
Digital Object Identifier (DOI) 10.1007/s00373-007-0727-y
Graphs and Combinatorics (2007) 23:241–248

Graphs and
Combinatorics
© Springer 2007

An s-Hamiltonian Line Graph Problem

Zhi-Hong Chen1, Hong-Jian Lai2, Wai-Chee Shiu3, and Deying Li4
1 Butler University, Indianapolis, IN 46208, USA. e-mail: Chen@butler.edu
2 West Virginia University, Morgantown, WV 26506, USA
3 Hong Kong Baptist University, Hong Kong, China
4 School of Information, Renmin University of China, Beijing, People’s Republic of China

Abstract. For an integer k > 0, a graph G is k-triangular if every edge of G lies in at least
k distinct 3-cycles of G. In (J Graph Theory 11:399–407 (1987)), Broersma and Veldman
proposed an open problem: for a given positive integer k, determine the value s for which the
statement “Let G be a k-triangular graph. Then L(G), the line graph of G, is s-hamiltonian
if and only L(G) is (s + 2)-connected” is valid. Broersma and Veldman proved in 1987 that
the statement above holds for 0 ≤ s ≤ k and asked, specifically, if the statement holds when
s = 2k. In this paper, we prove that the statement above holds for 0 ≤ s ≤ max{2k, 6k − 16}.

1. Introduction

Graphs considered in this paper are simple and finite. Undefined terms and nota-
tion can be found in [1]. The line graph of a graph G, denoted by L(G), has E(G)

as its vertex set, where two vertices in L(G) are adjacent if and only if the corre-
sponding edges in G are adjacent. An edge cut X of G is essential if each side of
G − X contains an edge. Note that G has an essential edge cut of size k if and only
if L(G) has a vertex cut of k vertices. For an integer k ≥ 0, a graph G is k-triangular
if every edge of G lies in at least k triangles of G. A graph G is k-hamiltonian if
for every subset U ⊆ V (G) such that |U | ≤ k, G − U is hamiltonian. Throughout
this paper, for a graph G and an integer i ≥ 1, Di(G) denotes the set of vertices of
degree i in G.

Let G be a k-triangular graph. In [1], Broersma and Veldman asked for
which values of s (as a function of k) is L(G) s-hamiltonian if and only if L(G) is
(s + 2)-connected. They proved the following theorem.

Theorem 1.1 (Broersma and Veldman [2]). Let k ≥ s ≥ 0 be integers and let G

be a k-triangular simple graph. Then L(G) is s-hamiltonian if and only L(G) is
(s + 2)-connected.

In particular, they asked if Theorem 1.1 is still valid when s = 2k. In this paper,
we investigate this problem and prove that s can be much larger than k, and prove
the following main theorem.
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Theorem 1.2. Let k and s be positive integers such that 0 ≤ s ≤ max{2k, 6k−16}, and
let G be a k-triangular simple graph. Then L(G) is s-hamiltonian if and only L(G) is
(s + 2)-connected.

As noted in [2], when k = δ(G) − 2 and s = 2k = 2δ(G) − 4, Theorem 1.2
implies the following former result.

Corollary 1.3 (Lesniak-Foster [10]). If G is a 2-connected simple graph with δ(G) ≥ 4,
then L(L(G)) is (2δ(G) − 4)-hamiltonian.

The problem is still opened for larger value of s. One can even asked the question
whether every (s + 2)-connected line graph L(G) is s-hamiltonian for sufficiently
large values of s, without knowing if G is triangulated. This is certainly not true if
s = 1 and s = 0, as there exist 3-connected line graphs that are not hamiltonian.

The technique employed in this paper is a modified version of Catlin’s reduction
method, different from that used in [2]. Section 2 provides certain backgrounds of
the reduction method and their connection to the current problem. The proof for
the main result is in Section 3.

2. Catlin’s Reduction Method

For a graph G, O(G) denotes the set of vertices of G with odd degree in G. A con-
nected graph G is eulerian if O(G) = ∅. A subgraph H of a graph G is dominating
if G − V (H) is edgeless. A dominating eulerian subgraph is also called a DES, and
a spanning eulerian subgraph is also called an SES. Clearly, every SES of a graph
G is a DES of G. A graph with an SES is also called a supereulerian graph. See
Catlin’s survey [4] and its update [7] for an overview of supereulerian graphs.

There is a close relationship between dominating eulerian subgraphs in graphs
and hamilton cycles in L(G).

Theorem 2.1 (Harary and Nash-Williams [9]). Let G be a graph with |E(G)| ≥ 3.
Then L(G) is hamiltonian if and only if G has a DES.

To search for eulerian subgraphs with certain properties, Catlin in [3] invented
the collapsible graphs. Let G be a graph and let R ⊆ V (G) be a subset with |R| even.
A subgraph � of G is called an R-subgraph if O(�) = R and G−E(�) is connected.
A graph G is collapsible if for any even subset R of V (G), G has an R-subgraph.
Catlin showed in [3] that every vertex of G lies in a unique maximal collapsible
subgraph of G. The reduction of G is obtained from G by contracting all maxi-
mal collapsible subgraphs. A graph G is reduced if G has no nontrivial collapsible
subgraphs. A nontrivial vertex in a contraction of G is a vertex whose contrac-
tion preimage is a nontrivial connected subgraph of G. Note that if G has an
O(G)-subgraph �, then G−E(�) is a spanning eulerian subgraph of G. Therefore,
every collapsible graph is supereulerian. We summerize some results on Catlin’s
reduction method and other related facts as follows.



An s-Hamiltonian Line Graph Problem 243

Theorem 2.2. Let G be a graph and let H be a collapsible subgraph of G. Let vH

denote the vertex onto which H is contracted in G/H . Each of the following holds.

(i) (Catlin, Theorem 3 of [3]) G is collapsible (supereulerian, respectively) if and only
if G/H is collapsible (supereulerian, respectively). In particular, G is supereule-
rian if and only if the reduction of G is supereulerian; and G is collapsible if and
only if the reduction of G is K1.

(ii) Let G′ be the reduction of G. Then G has a DES if and only if G′ has a DES that
contains all the nontrivial vertices of G′.

(iii) 2-cycles and 3-cycles are collapsible.
(iv) (Catlin et al. [5]) Let G be a 2-edge-connected reduced graph with n > 1 vertices.

Then either |D2(G)| = n − 2 or 2|D2(G)| + |D3(G)| ≥ 10.
(v) A subgraph of a reduced graph is reduced.

Theorem 2.3 (Chen [6]). Let M be a maximum matching of a connected reduced graph
G, with |V (G)| = n, δ(G) ≥ 2 and |D2(G)| = l. Then

|M| ≥ min
{

n − 1
2

,
n + 4 − l

3

}
.

Theorem 2.4 (Chen and Lai [8]). Let G be a 3-edge-connected reduced graph with
|V (G)| ≤ 13. Then either G is supereulerian or G is the Petersen graph.

3. The Proof of Main Result

Since any hamiltonian graph must be 2-connected, it is necessary that any s-ham-
iltonian graph be (s + 2)-connected. Therefore, it suffices to show that if L(G) is
(s + 2)-connected, then L(G) is s-hamiltonian.

Throughout the rest of this section, k denotes a positive integer, G denotes a
simple k-triangular graph and s denotes an integer with 0 ≤ s ≤ max{2k, 6k − 16}.

We argue by contradiction and assume that L(G) is (s + 2)-connected but L(G)

is not s-Hamiltonian. Therefore, there exists an edge subset U ⊂ E(G) with |U | = s

such that L(G)−U is not hamiltonian. Let G0 = (G−U)−(D0(G−U)∪D1(G−U)),
and let G′

0 denote the reduction of G0. Note that each edge in G′
0 is also an edge

in G. By Theorem 2.2 (iii), every edge in G − U lying in a cycle of length at most 3
is in a collapsible subgraph of G − U . Since G is k-triangulated, every edge in G′

0
is adjacent to an edge of U in G. Then by Theorem 2.1 and by Theorem 2.2 (i), we
have

Lemma 3.1. Each of the following holds.

(i) G′
0 does not have an eulerian subgraph H such that H contains all nontrivial ver-

tices as well as those vertices that are adjacent to a vertex in D1(G − U).
(ii) G′

0 is not supereulerian and not collapsible.

Proof. By Theorem 2.2 (ii), the subgraph H described in Lemma 3.1(i), if it exists,
would correspond to a DES of G, and so by Theorem 2.1, L(G) − U would be
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hamiltonian, contrary to the assumption that L(G) − U is not hamiltonian. As
collapsible graphs are supereulerian, and as an SES of G′

0 satisfies the description
for H , G′

0 cannot be supereulerian nor collapsible. �

Lemma 3.2. G′
0 is 2-edge-connected.

Proof. If G′
0 has more than one components, then U will contain an edge cut of G

separating two edges of G, contrary to the assumption that L(G) is (s + 2)-con-
nected. If G′

0 has a cut edge e, then e cannot be incident with a vertex in D1(G−U),
for otherwise the degree one vertex would have been deleted in obtaining G0. There-
fore, U ∪ {e} contains an edge cut of G separating two edges of G, contrary to the
assumption that L(G) is (s + 2)-connected. �

Let e ∈ E(G). If e is incident with vertices u and v, then write V (e) = {u, v}.
Let C(e) denote the collection of 3-cycles in G that contains e and let

E(e) = ∪C∈C(e)E(C) − {e}.

Lemma 3.3. Let X be an edge cut of G′
0 such that G′

0 − X has two components G′
1

and G′
2, let i ∈ {1, 2}, and let ei ∈ E(G′

i ). Each of the following holds.

(i) If C1, C2 are two 3-cycles of G, then C1 = C2 if and only if |E(C1)∩E(C2)| ≥ 2.
(ii) If e ∈ E(G), then |E(e)| ≥ 2k.

(iii) If e ∈ E(G′
0), then |E(e) ∩ U | ≥ k.

(iv) If U ∪ X is an edge cut of G, then |(U ∪ X) ∩ C| = 2, for any C ∈ C(ei).
(v) If U ∪ X is an edge cut of G, then |(U ∪ X) ∩ E(ei)| ≥ 2k.

(vi) Fix an i ∈ {1, 2}. If U ∪ X is an edge cut of G and if {r1, r2, . . . , rl} ⊆ E(G′
i )

induces a K1,l in G′
i , then |(U ∪ X) ∩ (∪l

j=1E(rj ))| ≥ (l + 1)k.

Proof. Statement (i) follows from the assumption that G is a simple graph. By
Lemma 3.3 (i) and by the assumption that G is k-triangular, |E(e)| ≥ 2k. Since
e ∈ E(G′

0) and since G′
0 is reduced, e lies in no 3-cycle of G′

0, and so by (1), each
member in C(e) must intersect U . Thus |E(e) ∩ U | ≥ |C(e)| ≥ k. This proves
(ii) and (iii).

Since e1, e2 ∈ E(G′
0), for any C ∈ C(ei) (i = 1, 2), C ∩ (U ∪X) 
= ∅. Since U ∪X

is an edge cut, Lemma 3.3(iv) follows from the fact that |C ∩ (U ∪ X)| must be an
even number. Lemma 3.3 (v) and (vi) follow from Lemma 3.3 (iv) and (iii). �

Lemma 3.4. G′
0 does not contain a 2 edge cut X of G′

0 such that each side of G′
0 − X

contains an edge or a nontrivial vertex or a vertex that is adjacent to a vertex in
D1(G − U). In particular, D2(G

′
0) is an independent set.

Proof. By contradiction, suppose that G′
0 has an edge cut X with |X| = 2 and let

G′
1 and G′

2 denote the two components of G′
0 − X, and let G1 and G2 be the two

components of G0 − X such that the reduction of Gi is G′
i , 1 ≤ i ≤ 2. Note that

each G′
i contains an edge or a nontrivial vertex or a vertex that is adjacent to a

vertex in D1(G − U). Since L(G) is (s + 2)-connected, and since |U | = s, it must
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be the case that U ∪ X is an edge cut of G such that G − U = G0 and such that
G − (U ∪ X) = G1 ∪ G2. We have the following observations. �

Claim 1. For each i ∈ {1, 2}, G′
i does not have an edge joining two vertices in

D2(G
′
i ) ∪ D3(G

′
i ).

Suppose not. Then there exist v1, v2 ∈ D2(G
′
i ) ∪ D3(G

′
i ) such that e0 = v1v2 ∈

E(G). Let X1 be the set of edges in G′
i − e0 incident with v1 or v2. Then X1 is an

essential edge cut of G′
i . Since L(G) is (s + 2)-connected, and since |X1| ≤ 4, there

are at least s − 2 edges in U ∪ X joining a vertex in the preimages of v1 or v2 to
a vertex in G3−i , and so there are at most 2 edges in U ∪ X not incident with a
vertex in the preimages of v1 and v2. Since G′

i contains no cycles of length less than
4 [Theorem 2.2 (iii)], we can choose v1 and v2 so that G′

i has an edge e1 not incident
with v1 nor v2. By Lemma 3.3(v), |(U ∪ X) ∩ E(e1)| ≥ 2k. Since e1 is not adjacent
with v1 nor v2, and since there are at most 2 edges in U ∪X not incident with a vertex
in the preimages of v1 and v2, we have 2 ≥ 2k, and so it must be k = 1. Hence s ≤ 2
and |U ∪ X| ≤ |U | + |X| = s + 2 ≤ 4. By Lemma 3.3 (iv), each edge in E(G′

i ) must
be adjacent to two edges in U ∪ X, and by Theorem 2.2 (iii), G′

i cannot have a 2 or
3-cycle. It follows by Lemma 3.2 that G′

i must be a path with at most 4 vertices such
that the two edges in X are incident with the two ends of the path in G′

i , respectively.
Therefore, G′

0 is a cycle, contrary to Lemma 3.1 (ii). This proves Claim 1.

Claim 2. For each i ∈ {1, 2}, �(G′
i ) ≤ 3.

Suppose that for some i ∈ {1, 2}, l = �(G′
i ) ≥ 4. Then G′

i has a vertex v which is
adjacent to some vertices in {v1, v2, v3, . . . , vl} in G′

i . By l ≥ 4 > |X| = 2, by the fact
that G′

i does not have a cycle of length less than 4 [Theorem 2.2 (iii)] and since G′
0 is

2-edge-connected (Lemma 3.2), G′
i must have a vertex u ∈ V (G′

i ) − {v, v1, . . . , vl}
such that u is adjacent to two vertices u1, u2 ∈ V (G′

i ) − {v, v1, v2}, renaming the
vertices if needed. Therefore, each of {v, v1, v2} and {u, u1, u2} induces a K1,2 in G′

i

and these two K1,2’s are disjoint. Since X ⊆ E(G′
0), for any e ∈ {vv1, vv2, uu1, uu2},

by Theorem 2.2 (iii), C(e) ∩ X = ∅. By Lemma 3.3(vi), we have 6k ≤ |(U ∪ X) ∩
∪2

j=1E(uuj )| + |(U ∪ X) ∩ ∪2
j=1E(vvj )| = |U | = s ≤ max{2k, 6k − 16}, a contra-

diction. This proves Claim 2.
Note that by Claim 2, G′

i must have an edge joining two vertices in D2(G
′
i ) ∪

D3(G
′
i ), contrary to Claim 1. This proves the lemma.

Let G̃ be a graph obtained from G′
0 by contracting exactly one edge incident

with each vertex in D2(G
′
0). By Lemma 3.4, G̃ is 3-edge-connected. The following

is straightforward.

Lemma 3.5. If G̃ has an eulerian subgraph L′ such that V (L′) contains all nontrivial
vertices as well as all vertices that are adjacent to a vertex in D1(G − U), then each
of the following holds.
(i) G − U has a DES, and

(ii) L(G) − U is hamiltonian.
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Proof. Note that L′ can be lifted to an eulerian subgraph L in G′
0, by adding edges

(whenever necessary) that had been contracted in the process of getting G̃ from
G′

0. By the definition of G̃ and by Lemma 3.4, L is a DES of G′
0 that contains all

nontrivial vertices as well as all vertices that are adjacent to a vertex in D1(G − U).
It follows by Theorem 2.2(ii) that G − U has a DES. By Theorem 2.1, L(G) − U is
hamiltonian. �

Lemma 3.6. G̃ cannot be contracted to the Petersen graph.

Proof. By contradiction, assume that G̃ can be contracted to P10, the Petersen
graph. Note that for any z ∈ V (P10), P10 has a cycle containing all vertices in
V (P10) − z. If there is one vertex z ∈ V (P10) which is a trivial vertex and is not
adjacent to a vertex in D1(G − U), then any cycle of this P10 containing V (P10 − z)

corresponds to a DES of G−U , contrary to Lemma 3.1. Therefore, every vertex of
P10 is either a nontrivial vertex or adjacent to a vertex in D1(G−U). Let v0 ∈ V (P0)

and let X denote the set of the 3 edges incident with v0 in P10. Then X is an essential
edge cut of G−U . It follows by the assumption that L(G) is (s + 2)-connected that
all but at most one edge in U are linking a vertex in one side of G − (X ∪ U) to a
vertex in the other side. Let U ′ ⊆ U be a subset such that |U − U ′| ≤ 1 and such
that U ′ ∪ X is an edge cut of G.

Note that P10 − v0 has 6 edges e1, e2, . . . , e6 ∈ E(P10 − v0) such that {ei, ei+3}
induces a subgraph Hi isomorphic to a K1,2 in P10 − v0, where 1 ≤ i ≤ 3, and such
that the Hi ’s are mutually vertex disjoint. By Lemma 3.3 (iv), by |U − U ′| ≤ 1 and
by the fact that P10 has no 4-cycle, the only edge in U − U ′ may be adjacent to at
most two members in {e1, · · · , e6}. Therefore by Lemma 3.3 (vi) (with l = 2), we
have |(∪6

i=1E(ei)) ∩ (U ′ ∪ X)| ≥ 9k − 2. By |U − U ′| ≤ 1 again and by |X| = 3,
|(∪6

i=1E(e)) − U ′| ≤ 4. It follows that

9k − 2 ≤ | ∪6
i=1 E(ei)| ≤ |U ′| + 4 = s + 4 ≤ max{2k, 6k − 16} + 4

= max{2k + 4, 6k − 12},

contrary to the assumption that k ≥ 1. �

We shall derive at a contradiction by showing that G̃ is supereulerian. Let G̃′
denote the reduction of G̃. By Theorem 2.2(1), we may assume, by contradiction,
that G̃′ is not supereulerian. Note that G̃′ is a 3-edge-connected reduced graph.

Claim 1. k ≥ 5 and so s ≤ 6k − 16.

If not, then k ≤ 4, and so s ≤ 2k. By Theorem 2.4 and by Lemma 3.6, we may
assume that |V (G̃′)| ≥ 14. It follows by Theorem 2.3 that G̃ has a matching M

with |M| = 6. Note that M is also a matching of G′
0. By Lemma 3.3 (iii), for each

e ∈ M, |E(e) ∩ U | ≥ k. Since M ⊆ E(G̃′) ⊆ E(G′
0), every edges in M lies in no

3-cycles in G̃′ [by Theorem 2.2 (iii)], and so every edge in M must be adjacent to k
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edges in U . Denote M = {e1, e2, . . . , e6}. Construct a new graph H with 7 vertices
u0, u1, . . . , u6, such that each ui , 1 ≤ i ≤ 6 represents the edge ei ∈ M. There are tij
edges joining ui and uj if and only if there are tij edges in U which are adjacent to
both ei and ej ; and each ui is linked to u0 with ti edges if and only if U has ti edges
that are adjacent only to ei and not to any other edges in M. Since M is a matching,
any edge in U cannot be adjacent to more than 2 edges in M, and so we may assume
that U = E(H). By Lemma 3.3 (iii), every vertex in V (H) − {u0} has degree at least
k, and so it follows that 4k ≥ 2s = 2|U | = 2|E(H)| ≥ 6k, a contradiction. This
contradiction proves Claim 1.

Claim 2. G does not have an independent set {v1, v2, . . . , v6} such that v1, v2, . . . , v6
are in the preimages of 6 distinct vertices in D3(G̃

′).

By contradiction, we assume that such vertices v1, . . . , v6 exist. For notational
convenience, we also use vi (1 ≤ i ≤ 6) to denote the vertex in D3(G̃) whose preim-
age contains vi . Assume that each vi is incident with an edge ei ∈ E(G̃′) ⊆ E(G′

0).
By Lemma 3.3 (iii), |E(ei) ∩ U | ≥ k. Let Ei ⊂ E(ei) ∩ U denote the edges in G − ei

incident with the vertex vi together with possibly two more edges in E(ei) ∩ U

that will form a member in C(ei) with the two edges in G̃′ that are incident with
vi (recall that vi ∈ D3(G̃

′)). Thus |Ei | ≥ k. Since all the vi are mutually non-
adjacent in G̃′, and since G is simple, |Ei ∩ Ej | ≤ 1 whenever i 
= j , and so
there are at most 15 edges which are lying in at most two members of the Ei ’s. It

follows that 6k − 15 ≤
∣∣∣⋃6

i=1 Ei

∣∣∣ ≤ |U | = s, contrary to Claim 1. This proves

Claim 2.
By Theorem 2.2 (iv) and by Claim 2, we may assume that there existv1, v2, v3, v4 ∈

V (G) which are in the preimages of 4 vertices in D3(G̃
′), respectively, such that

e1 = v1v2, e2 = v3v4 ∈ E(G̃′). Let e′
i , e

′′
i ∈ E(G̃′) be the edges incident with the

vertex in D3(G̃
′) whose preimage contains vi , (1 ≤ i ≤ 4).

Then X1 = {e′
1, e

′′
1 , e′

2, e
′′
2} is an essential edge cut of G̃′, and so X1 ∪ U must

contain an essential edge cut of G. Therefore, there exists a set U1 ⊂ U such that
X1 ∪ U1 is an essential edge cut of G. Similarly, X2 = {e′

3, e
′′
3 , e′

4, e
′′
4} is an essential

edge cut of G̃′, and so there exists a set U2 ⊂ U such that X2 ∪ U2 is an essential
edge cut of G. Since L(G) is (s + 2)-connected, |Ui | + 4 = |Ui ∪ Xi | ≥ s + 2,
and so |Ui | ≥ s − 2. It follows by the Principle of Inclusion and Exclusion that
|U1 ∩ U2| ≥ |U1| + |U2| − |U | ≥ s − 4. Note that every edge in U1 ∩ U2 must have
its ends in the preimages of the vertices containing v1, v2, v3, v4.

Since G̃′ is 3-edge-connected with at least 10 vertices [Theorem 2.2 (iv)], there
exists an edge e ∈ E(G̃′) that is not adjacent to e1 nor e2. By Lemma 3.3(iii),
k ≤ |E(e)∩U | = |E(e)∩ (U −U1 ∩U2)| ≤ |U −U1 ∩U2| ≤ 4, contrary to Claim 1.
Therefore G̃′ must be supereulerian, and so by Theorem 2.2 and by Theorem 2.4, G̃

must be supereulerian. Thus by Lemma 3.5, L(G) − U must be hamiltonian. This
proves Theorem 1.2.
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