MOD $(2 p+1)$-ORIENTATIONS AND $K_{1,2 p+1}$-DECOMPOSITIONS*

HONG-JIAN LAI ${ }^{\dagger}$

Abstract

In this paper, we establish an equivalence between the contractible graphs with respect to the mod $(2 p+1)$-orientability and the graphs with $K_{1,2 p+1}$-decompositions. This is applied to disprove a conjecture proposed by Barat and Thomassen that every 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw decomposition.

Key words. nowhere zero flows, circular flows, $\bmod (2 p+1)$-orientations, $K_{1,2 p+1}$-decompositions
AMS subject classification. 05C99
DOI. 10.1137/060676945

1. Introduction. Graphs in this paper are finite and loopless and may have multiple edges. See [2] for undefined notations and terminologies. In particular, $\kappa^{\prime}(G)$ denotes the edge connectivity of a graph G, and if X is an edge subset or a vertex subset of a graph G, then $G[X]$ denotes the subgraph of G induced by X. A connected loopless graph with 3 edges and a vertex of degree 3 is called a generalized claw. When restricted to simple graphs, a generalized claw must be isomorphic to a $K_{1,3}$. A graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw decomposition if $E(G)$ can be partitioned into disjoint unions $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that, for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized claw. Barat and Thomassen [1] showed that the claw-decomposition problem is closely related to the nowhere zero 3 -flow problem. In particular, the following conjecture is proposed.

Conjecture 1.1 (Barat and Thomassen [1]). Every 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ has a claw decomposition.

The purpose of this note is to disprove this conjecture. In section 2, we shall introduce contractible graphs with respect to the $\bmod (2 p+1)$-orientability and discuss their properties and their relationship to the graphs with $K_{1,2 p+1}$-decompositions. In section 3, we disprove the conjecture above.
2. $M_{2 p+1}^{o}$ and $K_{1,2 p+1}$-decompositions. Throughout this section, $p>0$ denotes an integer. We shall extend the definition of claw decomposition to $K_{1,2 p+1^{-}}$ decomposition as follows. A connected loopless graph with $2 p+1$ edges and a vertex of degree $2 p+1$ is called a generalized $K_{1,2 p+1}$. A graph G with $|E(G)| \equiv 0$ $(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition if $E(G)$ can be partitioned into disjoint unions $E(G)=X_{1} \cup X_{2} \cup \cdots \cup X_{k}$ such that, for each i with $1 \leq i \leq k, G\left[X_{i}\right]$ is a generalized $K_{1,2 p+1}$. In this case, we say that G has a $K_{1,2 p+1}$-decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$.

Let $D=D(G)$ be an orientation of an undirected graph G. If an edge $e \in E(G)$ is directed from a vertex u to a vertex v, then let $\operatorname{tail}(e)=u$ and $\operatorname{head}(e)=v$. For a vertex $v \in V(G)$, let

$$
E_{D}^{+}(v)=\{e \in E(D): v=\operatorname{tail}(e)\} \text { and } E_{D}^{-}(v)=\{e \in E(D): v=\operatorname{head}(e)\}
$$

[^0]We shall denote $d_{D}^{+}(v)=\left|E_{D}^{+}(v)\right|$ (the out degree of v) and $d_{D}^{-}(v)=\left|E_{D}^{-}(v)\right|$ (the in degree of v). The subscript D may be omitted when $D(G)$ is understood from the context. Let A be an (additive) Abelian group. If $f: E(G) \mapsto A$ is a function, then the boundary of f is a map $\partial f: V(G) \mapsto A$ such that

$$
\partial f(v)=\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e), \forall v \in V(G)
$$

Let $k>0$ be an integer, and assume that G has a fixed orientation D. A mod k-orientation of G is a function $f: E(G) \mapsto\{1,-1\}$ such that for all $v \in V(G)$, $\partial f(v) \equiv 0(\bmod k)$. The collection of all graphs admitting a $\bmod k$-orientation is denoted by M_{k}. Note that, by definition, $K_{1} \in M_{k}$. Jaeger has conjectured [7] that every $4 k$-edge-connected graph is in $M_{2 k+1}$. This conjecture is still open.

Throughout this note, \mathbf{Z} denotes the set of all integers. For integers $a_{1}, a_{2}, \ldots a_{k}$ such that not all of them are zero, let $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ denote the greatest common divisor of $a_{1}, a_{2}, \ldots a_{k}$. For an $m \in \mathbf{Z}, \mathbf{Z}_{m}$ denotes the set of integers modulo m, as well as the additive cyclic group on m elements. For a graph G, a function $b: V(G) \mapsto \mathbf{Z}_{m}$ is a zero sum function in \mathbf{Z}_{m} if $\sum_{v \in V(G)} b(v) \equiv 0(\bmod m)$. The set of all zero sum functions in \mathbf{Z}_{m} of G is denoted by $Z\left(G, \mathbf{Z}_{m}\right)$. When $k=2 p+1>0$ is an odd number, we define $M_{2 p+1}^{o}$ to be the collection of graphs such that $G \in M_{2 p+1}^{o}$ if and only if for all $b \in Z\left(G, \mathbf{Z}_{2 p+1}\right), \exists f: E(G) \mapsto\{1,-1\}$ such that for all $v \in V(G), \partial f(v) \equiv b(v)$ $(\bmod 2 p+1)$.

Note that if a function $f: E(G) \mapsto\{1,-1\}$ is given, then one can reverse the orientation of e for each $e \in E(G)$ with $f(e)=-1$ to obtain an orientation D^{\prime} of G such that for all $v \in V(G), d_{D^{\prime}}^{+}(v)-d_{D^{\prime}}^{-}(v)=\partial f(v)$. Thus we have the following proposition.

Proposition 2.1. $G \in M_{2 p+1}^{o}$ if and only if for all $b \in Z\left(G, \mathbf{Z}_{2 p+1}\right)$, G has an orientation D with the property that for all $v \in V(G), d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$.

For a subgraph H of G, define the set of vertices of attachments of H in G to be $A_{G}(H)=\{v \in V(H): v$ is adjacent to a vertex in $G-V(H)\}$.

Proposition 2.2. For any integer $p \geq 1, M_{2 p+1}^{o}$ is a family of connected graphs such that each of the following holds.
(C1) $K_{1} \in M_{2 p+1}^{o}$.
(C2) If $e \in E(G)$ and if $G-e \in M_{2 p+1}^{o}$, then $G \in M_{2 p+1}^{o}$.
(C3) If H is a subgraph of G, and if $H, G / H \in M_{2 p+1}^{o}$, then $G \in M_{2 p+1}^{o}$.
Proof. (C1) and (C2) are straightforward, and so we verify only (C3).
Suppose that G has a fixed orientation, H is a subgraph of G, and both $H \in M_{2 p+1}^{o}$ and $G / H \in M_{2 p+1}^{o}$. Thus the edges in both H and G / H are oriented by the orientation of G. By (C2), we may assume that H is an induced subgraph of G, and so $E(G)$ is the disjoint union of $E(H)$ and $E(G / H)$. Note that H is connected, and so H will be contracted to a vertex v_{H} (say) in G / H. Let $b: V(G) \mapsto \mathbf{Z}_{2 p+1}$ such that $\sum_{v \in V(G)} b(v) \equiv 0(\bmod 2 p+1)$, and let $a_{0}=\sum_{v \in V(H)} b(v)$. Define $b_{1}: V(G / H) \rightarrow A$ by setting $b_{1}(z)=b(z)$ if $z \neq v_{H}$, and $b_{1}\left(v_{H}\right)=a_{0}$. Then $\sum_{z \in V(G / H)} b_{1}(z)=$ $\sum_{z \in V(G)} b(z) \equiv 0(\bmod 2 p+1)$. Since $G / H \in M_{2 p+1}^{o}$, there exists $f_{1}: E(G / H) \mapsto$ $\{1,-1\}$ such that $\partial f_{1}=b_{1}$. For each $z \in V(H)$, define
$b_{2}(z)= \begin{cases}b(z)+\sum_{e \in E_{G / H}^{-}\left(v_{H}\right) \cap E_{G}^{-}(z)} f_{1}(e)-\sum_{e \in E_{G / H}^{+}\left(v_{H}\right) \cap E_{G}^{+}(z)} f_{1}(e) & \text { if } z \in A_{G}(H), \\ b(z) & \text { otherwise. }\end{cases}$
Then $\sum_{z \in V(H)} b_{2}(z) \equiv 0(\bmod 2 p+1)$. Since $H \in M_{2 p+1}^{o}$, there exists $f_{2}: E(G / H) \mapsto$
$\{1,-1\}$ such that $\partial f_{2}=b_{2}$. Now for each $e \in E(G)$, define $f(e)=f_{1}(e)+f_{2}(e)$. As $E(G)$ is a disjoint union of $E(H)$ and $E(G / H)$, it is routine to verify that $\partial f(z) \equiv b(z)$ $(\bmod 2 p+1)$, and so $G \in M_{2 p+1}^{o}$.

Catlin [3] (see also [4], [5]) called families of connected graphs satisfying (C1), (C2), and (C3) complete families. Complete families seem to be useful in applying certain reduction methods ([3], [4], [5]).

For a subgraph H of a graph G, define

$$
\partial(H)=\{u v \in E(G): u \in V(H), v \in V(G)-V(H)\}
$$

Let D be an orientation of G. Let $d_{D}^{+}(H)$ denote the number of edges in $\partial(H)$ that are oriented in D from H to $G-V(H)$, and $d_{D}^{-}(H)=|\partial(H)|-d_{D}^{+}(H)$.

To demonstrate the relationship between $M_{2 p+1}^{o}$ and all of the graphs with $K_{1,2 p+1^{-}}$ decompositions, we make the following definitions.
(i) $k_{c, 2 p+1}$ denotes the smallest integer $k>0$ such that every k-edge-connected graph G is in $M_{2 p+1}^{o}$.
(ii) $k^{c, 2 p+1}$ denotes the smallest integer $k>0$ such that every k-edge-connected graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition.

The main result of this section is the following relationship.
THEOREM 2.3. For any positive integer $p>0$, if one of $k_{c, 2 p+1}$ and $k^{c, 2 p+1}$ exists as a finite number, then $k_{c, 2 p+1}=k^{c, 2 p+1}$.

To prove this theorem, we need to establish some lemmas. In each of the following lemmas, G is a graph and H is a subgraph of G. Suppose that G has a $K_{1,2 p+1^{-}}$ decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$, where each $G\left[X_{i}\right]$ is a generalized $K_{1,2 p+1}$ for all i. For each $G\left[X_{i}\right]$, we orient the edges from the vertex v_{i} of degree $2 p+1$ in $G\left[X_{i}\right]$ to all other vertices of $G\left[X_{i}\right]$. This yields an orientation $D=D(\mathcal{X})$ induced by the decomposition \mathcal{X}. For each i, the vertex v_{i} is called the center of the oriented X_{i}.
 and let $D=D(\mathcal{X})$. Then for any subgraph H of G,

$$
|E(H)|+d_{D}^{+}(H) \equiv 0(\bmod 2 p+1)
$$

Proof. Let $[H, G-V(H)]$ denote the set of edges in $\partial(H)$ that are oriented in $D(\mathcal{X})$ from H to $G-V(H)$. Then $|[H, G-V(H)]|=d_{D}^{+}(H)$.

By the definition of $D(\mathcal{X})$, the edge subset $E(H) \cup[H, G-V(H)]$ is the disjoint union of the oriented X_{i} 's whose centers are in $V(H)$. It follows that $|E(H)|+d_{D}^{+}(H)=$ $|E(H) \cup[H, G-V(H)]| \equiv 0(\bmod 2 p+1)$.

Lemma 2.5. Let $b \in \mathbf{Z}$ be a number, and let $d=|\partial(H)|$. Suppose that G has a $K_{1,2 p+1}$-decomposition \mathcal{X} and that H is a subgraph of G. If $2|E(H)| \equiv-d-$ $b(\bmod 2 p+1)$, then, in the orientation $D=D(\mathcal{X})$,

$$
d_{D}^{+}(H)-d_{D}^{-}(H) \equiv b(\bmod 2 p+1)
$$

Proof. Let $d^{+}=d_{D}^{+}(H)$ and $d^{-}=d_{D}^{-}(H)$. Then $d=d^{+}+d^{-}$. By Lemma 2.4, $|E(H)| \equiv-d^{+}(\bmod 2 p+1)$, and so $b \equiv-d-2|E(H)| \equiv-d+2 d^{+} \equiv\left(-d+d^{+}\right)+d^{+} \equiv$ $d^{+}-d^{-}(\bmod 2 p+1)$.

The following below is well-known in number theory. For a reference, see Theorem 1.5 of [12].

LEMMA 2.6. Let $a_{1}, a_{2}, \ldots, a_{k}$ be integers, not all zero. Then $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=$ 1 if and only if there exist integers $x_{1}, x_{2}, \ldots, x_{k}$ such that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=1$.

Lemma 2.7. Let $k, l, p \in \mathbf{Z}$ such that $k>0, p>0$, and $0 \leq l \leq 2 p$. Each of the following holds.

Fig. 1. $I_{12}(i)$ (isomorphic to icosahedron) with specified x_{i}, y_{i}, z_{i}.
(i) There exists a planar graph H with $\kappa^{\prime}(H) \geq k$ and $2|E(H)| \equiv l(\bmod 2 p+1)$.
(ii) There exists a simple graph H with $\kappa^{\prime}(H) \geq k$ and $2|E(H)| \equiv l(\bmod 2 p+1)$.
(iii) If $2 \leq k \leq 5$, then there exists a simple planar graph H with $\kappa^{\prime}(H) \geq k$ and $2|E(H)| \equiv l(\bmod 2 p+1)$.

Proof. (i) For any integer $n>0$, let $n K_{2}$ denote the connected loopless graph with two vertices and n multiple edges. Let $s>0$ be an integer such that $s(2 p+1) \geq k$. Define the desired H as follows:

$$
H= \begin{cases}(2 p s+s+t) K_{2} & \text { if } l=2 t \text { is even } \\ ((2 p+1)(s+1)-(p-t)) K_{2} & \text { if } l=2 t+1 \text { is odd. }\end{cases}
$$

(ii) Take an integer $m \geq 4 p+2+k$, and let $H_{v}=K_{m}-W$ for some edge set $W \subset E\left(K_{m}\right)$ such that $|W| \leq 4 p+1$ and $2\left(\left|E\left(K_{m}\right)\right|-|W|\right) \equiv l(\bmod 2 p+1)$.
(iii) Since $\operatorname{gcd}(10,18,2 p+1)=1$, by Lemma 2.6 , there are integers a_{0}, b_{0}, c_{0} such that $10 a_{0}+18 b_{0}+(2 p+1) c_{0}=1$. Choose $x_{0}=l a_{0}+l\left(\left|a_{0}\right|+1\right)(2 p+1)$ and $y_{0}=l b_{0}+l\left(\left|b_{0}\right|+1\right)(2 p+1)$. Then x_{0}, y_{0} are positive integers such that

$$
10 x_{0}+18 y_{0} \equiv l \bmod (2 p+1)
$$

holds. Let $t=(2 p+1)\left(x_{0}+y_{0}+1\right)$, and let $I_{12}(i), 1 \leq i \leq t-1$, be a graph isomorphic to icosahedron defined below (see Figure 1). Define H to be the graph obtained from $I_{12}(1), I_{12}(2), \ldots, I_{12}(t)$ by identifying z_{i} and $y_{i+1}, 1 \leq i \leq t-1$, and by adding $x_{0}+2 y_{0}$ new vertices $u_{1}, u_{2}, \ldots, u_{x_{0}}, v_{1}, v_{2}, \ldots, v_{y_{0}}, w_{1}, w_{2}, \ldots, w_{y_{0}}$ with $N\left(u_{k}\right)=$ $\left\{x_{5 k-4}, x_{5 k-3}, x_{5 k-2}, x_{5 k-1}, x_{5 k}\right\}, N\left(v_{k^{\prime}}\right)=\left\{x_{5 x_{0}+8 k^{\prime}-7}, x_{5 x_{0}+8 k^{\prime}-6}, x_{5 x_{0}+8 k^{\prime}-5}\right.$, $\left.x_{5 x_{0}+8 k^{\prime}-4}, w_{k^{\prime}}\right\}$, and $N\left(w_{k^{\prime}}\right)=\left\{x_{5 x_{0}+8 k^{\prime}-3}, x_{5 x_{0}+8 k^{\prime}-2}, x_{5 x_{0}+8 k^{\prime}-1}, x_{5 x_{0}+8 k^{\prime}}, v_{k^{\prime}}\right\}$, where $1 \leq k \leq x_{0}$ and $1 \leq k^{\prime} \leq y_{0}$. So H is a simple planar graph with $\kappa(H) \geq k$ and $2|E(H)|=60 t+10 x_{0}+18 y_{0}=60(2 p+1)\left(x_{0}+y_{0}+1\right)+10 x_{0}+18 y_{0} \equiv$ $l \bmod (2 p+1)$.

Lemma 2.8. (i) Let $k>0$ be an integer. If every k-edge-connected (simple) graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition, then every k -edge-connected (simple) graph $L \in M_{2 p+1}^{o}$.
(ii) Let $k>0$ be an integer. If every k-edge-connected planar graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1-d e c o m p o s i t i o n, ~ t h e n ~ e v e r y ~} k$-edge-connected planar graph $L \in M_{2 p+1}^{o}$.
(iii) Let $2 \leq k \leq 5$. If every k-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition, then every k-edge-connected simple planar graph $L \in M_{2 p+1}^{o}$.

Proof. We shall prove (i) and assume first that every k-edge-connected (simple) graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1}$-decomposition. By contradiction, we assume that there exists a k-edge-connected (simple) graph L such that $L \notin M_{2 p+1}^{o}$.

Therefore, $\exists b \in Z\left(L, \mathbf{Z}_{2 p+1}\right)$ such that L does not have an orientation D satisfying $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 2 p+1)$ for all $v \in V(L)$.

Let $l_{v} \in \mathbf{Z}$, with $0 \leq l_{v} \leq 2 p$ such that $l_{v} \equiv-b(v)-d_{L}(v)(\bmod 2 p+1)$ for all $v \in V(L)$. By Lemma 2.7 (ii), there exists a simple graph H_{v} with $2\left|E\left(H_{v}\right)\right| \equiv l_{v} \equiv$ $-b(v)-d_{L}(v)(\bmod 2 p+1)$ such that H_{v} is also k-edge-connected. For each $v \in V(L)$, replace v by H_{v} in such a way that the resulting graph G is also a k-edge-connected (simple) graph.

Since $b \in Z\left(L, \mathbf{Z}_{2 p+1}\right), 2|E(G)|=\sum_{v \in V(L)} 2\left|E\left(H_{v}\right)\right|+2|E(L)|=-\sum_{v \in V(L)} b(v)-$ $\sum_{v \in V(L)} d_{L}(v)+2|E(L)| \equiv-\sum_{v \in V(L)} b(v) \equiv 0(\bmod 2 p+1)$. By the fact that 2 and $2 p+1$ are relatively prime, $|E(G)| \equiv 0(\bmod 2 p+1)$. By the assumption of this lemma, G has a $K_{1,2 p+1}$-decomposition \mathcal{X}. By the construction of $G,\left|\partial\left(H_{v}\right)\right|=d_{L}(v)$. Since $2\left|E\left(H_{v}\right)\right| \equiv l_{v} \equiv-b(v)-d_{L}(v)(\bmod 2 p+1)$, it follows by Lemma 2.5 that, in the orientation $D=D(\mathcal{X})$ for all $v \in V(L), d_{D}^{+}\left(H_{v}\right)-d_{D}^{-}\left(H_{v}\right) \equiv b(v)(\bmod 2 p+1)$, contrary to the assumption that L is a counterexample.

The proofs for (ii) and (iii) are similar except that we shall use Lemma 2.7 (i) and (iii) instead of Lemma 2.7 (ii). Thus we omit the detailed proofs. \square

Lemma 2.9. If G has an orientation D such that for all $v \in V(G), d_{D}^{+}(v) \equiv$ $0(\bmod 2 p+1)$, then G is $K_{1,2 p+1}$-decomposable.

Proof. Note that if D is an orientation of G, then $E(G)=\cup_{v \in V(G)} E_{D}^{+}(v)$ is a disjoint union. As for all $v \in V(G), d_{D}^{+}(v) \equiv 0(\bmod 2 p+1)$, each $E_{D}^{+}(v)$ is a disjoint union of generalized $K_{1,2 p+1}$'s, and so G is $K_{1,2 p+1}$-decomposable.

Lemma 2.10. Suppose that $G \in M_{2 p+1}^{o}$. If $|E(G)| \equiv 0(\bmod 2 p+1)$, then G has a $K_{1,2 p+1}$-decomposition.

Proof. For all $v \in V(G)$, pick an $x(v) \in\{0,1, \ldots, 2 p\}$ such that $d(v) \equiv x(v)(\bmod$ $2 p+1)$. Define $b(v)=d(v)-2 x(v)$. First, we shall show that $b \in Z\left(G, \mathbf{Z}_{2 p+1}\right)$. Since $x(v) \equiv d(v)(\bmod 2 p+1)$, we have $d(v)-2 x(v) \equiv-x(v) \equiv-d(v)(\bmod 2 p+1)$. Note also that $\sum_{v \in V(G)} d(v)=2|E(G)| \equiv 0(\bmod 2 p+1)$. Thus

$$
\sum_{v \in V(G)} b(v)=\sum_{v \in V(G)}(d(v)-2 x(v))=-\sum_{v \in V(G)} d(v) \equiv 0(\bmod 2 p+1)
$$

Hence $b \in Z\left(G, \mathbf{Z}_{2 p+1}\right)$.
Since $G \in M_{2 p+1}^{o}$, there exists an orientation D of G such that, under this orientation, at each vertex $v \in V(G), d^{+}(v)-d^{-}(v)=b(v)=d(v)-2 x(v)$. Since $d^{+}(v)+d^{-}(v)=d(v)$, we have $2 d^{+}(v)=2 d(v)-2 x(v)=2(d(v)-x(v))$. Since 2 and $2 p+1$ are relatively prime, $d^{+}(v) \equiv d(v)-x(v) \equiv 0(\bmod 2 p+1)$. Therefore, by Lemma 2.9, G has a $K_{1,2 p+1}$-decomposition.

Now we can easily prove Theorem 2.3. By Lemma $2.8, k_{c, 2 p+1} \leq k^{c, 2 p+1}$ and by Lemma 2.10, $k_{c, 2 p+1} \geq k^{c, 2 p+1}$. Thus Theorem 2.3 follows.

By (ii) and (iii) of Lemma 2.8 and by Lemma 2.10, and noting that the edge connectivity of a simple planar graph cannot exceed 5 (Corollary 9.5.3 of [2]), we also have the following corollary.

Corollary 2.11. (i) Let k^{\prime} denote the smallest positive integer such that every k^{\prime}-edge-connected planar graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1-}$ decomposition, and let $k^{\prime \prime}$ denote the smallest positive integer such that every $k^{\prime \prime}$-edgeconnected planar graph is in $M_{2 p+1}^{o}$. Then $k^{\prime}=k^{\prime \prime}$.
(ii) Let l^{\prime} denote the smallest positive integer such that every l^{\prime}-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 2 p+1)$ has a $K_{1,2 p+1-d e c o m p o s i t i o n, ~}^{\text {, }}$ and let $l^{\prime \prime}$ denote the smallest positive integer such that every $l^{\prime \prime}$-edge-connected simple planar graph is in $M_{2 p+1}^{o}$. Then $l^{\prime}=l^{\prime \prime}$.

FIG. 2. The building block H_{i}.

FIG. 3. The graph $G=G(k)$.
3. Planar graphs. When $p=1$, graphs in M_{3}^{o} are also called \mathbf{Z}_{3}-connected graphs [8], [10], [11]. The following has been recently proved.

THEOREM 3.1 (Theorem 3 of [9]). There exists a family of 4-edge-connected simple planar graphs that are not in M_{3}^{o}.

In fact, the dual version of Theorem 3.1 is proved in [9]. The equivalence between Theorem 3 of [9] and Theorem 3.1 here was pointed out without a proof in [8], and a formal proof of this equivalence can be found in [6].

Corollary 3.2. There exists a 4-edge-connected simple planar graph G with $|E(G)| \equiv 0(\bmod 3)$ which does not have a claw decomposition.

Proof. Suppose, to the contrary, that Conjecture 1.1 holds. Then by (ii) of Corollary 2.11 , every 4 -edge-connected simple planar graph must be in M_{3}^{o}, which contradicts Theorem 3.1.

Corollary 3.2 disproves Conjecture 1.1. In fact, we can also directly construct an infinite family of 4-edge-connected simple planar graphs G with $|E(G)| \equiv 0(\bmod 3)$ which does not have a claw decomposition. We present the construction as follows.

Let $k>0$ be an integer. For each i with $1 \leq i \leq 3 k$, define H_{i} to be the graph depicted below. See Figure 2.

A graph $G=G(k)$ can be constructed from the disjoint H_{i} 's by identifying y_{i} and x_{i+1}, where $x_{3 k+1}=x_{1}$ and where $i=1,2, \ldots 3 k$.

Example 3.3. For each $k>0, G=G(k)$ defined in Figure 3 is a 4-regular and 4-edge-connected simple planar graph with $|E(G)| \equiv 0(\bmod 3)$, and G has no claw decomposition.

Proof. Suppose G has a claw decomposition $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, and let $D=D(\mathcal{X})$. Since G is 4-regular, for all $v \in V(G),\left|E_{D}^{+}(v)\right| \in\{0,3\}$. Note that $|V(G)|=24 k$ and $|E(G)|=48 k$. Thus G has $m=48 k / 3=16 k$ edge-disjoint
claws. Let W denote the set of vertices v with $\left|E_{D}^{+}(v)\right|=0$. Then $|W|=|V(G)|-$ $m=24 k-16 k=8 k$. Note that no two vertices in W are adjacent in G, and so, for each $i=1,2, \ldots, 3 k(\bmod 3 k),\left|W \cap V\left(H_{i} \cup H_{i+1}-\left\{y_{i+1}\right\}\right)\right| \leq 5$. It follows that $16 k=2|W|=\sum_{i=1}^{3 k}\left|V\left(H_{i} \cup H_{i+1}-\left\{y_{i+1}\right\}\right) \cap W\right| \leq 5 \times 3 k=15 k$, a contradiction.

It is an open problem whether $k_{c, 2 p+1}$, or, equivalently, $k^{c, 2 p+1}$, exists as a finite number. We conjecture that it does. In view of Corollary 3.2 and Example 3.3, we further conjecture that $k_{c, 2 p+1}=4 p+1$.

REFERENCES

[1] J. Barat and C. Thomassen, Claw-decompositions and Tutte-orientations, J. Graph Theory, 52 (2006), pp. 135-146.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.
[3] P. A. Catlin, Double cycle covers and the Petersen graph, J. Graph Theory, 13 (1989), pp. 95116.
[4] P. A. Catlin, The reduction of graph families under contraction, Discrete Math., 160 (1996), pp. 67-80.
[5] P. A. Catlin, A. M. Hobbs, and H.-J. Lai, Graph families operations, Discrete Math., 230 (2001), pp. 71-97.
[6] Z. H. Chen, H.-J. Lai, X. Lei, and X. Zhang, Group coloring and group connectivity of graphs, Congr. Numer., 134 (1998), pp. 123-130.
[7] F. Jaeger, Nowhere-Zero Flow Problems, in Selected Topics in Graph Theory 3., L. Beineke et al., eds., Academic Press, London, New York, 1988, pp. 91-95.
[8] F. Jaeger, N. Linial, C. Payan, and M. Tarsi, Group connectivity of graphs - A nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory Ser. B, 56 (1992), pp. 165-182.
[9] D. Kral, O. Pangrac, and H.-J. Voss, A note on group colorings, J. Graph Theory, 50 (2005), pp. 123-129.
[10] H.-J. Lai, Group connectivity of 3-edge-connectied chordal graphs, Graphs Combin., 16 (2000), pp. 165-176.
[11] H.-J. Lai, Nowhere-zero 3-flows in locally connected graphs, J. Graph Theory, 42 (2003), pp. 211-219.
[12] M. B. Nathanson, Elementary Methods in Number Theory, Springer, New York, 1999.

[^0]: *Received by the editors December 6, 2006; accepted for publication (in revised form) August 3, 2007; published electronically November 7, 2007.
 http://www.siam.org/journals/sidma/21-4/67694.html
 ${ }^{\dagger}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506 (hjlai@math. wvu.edu).

