Hamiltonicity in 3-connected claw-free graphs

Hong-Jian Lai ${ }^{\text {a }}$, Yehong Shao ${ }^{\text {b }}$, Mingquan Zhan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {b }}$ Department of Mathematics, Ohio University Southern Campus, Ironton, OH 45638, USA
${ }^{\text {c }}$ Department of Mathematics, Millersville University, Millersville, PA 17551, USA

Received 26 March 2003
Available online 18 November 2005

Abstract

Kuipers and Veldman conjectured that any 3-connected claw-free graph with order v and minimum degree $\delta \geqslant(v+6) / 10$ is Hamiltonian for v sufficiently large. In this paper, we prove that if H is a 3-connected claw-free graph with sufficiently large order v, and if $\delta(H) \geqslant(v+5) / 10$, then either H is Hamiltonian, or $\delta(H)=(\nu+5) / 10$ and the Ryjáček's closure $c l(H)$ of H is the line graph of a graph obtained from the Petersen graph P_{10} by adding $(\nu-15) / 10$ pendant edges at each vertex of P_{10}.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Claw-free graphs; Hamiltonian; Collapsible graphs

1. Introduction

We use [1] for terminology and notations not defined here, and consider loopless finite simple graphs only. Let G be a graph. If $S \subseteq V(G), G[S]$ is the subgraph induced in G by S. The degree and neighborhood of a vertex x of G are respectively denoted by $d_{G}(x)$ and $N_{G}(x)$, and the minimum degree, the independence number, the edge independence number, the connectivity and the edge connectivity of G are denoted by $\delta(G), \alpha(G), \alpha^{\prime}(G), \kappa(G)$ and $\kappa^{\prime}(G)$, respectively. An edge $e=u v$ is called a pendant edge if either $d_{G}(u)=1$ or $d_{G}(v)=1$. We use $H \subseteq G$ to denote the fact that H is a subgraph of G. For $H \subseteq G, x \in V(G)$ and $A, B \subseteq V(G)$ with $A \cap$ $B=\emptyset$, denote $N_{H}(x)=N_{G}(x) \cap V(H), d_{H}(x)=\left|N_{H}(x)\right|, N_{H}(A)=\bigcup_{v \in A} N_{H}(v),[A, B]_{G}=$ $\{u v \in E(G) \mid u \in A, v \in B\}$, and $G-A=G[V(G)-A]$. When $A=\{v\}$, we use $G-v$ for

[^0]$G-\{v\}$. If $H \subseteq G$, then for an edge subset $X \subseteq E(G)-E(H)$, we write $H+X$ for $G[E(H) \cup$ $X]$. For each $i=0,1,2, \ldots$, denote $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$.

A subgraph H of G is dominating if $G-V(H)$ is edgeless. A vertex $v \in G$ is called a locally connected vertex if $G\left[N_{G}(v)\right]$ is connected. We denote C_{n} an n-cycle and denote $O(G)$ the set of all vertices in G with odd degrees. A graph G is Eulerian if $O(G)=\emptyset$ and G is connected.

Let $X \subseteq E(G)$. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G / \emptyset=G$. If K is a subgraph of G, then we write G / K for $G / E(K)$. If K is a connected subgraph of G, and if v_{K} is the vertex in G / K onto which K is contracted, then K is called the preimage of v_{K}, and is denoted by $P I\left(v_{K}\right)$. A vertex v in a contraction of G is nontrivial if $P I(v)$ has at least one edge.

The line graph of a graph G, denote by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Let H be the line graph $L(G)$ of a graph G. The order $\nu(H)$ of H is equal to the number $m(G)$ of edges of G, and $\delta(H)=\min \left\{d_{G}(x)+d_{G}(y)-2 \mid x y \in E(G)\right\}$. If $L(G)$ is k-connected, then G is essentially k-edge-connected, which means that the only edge-cut sets of G having less than k edges are the sets of edges incident with some vertex of G. Harary and Nash-Williams showed that there is a closed relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.1. (Harary and Nash-Williams [8]) The line graph $H=L(G)$ of a graph G is Hamiltonian if and only if G has a dominating Eulerian subgraph.

A graph H is claw-free if it does not contain $K_{1,3}$ as an induced subgraph. In [14], Ryjáček defined the closure $c l(H)$ of a claw-free graph H to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H, as long as this is possible.

Theorem 1.2. (Ryjác̆ek [14]) Let H be a claw-free graph and cl(H) its closure. Then:
(i) $\operatorname{cl}(H)$ is well defined, and $\kappa(\operatorname{cl}(H)) \geqslant \kappa(H)$,
(ii) there is a triangle-free graph G such that $\operatorname{cl}(H)=L(G)$,
(iii) both graphs H and $c l(H)$ have the same circumference.

As a corollary of Theorem 1.2, a claw-free graph H is Hamiltonian if and only if $\operatorname{cl}(H)$ is Hamiltonian. H is said to be closed if $H=c l(H)$.

Many works have been done to give sufficient conditions for a claw-free graph H to be Hamiltonian in terms of its minimum degree $\delta(H)$. These conditions depend on the connectivity $\kappa(H)$. If $\kappa(H)=4$, Matthews and Sumner [13] conjectured that H is Hamiltonian and this conjecture is still open. When $\kappa(H)=2$, Kuipers and Veldman [10], and independently Favaron et al. [6], proved that if H is a 2 -connected claw-free graph with sufficiently large order v, and if $\delta(H) \geqslant(\nu+c) / 6$ (where c is a constant), then H is Hamiltonian except a member of ten well-defined families of graphs. Recently, the degree conditions [9] were further strengthened for 2-connected claw-free graphs. Kovárík et al. [9] proved that if G is a 2-connected claw-free graph of order $v \geqslant 153$ with $\delta(G) \geqslant(v+39) / 8$, then either G is Hamiltonian or the closure of G is in the five classes of graphs. When $\kappa(H)=3$, the following have been proved and proposed.

Theorem 1.3. (Kuipers and Veldman [10]) If H is a 3-connected claw-free simple graph with sufficiently large order v, and if $\delta(H) \geqslant(\nu+29) / 8$, then H is Hamiltonian.

Theorem 1.4. (Favaron and Fraisse [7]) If H is a 3-connected claw-free simple graph with order v, and if $\delta(H) \geqslant(\nu+37) / 10$, then H is Hamiltonian.

Conjecture 1.5. (Kuipers and Veldman [10], see also [7]) Let H be a 3-connected claw-free simple graph of order v with $\delta(H) \geqslant(v+6) / 10$. If v is sufficiently large, then H is Hamiltonian.

The main purpose of this paper is to prove Conjecture 1.5. In fact, we proved a somewhat stronger result.

Theorem 1.6. If H is a 3-connected claw-free simple graph with $v \geqslant 196$, and if $\delta(H) \geqslant$ $(\nu+5) / 10$, then either H is Hamiltonian, or $\delta(H)=(v+5) / 10$ and $c l(H)$ is the line graph of G obtained from the Petersen graph P_{10} by adding $(v-15) / 10$ pendant edges at each vertex of P_{10}.

2. Mechanism

In [2] Catlin defined collapsible graphs. Given a subset $R \subseteq V(G)$ with $|R|$ is even, a subgraph Γ of G is an R-subgraph if both $O(\Gamma)=R$ and $G-E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of $V(G), G$ has an R-subgraph. Catlin showed in [2] that every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G^{\prime}, is obtained from G by contracting all maximal collapsible subgraphs of G. A graph G is reduced if G has no nontrivial collapsible subgraphs, or equivalently, if $G=G^{\prime}$, the reduction of G. A nontrivial vertex in G^{\prime} is a vertex that is the contraction image of a nontrivial connected subgraph of G. Note that if G has an $O(G)$-subgraph Γ, then $G-E(\Gamma)$ is a spanning Eulerian subgraph of G. Therefore, every collapsible graph has a spanning Eulerian subgraph.

Theorem 2.1. (Catlin [2]) Let G be a connected graph.
(i) If G is reduced, then G is a simple graph and has no cycle of length less than four.
(ii) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) Let G^{\prime} be the reduction of G. Then G is collapsible if and only if $G^{\prime}=K_{1}$.

Defining $F(G)$ to be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees, we present some of the former results in the following theorems.

Theorem 2.2. Let G be a graph. Then the following statements hold.
(i) (Catlin [2]) If $F(G) \leqslant 1$ and if G is connected, then G is collapsible if and only if the reduction of G is not a K_{2}.
(ii) (Catlin [3]) If G is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.

Theorem 2.3. (Catlin [3]) Let $K_{3,3}-e$ denote the graph obtained from $K_{3,3}$ by removing an edge. Then $K_{3,3}-e, K_{n}(n \geqslant 3)$ and C_{2} are collapsible.

Theorem 2.4. (Chen [4]) Let G be a reduced graph with $|V(G)| \leqslant 11$ vertices, and $\kappa^{\prime}(G) \geqslant 3$. Then G is either K_{1} or the Petersen graph.

Fig. 1.
Lemma 2.5. (Lai et al. [12]) Let G be a connected simple graph with $|V(G)| \leqslant 8$ vertices and with $D_{1}(G)=\emptyset,\left|D_{2}(G)\right| \leqslant 2$. Then either G is one of three graphs in Fig. 1, or the reduction of G is K_{1} or K_{2}.

Let G be a graph and let $S \subseteq V(G)$ be a vertex subset. An Eulerian subgraph H of G is called an S-Eulerian subgraph if $S \subseteq V(H)$. Let $K_{2,3}, K_{2,5}, W_{3}^{\prime}, W_{4}^{\prime}, L_{1}, L_{2}$ and L_{3} be the labelled graphs defined in Figs. 2-4, and let $\mathcal{F}=\left\{K_{2,3}, K_{2,5}, W_{3}^{\prime}, W_{4}^{\prime}, L_{1}, L_{2}, L_{3}\right\}$. Using the labels in Figs. 2-4, for each $L \in \mathcal{F}$, we define $B(L)$, the bad set of L, to be the vertex subset of $V(L)$ that are labeled with the b_{i} 's.

Fig. 2. The graphs $K_{2,3}$ and $K_{2,5}$.

Fig. 3. The graphs W_{3}^{\prime} and W_{4}^{\prime}.

Fig. 4. The graphs L_{1}, L_{2} and L_{3}.

Theorem 2.6. (Lai [11]) Let G be a 2-edge-connected graph and let $S \subseteq V(G)$ with $|S| \leqslant 5$. If $G-S$ is edgeless, and if G does not have an S-Eulerian subgraph, then G is contractible to a member $L \in \mathcal{F}$ such that S intersects the preimage of every vertex in $B(L)$.

Lemma 2.7. Suppose that G does not contain $K_{4}-e$ as its subgraph. Then the following statements hold.
(i) If $|V(G)|=3$, then $|E(G)| \leqslant 3$.
(ii) If $|V(G)|=4$, then $|E(G)| \leqslant 4$.
(iii) If $|V(G)|=5$, then $|E(G)| \leqslant 6$.
(iv) If $|V(G)|=6$, then $|E(G)| \leqslant 9$.
(v) If $|V(G)|=7$, then $|E(G)| \leqslant 12$.

Proof. If $|V(G)|=3$, then $|E(G)| \leqslant 3$. If $|V(G)|=4$, then $|E(G)| \leqslant 4$ since G does not contain $K_{4}-e$ as its subgraph. Thus let $5 \leqslant|V(G)| \leqslant 7$. If G has more edges, then $|E(G)|>$ $|V(G)|^{2} / 4$ and, by Turán's theorem, G contains a triangle T. Denote $R=G-T$. Then $2 \leqslant|V(R)| \leqslant 4$, and $\left|N_{T}(y)\right| \leqslant 1$ for any $y \in V(R)$ (otherwise we have a $K_{4}-e$), which implies that $\left|[T, R]_{G}\right| \leqslant|V(R)|$. So we have

$$
\begin{aligned}
|E(G)| & =|E(T)|+\left|[T, R]_{G}\right|+|E(R)| \leqslant|V(T)|+|V(R)|+|E(R)| \\
& =|V(G)|+|E(R)| .
\end{aligned}
$$

If $|V(R)|=2$, then clearly $|E(R)| \leqslant 1$ and for $3 \leqslant|V(R)| \leqslant 4$ we have $|E(R)| \leqslant|V(R)|$ by (i) or (ii), respectively. Hence the lemma follows.

Lemma 2.8. Suppose that G is a 2-edge-connected graph with at most 10 vertices, and that G does not contain $K_{4}-e$ as a subgraph. If $|E(G)| \geqslant 17$, then G is collapsible.

Proof. Note that if H is a simple collapsible subgraph of G with $|V(H)|=4$, then H must contain $K_{4}-e$ as a subgraph. We have the following:

If H is a simple collapsible subgraph of G, then $|V(H)| \geqslant 3$ and $|V(H)| \neq 4$.
Let G^{\prime} be the reduction of G. Note that G is collapsible if and only if $G^{\prime}=K_{1}$. Suppose, by contradiction, that $G^{\prime} \neq K_{1}$. Then $\kappa^{\prime}\left(G^{\prime}\right) \geqslant 2$ and $4 \leqslant\left|V\left(G^{\prime}\right)\right| \leqslant 10$. By Theorem 2.2(i), $F\left(G^{\prime}\right) \geqslant 2$. Let $V\left(G^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ and $H_{i}=\operatorname{PI}\left(v_{i}\right)(i=1,2, \ldots, s)$ with $\left|V\left(H_{1}\right)\right| \geqslant$ $\left|V\left(H_{2}\right)\right| \geqslant \cdots \geqslant\left|V\left(H_{s}\right)\right|$. As $\left|V\left(G^{\prime}\right)\right| \geqslant 4,\left|V\left(H_{1}\right)\right| \leqslant 7$. If $V(G)=V\left(G^{\prime}\right)$, then $\left|E\left(G^{\prime}\right)\right| \geqslant 17$, and so $F\left(G^{\prime}\right)=2\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|-2 \leqslant 2 \cdot 10-17-2=1$, a contradiction.

If $6 \leqslant\left|V\left(H_{1}\right)\right| \leqslant 7$, then $\left|V\left(H_{2}\right)\right|=\cdots=\left|V\left(H_{s}\right)\right|=1$ by (1). Thus

$$
\left|V\left(G^{\prime}\right)\right|=|V(G)|-\left|V\left(H_{1}\right)\right|+1 \leqslant \begin{cases}10-6+1=5, & \text { if }\left|V\left(H_{1}\right)\right|=6 \\ 10-7+1=4, & \text { if }\left|V\left(H_{1}\right)\right|=7\end{cases}
$$

By Lemma 2.7, we have

$$
\left|E\left(G^{\prime}\right)\right| \geqslant 17-\left|E\left(H_{1}\right)\right| \geqslant \begin{cases}17-9=8, & \text { if }\left|V\left(H_{1}\right)\right|=6 \\ 17-12=5, & \text { if }\left|V\left(H_{1}\right)\right|=7\end{cases}
$$

Then, $\left|E\left(G^{\prime}\right)\right|>\left|V\left(G^{\prime}\right)\right|^{2} / 4$. By the Turán's theorem, G^{\prime} contains a triangle, a contradiction.

$$
\begin{aligned}
& \text { If }\left|V\left(H_{1}\right)\right|=5 \text {, then }\left|V\left(H_{3}\right)\right|=\cdots=\left|V\left(H_{s}\right)\right|=1 \text { and }\left|V\left(H_{2}\right)\right|=1 \text { or } 3 \text {. Thus } \\
& \qquad\left|V\left(G^{\prime}\right)\right|=|V(G)|-\left|V\left(H_{1}\right)\right|-\left|V\left(H_{2}\right)\right|+2 \leqslant \begin{cases}6, & \text { if }\left|V\left(H_{2}\right)\right|=1, \\
4, & \text { if }\left|V\left(H_{2}\right)\right|=3 .\end{cases}
\end{aligned}
$$

By Lemma 2.7, we have

$$
E\left(G^{\prime}\right) \geqslant 17-\left|E\left(H_{1}\right)\right|-\left|E\left(H_{2}\right)\right| \geqslant \begin{cases}17-6=11, & \text { if }\left|V\left(H_{2}\right)\right|=1, \\ 17-6-3=8, & \text { if }\left|V\left(H_{2}\right)\right|=3 .\end{cases}
$$

Thus, $\left|E\left(G^{\prime}\right)\right|>\left|V\left(G^{\prime}\right)\right|^{2} / 4$. By the Turán's theorem, G^{\prime} contains a triangle, a contradiction.
If $\left|V\left(H_{1}\right)\right|=3$, let $\left|V\left(H_{1}\right)\right|=\cdots=\left|V\left(H_{t}\right)\right|=3$ and $\left|V\left(H_{t+1}\right)\right|=\cdots=\left|V\left(H_{s}\right)\right|=1$. Then $\left|E\left(G^{\prime}\right)\right| \geqslant 17-3 t$ and $V\left(G^{\prime}\right) \leqslant 10-2 t$. Thus $F\left(G^{\prime}\right)=2\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|-2 \leqslant 2(10-2 t)-$ $(17-3 t)-2=1-t \leqslant 1$, a contradiction.

Lemma 2.9. If G is collapsible, then for any pair of vertices $u, v \in V(G), G$ has a spanning (u, v)-trail.

Proof. Let $R=(O(G) \cup\{u, v\}) \backslash(O(G) \cap\{u, v\})$. Then $|R|$ is even. Let Γ_{R} be an R-subgraph of G. Then $G-E\left(\Gamma_{R}\right)$ is a spanning (u, v)-trail of G.

3. Proof of Theorem 1.6

The proof of Theorem 1.6 needs the following theorem and lemma.
Theorem 3.1. (Chen et al. [5]) Let G be a 3 -edge-connected graph and let $S \subseteq V(G)$ be a vertex subset such that $|S| \leqslant 12$. Then either G has an Eulerian subgraph C such that $S \subseteq V(C)$, or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph contains at least one vertex in S.

Lemma 3.2. (Favaron and Fraisse [7]) Let S be a set of vertices of a graph G contained in an Eulerian subgraph of G and let C be a maximal Eulerian subgraph of G containing S. Assume that some component A of $G-V(C)$ is not an isolated vertex and is related to C by at least r edges. Then:
(i) G contains a matching T of $r+1$ edges such that at most $2 r$ edges of G are adjacent to two distinct edges of T.
(ii) The number $m(G)$ of edges of G is related to the minimum degree $\delta(H)$ of the line graph H of G by $m(G) \geqslant(r+1) \delta(H)-r+1$.

Portion of the proof of Theorem 1.6 (the treatment to deal with Claims 1 and 2) is a modification of Favaron and Fraisse's proof for Theorem 1 in [7], with Theorem 3.1 being utilized in our proof.

Proof of Theorem 1.6. By Theorem 1.2, the graph H is Hamiltonian if and only if its closure $c l(H)$ is Hamiltonian. As $v(c l(H))=v(H), \delta(c l(H)) \geqslant \delta(H)$, and $c l(H)$ is 3-connected, the graph $\operatorname{cl}(H)$ satisfies the same hypotheses as H. Hence it suffices to prove Theorem 1.6 for closed claw-free graphs.

By Theorem 1.2, we may assume that H is the line graph of a triangle-free graph G (i.e., $H=L(G))$, and suppose that H is 3 -connected and satisfies $\delta(H) \geqslant(\nu(H)+5) / 10$. Assume by contradiction that neither of the conclusions of Theorem 1.6 holds. By Theorem 1.1, G does not contain a dominating Eulerian graph.

Let $B=\left\{v \in V(G) \mid d_{G}(v)=1,2\right\}$. Since H is 3-connected, the sum of degrees of the two ends of each edge in G is at least 5 and thus the set B is independent. Let $X_{0}=N_{G}(B)$. We name the vertices of X_{0} as $x_{1}, x_{2}, \ldots, x_{p}$ in the following way. Assume the vertices x_{1}, \ldots, x_{i} are already defined or else put $i=0$. Let y_{i+1} denote a vertex of B which is adjacent to some vertex of $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$. Either y_{i+1} has exactly one neighbor in $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$ and we name it x_{i+1}, or y_{i+1} has exactly two neighbors in $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$ and we name them x_{i+1} and x_{i+2} and put $y_{i+2}=y_{i+1}$. Let $Y_{0}=\left\{y_{1}, \ldots, y_{p}\right\}$. We note that if $1 \leqslant i<j \leqslant p$, then $y_{i} y_{j} \notin E(G)$ and $y_{i} x_{j} \notin E(G)$, except for the edges $y_{i} x_{i+1}$ when $y_{i}=y_{i+1}$; and that the components of the subgraph induced by the edges $x_{i} y_{i}, 1 \leqslant i \leqslant p$, are paths of length 1 or 2 .

Consider now a matching M of G formed by $q-p$ edges $x_{i} y_{i}$ of $G, p+1 \leqslant i \leqslant q$, considered in this order and such that
(i) the sets $X_{0}, Y_{0}, X=\left\{x_{p+1}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{p+1}, \ldots, y_{q}\right\}$ are pairwise disjoint,
(ii) for $p+1 \leqslant i<j \leqslant q, y_{i} y_{j}, y_{i} x_{j} \notin E(G)$.

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that by the definition of X_{0} and Y_{0}, the whole set B is disjoint from $X \cup Y$ and that property (ii) holds for any i and j with $1 \leqslant i<j \leqslant q$.

Let J be the set of indices j between $p+1$ and q such that y_{j} is adjacent to some vertex $z \notin$ $X_{0} \cup Y_{0} \cup X \cup Y$ with $y_{k} z \notin E(G)$ for $1 \leqslant k<j$. For each $j \in J$ we choose such a vertex z_{j} and we put $I=\{p+1, \ldots, q\}-J$. Let $X_{I}=\left\{x_{i} \in X \mid i \in I\right\}, X_{J}=\left\{x_{i} \in X \mid i \in J\right\}, Y_{I}=\left\{y_{i} \in Y \mid\right.$ $i \in I\}$ and $Y_{J}=\left\{y_{i} \in Y \mid i \in J\right\}$.

Claim 1. (Favaron and Fraisse [7]) The set $S=X_{0} \cup X_{I} \cup Y_{J}$ is not contained in any Eulerian subgraph of G.

Proof. Suppose Claim 1 is false and let C be a maximal Eulerian subgraph of G containing $S=X_{0} \cup X_{I} \cup Y_{J}$ and $R=V(G)-V(C)$. By the assumption that G has no dominating Eulerian subgraph, at least one component A of $G[R]$ is not a single vertex. This component A is disjoint from Y_{0} since the vertices of Y_{0} are isolated in $G[R]$.

Suppose first that every vertex of A has a neighbor in C. Then, if $u v$ is an edge of A and if s denotes the number of edges between A and $C, s \geqslant d_{C}(u)+d_{C}(v)+|A|-2$. Since G is trianglefree, $d_{A}(u)+d_{A}(v) \leqslant|A|$ and thus $d_{G}(u)+d_{G}(v)=d_{C}(u)+d_{C}(v)+d_{A}(u)+d_{A}(v) \leqslant d_{C}(u)+$ $d_{C}(v)+|A|$. Hence $s \geqslant d_{G}(u)+d_{G}(v)-2 \geqslant \delta(H)$. Apply Lemma 3.2 with $r=\delta(H)$ to conclude that the number of edges of G satisfies $m(G) \geqslant \delta^{2}(H)+1$. Since $\delta(H) \geqslant(\nu(H)+5) / 10$, then $m(G)=v(H) \leqslant 10 \delta(H)-5$, and so $\delta^{2}(H)+1 \leqslant 10 \delta(H)-5$, contrary to the hypothesis that $v(H) \geqslant 196$.

Therefore A contains a vertex z such that $N_{G}(z) \subseteq A$. Then $z \notin X_{0} \cup Y_{0} \cup X \cup Y$ and the neighbors of z are all in $Y_{I} \cup X_{J} \cup\left(R-\left(Y_{0} \cup Y_{I} \cup X_{J}\right)\right)$.

If z has a neighbor in Y_{I}, let i be the least index such that $y_{i} \in Y_{i}$ and $z y_{i} \in E(G)$. Since z has no neighbor in $Y_{J}, z y_{k} \notin E(G)$ for all $k<i$, in contradiction to the definition of I. Hence z has no neighbor in Y_{I}, and thus in Y.

If z has a neighbor in X_{J}, let x_{j} be the vertex of $N_{G}(z) \cap X_{J}$ with the largest index. Consider the ordered sets $X^{\prime}=\left\{x_{p+1}, \ldots, x_{j-1}, x_{j}, z_{j}, x_{j+1}, \ldots, x_{q}\right\}$ and $Y^{\prime}=\left\{y_{p+1}, \ldots, y_{j-1}, z, y_{j}\right.$, $\left.y_{j+1}, \ldots, y_{q}\right\}$. Then the vertex z is adjacent neither to any x_{k} with $k>j$ (by the definition of x_{j}), nor to any vertex of Y (as said above). The vertex z_{j} is not adjacent to any vertex y_{k} with $k<j$ by the choice of z_{j}. If $z z_{j} \notin E(G)$, then the sets X^{\prime} and Y^{\prime} define a matching M^{\prime} which satisfies (i) and (ii), and thus which contradicts the maximality of M. If $z z_{j} \in E(G)$, then the Eulerian subgraph $G\left[\left(E(C)-E\left(C^{\prime}\right)\right) \cup\left(E\left(C^{\prime}\right)-E(C)\right)\right]$, with $C^{\prime}=y_{j} z_{j} z x_{j} y_{j}$, satisfies $V(C) \cap V\left(C^{\prime}\right)=\left\{y_{j}\right\}$ since z has no neighbor in C, and thus contradicts the maximality of C. Hence $N_{G}(z) \cap X_{J}=\emptyset$ and z has no neighbor in X.

Finally if z has a neighbor t in $R-\left(Y_{0} \cup Y_{I} \cup X_{J}\right)$, then the matching $M^{\prime \prime}$ corresponding to the ordered sets $X^{\prime \prime}=\left\{t, x_{p+1}, \ldots, x_{q}\right\}$ and $Y^{\prime \prime}=\left\{z, y_{p+1}, \ldots, y_{q}\right\}$ satisfies the conditions (i) and (ii) since z has no neighbor in $X \cup Y$. This contradicts the maximality of M and achieves the proof of Claim 1.

Claim 2. (Favaron and Fraisse [7]) G must be contracted to the Petersen graph.
Proof. By contradiction. Suppose that G cannot be contracted to the Petersen graph. Let G^{1} be the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replacing each path $a y b$ where $d_{G}(y)=2$ by the edge $a b$. Since G is essentially 3-edge-connected, G^{1} is 3-edge-connected. Moreover, for each Eulerian subgraph C of G^{1}, there is a corresponding Eulerian subgraph of G containing $V(C)$. Since $S \cap B=\emptyset$, the set S is contained in $V\left(G^{1}\right)$. Since S is not contained in any Eulerian subgraph of G by Claim 1, S is not contained in any Eulerian subgraph of G^{1}. By Theorem 3.1, $|S| \geqslant 13$. Let $F=\left\{x_{i} y_{i} \mid 1 \leqslant i \leqslant 13\right\}, P=\left\{x_{i} \mid 1 \leqslant i \leqslant 13\right\}$ and $Q=\left\{y_{i} \mid 1 \leqslant i \leqslant 13\right\}$. We suppose that F consists of l paths of length 2 with $0 \leqslant l \leqslant 6$ and $13-2 l$ edges of a matching. Then $|P|=13$ and $|Q|=13-l$. We know that Q is independent, that $y_{i} x_{j} \notin E(G)-F$ for any $y_{i} \in Q$ and $x_{j} \in P$ with $1 \leqslant i<j \leqslant 13$, and that G is triangle-free. Hence, two different edges of F are joined by at most one edge of G which is of type $x_{i} x_{j}$ or $x_{i} y_{j}$ with $1 \leqslant i<j \leqslant 13$. More precisely, we can give an upper bound on the number μ of edges of G which are adjacent to two different edges of F. For a given value of l, this number can be maximum if the l paths of F occur with smaller indices than those of the $13-2 l$ edges of the matching. This is due to the fact that the l vertices y_{i} belonging to paths of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F to any vertex x_{i} with $i<j$. When this condition is fulfilled, there are at most l^{2} edges between the vertices $x_{1}, x_{2}, \ldots, x_{2 l}$ (since the number of edges of a triangle-free graph of order $2 l$ is at most $(2 l)^{2} / 4$), $2 l(13-2 l)$ edges of type $x_{i} y_{j}$ between the sets $\left\{x_{1}, x_{2}, \ldots, x_{2 l}\right\}$ and $\left\{y_{2 l+1}, y_{2 l+2}, \ldots, y_{13}\right\}$, and $(13-2 l)(13-2 l-1) / 2$ edges of type $x_{i} x_{j}$ or $x_{i} y_{j}$ with $i<j$ between the vertices of the set $\left\{x_{2 l+1}, \ldots, x_{13}, y_{2 l+1}, \ldots, y_{13}\right\}$. Then

$$
\mu \leqslant l^{2}+2 l(13-2 l)+\frac{(13-2 l)(13-2 l-1)}{2}=l-l^{2}+78
$$

Counting the edges of $G-F$ adjacent to some edge of F, we find at least $(13-2 l) \delta(H)$ edges adjacent to an edge of a matching of F and $2 l(\delta(H)-1)$ edges adjacent to an edge of a path of length 2 (since each vertex y_{i} on such a path has degree 2 in G). At most $l-l^{2}+78$ of these edges have their two endvertices in $P \cup Q$ and are thus counted twice. Hence $m(G) \geqslant$ $(13-2 l) \delta(H)+2 l(\delta(H)-1)-\left(l-l^{2}+78\right)+13$, that is $v(H)=m(G) \geqslant 13 \delta(H)+l^{2}-3 l-$ $65 \geqslant 13 \delta(H)-67 \geqslant 10 \delta(H)-4$ since l is an integer between 0 and 6 and $v(H) \geqslant 196$. This contradicts the hypothesis that $\delta(H) \geqslant(\nu(H)+5) / 10$, and so Claim 2 must hold.

By Claim 2, G can be contracted to the Petersen graph P_{10}. Let $v_{1}, v_{2}, \ldots, v_{10}$ be the ten vertices of the Petersen graph P_{10}, and W_{i} be the preimage of $v_{i}(i=1,2, \ldots, 10)$. Denote $\mathcal{S V}=\left\{v \in V(G) \mid d_{G}(v) \geqslant 12\right\}$. Since $d_{G}(u)+d_{G}(v)-2 \geqslant \delta(H) \geqslant 21$ for every edge $e=u v \in$ $E(G)$, we have either $d_{G}(u) \geqslant 12$ or $d_{G}(v) \geqslant 12$. So we have

$$
\begin{equation*}
\text { for every edge } e=u v \in E(G), \quad \text { either } \quad u \in \mathcal{S V} \quad \text { or } \quad v \in \mathcal{S V} \tag{2}
\end{equation*}
$$

Moreover, if $u, v \notin \mathcal{S V}$, then $u v \notin E(G)$. By the hypothesis of Theorem 1.6 that H is 3-connected, we have
G is essentially 3-edge-connected.
Let $W \in\left\{W_{i} \mid 1 \leqslant i \leqslant 10\right\}$. Note that G is contracted to P_{10}. Then $\left|N_{W}(V(G)-V(W))\right|=3$. If for any two vertices $w_{1}, w_{2} \in N_{W}(V(G)-V(W))$, there is a dominating $\left(w_{1}, w_{2}\right)$-trail in W, then say W is dominatiable.

Claim 3. Let W^{\prime} be a graph obtained from W by deleting the vertices of degree 1 . If $E\left(W^{\prime}\right) \neq \emptyset$, then W^{\prime} is 2-edge-connected. Therefore W^{\prime} contains some cycle.

Proof. Since G is contracted to the P_{10} and W is the preimage of some vertex v_{i}, we may assume that $[V(W), V(G)-V(W)]_{G}=\left\{e_{1}, e_{2}, e_{3}\right\}$, where e_{1}, e_{2}, e_{3} are edges adjacent to v_{i} in P_{10}. Suppose that W^{\prime} contains a cut-edge $e=z_{1} z_{2}$. Then e is also a cut-edge of W. Let $\left(U_{1}, V_{1}\right)$ be the partition of $V(W)$ such that $\left[U_{1}, V_{1}\right]_{W}=\{e\}$ and $z_{1} \in U_{1}$ and $z_{2} \in V_{1}$. Since $z_{1}, z_{2} \in V\left(W^{\prime}\right)$, we have $d_{W}\left(z_{1}\right) \geqslant 2$ and $d_{W}\left(z_{2}\right) \geqslant 2$. Thus $E\left(G\left[U_{1}\right]\right) \neq \emptyset$ and $E\left(G\left[V_{1}\right]\right) \neq \emptyset$. Note that $[V(W), V(G)-V(W)]_{G}=\left\{e_{1}, e_{2}, e_{3}\right\}$. We may assume that the number of edges joining U_{1} and $V(G)-V(W)$ is 1 , say e_{1}. Then $\left\{e_{1}, e\right\}$ is an essential edge-cut in G, contrary to (3). So Claim 3 holds.

Claim 4. If $\alpha^{\prime}(W)=1$, then $W=K_{1, p}$ for some $p \geqslant 1$. Therefore all three edges in $[V(W)$, $V(G)-V(W)]_{G}$ must be incident with the vertex of $K_{1, p}$ with degree p, and so H_{1} is dominatiable.

Proof. Since W is a connected triangle-free graph and $\alpha^{\prime}(W)=1, G$ is acyclic. By Claim 3 and $\alpha^{\prime}(W)=1, W=K_{1, p}$ for some $p \geqslant 1$.

Claim 5. Suppose that $\alpha^{\prime}(W)=t \in\{2,3,4,5\}$ and $\left\{u_{1} a_{1}, u_{2} a_{2}, \ldots, u_{t} a_{t}\right\}$ is a matching in W. Suppose that $u_{i} \in \mathcal{S V}(i=1,2, \ldots, t)$. Then $V(W) \cap \mathcal{S V}=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ and $E(W-$ $\left.\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}\right)=\emptyset$.

Proof. Let $A=\left\{u_{1}, \ldots, u_{t}, a_{1}, \ldots, a_{t}\right\}, A_{1}=A-u_{i}$ and $A_{2}=A-a_{i}$. As $\alpha^{\prime}(W)=t$, $E(W-A)=\emptyset$. Note that G is triangle-free and $\mathcal{S V}=\left\{v \in V(G) \mid d_{G}(v) \geqslant 12\right\}$. For each $z \in V(W)-A, d_{W}(z) \leqslant 5$ and so $d_{G}(z) \leqslant 8$. Thus $z \notin \mathcal{S V}$.

Since G does not contain a triangle and $\alpha^{\prime}(W)=t \leqslant 5$, by $d_{G}\left(u_{i}\right) \geqslant 12$, we have $N_{W}\left(u_{i}\right)-$ $A_{1} \neq \emptyset$. Thus $N_{W}\left(a_{i}\right) \subseteq A_{2}$ (otherwise, $\left\{u_{1} a_{1}, \ldots, u_{i-1} a_{i-1}, u_{i+1} a_{i+1}, \ldots, u_{t} a_{t}, u_{i} u, a_{i} a\right\}$ is a matching of W, where $u \in N_{W}\left(u_{i}\right)-A_{1}$ and $a \in N_{W}\left(a_{i}\right)-A_{2}$, contrary to the assumption that $\left.\alpha^{\prime}(W)=t\right)$. Since G is triangle-free, we have $d_{W}\left(a_{i}\right) \leqslant 5$, and so $d_{G}\left(a_{i}\right) \leqslant 8$. Thus $a_{i} \notin \mathcal{S V}$. Therefore $\mathcal{S} \mathcal{V} \cap V(W)=\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$, and $E\left(W-\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}\right)=\emptyset$.

Claim 6. If $\alpha^{\prime}(W)=t \in\{2,3,4\}$, then W is dominatiable.

Proof. Suppose that $\alpha^{\prime}(W)=t$ and $\left\{u_{1} a_{1}, \ldots, u_{t} a_{t}\right\}$ is a matching in W. Without loss of generality, we assume that $u_{i} \in \mathcal{S V}(i=1,2, \ldots, t)$ by (2). By Claim 5, $\mathcal{S} \mathcal{V} \cap V(W)=$ $\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$, and $E\left(W-\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}\right)=\emptyset$. Let $w_{1}, w_{2}, w_{3} \in N_{W}(V(G)-V(W))$ and $w_{1} z_{1}, w_{2} z_{2}, z_{3} w_{3} \in[V(W), V(G)-V(W)]_{G}$. If $w_{1}=w_{2}$ and $d_{W}\left(w_{1}\right)=1$, then $\left\{z_{3} w_{3}, w_{1} x\right\}$ is an essential edge-cut in G for some $x \in N_{W}\left(w_{1}\right)$, contrary to (3). So we have $d_{W}\left(w_{1}\right) \geqslant 2$ if $w_{1}=w_{2}$.

Suppose, by contradiction, that W does not have a dominating (w_{1}, w_{2})-trail. If $w_{1} \neq w_{2}$, we let $K_{1}=W+\left\{w_{1} w, w_{2} w\right\}$, where w is a new vertex; if $w_{1}=w_{2}$, we let $K_{1}=W$ and $w=w_{1}$. Let $K=K_{1}-D_{1}\left(K_{1}\right)$. Then $u_{1}, \ldots, u_{t}, w \in V(K)$, and K is 2-edge-connected by Claim 3. Let $S=\left\{u_{1}, \ldots, u_{t}\right\} \cup\{w\}$. Then $K-S$ is edgeless, and K does not have an S-Eulerian subgraph. By Theorem 2.6, K is contracted to a member $L \in \mathcal{F}$ (see Figs. 2-4) such that S intersects the preimage of every vertex in $B(L)$. Note that for each $L \in \mathcal{F}, d_{L}\left(b_{i}\right)=2(i=1,2,3)$ and the set of degree 2 vertices is independent. Without loss of generality, we assume that the preimages of b_{1}, b_{2} do not contain w.

Note that $[V(W), V(G)-V(W)]_{G}=\left\{w_{1} z_{1}, w_{2} z_{2}, z_{3} w_{3}\right\}$. Suppose that $w \in V(L)$. Then $w_{1}, w_{2} \in V(L)$. If $w_{1} \neq w_{2}$, then $d_{L}(w)=2$. Thus $w_{1}, w_{2} \notin\left\{b_{1}, b_{2}\right\}$. If $w_{1}=w_{2}$, then $w_{1}=$ $w_{2}=w$. Thus $w_{1}, w_{2} \notin\left\{b_{1}, b_{2}\right\}$ still hold. Since either $w_{3} \notin V\left(P I\left(b_{1}\right)\right)$ or $w_{3} \notin V\left(P I\left(b_{2}\right)\right)$, we may assume that $w_{3} \notin V\left(P I\left(b_{1}\right)\right)$. Thus $\left[V\left(P I\left(b_{1}\right)\right), V(G)-V(W)\right]_{G}=\emptyset$ and the set of two edges adjacent to $V\left(\operatorname{PI}\left(b_{1}\right)\right)$ is an essential edge-cut of G, contrary to (3). So $w \notin V(L)$. We assume that the preimage of some $b_{i}\left(\notin\left\{b_{1}, b_{2}\right\}\right)$ contains w. Thus $w_{1}, w_{2} \notin V\left(\operatorname{PI}\left(b_{i}\right)\right)(i=1,2)$. Therefore either $\left|\left[V\left(P I\left(b_{1}\right)\right), V(G)-V(W)\right]_{G}\right|=0$ or $\left|\left[V\left(P I\left(b_{2}\right)\right), V(G)-V(W)\right]_{G}\right|=0$. Without loss of generality, we assume that $\left|\left[V\left(P I\left(b_{1}\right)\right), V(G)-V(W)\right]_{G}\right|=0$. Then the set of two edges adjacent to $V\left(P I\left(b_{1}\right)\right)$ is an essential edge-cut of G, contrary to (3).

Claim 7. If $\alpha^{\prime}(W)=t \geqslant 1$, then $|E(W)| \geqslant t \delta(H)+2 t-t^{2}-3$.
Proof. Let $\left\{u_{1} v_{1}, \ldots, u_{t} v_{t}\right\}$ be a matching in W. Then $E\left(W-\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{t}\right\}\right)=\emptyset$, and for any pair of $u_{i} v_{i}, u_{j} v_{j}(i \neq j),\left|\left[\left\{u_{i}, v_{i}\right\},\left\{u_{j}, v_{j}\right\}\right]_{W}\right| \leqslant 2$ since W does not contain a triangle. Since for $\sum_{v \in V(W)} d_{W}(v)$, the edges of $u_{i} v_{i}$ and the edges in $\left[\left\{u_{i}, v_{i}\right\},\left\{u_{j}, v_{j}\right\}\right]_{W}$ are counted twice, and since $\left|[V(W), V(G)-V(W)]_{G}\right|=3$, we have

$$
\begin{aligned}
|E(W)| & =\sum_{v \in V(W)} d_{W}(v)-\left|\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots, u_{t} v_{t}\right\}\right|-\sum_{i \neq j}\left|\left[\left\{u_{i}, v_{i}\right\},\left\{u_{j}, v_{j}\right\}\right]_{W}\right| \\
& \geqslant\left(\sum_{v \in V(W)} d_{G}(v)-3\right)-t-2\binom{t}{2} .
\end{aligned}
$$

Since $\delta(H) \leqslant d_{G}\left(u_{i}\right)+d_{G}\left(v_{i}\right)-2$ for each $u_{i} v_{i}$, we have

$$
|E(W)| \geqslant t(\delta(H)+2)-3-t-2\binom{t}{2}=t \delta(H)+2 t-t^{2}-3
$$

Now we finish the proof of Theorem 1.6. Let $\mid\left\{v_{i} \mid v_{i}\right.$ is a trivial vertex in $\left.P_{10}\right\} \mid=s$. By (2), the set of all trivial vertices in P_{10} is independent. Since $\alpha\left(P_{10}\right)=4$, we have $0 \leqslant s \leqslant 4$. If $s=0$, then each v_{i} is a nontrivial vertex. Thus $\left|E\left(W_{i}\right)\right| \geqslant \delta(H)-2$ by Claim 7. Therefore

$$
m(G)=\sum_{i=1}^{10}\left|E\left(W_{i}\right)\right|+15 \geqslant 10(\delta(H)-2)+15=10 \delta(H)-5 .
$$

By the hypothesis of Theorem 1.6, we have

$$
\delta(H)=\frac{\nu(H)+5}{10}, \quad\left|E\left(W_{i}\right)\right|=\delta(H)-2,
$$

$\alpha^{\prime}\left(W_{i}\right)=1$ and $W_{i}=K_{1, p}$, where $p=\delta(H)-2=(\nu(H)-15) / 10$.
If $s \geqslant 1$, without loss of generality, we assume that v_{1} is trivial. Since $P_{10}-v_{1}$ has a spanning cycle, there exists a W_{i}, say W_{10}, such that $\alpha^{\prime}\left(W_{10}\right) \geqslant 5$ by Claims 4 and 6 . If $s \leqslant 3$, then

$$
\begin{aligned}
m(G) & =\sum_{i=1}^{10}\left|E\left(W_{i}\right)\right|+15 \geqslant(10-s-1)(\delta(H)-2)+(5 \delta(H)-18)+15 \\
& \geqslant 6(\delta(H)-2)+5 \delta(H)-3=11 \delta(H)-15 \geqslant 10 \delta(H)-4
\end{aligned}
$$

Thus $\delta(H) \leqslant(\nu(H)+4) / 10$, a contradiction. So $s=4$. By Claims 3,6 and $\delta(H) \geqslant$ $(\nu(H)+5) / 10, \alpha^{\prime}\left(W_{10}\right)=5$. If there exists some $W_{j}(j \neq 10)$ such that $\alpha^{\prime}\left(W_{j}\right) \geqslant 2$, then

$$
\begin{aligned}
m(G) & =\sum_{i=1}^{10}\left|E\left(W_{i}\right)\right|+15 \geqslant\left|E\left(W_{10}\right)\right|+\left|E\left(W_{j}\right)\right|+4(\delta(H)-2)+15 \\
& =(5 \delta(H)-18)+(2 \delta(H)-3)+4 \delta(H)+7=11 \delta(H)-17 \geqslant 10 \delta(H)+4
\end{aligned}
$$

a contradiction. So the number of W_{i} with $\alpha^{\prime}\left(W_{i}\right)=1$ is 5 . Without loss of generality, we assume that $\alpha^{\prime}\left(W_{i}\right)=1(i=5,6,7,8,9)$ and $\alpha^{\prime}\left(W_{10}\right)=5$. Let $\left\{e_{1} f_{1}, e_{2} f_{2}, e_{3} f_{3}, e_{4} f_{4}, e_{5} f_{5}\right\}$ be a matching of W_{10} and $B=\left\{e_{1}, \ldots, e_{5}, f_{1}, \ldots, f_{5}\right\}$ and $Z=W_{10}[B]$. By (2), we assume that $e_{i} \in \mathcal{S V}(i=1,2, \ldots, 5)$. By Claim $5, \mathcal{S V} \cap V\left(W_{10}\right)=\left\{e_{1}, e_{2}, \ldots, e_{5}\right\}$, and $E\left(W_{10}-\right.$ $\left.\left\{e_{1}, e_{2}, \ldots, e_{5}\right\}\right)=\emptyset$.

If $|E(Z)| \leqslant 16$, then

$$
\left|E\left(W_{10}\right)\right|=\sum_{v \in B} d_{G}(v)-|E(Z)|-3 \geqslant 5(\delta(H)+2)-16-3=5 \delta(H)-9
$$

Thus

$$
\begin{aligned}
m(G) & =\sum_{i=5}^{9}\left|E\left(W_{i}\right)\right|+\left|E\left(W_{10}\right)\right|+15 \geqslant 5(\delta(H)-2)+(5 \delta(H)-9)+15 \\
& =10 \delta(H)-4
\end{aligned}
$$

and so $\delta(H) \leqslant(\nu(H)+4) / 10$, a contradiction. So we have

$$
\begin{equation*}
|E(Z)| \geqslant 17 \tag{4}
\end{equation*}
$$

If Z is collapsible, then $W_{10}-D_{1}\left(W_{10}\right)$ is collapsible by Theorem 2.3. Thus for any pair of vertices $u, v \in W_{10}-D_{1}\left(W_{10}\right), W_{10}-D_{1}\left(W_{10}\right)$ has a spanning (u, v)-trail by Lemma 2.9. Then for any pair of vertices $u, v \in V\left(W_{10}\right), W_{10}$ has a dominating (u, v)-trail, and so W_{10} is dominatiable. Since each $W_{i}(i=1,2,3,4)$ is a trivial graph, since each $W_{i}(i=5,6, \ldots, 9)$ is dominatiable, and since $P_{10}-v_{1}$ has a spanning cycle, G has a dominating Eulerian subgraph, a contradiction. So Z is not collapsible. Moreover,

$$
\begin{equation*}
W_{10}-D_{1}\left(W_{10}\right) \text { is not collapsible. } \tag{5}
\end{equation*}
$$

Therefore Z is not 2-edge-connected by Lemma 2.8.
Let $K \subseteq Z$ with $|V(K)|=8$. Suppose that $|E(K)| \geqslant 14$. Then K is 2-edge-connected by Lemma 2.7. If $\left|D_{2}(K)\right| \geqslant 2$, then $|E(K)| \leqslant 2+2+9=13$ by Lemma 2.7(iv), a contradiction.

So $\left|D_{2}(K)\right| \leqslant 1$. By Lemma 2.5 and by the fact that G is triangle-free, K is collapsible. By Claim 3 and Theorem 2.3, $M_{10}-D_{1}\left(M_{10}\right)$ is collapsible, contrary to (5). So

$$
\begin{equation*}
|E(K)| \leqslant 13 \tag{6}
\end{equation*}
$$

Suppose that Z is not connected and Z_{1} is a component of Z. Then $\left|V\left(Z_{1}\right)\right| \in\{2,4,6,8\}$. By Lemma 2.7(ii), (iv) and (4), $\left|V\left(Z_{1}\right)\right|$ is either 2 or 8 . We may assume that $\left|V\left(Z_{1}\right)\right|=2$ and $Z_{2}=Z-V\left(Z_{1}\right)$. Then $\left|E\left(Z_{1}\right)\right|=1,\left|V\left(Z_{2}\right)\right|=8$ and $\left|E\left(Z_{2}\right)\right| \geqslant 16$, contrary to (6). So Z is connected. Let X be a cut-edge of Z and Z_{3}, Z_{4} be components of $Z-X$ with $\left|V\left(Z_{3}\right)\right| \leqslant$ $\left|V\left(Z_{4}\right)\right|$. By Lemma 2.7 and (4), $\left|V\left(Z_{3}\right)\right|$ is either 1 or 2 . If $\left|V\left(Z_{3}\right)\right|=2$, then $\left|E\left(Z_{4}\right)\right| \geqslant 17-2=$ 15 , contrary to (6). So $\left|V\left(Z_{3}\right)\right|=1,\left|V\left(Z_{4}\right)\right|=9,\left|\left[V\left(Z_{3}\right), V\left(Z_{4}\right)\right]_{Z}\right|=1$ and $\left|E\left(Z_{4}\right)\right| \geqslant 16$.

By (6) and Lemma 2.7, Z_{4} is 3-edge-connected. Let Z_{4}^{\prime} be the reduction of Z_{4}. Then Z_{4}^{\prime} is still 3-edge-connected and $\left|V\left(Z_{4}^{\prime}\right)\right| \leqslant 9$. Thus $Z_{4}^{\prime}=K_{1}$ by Theorem 2.4, that is, Z_{4} is collapsible. By Claim 3 and Theorem 2.3, $W_{10}-D_{1}\left(W_{10}\right)$ is collapsible, contrary to (5).

Acknowledgments

The authors thank the referees for their careful reading of the paper and their useful suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan/Elsevier, London/New York, 1976.
[2] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[3] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223-246.
[4] Z.H. Chen, Supereulerian graphs and the Petersen graph, J. Combin. Math. Combin. Comput. 9 (1991) 79-89.
[5] Z.-H. Chen, H.-J. Lai, X. Li, D. Li, J. Mao, Eulerian subgraphs in 3-edge-connected graphs and Hamiltonian line graphs, J. Graph Theory 42 (4) (2003) 308-319.
[6] O. Favaron, E. Flandrin, H. Li, Z. Ryjáček, Cliques covering and degree conditions for hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65-80.
[7] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Combin. Theory Ser. B 82 (2001) 297-305.
[8] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709.
[9] O. Kovářík, M. Mulac̆, Z. Ryjáček, A note on degree conditions for hamiltonicity in 2-connected claw-free graphs, Discrete Math. 244 (2002) 253-268.
[10] E.J. Kuipers, H.J. Veldman, Recognizing claw-free Hamiltonian graphs with large minimum degree, Memorandum 1437, University of Twente, 1998, submitted for publication.
[11] H.-J. Lai, Eulerian subgraphs containing given vertices and Hamiltonian line graphs, Discrete Math. 178 (1998) 93-107.
[12] H.-J. Lai, D. Li, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422-428.
[13] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[14] Z. Ryjác̆ek, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.

[^0]: E-mail address: mingquan.zhan@millersville.edu (M. Zhan).

