii) If $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then every component of $G-P_{m}$ is a complete subgraph.
(iv) If $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.

Proof. (i) Suppose, to the contrary, that $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ is not a complete subgraph. Then there exist $x_{i}, x_{j} \in$ $\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}$ such that $x_{i} x_{j} \notin E(G)$. Since $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then $\left(N\left(x_{i}\right) \cup N\left(x_{j}\right)\right) \cap(V(H) \cup$ $\left.\left\{x_{i}, x_{j}\right\}\right)=\emptyset$ and so $\left|N\left(x_{i}\right) \cup N\left(x_{j}\right)\right| \leq|V(G) \backslash V(H)|-\left|\left\{x_{i}, x_{j}\right\}\right|$. Let $u \in V(H)$. Then $u x_{i} \notin E(G)$ and $u x_{j} \notin E(G)$. Furthermore, we have $d(u) \leq|V(H) \backslash\{u\}|+\left|\left\{x_{1}, x_{m}\right\}\right|$, and so $\left|N\left(x_{i}\right) \cup N\left(x_{j}\right)\right|+d(u) \leq$ $|V(G) \backslash V(H)|-\left|\left\{x_{i}, x_{j}\right\}\right|+|V(H) \backslash\{u\}|+\left|\left\{x_{1}, x_{m}\right\}\right| \leq n-1$, contrary to (1).
(ii) Suppose that $G-P_{m}$ has at least three components H_{1}, H_{2} and H_{3}. Let $u \in V\left(H_{1}\right)$ and $v \in V\left(H_{2}\right)$. Then $u v \notin E(G)$. Since $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then we have $u x_{2} \notin E(G), v x_{2} \notin E(G)$. Again by $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, we have $N(u) \cup N(v) \subseteq\left(V\left(H_{1}\right)-\{u\}\right) \cup\left(V\left(H_{2}\right)-\{v\}\right) \cup\left\{x_{1}, x_{m}\right\}$ and $N\left(x_{2}\right) \subseteq$ $V\left(P_{m}\right)-\left\{x_{2}\right\}$ and so $|N(u) \cup N(v)|+d\left(x_{2}\right) \leq\left|V\left(H_{1}\right) \backslash\{u\}\right|+\left|V\left(H_{2}\right) \backslash\{v\}\right|+\left|\left\{x_{1}, x_{m}\right\}\right|+\left|V\left(P_{m}\right) \backslash\left\{x_{2}\right\}\right|=$ $\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right|+\left|V\left(P_{m}\right)\right|-1 \leq n-1$, contrary to (1).
(iii) Let H be a component of $G-P_{m}$ such that $u, v \in V(H)$ but $u v \notin E(H)$. Since $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, then $u x_{2} \notin E(G)$ and $v x_{2} \notin E(G)$ and $N(u) \cup N(v) \subseteq(V(H)-\{u, v\}) \cup\left\{x_{1}, x_{m}\right\}$. Thus $|N(u) \cup N(v)|+d\left(x_{2}\right) \leq$ $|V(H) \backslash\{u, v\}|+\left|\left\{x_{1}, x_{m}\right\}\right|+\left|V\left(P_{m}\right) \backslash\left\{x_{2}\right\}\right| \leq n-1$, contrary to (1).
(iv) The statement follows from (ii) and (iii).

Lemma 2.3. Let H be a component of $G-P_{m}$ such that $N_{P_{m}}(H)=\left\{x_{1}, x_{i}, x_{m}\right\}$ and $u \in V(H)$. Then each of the following holds:
(i) If there are $x_{p}, x_{q} \in V\left(P_{m}\right) \backslash N_{P_{m}}(H)$ such that $x_{p} x_{q} \notin E(G)$, then for any vertex $v \in V(G-H) \backslash\left\{x_{p}, x_{q}\right\}$, either $x_{p} v \in E(G)$ or $x_{q} v \in E(G)$.
(ii) $G\left[\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right]$ and $G\left[\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}\right]$ are complete subgraphs.
(iii) If $G-P_{m}=H=\{u\}$, then $G \in\left\{G_{3} \bigvee\left(K_{1} \cup K_{h} \cup K_{t}\right)\right\}$.

Proof. (i) Let $x_{p}, x_{q} \in V\left(P_{m}\right) \backslash N_{P_{m}}(H)$ such that $x_{p} x_{q} \notin E(G)$. Then $u x_{p} \notin E(G)$ and $u x_{q} \notin E(G)$. Suppose, to the contrary, that there is $v_{k} \in V(G-H) \backslash\left\{x_{p}, x_{q}\right\}$ such that $x_{p} x_{k} \notin E(G)$ and $x_{q} x_{k} \notin E(G)$. Then we have $\left|N\left(x_{p}\right) \cup N\left(x_{q}\right)\right|+d(u) \leq|V(G)|-|V(H)|-\left|\left\{x_{p}, x_{q}, x_{k}\right\}\right|+d(u)=|V(G)|-|V(H)| \leq n-1$, contrary to (1).
(ii) To prove that $G\left[\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right]$ is a complete subgraph, we need to prove the following claims.

Claim 1: $v_{2} v_{k} \in E(G)$ for any $i-1 \geq k \geq 4 ; v_{i-1} v_{l} \in E(G)$ for any $3 \geq l \geq i-3$.
We prove that $v_{2} v_{k} \in E(G)$ for any $i-1 \geq k \geq 4$ by induction on $(i-1)-k$. First, we prove $x_{2} x_{i-1} \in E(G)$, that is, the case when $(i-1)-k=0$. Suppose, to the contrary, that $x_{2} x_{i-1} \notin E(G)$. Since $x_{i+1} \in V\left(P_{m}\right) \backslash\left\{x_{2}, x_{i-1}\right\}$, then by (i), either $x_{i+1} x_{2} \in E(G)$ or $x_{i+1} x_{i-1} \in E(G)$. By Lemma 2.1(ii), $x_{i+1} x_{2} \notin E(G)$ and so $x_{i+1} x_{i-1} \in E(G)$. Similarly, we must have $x_{m-1} x_{2} \in E(G)$. Since every vertex in $\left\{x_{i+2}, x_{i+3}, \ldots, x_{m-1}\right\}$ must be adjacent to either x_{2} or x_{i-1}, then there exist two vertices $x_{h}, x_{h+1} \in\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}$ such that x_{h}, x_{h+1} are adjacent to x_{2}, x_{i-1} (or x_{i-1}, x_{2}), respectively. It follows that G has a longer (x_{1}, x_{m})-path $x_{1} u\left[x_{i}, x_{t-1}\right]\left[x_{2}, x_{i-1}\right]\left[x_{t}, x_{m}\right]$ (or $x_{1} u\left[x_{i}, x_{t-1}\right]\left[x_{i-1}, x_{2}\right]\left[x_{t}, x_{m}\right]$), contrary to (2). This shows that $x_{2} x_{i-1} \in E(G)$. Now suppose that $x_{2} x_{k} \in E(G)$ for any $k \geq s>4$. We need to prove that $x_{2} x_{s-1} \in E(G)$. Suppose, to the contrary, that $x_{2} x_{s-1} \notin E(G)$. Since $x_{i+1} \in V\left(P_{m}\right) \backslash\left\{x_{2}, x_{s-1}\right\}$, by (i), either $x_{i+1} x_{2} \in E(G)$ or $x_{i+1} x_{s-1} \in E(G)$. By Lemma 2.1(ii), $x_{2} x_{i+1} \notin E(G)$ and so $x_{i+1} x_{s-1} \in E(G)$. Thus G has a longer (x_{1}, x_{m})-path $x_{1} u\left[x_{i}, x_{s}\right]\left[x_{2}, x_{s-1}\right]\left[x_{i+1}, x_{m}\right]$, contrary to (2). Hence $x_{2} x_{s-1} \in E(G)$ and so $v_{2} v_{k} \in E(G)$ for any $i-1 \geq k \geq 4$ by induction. Similarly, we can inductively prove that $v_{i-1} v_{l} \in E(G)$ for any $3 \leq l \leq i-3$.
Claim 2: $x_{p} x_{q} \in E(G)$ for any $2 \leq p<q \leq i-1$.
By Claim 1, $v_{2} v_{k} \in E(G)$ for any $i-1 \geq k \geq 4$ and $v_{i-1} v_{l} \in E(G)$ for any $3 \geq l \geq i-3$.
Now suppose that for any $2 \leq p<p^{\prime}$ and $i-1 \geq q>q^{\prime}$, where $p<p^{\prime}<q^{\prime}<q$, we have $x_{p} x_{k} \in E(G)$ for any $2 \leq k \leq i-1$ and $x_{q} x_{l} \in E(G)$ for any $2 \leq l \leq i-1$. We want to prove that $x_{p^{\prime}} x_{q^{\prime}} \in E(G)$. Suppose, to the contrary, that $x_{p^{\prime}} x_{q^{\prime}} \notin E(G)$. Since $x_{i+1} \in V\left(P_{m}\right) \backslash\left\{x_{p^{\prime}}, x_{q^{\prime}}\right\}$, by (i), either $x_{i+1} x_{p^{\prime}} \in E(G)$ or $x_{i+1} x_{q^{\prime}} \in E(G)$. If $x_{i+1} x_{p^{\prime}} \in E(G)$, then G has a longer $\left(x_{1}, x_{m}\right)$-path $x_{1} u\left[x_{i}, x_{p^{\prime}+1}\right]\left[x_{2}, x_{p^{\prime}}\right]\left[x_{i+1}, x_{m}\right]$ and if $x_{i+1} x_{q^{\prime}} \in E(G)$, then G
has a longer $\left(x_{1}, x_{m}\right)$-path $x_{1} u\left[x_{i}, x_{q^{\prime}+1}\right]\left[x_{2}, x_{q^{\prime}}\right]\left[x_{i+1}, x_{m}\right]$, contrary to (2) in either case. Hence $x_{p^{\prime}} x_{q^{\prime}} \in E(G)$ and so $x_{p} x_{q} \in E(G)$ for any $2 \leq p<q \leq i-1$ by induction.

By Claim 2, $G\left[\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right]$ is a complete subgraph.
Similarly, $G\left[\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}\right]$ is also a complete subgraph.
(iii) To prove (iii), we consider the following cases.

Case 1. There exists a vertex $x_{t} \in\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}$ adjacent to some vertex $x_{h} \in\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}$.
Let $L=\min \left\{\left|\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right|,\left|\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}\right|\right\}$. First suppose that $L=1$. Without loss of generality, let $\left|\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right|=1$, that is $i=3$. If $x_{h} \neq x_{m-1}$, then G has a Hamiltonian (x_{1}, x_{m}) path $x_{1} u x_{3} x_{2}\left[x_{h}, x_{4}\right]\left[x_{h+1}, x_{m}\right]$, contrary to (2). Thus $x_{h}=x_{m-1}$. Since $x_{1}, x_{3} \in N_{P_{m}}(u)$, then by Lemma 2.1(ii), we have $x_{2} x_{4} \notin E(G)$ and so $x_{m-1} \neq x_{4}$. Since $x_{2} x_{4} \notin E(G)$, then by (i), either $x_{2} x_{m} \in E(G)$ or $x_{4} x_{m} \in E(G)$. If $x_{2} x_{m} \in E(G)$, then G has a Hamiltonian $\left(x_{1}, x_{m}\right)$ path $x_{1} u\left[x_{3}, x_{m-1}\right] x_{2} x_{m}$ and if $x_{4} x_{m} \in E(G)$, then G has a Hamiltonian (x_{1}, x_{m}) path $x_{1} u x_{3} x_{2}\left[x_{m-1}, x_{4}\right] x_{m}$, contrary to (2) in either case.

Hence we must have $L \geq 2$. If $x_{t} \notin\left\{x_{2}, x_{i-1}\right\}$ or $x_{h} \notin\left\{x_{i+1}, x_{m-1}\right\}$, then by the facts that $G\left[\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}\right]$ and $G\left[\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}\right]$ are complete subgraphs, G has a Hamiltonian (x_{1}, x_{m}) path $x_{1} u\left[x_{i}, x_{t+1}\right]\left[x_{t-1}, x_{2}\right] x_{t}\left[x_{h}, x_{i+1}\right]\left[x_{h+1}, x_{m}\right]$, contrary to (2). Now let $x_{t} \in\left\{x_{2}, x_{i-1}\right\}$ and $x_{h} \in\left\{x_{i+1}, x_{m-1}\right\}$. Since $x_{2}, x_{i+1} \in N_{P_{m}}^{+}(u)$ and $x_{i-1}, x_{m-1} \in N_{P_{m}}^{-}(u)$, then by Lemma 2.1(ii), $x_{2} x_{i+1} \notin E(G)$ and $x_{i-1} x_{m-1} \notin E(G)$. Then either $x_{i-1} x_{i+1} \in E(G)$ or $x_{2} x_{m-1} \in E(G)$. First assume that $x_{i-1} x_{i+1} \in E(G)$. If $x_{i-2} x_{i+2} \notin E(G)$, then by (i), either $x_{i} x_{i-2} \in E(G)$, whence $x_{1} u x_{i} x_{i-2}\left[x_{i-3}, x_{2}\right] x_{i-1} x_{i+1}\left[x_{i+2}, x_{m}\right]$ is a Hamiltonian $\left(x_{1}, x_{m}\right)$-path or $x_{i} x_{i+2} \in E(G)$, whence $\left[x_{1}, x_{i-1}\right] x_{i+1}\left[x_{i+3}, x_{m-1}\right] x_{i+2} x_{i} u x_{m}$ is a Hamiltonian (x_{1}, x_{m}) path, contrary to (2) in either case. If $x_{i-2} x_{i+2} \in E(G)$, then $x_{2}=x_{i-2}$ and $x_{i+2}=x_{m-1}$ and so $i=4, m=7$. Then G has a Hamiltonian $\left(x_{1}, x_{m}\right)$ path $x_{1} x_{2} x_{6} x_{5} x_{3} x_{4} u x_{7}$, contrary to (2).

Now assume that $x_{2} x_{m-1} \in E(G)$. If $x_{3} x_{m-2} \in E(G)$, then $3=i-1$ and $m-2=i+1$, that is $i=4, m=7$. Then G has a Hamiltonian (x_{1}, x_{m}) path $x_{1} u x_{4} x_{5} x_{3} x_{2} x_{6} x_{7}$, contrary to (2). If $x_{3} x_{m-2} \notin E(G)$, by (i), either $x_{3} x_{m} \in E(G)$, whence G has a Hamiltonian $\left(x_{1}, x_{m}\right)$-path $x_{1} u\left[x_{i}, x_{m-1}\right] x_{2}\left[x_{4}, x_{i-1}\right] x_{3} x_{m}$ or $x_{m-2} x_{m} \in E(G)$, whence G has a Hamiltonian (x_{1}, x_{m})-path $x_{1} u\left[x_{i}, x_{2}\right] x_{m-1}\left[x_{m-3}, x_{i+1}\right] x_{m-2} x_{m}$, contrary to (2) in either case.
Case 2. There is no vertex in $\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}$ adjacent to a vertex in $\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}$.
Since $N_{P_{m}}(u)=\left\{x_{1}, x_{i}, x_{m}\right\}$, then $u x_{h} \notin E(G)$ and by Lemma 2.1(i), $x_{2} u \notin E(G)$. By the assumption of Case $2, x_{2} x_{h} \notin E(G)$ and $N\left(x_{2}\right) \cup N(u) \subseteq\left\{x_{1}, x_{3}, x_{4}, \ldots, x_{i}, x_{m}\right\}$ and for any $x_{h} \in\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}$, $N\left(x_{h}\right)\left\{x_{1}, x_{i}, x_{i+1}, \ldots, x_{h-1}, x_{h+1}, x_{m-1}, x_{m}\right\}$. Then by (1), we have $n \leq\left|N\left(x_{2}\right) \cup N(u)\right|+d\left(x_{h}\right) \leq$ $\left|\left\{x_{1}, x_{3}, \ldots, x_{i}, x_{m}\right\}\right|+\left|\left\{x_{1}, x_{i}, x_{i+1}, \ldots, x_{h-1}, x_{h+1}, x_{m-1} x_{m}\right\}\right| \leq n$. Thus x_{h} must be adjacent to every vertex in $N_{P_{m}}(u)$. Since x_{h} is arbitrary, every vertex in $\left\{x_{i+1}, x_{i+2}, \ldots, x_{m}\right\}$ must be adjacent to every vertex in $N_{P_{m}}(u)=$ $\left\{x_{1}, x_{i}, x_{m}\right\}$. Similarly, every vertex in $\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}$ must be adjacent to every vertex in $N_{P_{m}}(u)=\left\{x_{1}, x_{i}, x_{m}\right\}$. This implies $G \in\left\{G_{3} \bigvee\left(K_{1} \cup K_{h} \cup K_{t}\right)\right\}$.

Lemma 2.4. Suppose that $V\left(G-P_{m}\right)=\{u\}, d(u) \geq 4$ and $\left\{x_{1}, x_{m}\right\} \subseteq N_{G}(u)$. Then $G \in\left\{G_{n / 2} \bigvee K_{n / 2}^{c}\right\}$.
Proof. Without loss of generality, let $N_{G}(u)=\left\{x_{1}, x_{i}, x_{j}, \ldots, x_{r}, x_{m}\right\}$, where $1<i<j \leq r<m$. Then $j=r$ if $d(u)=4$.
Case 1. $x_{2} x_{m-1} \in E(G)$.
Since $x_{m-2} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{-}(u)$ and $1<i<j<m$, then by Lemma 2.1(v), either $x_{i-1} x_{m-2} \in E(G)$ or $x_{j-1} x_{m-2} \in E(G)$. Without loss of generality, suppose $x_{i-1} x_{m-2} \in E(G)$. Then $x_{1} u\left[x_{i}, x_{m-2}\right]\left[x_{i-1}, x_{2}\right] x_{m-1} x_{m}$ is a Hamiltonian (x_{1}, x_{m})-path, a contradiction.
Case 2. $x_{2} x_{m-1} \notin E(G)$.
Then we consider two subcases $x_{r+1} \neq x_{m-1}$ and $x_{r+1}=x_{m-1}$.
Subcase 2.1. $x_{r+1} \neq x_{m-1}$.
Since $x_{m-1} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{+}(u)$ and $1<i<m$, then by Lemma 2.1(v), either $x_{2} x_{m-1} \in E(G)$ or $x_{i+1} x_{m-1} \in E(G)$. By the assumption of case $2, x_{2} x_{m-1} \notin E(G)$ and so we must have $x_{i+1} x_{m-1} \in E(G)$. Since $x_{r+1} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{-}(u)$ and $1<i<j<m$, by Lemma 2.1(v), $x_{r+1} x_{i-1} \in E(G)$ or $x_{r+1} x_{j-1} \in E(G)$ (if $d(u)=4$, then $j=r$). Then we consider the following two subcases.
Subcase 2.1.1 $x_{r+1} x_{i-1} \in E(G)$.
Since $x_{i} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{-}(u)$ and $1<j<m$, then by Lemma 2.1(v), either $x_{i} x_{j-1} \in E(G)$, whence G has a Hamiltonian $\left(x_{1}, x_{m}\right)$-path $\left[x_{1}, x_{i}\right]\left[x_{j-1}, x_{i+1}\right] x_{m-1}\left[x_{i-2}, x_{j}\right] u x_{m}$ or $x_{i} x_{m-1} \in E(G)$, whence G has a Hamiltonian $\left(x_{1}, x_{m}\right)$-path $\left[x_{1}, x_{i-1}\right]\left[x_{r+1}, x_{m-1}\right]\left[x_{i}, x_{r}\right] u x_{m}$, contrary to (2) in either case.

Subcase 2.1.2. $x_{r+1} x_{j-1} \in E(G)$.
Since $x_{r+2} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{+}(u)$ and $1<i<m$, by Lemma 2.1(v), either $x_{r+2} x_{2} \in E(G)$, whence by the fact that $x_{r+1} x_{j-1} \in E(G), G$ has a Hamiltonian $\left(x_{1}, x_{m}\right)$-path $x_{1} u\left[x_{j}, x_{r+1}\right]\left[x_{j-1}, x_{2}\right]\left[x_{r+2}, x_{m}\right]$, or $x_{r+2} x_{i+1} \in E(G)$, whence G has a Hamiltonian (x_{1}, x_{m})-path $\left[x_{1}, x_{i}\right] u\left[x_{j}, x_{r+1}\right]\left[x_{j-1}, x_{i+1}\right]\left[x_{r+2}, x_{m}\right]$, contrary to (2) in either case. Subcase $2.2 x_{r+1}=x_{m-1}$.

Note that both $x_{r+1}=x_{m-1} \in N_{P_{m}}^{+}(u)$ and $x_{r+1}=x_{m-1} \in N_{P_{m}}^{-}(u)$. Let $x_{i}, x_{j} \in N_{P_{m}}(u)$ be such that $N_{P_{m}}(u) \cap\left\{x_{i+1}, x_{i+2}, \ldots, x_{j-1}\right\}=\emptyset$, then we claim that $x_{i+1}=x_{j-1}$.

Otherwise, since $x_{i+1} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{-}(u)$ and $1<i<m$, then by Lemma 2.1(v), $x_{i-1} x_{i+1} \in E(G)$ or $x_{m-1} x_{i+1} \in$ $E(G)$. Since $x_{r+1}=x_{m-1}$, then $x_{i+1} x_{m-1} \notin E(G)$ and so $x_{i+1} x_{i-1} \in E(G)$. Since $x_{i+2} \in V\left(P_{m}\right) \backslash N_{P_{m}}^{+}(u)$ and $1<i<r<m$, then by Lemma 2.1(v), $x_{i+2} x_{2} \in E(G)$, whence G has a Hamiltonian (x_{1}, x_{m})-path $x_{1} u x_{i} x_{i+1}\left[x_{i-1}, x_{2}\right]\left[x_{i+2}, x_{m}\right]$, or $x_{i+2} x_{m-1} \in E(G)\left(x_{i+2} x_{r+1} \in E(G)\right)$, whence G has a Hamiltonian $\left(x_{1}, x_{m}\right)$-path $\left[x_{1}, x_{i-1}\right] x_{i+1} x_{i} u\left[x_{r}, x_{i+2}\right] x_{r+1} x_{m}$, contrary to (2) in either case. Therefore, $N_{P_{m}}(u)=\left\{x_{1}, x_{3}, x_{5}, x_{7}, \ldots, x_{n-1}\right\}$. Since P_{m} is a longest $\left(x_{1}, x_{m}\right)$-path, then $\left\{u, x_{2}, x_{4}, x_{6} \ldots, \ldots, x_{n-2}\right\}$ is an independent set. Since for any $x_{p}, x_{q} \in$ $\left\{x_{2}, x_{4}, x_{6} \ldots, \ldots, x_{n-2}\right\}$, we have $n \leq\left|N\left(x_{p}\right) \cup N\left(x_{q}\right)\right|+d(u) \leq\left|\left\{x_{1}, x_{3}, x_{5}, x_{7}, \ldots, x_{n-1}\right\}\right|+d(u)=n$, then every vertex in $\left\{x_{2}, x_{4}, x_{6} \ldots, \ldots, x_{n-2}\right\}$ must be adjacent to every vertex in $\left\{x_{1}, x_{3}, x_{5}, x_{7}, \ldots, x_{n-1}\right\}$. Thus we can get $G \in\left\{G_{n / 2} \bigvee K_{n / 2}^{c}\right\}$.

Lemma 2.5. Suppose that for any $u \in V\left(G-P_{m}\right)$, both $\left\{x_{1}, x_{m}\right\} \subseteq N_{P_{m}}(u)$ and $N_{P_{m}}\left(G-P_{m}\right) \neq\left\{x_{1}, x_{m}\right\}$. If there exists a component H of $G-P_{m}$ such that $|V(H)| \geq 2$, then $G \in\left\{G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.
Proof. Without loss of generality, let $N_{P_{m}}(H)=\left\{x_{1}, x_{i}, x_{j}, \ldots, x_{r}, x_{m}\right\}$.
Claim 1: $\left|N_{P_{m}}(H)\right|=3$.
Otherwise, since G is a 2-connected graph, then $\left|N_{P_{m}}(H)\right|=2$ or $\left|N_{P_{m}}(H)\right| \geq 4$. If $\left|N_{P_{m}}(H)\right|=2$, then $N_{P_{m}}(H)=\left\{x_{1}, x_{m}\right\}$. By Lemma 2.2(i), $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ is a complete subgraph. Since $N_{P_{m}}\left(G-P_{m}\right) \neq$ $\left\{x_{1}, x_{m}\right\}$ and G is 2-connected, then $G-P_{m}$ has a component S such that $x_{i} \in N_{P_{m}}(S) \backslash\left\{x_{1}, x_{m}\right\}$ and $x_{j} \in N_{P_{m}}(S)$. Without loss of generality, suppose that $1<i<j \leq m$. Since $x_{i}, x_{j} \in N_{P_{m}}(H), \exists x_{i}^{\prime}, x_{j}^{\prime} \in$ $V(H)$ such that $x_{i} x_{i}^{\prime}, x_{j} x_{j}^{\prime} \in E(G)$. Let P^{\prime} denote an $\left(x_{i}^{\prime}, x_{j}^{\prime}\right)$-path in H. Hence G has a longer $\left(x_{1}, x_{m}\right)$-path $\left[x_{1}, x_{i-1}\right]\left[x_{i+1}, x_{j-1}\right] x_{i} P^{\prime}\left[x_{j}, x_{m}\right]$, contrary to (2). Now suppose $\left|N_{P_{m}}(H)\right| \geq 4$ and $u \in V(H)$. Let $v \in V(H) \backslash\{u\}$. By Lemma 2.1(v), $v x_{2} \in E(G)$ or $v x_{i+1} \in E(G)$. Since $x_{1} \in N_{P_{m}}(v)$, then by Lemma 2.1(i), $x_{2} \notin N_{P_{m}}(v)$ and so $x_{i+1} v \in E(G)$. Since $\left|N_{P_{m}}(H)\right| \geq 4$, then there is $x_{j} \in N_{P_{m}}(H) \backslash\left\{x_{1}, x_{i}, x_{m}\right\}$. By the same argument, we have $x_{j+1} v \in E(G)$ and so $\left[x_{1}, x_{i}\right] u\left[x_{j}, x_{i+1}\right] v\left[x_{j+1}, x_{m}\right]$ is a longer (x_{1}, x_{m})-path, contrary to (2).

Let $N_{P_{m}}(H)=\left\{x_{1}, x_{i}, x_{m}\right\}$. By Lemma 2.3(ii), we have the following Claim 2.
Claim 2: $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ and $G\left[\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}\right]$ are all complete subgraphs.
Since G is 2-connected and $|V(H)| \geq 2$, then there are $x_{1}^{\prime}, x_{i}^{\prime} \in V(H)$ such that $x_{1}^{\prime} \neq x_{i}^{\prime}$ and $x_{1} x_{1}^{\prime}, x_{i} x_{i}^{\prime} \in E(G)$ or there are $x_{i}^{\prime \prime}, x_{m}^{\prime \prime} \in V(H)$ such that $x_{i}^{\prime \prime} \neq x_{m}^{\prime \prime}$ and $x_{i} x_{i}^{\prime \prime}, x_{m} x_{m}^{\prime \prime} \in E(G)$. Without loss of generality, suppose there are $x_{1}^{\prime}, x_{i}^{\prime} \in V(H)$ such that $x_{1}^{\prime} \neq x_{i}^{\prime}$ and $x_{1} x_{1}^{\prime}, x_{i} x_{i}^{\prime} \in E(G)$. Let P^{\prime} denote an $\left(x_{1}^{\prime}, x_{i}^{\prime}\right)$-path in H.
Claim 3: $G-P_{m}$ is a connected subgraph.
Otherwise, let S be another component of $G-P_{m}$. By Lemma 2.3(i), every vertex in S must be adjacent to one of x_{2} and x_{i+1}. Since every vertex in S is adjacent to x_{1}, by Lemma 2.1(i), no vertex in S can be adjacent to x_{2} and so every vertex in S must be adjacent to x_{i+1}. If $x_{2} x_{i+2} \in E(G)$, then we can get a longer (x_{1}, x_{m})-path $x_{1} P^{\prime}\left[x_{i}, x_{2}\right]\left[x_{i+2}, x_{m}\right]$, contrary to (2). Then we have $x_{2} x_{i+2} \notin E(G)$. By Lemma 2.3(i) and Lemma 2.1(i) again, every vertex in S must be adjacent to x_{i+2}, contradicting Lemma 2.1(i).
Claim 4: H is a complete subgraph.
Otherwise, let $u, v \in V(H)$ such that $u v \notin E(G)$. Then we have $\left|N\left(x_{2}\right) \cup N\left(x_{i+1}\right)\right|+d(u) \leq\left|V\left(P_{m}\right)\right|+|V(H)|-$ $\left|\left\{x_{2}, x_{i+1}, u, v\right\}\right|+\left|N_{P_{m}}(H)\right| \leq n-1$, contrary to (1).
Claim 5: For any $u \in V(H), u$ must be adjacent to every vertex of $N_{P_{m}}(H)$.
Otherwise, there exists $u \in V(H)$ such that $u x_{i} \notin E(G)$. Then $\left|N\left(x_{2}\right) \cup N\left(x_{i+1}\right)\right|+d(u) \leq\left|V\left(P_{m}\right) \backslash\left\{x_{2}, x_{i+1}\right\}\right|+$ $|V(H) \backslash\{u\}|+\left|N_{P_{m}}(H) \backslash\left\{x_{i}\right\}\right| \leq n-1$, contrary to (1). Similarly, for every vertex u in $\left\{x_{2}, x_{3}, \ldots, x_{i-1}\right\}$ or $\left\{x_{i+1}, x_{i+2}, \ldots, x_{m-1}\right\}, u$ must be adjacent to every vertex in $N_{P_{m}}(H)=\left\{x_{1}, x_{i}, x_{m}\right\}$. Then by Claims $1-5$, we have $G \in\left\{G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.

Proof of Theorem 1.2. Let G be a 2 -connected graph such that (1) holds. Suppose that G is not Hamiltonianconnected and so we may assume that there exist $x, y \in V(G)$ such that G has no Hamiltonian (x, y)-path and such
that (2) holds. We want to show that $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{n / 2} \bigvee K_{n / 2}^{c}, G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right), G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$. We consider the following cases.
Case 1. There exists a vertex u in $G-P_{m}$ such that $u x_{1}$ or $u x_{m} \notin E(G)$.
Without loss of generality, suppose $u x_{m} \notin E(G)$. let G^{*} be the component of $G-P_{m}$ containing u. Since G is 2-connected, then $\left|N_{P_{m}}\left(G^{*}\right)\right| \geq 2$.
Subcase 1.1. $\left|N_{P_{m}}\left(G^{*}\right)\right| \geq 3$.
In this case, there exist two distinct vertices $x_{i+1}, x_{j+1} \in N^{+} P_{m}\left(G^{*}\right)$ such that $x_{i+1} x_{j+1} \notin E(G)$. Then we have the following claim.
Claim: For any vertex $v \in N_{G-P_{m}}(u) \cup N_{P_{m}}^{+}(u), v x_{i+1} \notin E(G)$ and $v x_{j+1} \notin E(G)$.
By Lemma 2.1(ii), for any vertex $v \in N^{+} P_{m}(u), v x_{i+1} \notin E(G)$ and $v x_{j+1} \notin E(G)$. Now suppose there is $v \in N_{G-P_{m}}(u)$ such that $v x_{i+1} \in E(G)$ or $v x_{j+1} \in E(G)$. Without loss of generality, suppose that $v x_{i+1} \in E(G)$. Since $x_{i} \in N_{P_{m}}\left(G^{*}\right), \exists x_{i}^{\prime} \in V\left(G^{*}\right)$ such that $x_{i} x_{i}^{\prime} \in E(G)$. Let P^{\prime} denote an $\left(x_{i}^{\prime}, v\right)$-path in G^{*}. Then we get a longer (x_{1}, x_{m})-path $\left[x_{1}, x_{i}\right] P_{1}\left[x_{i+1}, x_{m}\right]$, contrary to (2).

Since $x_{i+1}, x_{j+1} \in N^{+} P_{m}\left(G^{*}\right)$, by Lemma 2.1(i), $u x_{i+1} \notin E(G)$ and $u x_{j+1} \notin E(G)$. By the above Claim, we have $\left|N\left(x_{i+1}\right) \cup N\left(x_{j+1}\right)\right| \leq|V(G)|-\left|N_{G-P_{m}}(u) \cup N_{P_{m}}^{+}(u)\right|-|\{u\}|$. Since $\left|N_{P_{m}}^{+}(u)\right|=\left|N_{P_{m}}(u)\right|$, then $\left|N_{G-P_{m}}(u) \cup N_{P_{m}}^{+}(u)\right|=\left|N_{G-P_{m}}(u) \cup N_{P_{m}}(u)\right|=|N(u)|$ and so $\left|N\left(x_{i+1}\right) \cup N\left(x_{j+1}\right)\right| \leq|V(G)|-|N(u)|-|\{u\}|=$ $n-|N(u)|-1$, which implies $\left|N\left(x_{i+1}\right) \cup N\left(x_{j+1}\right)\right|+d(u) \leq n-1$, contrary to (1). Subcase 1.2. $\left|N_{P_{m}}\left(G^{*}\right)\right|=2$.

If $N_{P_{m}}\left(G^{*}\right) \neq\left\{x_{1}, x_{m}\right\}$, then by the argument similar to that in above Subcase 1.1, we can obtain a contradiction. Then we have $N_{P_{m}}\left(G^{*}\right)=\left\{x_{1}, x_{m}\right\}$. By Lemma 2.2(i), $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ is complete subgraph.

If there exists a vertex $x_{i} \in V\left(P_{m}\right) \backslash\left\{x_{1}, x_{m}\right\}$ satisfying x_{i} is adjacent to some vertex of $G-P_{m}$, then there exists a component H of $G-P_{m}-G^{*}$ such that x_{i} is adjacent to some vertex of H. Since G is 2-connected, then there exist $x_{i+1}, x_{j+1} \in N_{P_{m}}^{+}(H)$ or $x_{i-1}, x_{j-1} \in N_{P_{m}}^{-}(H)$. Since $G\left[\left\{x_{2}, x_{3}, \ldots, x_{m-1}\right\}\right]$ is a complete subgraph, then $x_{i+1} x_{j+1}$ and $x_{i-1} x_{j-1} \in E(G)$, contrary to Lemma 2.1(ii). Then we have $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$. By Lemma 2.2(iv), we have $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$.
Case 2. For any vertex u in $G-P_{m}, u$ is adjacent to x_{1} and x_{m}.
If $N_{P_{m}}\left(G-P_{m}\right)=\left\{x_{1}, x_{m}\right\}$, by Lemma 2.2(iv), we have $G \in\left\{G_{2}:\left(K_{s} \cup K_{h}\right), G_{2}:\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$. In the following, we suppose that $N_{P_{m}}\left(G-P_{m}\right) \neq\left\{x_{1}, x_{m}\right\}$. Then there exists a component G^{*} of $G-P_{m}$ such that $N_{P_{m}}\left(G^{*}\right) \cap\left(V\left(P_{m}\right) \backslash\left\{x_{1}, x_{m}\right\}\right) \neq \emptyset$.
Subcase 2.1. $\left|V\left(G-P_{m}\right)\right|=|\{u\}|=1$.
Since u is adjacent to x_{1} and x_{m} and $N_{P_{m}}(u) \cap\left(V\left(P_{m}\right) \backslash\left\{x_{1}, x_{m}\right\}\right) \neq \emptyset$, then $d(u) \geq 3$. If $d(u)=3$, then by Lemma 2.3(iii), $G \in\left\{G_{3} \bigvee\left(K_{1} \cup K_{h} \cup K_{t}\right)\right\}$. If $d(u) \geq 4$, then by Lemma 2.4, $G \in\left\{G_{n / 2} \bigvee K_{n / 2}^{c}\right\}$.
Subcase 2.2. $\left|V\left(G-P_{m}\right)\right| \geq 2$.
If there exists a component H of $G-P_{m}$ such that $|V(H)| \geq 2$, then by Lemma 2.5, $G \in\left\{G_{3} \bigvee\left(K_{s} \cup K_{h} \cup K_{t}\right)\right\}$. Now we suppose that for every component H of $G-P_{m},|V(H)|=1$.
Claim: For any vertex $u \in V\left(G-P_{m}\right), N_{P_{m}}(u) \leq 3$.
Otherwise, let $N_{P_{m}}(u) \geq 4$ and $N_{P_{m}}(u)=\left\{x_{1}, x_{i}, x_{j}, \ldots, x_{m}\right\}$ with $1<i<j<m$. Since $\left|V\left(G-P_{m}\right)\right| \geq 2$, there exists a vertex $v \in V\left(G-P_{m}\right) \backslash\{u\}$. By Lemma 2.1(v), $v x_{2} \in E(G)$ or $v x_{i+1} \in E(G)$. Since $x_{1} \in N_{P_{m}}(v)$, then by Lemma 2.1(i), $v x_{2} \notin E(G)$ and so $v x_{i+1} \in E(G)$. Similarly, $v x_{j+1} \in E(G)$, contrary to Lemma 2.1(iv).

Since $N_{P_{m}}\left(G^{*}\right) \cap\left(V\left(P_{m}\right) \backslash\left\{x_{1}, x_{m}\right\}\right) \neq \emptyset$, then there exists $v \in V\left(G-P_{m}\right)$ such that $\left|N_{P_{m}}(v)\right|=3$. Without loss of generality, let $N_{P_{m}}(v)=\left\{x_{1}, x_{i}, x_{m}\right\}$. Let $w \in V\left(G-P_{m}\right) \backslash\{v\}$. By Lemma 2.1(v), either $w x_{2} \in E(G)$ or $w x_{i+1} \in E(G)$. Since $x_{1} \in N_{P_{m}}(w)$, then $w x_{2} \notin E(G)$ and so $w x_{i+1} \in E(G)$. Similarly, $w x_{i-1} \in E(G)$. Then $x_{i-1}, x_{i+1}, x_{1}, x_{m} \in N_{P_{m}}(w)$, namely, $\left|N_{P_{m}}(w)\right| \geq 4$, contrary to the claim that for any vertex $u \in V\left(G-P_{m}\right)$, $N_{P_{m}}(u) \leq 3$.

Acknowledgement

The first authors' research was partially supported by NFS of Hainan Province (No. 10301) and (No. 10501).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[3] O. Ore, Note on Hamiltonian circuits, Amer. Math. Monthly 67 (1960) 55.
[4] R.J. Faudree, R.J. Gould, M.S. Jacobson, R.H. Schelp, Neighborhood unions and Hamiltonian properties in graphs, J. Combin. Theory, Ser. B 47 (1989) 1-9.
[5] R.J. Faudree, R.J. Gould, M.S. Jacobson, L. Lesniak, Neighborhood unions and highly Hamilton graphs, Ars Combin. 31 (1991) 139-148.
[6] B. Wei, Hamiltonian paths and Hamiltonian connectivity in graphs, Discrete Math. 121 (1993) 223-228.
[7] O. Ore, Hamilton-connected graphs, J. Math. Pures Appl. 42 (1963) 21-27.

[^0]: * Corresponding author at: Department of Mathematics, Qiongzhou University, Wuzhishan, Hainan, 572200, China.

 E-mail address: kewen@bxemail.com (Z. Kewen).

