NOTE

ON CIRCULAR FLOWS OF GRAPHS

HONG-JIAN LAI, RUI XU, CUN-QUAN ZHANG*

Received February 6, 2003

Revised March 13, 2004

A sufficient condition for graphs with circular flow index less than 4 is found in this paper. In particular, we give a simple proof of a result obtained by Galluccio and Goddyn (Combinatorica, 2002), and obtain a larger family of such graphs.

We refer readers to [1], [2] and [7] for the standard terminology and notations in this paper.

The following theorem was proved by Galluccio and Goddyn.
Theorem 1 (Galluccio and Goddyn [2]). Let G be a 6-edge-connected graph. Then the circular flow index of $G, \phi_{C}(G)<4$.

Here, we give a simple proof of this theorem without using linear programming.

Proof. Since G is 6-edge-connected, by Tutte [5, Theorem 1] or NashWilliams [4, Theorem 1], let T_{1}, T_{2}, T_{3} be three edge disjoint spanning trees of G. Let P_{i} be a parity subgraph of T_{i} (for $i=1,2$ only). Now fixing some orientation of G. Since $P_{1} \cup P_{2}$ and $G \backslash E\left(P_{1}\right)$ are even graphs, let f_{1} be a nowhere-zero 2-flow with support $E\left(P_{1}\right) \cup E\left(P_{2}\right)$ and f_{2} be a nowhere-zero 2-flow with support $E(G) \backslash E\left(P_{1}\right)$. Then $f=f_{1}+2 f_{2}$ is a nowhere-zero 4-flow of G. Reorient the edges of G such that the resulting correspondent 4-flow $f^{*}>0$. We will show this is the required orientation. First, this orientation is

Mathematics Subject Classification (2000): 05C40, 05C70, 05C15

* Partially supported by the National Security Agency under Grants MDA904-01-10022.
a strong orientation because it is easy to show that each edge is contained in a directed circuits. For each nonempty proper subset $X \subset V(G)$, the edge cut $\delta(X)$ contains at least one edge in T_{3}, hence having flow value 2 . Therefore

$$
3\left|\delta^{+}(X)\right| \geq \text { outflow of } X=\text { inflow of } X \geq\left|\delta^{-}(X)\right|,
$$

with at least one strict inequality, as there is an edge in the cut of flow value 2 . By the definition of the circular flow index (see [2]), $\phi_{C}(G)<4$.

Similarly, we get the following results.
Theorem 2. Let G be a graph. If G has a nontrivial parity subgraph decomposition such that at least one of its members is connected and spanning, then $\phi_{c}(G)<4$.

Theorem 3. If a graph contains two edge-disjoint subgraphs P and H such that P is a parity subgraph and H is a connected, spanning collapsible subgraph of G, then $\phi_{C}(G)<4$.

References

[1] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications, Macmillan, London, 1976.
[2] A. Galluccio and L. A. Goddyn: The circular flow number of a 6 -edge-connected graph is less than four, Combinatorica 22(3) (2002), 455-459.
[3] L. A. Goddyn, M. Tarsi and C.-Q. Zhang: On (k, d)-colorings and fractional nowhere zero flows, J. Graph Theory 28 (1998), 155-161.
[4] C. S. J. A. Nash-Williams: Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961), 445-450.
[5] W. T. Tutte: On the problem of decompositing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230.
[6] C.-Q. Zhang: Circular flows of nearly eulerian graphs and vertex-splitting, J. Graph Theory 40 (2002), 147-161.
[7] C.-Q. Zhang: Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, 1997. ISBN: 0-8247-9790-6.

Hong-Jian Lai, Cun-Quan Zhang Rui Xu
Department of Mathematics Department of Mathematics
West Virginia University University of West Georgia
Morgantown, WV 26506-6310 Carrollton, GA 30118
USA
hjlai@math.wvu.edu, cqzhang@math.wvu.edu

