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Abstract. Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero
Z;-flow and Jaeger et al. [Group connectivity of graphs—a nonhomogeneous analogue of
nowhere-zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182] further conjec-
tured that every 5-edge-connected graph is Z;-connected. These two conjectures are in general
open and few results are known so far. A weaker version of Tutte’s conjecture states that every
4-edge-connected graph with each edge contained in a circuit of length at most 3 admits a
nowhere-zero Z;-flow. Devos proposed a stronger version problem by asking if every such
graph is Z;-connected. In this paper, we first answer this later question in negative and get
an infinite family of such graphs which are not Z;-connected. Moreover, motivated by these
graphs, we prove that every 6-edge-connected graph whose edge set is an edge disjoint union
of circuits of length at most 3 is Z3-connected. It is a partial result to Jaeger’s Z;-connectivity
conjecture.
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1. Introduction

We follow the notations and terminology of [1] except otherwise stated.

Let G be a digraph, A be a nontrivial additive Abelian group and A* be the set
of nonzero elements in A. For any v € V(G), the set of all edges with tails at v is
denoted by E™(v) and the set of all edges with heads at v is denoted by E~(v). We
use 81 (v) for |[E*(v)| and 6~ (v) for |[E~(v)|.

We define

F(G,A)={f|f:EG)~ A} and F*(G,A)={f|f:E(G) — A}
For each f € F(G, A), the boundary of f is a function df : V(G) — A defined by

= > fleo— > fl,
ecE*(v) ecE~(v)
where “Y "7 refers to the addition in A. We define

Z(G,A)=1{b|b:V(G) > A with Y b(v)=0}.
veV(G)
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An A-nowhere-zero-flow (abbreviated as A-NZF)in G isa function f € F*(G, A)
such that 3f = 0. For any b € Z(G, A), if there is a function f € F*(G, A) such
that 3f = b, then we call f an (A, b)-NZF.

An undirected graph G is called A-connected, if G has some (and thus every)
orientation G’ such that for every function b € Z(G’, A), there existsan (A, b)-NZF.
Similarly, G is said to admit an A-NZF if G has some (and thus every) orientation
G’ such that G’ admits an A-NZF.

The nowhere-zero-flow problems were introduced by Tutte [8], surveyed by
Jaeger in [4] and by Zhang in [10]. The concept of A-connectivity was introduced
by Jaeger et al. in [5], where A-NZF was successfully generalized to A-connectivity.

This paper is motivated by the following conjectures.

Conjecture 1. (Tutte, unsolved problem 48 in [1]) Every 4-edge-connected graph
admits a Z3-NZF.

Conjecture 2. (Jaeger et al.[5]) Every 5-edge-connected graph is Z3-connected.

Kochol [7] proved that Conjecture 1 can be reduced to 5-edge-connected graphs,
and then Conjecture 2 implies Conjecture 1. These two conjectures seem to be dif-
ficult and not many results (even partial results) are known. Then the following
weaker conjectures are proposed.

Conjecture 3. (Jaeger [4]) There is an integer k£ such that every k-edge-connected
graph admits a Z3-NZF.

Conjecture 4. (Xu and Zhang [9]) Let G be a 4-edge-connected graph. If each edge
of G is contained in a circuit of length at most 3, then G admits a Z3-NZF.

Devos proposed a stronger version problem of Conjecture 4 as follows.

Problem 1. (Devos [3]) Let G be a 4-edge-connected graph with each edge contained
in a circuit of length at most 3. Must G be Z3-connected?

In this paper, we first answer Problem 1 in negative in Section 2 by constructing
an infinite family of graphs. Then in Section 3, we prove that every 6-edge-connected
graph whose edge set is an edge disjoint union of circuits of length at most 3 is Z3-
connected.

2. Triangles, 4-Edge Connectivity and Z3-Connectivity

Let L(x, y) be a graph as follows:
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Fork > 3,let Ly, Ly, ... Ly be graphs such that for each i, L; (x;, y;) = L(x, y).
Let G (k) be a graph obtained from Ly, Lj, ..., L by identifying y; and x; |, where
Xpp1=x1andi =1,2,.. k.

€2

T

T

Theorem 1. G (k) is not Z3-connected for k > 3.

To prove this theorem, we need the following lemmas.

Let G be a4-regular graphand b € Z(G, Z3).Let V; = b=1(1) C V(G). Suppose
that G admits a (Z3, b)-NZF f. Then we may assume that f(e) = 1 for every edge
e € E(G) by adjusting the orientation if needed. Let D denote such an orientation.
Then we have the following lemmas:

Lemma 1. For any v € b='(1), either 81 (v) =4 or 8T (v) = 1 and 8~ (v) = 3.

Proof. Since f is a (Z3, b)-NZF with f(e) = 1 for every edge of G, then for any
v e b~1(1), we have §7(v) — 8~ (v) = 1 (mod 3). Since G is 4-regular, then either
8T(w) =4 @4 =1(mod3))orét(v) =1and § (v) =3 (1 — 3 = I(mod 3)).

If v € b~1(1) and 8T (v) = 4, we call v a positive vertex; if v € b~1(1) and
8~ (v) =3and §T(v) =1, we call v a negative vertex.

Lemma 2. No two positive vertices can be adjacent.

Proof Suppose u, v € b~1(1) and u, v are both positive vertices. If uv € E(G), then
either (u, v) or (v, u) is in D, and so either §(v) < 4 or 6" () < 4, contradicting
the definition of positive vertex.
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Lemma 3. If x, y, z € b='(1) are all negative vertices and G[{x, y, z}] = K3, then
G[{x, v, z}] must be a dicircuit (and we call such a dicircuit a negative K3 ).

Proof. Without loss of generality, we assume that (x, y) € D. Since §7(x) = 1, we
must have (z, x) € D. Since §7(z) = 1, we must have (y, z) € D.

Lemma 4. Any negative vertex u cannot be adjacent to two vertices in a negative K3
which does not contain u.

Proof. Suppose that u is a negative vertex and that ux, uy € E(G) such that x, y
are in a negative K3 which does not contain . Since 67 (x) = 67 (y) = l and x, y
are in the negative K3, x, y have out degree 1, we must have (u, x), (u, y) € D, and
so 81 (u) > 2. This implies that u can’t be a negative vertex, a contradiction.

Lemma 5. Let G be a A-connected graph. Then for any e € E(G), G /e is A-connected.
Therefore, group connectivity is closed under contraction.

Proof. Suppose that e = uu’, G’ = G/e and the new resulting vertex in G’ is
denoted by u*. For any b’ € Z(G', A), let us define b : V(G) — A as follows:
b(u) = b'(w*), b(u") = 0 and b(v) = b'(v) for any v & {u, u'}. Since b’ € Z(G', A),
then b € Z(G, A). Because G is A-connected, then there is an f € F*(G, A) such
that 8f = b. Clearly f’, the restriction of f to E(G’), is an (A, b')-NZF of G’.

Proof of Theorem 1. Since any G (k) (k > 4) can be contracted to a G(3) with a
series of edge contraction, by Lemma 5, we need only to prove that G(3) is not
Z3-connected.

By contradiction. Suppose that G(3) is Z3-connected. Let b € Z(G(3), Z3) with
b(w) = 1 for each v € V(G(3)). Then there is an f € F*(G(3), Z3) such that
df = b. We may assume that G(3) has an orientation D such that f = 1. Now
b~1(1) = V(G).

By Lemma 2, Lemma 3 and Lemma 4, each K4 must have exactly one positive
vertex and 3 negative vertices (and so it contains a negative K3).

Now we prove that x|, x, can not be both positive or both negative. If both
x1 and x, are positive, then by Lemma 2, in subgraph L(xy, x7) each vertex of the
K4 must be negative, contradicting Lemma 3 and Lemma 4. Suppose both x; and
xp are negative. Then by Lemma 1, Lemma 2 and Lemma 3, there are exactly 3
negative vertices in the K4 of L(x, x3) and the 3 negative vertices form a negative
K3 in L(xy, x3). Then either x| or x, must be adjacent to two vertices in the negative
K3, contradicting Lemma 4.

Similarly, x;, x3 can not be both positive or both negative, x|, x3 can not be
both positive or both negative. But this is impossible. O

Clearly, every graph G (k) is 4-edge-connected and each edge is contained in a
circuit of length 3 (triangle). Since group connectivity property is preserved under
contraction (see Lemma 5), then we can get a larger family of such graphs as follows.
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Corollary 1. Every graph which can be contracted to a G (k) for some integer k > 3 is
not Z3-connected.

3. Triangles, 6-Edge Connectivity and Z3-Connectivity

An edge cut X of G is essential if G \ X has at least two nontrivial components.
For any integer k > 0, a graph is essentially k-edge-connected if G has no essen-
tial edge cut X with |X| < k. Clearly, every k-edge-connected graph is essentially
k-edge-connected.

Forab € Z(G, A), we say that G is (A, b)-extendable from v if, for any function
f: E(v) > A* with 0f (v) = b(v), f can be extended to a function f € F*(G, A)
such that df = b. If for any b € Z(G, A), G is (A, b)-extendable from v, then G is
A-extendable from v. Clearly, if G is A-extendable from v, then G is A-connected.

We use Dy (G) to denote the set of vertices of G with degree k.

Let F be a set of graphs G which satisfy the following conditions:

(1) E(G) is an edge disjoint union of circuits of length at most 3;
(2) G is essentially 6-edge-connected;
(3) 8(G) = 4and |Ds(G)| < 1.

Based on Theorem 1, we made the following conjecture which is a weak version of
the Conjecture 2.

Conjecture 5. Let G be a 5-edge-connected graph with each edge contained in a
circuit of length at most 3. Then G is Z3-connected.

For partial results related to this conjecture, see [2, 6].

By the construction of G (k), we can see that G (k) is a 4-edge-connected graph
such that E(G) is an edge disjoint union of circuits of length at most 4. Motivated
by this, we consider the family of essentially 6-edge-connected graphs whose edge
set is an edge disjoint union of circuits of length at most 3 and get the following
result.

Theorem 2. Suppose G € F. Then G is Z3-connected. Moreover, for any v € Dg(G),
G is Z3-extendable fromv. In particular, every 6-edge-connected graph is Z3-connected
provided that its edge set is an edge disjoint union of circuits of length at most 3.

Let N(v) = {vy, v2, ..., v,} denote the set of vertices adjacent to the vertex v,
and let Y = {vvy, vva}. Then Gy y] is the graph obtained from G \ {vvy, vvp} by
adding a new edge that joins vy and vj.

Let us first introduce some useful lemmas.

Lemma 6. For any abelian group A and any b € Z(G, A), if G[y,yyhasan (A, b)-NZF,
then G has an (A, b)-NZF. Moreover, if G, y] is A-extendable from a vertex u with
u#v,so0isG.
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Proof. Let ¢ be the new edge that joins v; and v,. Since b € Z(G, A), then
b € Z(Gp,y}, A). For an (A, b)-NZF f of Gy, y), we define f' : E(G) — A as
follows: f'(e) = f(e) if e ¢ {vvy,vvr} and f'(vv)) = f'(vvy) = f(e). If € is
oriented as (vq, v2) in G|y, y], then we orient vvy, vv; as (v1, v), (v, v12) in G. Clearly,
f/isan (A, b)-NZF of G.

Now assume that G|, y] is A-extendable from a vertex u with u # v. For any
be Z(G, A),let f*: E(u) — A* be a function such that 9f*(u#) = b(u). Clearly,
b € Z(Gpy,y}» A). Since G|,y is A-extendable from u, f* can be extended to a func-
tion f € F*(Gp,y], A) such that 3f = b. By the same argument as above, we can
get f"asan (A, b)-NZF of G. Since f is an extension of f* and by the construction
of f/, f'is an extension of f* as well. Then G is A-extendable from u.

Lemma 7. Let G be a graph and H an A-connected subgraph of G. We define G* =

G/ H and denote the new resulting vertex in G* by vy. Forany b € Z(G, A), we define

b V(G*) — A as follows: b'(vyg) = Y. bw)andb'(v) = b(v) for v # vy. If
veV (H)

G* admits an (A, b')-NZF f*, then f* can be extended to an (A, b)-NZF of G.

Proof. Let us define a new function f’ : E(G) + A such that f/(e) = 0 for any
e € E(H) and f'(e) = f*(e) for any other edge of G. Foru € V(H), let b"(u) =
bw)—( Y fllee— > [f(e)).Sinceb'(vy)= Y bw= Y ( )

ecEt(u) ecE~ (u) ueV(H) ucV(H) ecE*(u)
fle)— Y fl(e),then > b"(u) =0. Therefore b” € Z(H, A). Since H is
ecE~(u) ueV(H)

A-connected, there is g € F*(H, A) such that 9g = b”. Let g’ : E(G) — Abea
function such that g’(e) = g(e) for any e € E(H) and g’(e) = 0 for any other edge
of G. Then f = f'+ g € F*(G, A) satisfying 3f = b and f is an extension of f*.

Lemma 8. Suppose that G is a counterexample to Theorem 2 with N(G) = |V (G)| +
|E(G)| minimized. Then G does not have an essential 6-edge cut.

Proof. Suppose that G has an essential 6-edge cut X such that G \ X has two non-
trivial components G; and G,. Then G/G; € F and G/G, € F. Let vg, be the
new vertex in G/G obtained from G by contracting G1, vg, be the new vertex in
G/ G, obtained from G by contracting G».

Case 1. Dg(G) # 0.

Without loss of generality, we may assume that v € Dg(G) and v € V(G/G»).
Then for any b € Z(G, Z3) and any partial (Z3, b)-NZF fy of E(v), let us define
by € Z(G/G») by setting by(u) = b(u) if u € V(G/G2) \ {vg,} and br(vg,) =

> b(w). Since N(G/G;) < N(G), then by the selection of G, we can extend
weV(G,)
fotoa(Zs, br))-NZF f> of G/G>.
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Now define by € Z(G/Gy) by setting by (u) = b(u) if u € V(G/Gy) \ {vg,}
and b1(vg,) = Y. b(w).Itiseasy to see that f>|X is a partial (Z3, by)-NZF of
weV(Gy)
E(vg,) and dg /G, (vG,) = 6. Since N(G/G1) < N(G), then by the selection of G,
we can extend f>|X toa (Z3, b1)-NZF f; of G/G}.
Then f = f1+ f» — (f2|X) isa (Z3, b)-NZF of G extending from fj. Therefore
G is Z3-connected, a contradiction.

Case 2. Dg(G) = 0.

For any b € Z(G, Z3), let us define bp and b the same as in Case 1.

Since N(G/G>) < N(G), then by the selection of G, G/ G is Z3-connected and
there is a (Z3, by)-NZF f, of G/G>. It is easy to see that f>|X is a partial (Z3, by)-
NZF of E(vg,) and dg /G, (vG,) = 6. Since N(G/G1) < N(G), then by the selection
of G, we can extend f>|X to a (Z3, b1)-NZF f; of G/G;.

Then f = f1 + f» — (f»]X) is a (Z3, b)-NZF of G and G is Z3-connected, a
contradiction.

Lemma 9. Suppose that G is a counterexample to Theorem 2 with N(G) = |V (G)| +
|E(G)| minimized. Then |V (G)| > 4 and D4(G) # 0.

Proof. If|V(G)| = 2,since G € F,then E(G) is the edge disjoint union of 2-circuits
on the same 2 vertices. Clearly, G is Z3-connected and Z3-extendable from any degree
6 vertex, a contradiction.

If |[V(G)| = 3, since G € F, then dg(u) > 4 for any u € V(G) and G has at
most one vertex of degree 4. So G has at least 8 edges and therefore, there are some
2-circuits. Then G is Z3-connected. For any degree 6 vertex v of V(G), G \ {v} has at
least 2 edges, therefore G \ {v} contains a 2-circuit C. By the selection of G, G/C is
Z3-extendable from v, then by Lemma 7, G is Z3-extendable from v, a contradiction.
Then |V (G)| > 4.

Now suppose that D4(G) = @. Then forany v € V(G), dg(v) > 6.Since G € F,
E(G) is the edge disjoint union of circuits of length at most 3. We first show that at
least one of such circuits is of length 3. Otherwise, if all such circuits are of length
2, then G is Z3-connected (since 2-circuit is Z3-connected). Since G has at least 4
vertices, if v € Dg(G), then thereis a 2-circuit C such that v ¢ V (C). By the selection
of G, G/C is Zz-extendable from v. Then by Lemma 7, G is Z3-extendable from v,
this contradicts the choice of G.

So we may assume that uujuou is one such 3-circuit. For any v € Dg(G), there
are at least two vertices in {u, u1, up} which are distinct from v. We may assume that
u #v. Let Y = {uuy, uus}. Then Gy, y) has at most one vertex of degree 4 since
D4(G) = ¥ and §(G) > 4. By the construction of G[u, Y], the edge set of G[u, Y] is
an edge disjoint union of circuits of length at most 3.

Case 1. G|, y] is essentially 6-edge-connected.
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Then Gu, Y] € F and G[u, Y] has less edges than G. By the selection of G,
Giu,y] is Z3-connected and G,y is Z3-extendable from v. Then by Lemma 6, G is
Z3-connected and G is Z3-extendable from v, a contradiction.

Case 2. G[,,y] is not essentially 6-edge-connected.

If it has an essential 2-edge cut, then G has an essential 4-edge cut, a contradic-
tion; if it has an essential 4-edge cut, then G has an essential 6-edge cut, contradicting
Lemma 8.

Proof of Theorem 2. By contradiction. Let G be a counterexample with N(G) =
|V(G)| + |E(G)| minimized.

By Lemma 9, D4(G) # @. Let D4(G) = {u}. Let us consider the following 4
cases.

Case 1. |[Ng(u)| = 1.

Let Ng(u) = {u1}. By Lemma 9, |V (G)| > 4, then dg (1) > 12. Otherwise, G
has an essential k-edge cut with £ < 6, contradicting Lemma 8. Contract all the cir-
cuits of length 2 which contain u and let G’ be the resulting graph. For convenience,
we still use u| for the new obtained vertex. Clearly, dg'(u1) > 8 and G’ € F. By the
selection of G, G’ is Z3-connected and for any v € Dg(G), G’ is Z3-extendable from
v. By Lemma 7, G is Z3-connected and Z3-extendable from v, a contradiction.

Case 2. |[Ng(u)| = 2.

Let Ng(u) = {uy, us}. Since dg(u) = 4 > 2, then there is at least one vertex in
Ng(u), say uy, such that C = wuuqu is a 2-circuit of G. We claim that dg (u1) # 6.
Otherwise, let A = {u, u;}, then Eg(A, A) is an essential k-cut with k < 6. This
contradicts Lemma 8 (if k = 6) or the fact that G is essential 6-edge-connected (if
k <5). Let v be any degree 6 vertex of G, then v # u;. By the selection of G, G/C
is Z3-connected and G/ C is Z3-extendable from v. By Lemma 7, G is Z3-connected
and G is Z3-extendable from v, a contradiction.

Case 3. |[Ng(u)| = 3.

Let Ng(u) = {uy, un, us}. Since dg (u) = 4 > 3, then there is at least one vertex
in Ng(u), say u1, such that C = uuu is a 2-circuit of G. Similar to Case 2, we can
get a contradiction.

Case 4. |[Ng(u)| = 4.

Since G € F, there are four vertices u1, u», u3, ugq such that uujuru and uuzuqu
are two 3-circuits of G. For any degree 6 vertex v of V (G), at least one of above two
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3-circuits, say uujuou, contains no v. Let ¥ = {uqu, uju,}, then the graph Gy, y)
contains a 2-circuit uuou. We further contract this 2-circuit and get G’, let u* be the
new vertex obtained by the contraction. Since dg(u1) > 6, dg(up) > 6, we have
dg'(u1) > 4 and dg'(u*) = dg(uz) > 6. Clearly, E(G’) is an edge disjoint union
of circuits of length at most 3. If G’ is not essential 6-edge-connected, then G’ has
an essential k-edge cut X with k < 5. But all the edge cuts must be of even size
because G’ is Eulerian. Then k = 4 or k = 2. Thus either X is an essential edge
cut of G or X U {uju, ujus} is an essential edge cut of G. It follows that G has an
essential k-edge cut with k < 6, contradicting Lemma 8 (if & = 6) or the fact that
G is essential 6-edge-connected (if k < 5). Therefore G’ € F. By the selection of G,
G’ is Z3-connected and Z3-extendable from v. By Lemma 7, then by Lemma 6, G
is Z3-connected and Z3-extendable from v, a contradiction. And this case ends the
proof of the theorem. O
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