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Abstract

Kuipers and Veldman conjectured that any 3-connected claw-free graph with order ν and minimum de-
gree δ � (ν + 6)/10 is Hamiltonian for ν sufficiently large. In this paper, we prove that if H is a 3-connected
claw-free graph with sufficiently large order ν, and if δ(H) � (ν + 5)/10, then either H is Hamiltonian, or
δ(H) = (ν + 5)/10 and the Ryjác̆ek’s closure cl(H) of H is the line graph of a graph obtained from the
Petersen graph P10 by adding (ν − 15)/10 pendant edges at each vertex of P10.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We use [1] for terminology and notations not defined here, and consider loopless finite simple
graphs only. Let G be a graph. If S ⊆ V (G), G[S] is the subgraph induced in G by S. The
degree and neighborhood of a vertex x of G are respectively denoted by dG(x) and NG(x), and
the minimum degree, the independence number, the edge independence number, the connectivity
and the edge connectivity of G are denoted by δ(G), α(G), α′(G), κ(G) and κ ′(G), respectively.
An edge e = uv is called a pendant edge if either dG(u) = 1 or dG(v) = 1. We use H ⊆ G to
denote the fact that H is a subgraph of G. For H ⊆ G, x ∈ V (G) and A,B ⊆ V (G) with A ∩
B = ∅, denote NH (x) = NG(x)∩V (H), dH (x) = |NH (x)|, NH (A) = ⋃

v∈A NH (v), [A,B]G =
{uv ∈ E(G) | u ∈ A, v ∈ B}, and G − A = G[V (G) − A]. When A = {v}, we use G − v for

E-mail address: mingquan.zhan@millersville.edu (M. Zhan).
0095-8956/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jctb.2005.10.003



494 H.-J. Lai et al. / Journal of Combinatorial Theory, Series B 96 (2006) 493–504
G − {v}. If H ⊆ G, then for an edge subset X ⊆ E(G) − E(H), we write H + X for G[E(H) ∪
X]. For each i = 0,1,2, . . . , denote Di(G) = {v ∈ V (G) | dG(v) = i}.

A subgraph H of G is dominating if G−V (H) is edgeless. A vertex v ∈ G is called a locally
connected vertex if G[NG(v)] is connected. We denote Cn an n-cycle and denote O(G) the set
of all vertices in G with odd degrees. A graph G is Eulerian if O(G) = ∅ and G is connected.

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying the two
ends of each edge in X and then deleting the resulting loops. We define G/∅ = G. If K is a
subgraph of G, then we write G/K for G/E(K). If K is a connected subgraph of G, and if vK

is the vertex in G/K onto which K is contracted, then K is called the preimage of vK , and is
denoted by PI(vK). A vertex v in a contraction of G is nontrivial if PI(v) has at least one edge.

The line graph of a graph G, denote by L(G), has E(G) as its vertex set, where two vertices
in L(G) are adjacent if and only if the corresponding edges in G are adjacent. Let H be the line
graph L(G) of a graph G. The order ν(H) of H is equal to the number m(G) of edges of G,
and δ(H) = min{dG(x)+ dG(y)− 2 | xy ∈ E(G)}. If L(G) is k-connected, then G is essentially
k-edge-connected, which means that the only edge-cut sets of G having less than k edges are the
sets of edges incident with some vertex of G. Harary and Nash-Williams showed that there is a
closed relationship between a graph and its line graph concerning Hamilton cycles.

Theorem 1.1. (Harary and Nash-Williams [8]) The line graph H = L(G) of a graph G is Hamil-
tonian if and only if G has a dominating Eulerian subgraph.

A graph H is claw-free if it does not contain K1,3 as an induced subgraph. In [14], Ryjác̆ek
defined the closure cl(H) of a claw-free graph H to be one obtained by recursively adding edges
to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H , as
long as this is possible.

Theorem 1.2. (Ryjác̆ek [14]) Let H be a claw-free graph and cl(H) its closure. Then:

(i) cl(H) is well defined, and κ(cl(H)) � κ(H),
(ii) there is a triangle-free graph G such that cl(H) = L(G),

(iii) both graphs H and cl(H) have the same circumference.

As a corollary of Theorem 1.2, a claw-free graph H is Hamiltonian if and only if cl(H) is
Hamiltonian. H is said to be closed if H = cl(H).

Many works have been done to give sufficient conditions for a claw-free graph H to be Hamil-
tonian in terms of its minimum degree δ(H). These conditions depend on the connectivity κ(H).
If κ(H) = 4, Matthews and Sumner [13] conjectured that H is Hamiltonian and this conjec-
ture is still open. When κ(H) = 2, Kuipers and Veldman [10], and independently Favaron et
al. [6], proved that if H is a 2-connected claw-free graph with sufficiently large order ν, and
if δ(H) � (ν + c)/6 (where c is a constant), then H is Hamiltonian except a member of ten
well-defined families of graphs. Recently, the degree conditions [9] were further strengthened
for 2-connected claw-free graphs. Kovár̆ík et al. [9] proved that if G is a 2-connected claw-free
graph of order ν � 153 with δ(G) � (ν + 39)/8, then either G is Hamiltonian or the closure of G

is in the five classes of graphs. When κ(H) = 3, the following have been proved and proposed.

Theorem 1.3. (Kuipers and Veldman [10]) If H is a 3-connected claw-free simple graph with
sufficiently large order ν, and if δ(H) � (ν + 29)/8, then H is Hamiltonian.
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Theorem 1.4. (Favaron and Fraisse [7]) If H is a 3-connected claw-free simple graph with or-
der ν, and if δ(H) � (ν + 37)/10, then H is Hamiltonian.

Conjecture 1.5. (Kuipers and Veldman [10], see also [7]) Let H be a 3-connected claw-free
simple graph of order ν with δ(H) � (ν + 6)/10. If ν is sufficiently large, then H is Hamiltonian.

The main purpose of this paper is to prove Conjecture 1.5. In fact, we proved a somewhat
stronger result.

Theorem 1.6. If H is a 3-connected claw-free simple graph with ν � 196, and if δ(H) �
(ν + 5)/10, then either H is Hamiltonian, or δ(H) = (ν + 5)/10 and cl(H) is the line graph
of G obtained from the Petersen graph P10 by adding (ν − 15)/10 pendant edges at each vertex
of P10.

2. Mechanism

In [2] Catlin defined collapsible graphs. Given a subset R ⊆ V (G) with |R| is even, a subgraph
Γ of G is an R-subgraph if both O(Γ ) = R and G−E(Γ ) is connected. A graph G is collapsible
if for any even subset R of V (G), G has an R-subgraph. Catlin showed in [2] that every vertex
of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G′, is
obtained from G by contracting all maximal collapsible subgraphs of G. A graph G is reduced
if G has no nontrivial collapsible subgraphs, or equivalently, if G = G′, the reduction of G.
A nontrivial vertex in G′ is a vertex that is the contraction image of a nontrivial connected
subgraph of G. Note that if G has an O(G)-subgraph Γ , then G − E(Γ ) is a spanning Eulerian
subgraph of G. Therefore, every collapsible graph has a spanning Eulerian subgraph.

Theorem 2.1. (Catlin [2]) Let G be a connected graph.

(i) If G is reduced, then G is a simple graph and has no cycle of length less than four.
(ii) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(iii) Let G′ be the reduction of G. Then G is collapsible if and only if G′ = K1.

Defining F(G) to be the minimum number of additional edges that must be added to G so that
the resulting graph has two edge-disjoint spanning trees, we present some of the former results
in the following theorems.

Theorem 2.2. Let G be a graph. Then the following statements hold.

(i) (Catlin [2]) If F(G) � 1 and if G is connected, then G is collapsible if and only if the
reduction of G is not a K2.

(ii) (Catlin [3]) If G is reduced, then F(G) = 2|V (G)| − |E(G)| − 2.

Theorem 2.3. (Catlin [3]) Let K3,3 − e denote the graph obtained from K3,3 by removing an
edge. Then K3,3 − e,Kn (n � 3) and C2 are collapsible.

Theorem 2.4. (Chen [4]) Let G be a reduced graph with |V (G)| � 11 vertices, and κ ′(G) � 3.
Then G is either K1 or the Petersen graph.
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Fig. 1.

Lemma 2.5. (Lai et al. [12]) Let G be a connected simple graph with |V (G)| � 8 vertices and
with D1(G) = ∅, |D2(G)| � 2. Then either G is one of three graphs in Fig. 1, or the reduction
of G is K1 or K2.

Let G be a graph and let S ⊆ V (G) be a vertex subset. An Eulerian subgraph H of G is called
an S-Eulerian subgraph if S ⊆ V (H). Let K2,3, K2,5, W ′

3, W ′
4, L1, L2 and L3 be the labelled

graphs defined in Figs. 2–4, and let F = {K2,3,K2,5,W
′
3,W

′
4,L1,L2,L3}. Using the labels in

Figs. 2–4, for each L ∈F , we define B(L), the bad set of L, to be the vertex subset of V (L) that
are labeled with the bi ’s.
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Fig. 2. The graphs K2,3 and K2,5.
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Fig. 3. The graphs W ′
3 and W ′

4.
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Fig. 4. The graphs L1, L2 and L3.
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Theorem 2.6. (Lai [11]) Let G be a 2-edge-connected graph and let S ⊆ V (G) with |S| � 5. If
G − S is edgeless, and if G does not have an S-Eulerian subgraph, then G is contractible to a
member L ∈F such that S intersects the preimage of every vertex in B(L).

Lemma 2.7. Suppose that G does not contain K4 − e as its subgraph. Then the following state-
ments hold.

(i) If |V (G)| = 3, then |E(G)| � 3.
(ii) If |V (G)| = 4, then |E(G)| � 4.

(iii) If |V (G)| = 5, then |E(G)| � 6.
(iv) If |V (G)| = 6, then |E(G)| � 9.
(v) If |V (G)| = 7, then |E(G)| � 12.

Proof. If |V (G)| = 3, then |E(G)| � 3. If |V (G)| = 4, then |E(G)| � 4 since G does not con-
tain K4 − e as its subgraph. Thus let 5 � |V (G)| � 7. If G has more edges, then |E(G)| >

|V (G)|2/4 and, by Turán’s theorem, G contains a triangle T . Denote R = G − T . Then
2 � |V (R)| � 4, and |NT (y)| � 1 for any y ∈ V (R) (otherwise we have a K4 − e), which implies
that |[T ,R]G| � |V (R)|. So we have

∣∣E(G)
∣∣ = ∣∣E(T )

∣∣ + ∣∣[T ,R]G
∣∣ + ∣∣E(R)

∣∣ �
∣∣V (T )

∣∣ + ∣∣V (R)
∣∣ + ∣∣E(R)

∣∣
= ∣∣V (G)

∣∣ + ∣∣E(R)
∣∣.

If |V (R)| = 2, then clearly |E(R)| � 1 and for 3 � |V (R)| � 4 we have |E(R)| � |V (R)| by (i)
or (ii), respectively. Hence the lemma follows. �
Lemma 2.8. Suppose that G is a 2-edge-connected graph with at most 10 vertices, and that G

does not contain K4 − e as a subgraph. If |E(G)| � 17, then G is collapsible.

Proof. Note that if H is a simple collapsible subgraph of G with |V (H)| = 4, then H must
contain K4 − e as a subgraph. We have the following:

If H is a simple collapsible subgraph of G, then
∣∣V (H)

∣∣ � 3 and
∣∣V (H)

∣∣ �= 4.
(1)

Let G′ be the reduction of G. Note that G is collapsible if and only if G′ = K1. Suppose,
by contradiction, that G′ �= K1. Then κ ′(G′) � 2 and 4 � |V (G′)| � 10. By Theorem 2.2(i),
F(G′) � 2. Let V (G′) = {v1, v2, . . . , vs} and Hi = PI(vi) (i = 1,2, . . . , s) with |V (H1)| �
|V (H2)| � · · · � |V (Hs)|. As |V (G′)| � 4, |V (H1)| � 7. If V (G) = V (G′), then |E(G′)| � 17,
and so F(G′) = 2|V (G′)| − |E(G′)| − 2 � 2 · 10 − 17 − 2 = 1, a contradiction.

If 6 � |V (H1)| � 7, then |V (H2)| = · · · = |V (Hs)| = 1 by (1). Thus

∣∣V (G′)
∣∣ = ∣∣V (G)

∣∣ − ∣∣V (H1)
∣∣ + 1 �

{
10 − 6 + 1 = 5, if |V (H1)| = 6,

10 − 7 + 1 = 4, if |V (H1)| = 7.

By Lemma 2.7, we have

∣∣E(G′)
∣∣ � 17 − ∣∣E(H1)

∣∣ �
{

17 − 9 = 8, if |V (H1)| = 6,

17 − 12 = 5, if |V (H1)| = 7.

Then, |E(G′)| > |V (G′)|2/4. By the Turán’s theorem, G′ contains a triangle, a contradiction.
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If |V (H1)| = 5, then |V (H3)| = · · · = |V (Hs)| = 1 and |V (H2)| = 1 or 3. Thus

∣∣V (G′)
∣∣ = ∣∣V (G)

∣∣ − ∣∣V (H1)
∣∣ − ∣∣V (H2)

∣∣ + 2 �
{

6, if |V (H2)| = 1,

4, if |V (H2)| = 3.

By Lemma 2.7, we have

E(G′) � 17 − ∣∣E(H1)
∣∣ − ∣∣E(H2)

∣∣ �
{

17 − 6 = 11, if |V (H2)| = 1,

17 − 6 − 3 = 8, if |V (H2)| = 3.

Thus, |E(G′)| > |V (G′)|2/4. By the Turán’s theorem, G′ contains a triangle, a contradiction.
If |V (H1)| = 3, let |V (H1)| = · · · = |V (Ht)| = 3 and |V (Ht+1)| = · · · = |V (Hs)| = 1. Then

|E(G′)| � 17 − 3t and V (G′) � 10 − 2t . Thus F(G′) = 2|V (G′)| − |E(G′)| − 2 � 2(10 − 2t)−
(17 − 3t) − 2 = 1 − t � 1, a contradiction. �
Lemma 2.9. If G is collapsible, then for any pair of vertices u,v ∈ V (G), G has a spanning
(u, v)-trail.

Proof. Let R = (O(G) ∪ {u,v}) \ (O(G) ∩ {u,v}). Then |R| is even. Let ΓR be an R-subgraph
of G. Then G − E(ΓR) is a spanning (u, v)-trail of G. �
3. Proof of Theorem 1.6

The proof of Theorem 1.6 needs the following theorem and lemma.

Theorem 3.1. (Chen et al. [5]) Let G be a 3-edge-connected graph and let S ⊆ V (G) be a vertex
subset such that |S| � 12. Then either G has an Eulerian subgraph C such that S ⊆ V (C), or
G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the
Petersen graph contains at least one vertex in S.

Lemma 3.2. (Favaron and Fraisse [7]) Let S be a set of vertices of a graph G contained in an
Eulerian subgraph of G and let C be a maximal Eulerian subgraph of G containing S. Assume
that some component A of G − V (C) is not an isolated vertex and is related to C by at least r

edges. Then:

(i) G contains a matching T of r + 1 edges such that at most 2r edges of G are adjacent to two
distinct edges of T .

(ii) The number m(G) of edges of G is related to the minimum degree δ(H) of the line graph H

of G by m(G) � (r + 1)δ(H) − r + 1.

Portion of the proof of Theorem 1.6 (the treatment to deal with Claims 1 and 2) is a modifica-
tion of Favaron and Fraisse’s proof for Theorem 1 in [7], with Theorem 3.1 being utilized in our
proof.

Proof of Theorem 1.6. By Theorem 1.2, the graph H is Hamiltonian if and only if its closure
cl(H) is Hamiltonian. As ν(cl(H)) = ν(H), δ(cl(H)) � δ(H), and cl(H) is 3-connected, the
graph cl(H) satisfies the same hypotheses as H . Hence it suffices to prove Theorem 1.6 for
closed claw-free graphs.
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By Theorem 1.2, we may assume that H is the line graph of a triangle-free graph G (i.e.,
H = L(G)), and suppose that H is 3-connected and satisfies δ(H) � (ν(H) + 5)/10. Assume
by contradiction that neither of the conclusions of Theorem 1.6 holds. By Theorem 1.1, G does
not contain a dominating Eulerian graph.

Let B = {v ∈ V (G) | dG(v) = 1,2}. Since H is 3-connected, the sum of degrees of the two
ends of each edge in G is at least 5 and thus the set B is independent. Let X0 = NG(B). We
name the vertices of X0 as x1, x2, . . . , xp in the following way. Assume the vertices x1, . . . , xi are
already defined or else put i = 0. Let yi+1 denote a vertex of B which is adjacent to some vertex
of X0 − {x1, . . . , xi}. Either yi+1 has exactly one neighbor in X0 − {x1, . . . , xi} and we name it
xi+1, or yi+1 has exactly two neighbors in X0 − {x1, . . . , xi} and we name them xi+1 and xi+2

and put yi+2 = yi+1. Let Y0 = {y1, . . . , yp}. We note that if 1 � i < j � p, then yiyj /∈ E(G)

and yixj /∈ E(G), except for the edges yixi+1 when yi = yi+1; and that the components of the
subgraph induced by the edges xiyi , 1 � i � p, are paths of length 1 or 2.

Consider now a matching M of G formed by q −p edges xiyi of G, p+1 � i � q , considered
in this order and such that

(i) the sets X0, Y0,X = {xp+1, . . . , xq} and Y = {yp+1, . . . , yq} are pairwise disjoint,
(ii) for p + 1 � i < j � q , yiyj , yixj /∈ E(G).

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that
by the definition of X0 and Y0, the whole set B is disjoint from X ∪Y and that property (ii) holds
for any i and j with 1 � i < j � q .

Let J be the set of indices j between p + 1 and q such that yj is adjacent to some vertex z /∈
X0 ∪Y0 ∪X ∪Y with ykz /∈ E(G) for 1 � k < j . For each j ∈ J we choose such a vertex zj and
we put I = {p + 1, . . . , q} − J . Let XI = {xi ∈ X | i ∈ I }, XJ = {xi ∈ X | i ∈ J }, YI = {yi ∈ Y |
i ∈ I } and YJ = {yi ∈ Y | i ∈ J }.

Claim 1. (Favaron and Fraisse [7]) The set S = X0 ∪ XI ∪ YJ is not contained in any Eulerian
subgraph of G.

Proof. Suppose Claim 1 is false and let C be a maximal Eulerian subgraph of G containing
S = X0 ∪XI ∪YJ and R = V (G)−V (C). By the assumption that G has no dominating Eulerian
subgraph, at least one component A of G[R] is not a single vertex. This component A is disjoint
from Y0 since the vertices of Y0 are isolated in G[R].

Suppose first that every vertex of A has a neighbor in C. Then, if uv is an edge of A and if s

denotes the number of edges between A and C, s � dC(u)+dC(v)+|A|−2. Since G is triangle-
free, dA(u)+dA(v) � |A| and thus dG(u)+dG(v) = dC(u)+dC(v)+dA(u)+dA(v) � dC(u)+
dC(v) + |A|. Hence s � dG(u) + dG(v) − 2 � δ(H). Apply Lemma 3.2 with r = δ(H) to con-
clude that the number of edges of G satisfies m(G) � δ2(H) + 1. Since δ(H) � (ν(H) + 5)/10,
then m(G) = ν(H) � 10δ(H) − 5, and so δ2(H) + 1 � 10δ(H) − 5, contrary to the hypothesis
that ν(H) � 196.

Therefore A contains a vertex z such that NG(z) ⊆ A. Then z /∈ X0 ∪ Y0 ∪ X ∪ Y and the
neighbors of z are all in YI ∪ XJ ∪ (R − (Y0 ∪ YI ∪ XJ )).

If z has a neighbor in YI , let i be the least index such that yi ∈ Yi and zyi ∈ E(G). Since z has
no neighbor in YJ , zyk /∈ E(G) for all k < i, in contradiction to the definition of I . Hence z has
no neighbor in YI , and thus in Y .
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If z has a neighbor in XJ , let xj be the vertex of NG(z) ∩ XJ with the largest index. Consider
the ordered sets X′ = {xp+1, . . . , xj−1, xj , zj , xj+1, . . . , xq} and Y ′ = {yp+1, . . . , yj−1, z, yj ,

yj+1, . . . , yq}. Then the vertex z is adjacent neither to any xk with k > j (by the definition
of xj ), nor to any vertex of Y (as said above). The vertex zj is not adjacent to any vertex yk

with k < j by the choice of zj . If zzj /∈ E(G), then the sets X′ and Y ′ define a matching M ′
which satisfies (i) and (ii), and thus which contradicts the maximality of M . If zzj ∈ E(G), then
the Eulerian subgraph G[(E(C) − E(C′)) ∪ (E(C′) − E(C))], with C′ = yj zj zxj yj , satisfies
V (C) ∩ V (C′) = {yj } since z has no neighbor in C, and thus contradicts the maximality of C.
Hence NG(z) ∩ XJ = ∅ and z has no neighbor in X.

Finally if z has a neighbor t in R − (Y0 ∪ YI ∪ XJ ), then the matching M ′′ corresponding
to the ordered sets X′′ = {t, xp+1, . . . , xq} and Y ′′ = {z, yp+1, . . . , yq} satisfies the conditions (i)
and (ii) since z has no neighbor in X ∪Y . This contradicts the maximality of M and achieves the
proof of Claim 1. �
Claim 2. (Favaron and Fraisse [7]) G must be contracted to the Petersen graph.

Proof. By contradiction. Suppose that G cannot be contracted to the Petersen graph. Let G1 be
the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replac-
ing each path ayb where dG(y) = 2 by the edge ab. Since G is essentially 3-edge-connected,
G1 is 3-edge-connected. Moreover, for each Eulerian subgraph C of G1, there is a corresponding
Eulerian subgraph of G containing V (C). Since S∩B = ∅, the set S is contained in V (G1). Since
S is not contained in any Eulerian subgraph of G by Claim 1, S is not contained in any Eulerian
subgraph of G1. By Theorem 3.1, |S| � 13. Let F = {xiyi | 1 � i � 13}, P = {xi | 1 � i � 13}
and Q = {yi | 1 � i � 13}. We suppose that F consists of l paths of length 2 with 0 � l � 6
and 13 − 2l edges of a matching. Then |P | = 13 and |Q| = 13 − l. We know that Q is inde-
pendent, that yixj /∈ E(G) − F for any yi ∈ Q and xj ∈ P with 1 � i < j � 13, and that G

is triangle-free. Hence, two different edges of F are joined by at most one edge of G which is
of type xixj or xiyj with 1 � i < j � 13. More precisely, we can give an upper bound on the
number μ of edges of G which are adjacent to two different edges of F . For a given value of l,
this number can be maximum if the l paths of F occur with smaller indices than those of the
13 − 2l edges of the matching. This is due to the fact that the l vertices yi belonging to paths
of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F to any vertex
xi with i < j . When this condition is fulfilled, there are at most l2 edges between the vertices
x1, x2, . . . , x2l (since the number of edges of a triangle-free graph of order 2l is at most (2l)2/4),
2l(13 − 2l) edges of type xiyj between the sets {x1, x2, . . . , x2l} and {y2l+1, y2l+2, . . . , y13}, and
(13 − 2l)(13 − 2l − 1)/2 edges of type xixj or xiyj with i < j between the vertices of the set
{x2l+1, . . . , x13, y2l+1, . . . , y13}. Then

μ � l2 + 2l(13 − 2l) + (13 − 2l)(13 − 2l − 1)

2
= l − l2 + 78.

Counting the edges of G − F adjacent to some edge of F , we find at least (13 − 2l)δ(H) edges
adjacent to an edge of a matching of F and 2l(δ(H) − 1) edges adjacent to an edge of a path
of length 2 (since each vertex yi on such a path has degree 2 in G). At most l − l2 + 78 of
these edges have their two endvertices in P ∪ Q and are thus counted twice. Hence m(G) �
(13 − 2l)δ(H)+ 2l(δ(H)− 1)− (l − l2 + 78)+ 13, that is ν(H) = m(G) � 13δ(H)+ l2 − 3l −
65 � 13δ(H) − 67 � 10δ(H) − 4 since l is an integer between 0 and 6 and ν(H) � 196. This
contradicts the hypothesis that δ(H) � (ν(H) + 5)/10, and so Claim 2 must hold. �
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By Claim 2, G can be contracted to the Petersen graph P10. Let v1, v2, . . . , v10 be the ten
vertices of the Petersen graph P10, and Wi be the preimage of vi (i = 1,2, . . . ,10). Denote
SV = {v ∈ V (G) | dG(v) � 12}. Since dG(u)+ dG(v)− 2 � δ(H) � 21 for every edge e = uv ∈
E(G), we have either dG(u) � 12 or dG(v) � 12. So we have

for every edge e = uv ∈ E(G), either u ∈ SV or v ∈ SV. (2)

Moreover, if u,v /∈ SV , then uv /∈ E(G). By the hypothesis of Theorem 1.6 that H is 3-con-
nected, we have

G is essentially 3-edge-connected. (3)

Let W ∈ {Wi | 1 � i � 10}. Note that G is contracted to P10. Then |NW(V (G) − V (W))| = 3.
If for any two vertices w1,w2 ∈ NW(V (G) − V (W)), there is a dominating (w1,w2)-trail in W ,
then say W is dominatiable.

Claim 3. Let W ′ be a graph obtained from W by deleting the vertices of degree 1. If E(W ′) �= ∅,
then W ′ is 2-edge-connected. Therefore W ′ contains some cycle.

Proof. Since G is contracted to the P10 and W is the preimage of some vertex vi , we may
assume that [V (W),V (G) − V (W)]G = {e1, e2, e3}, where e1, e2, e3 are edges adjacent to vi

in P10. Suppose that W ′ contains a cut-edge e = z1z2. Then e is also a cut-edge of W . Let
(U1,V1) be the partition of V (W) such that [U1,V1]W = {e} and z1 ∈ U1 and z2 ∈ V1. Since
z1, z2 ∈ V (W ′), we have dW (z1) � 2 and dW (z2) � 2. Thus E(G[U1]) �= ∅ and E(G[V1]) �= ∅.
Note that [V (W),V (G) − V (W)]G = {e1, e2, e3}. We may assume that the number of edges
joining U1 and V (G) − V (W) is 1, say e1. Then {e1, e} is an essential edge-cut in G, contrary
to (3). So Claim 3 holds. �
Claim 4. If α′(W) = 1, then W = K1,p for some p � 1. Therefore all three edges in [V (W),

V (G) − V (W)]G must be incident with the vertex of K1,p with degree p, and so H1 is domina-
tiable.

Proof. Since W is a connected triangle-free graph and α′(W) = 1, G is acyclic. By Claim 3 and
α′(W) = 1, W = K1,p for some p � 1. �
Claim 5. Suppose that α′(W) = t ∈ {2,3,4,5} and {u1a1, u2a2, . . . , utat } is a matching in W .
Suppose that ui ∈ SV (i = 1,2, . . . , t). Then V (W) ∩ SV = {u1, u2, . . . , ut } and E(W −
{u1, u2, . . . , ut }) = ∅.

Proof. Let A = {u1, . . . , ut , a1, . . . , at }, A1 = A − ui and A2 = A − ai . As α′(W) = t ,
E(W − A) = ∅. Note that G is triangle-free and SV = {v ∈ V (G) | dG(v) � 12}. For each
z ∈ V (W) − A, dW (z) � 5 and so dG(z) � 8. Thus z /∈ SV .

Since G does not contain a triangle and α′(W) = t � 5, by dG(ui) � 12, we have NW(ui) −
A1 �= ∅. Thus NW(ai) ⊆ A2 (otherwise, {u1a1, . . . , ui−1ai−1, ui+1ai+1, . . . , utat , uiu, aia} is a
matching of W , where u ∈ NW(ui) − A1 and a ∈ NW(ai) − A2, contrary to the assumption that
α′(W) = t). Since G is triangle-free, we have dW (ai) � 5, and so dG(ai) � 8. Thus ai /∈ SV .
Therefore SV ∩ V (W) = {u1, u2, . . . , ut }, and E(W − {u1, u2, . . . , ut }) = ∅. �
Claim 6. If α′(W) = t ∈ {2,3,4}, then W is dominatiable.
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Proof. Suppose that α′(W) = t and {u1a1, . . . , utat } is a matching in W . Without loss of
generality, we assume that ui ∈ SV (i = 1,2, . . . , t) by (2). By Claim 5, SV ∩ V (W) =
{u1, u2, . . . , ut }, and E(W − {u1, u2, . . . , ut }) = ∅. Let w1,w2,w3 ∈ NW(V (G) − V (W))

and w1z1,w2z2, z3w3 ∈ [V (W),V (G)−V (W)]G. If w1 = w2 and dW (w1) = 1, then {z3w3,w1x}
is an essential edge-cut in G for some x ∈ NW(w1), contrary to (3). So we have dW (w1) � 2 if
w1 = w2.

Suppose, by contradiction, that W does not have a dominating (w1,w2)-trail. If w1 �= w2, we
let K1 = W + {w1w,w2w}, where w is a new vertex; if w1 = w2, we let K1 = W and w = w1.
Let K = K1 −D1(K1). Then u1, . . . , ut ,w ∈ V (K), and K is 2-edge-connected by Claim 3. Let
S = {u1, . . . , ut } ∪ {w}. Then K − S is edgeless, and K does not have an S-Eulerian subgraph.
By Theorem 2.6, K is contracted to a member L ∈ F (see Figs. 2–4) such that S intersects the
preimage of every vertex in B(L). Note that for each L ∈ F , dL(bi) = 2 (i = 1,2,3) and the
set of degree 2 vertices is independent. Without loss of generality, we assume that the preimages
of b1, b2 do not contain w.

Note that [V (W),V (G) − V (W)]G = {w1z1,w2z2, z3w3}. Suppose that w ∈ V (L). Then
w1,w2 ∈ V (L). If w1 �= w2, then dL(w) = 2. Thus w1,w2 /∈ {b1, b2}. If w1 = w2, then w1 =
w2 = w. Thus w1,w2 /∈ {b1, b2} still hold. Since either w3 /∈ V (PI(b1)) or w3 /∈ V (PI(b2)), we
may assume that w3 /∈ V (PI(b1)). Thus [V (PI(b1)),V (G) − V (W)]G = ∅ and the set of two
edges adjacent to V (PI(b1)) is an essential edge-cut of G, contrary to (3). So w /∈ V (L). We as-
sume that the preimage of some bi(/∈ {b1, b2}) contains w. Thus w1,w2 /∈ V (PI(bi)) (i = 1,2).
Therefore either |[V (PI(b1)),V (G) − V (W)]G| = 0 or |[V (PI(b2)),V (G) − V (W)]G| = 0.
Without loss of generality, we assume that |[V (PI(b1)),V (G) − V (W)]G| = 0. Then the set
of two edges adjacent to V (PI(b1)) is an essential edge-cut of G, contrary to (3). �
Claim 7. If α′(W) = t � 1, then |E(W)| � tδ(H) + 2t − t2 − 3.

Proof. Let {u1v1, . . . , utvt } be a matching in W . Then E(W −{u1, . . . , ut , v1, . . . , vt }) = ∅, and
for any pair of uivi, uj vj (i �= j), |[{ui, vi}, {uj , vj }]W | � 2 since W does not contain a triangle.
Since for

∑
v∈V (W) dW (v), the edges of uivi and the edges in [{ui, vi}, {uj , vj }]W are counted

twice, and since |[V (W),V (G) − V (W)]G| = 3, we have
∣∣E(W)

∣∣ =
∑

v∈V (W)

dW (v) − ∣∣{u1v1, u2v2, . . . , utvt }
∣∣ −

∑
i �=j

∣∣[{ui, vi}, {uj , vj }
]
W

∣∣

�
( ∑

v∈V (W)

dG(v) − 3

)
− t − 2

(
t

2

)
.

Since δ(H) � dG(ui) + dG(vi) − 2 for each uivi , we have

∣∣E(W)
∣∣ � t

(
δ(H) + 2

) − 3 − t − 2

(
t

2

)
= tδ(H) + 2t − t2 − 3. �

Now we finish the proof of Theorem 1.6. Let |{vi | vi is a trivial vertex in P10}| = s. By (2),
the set of all trivial vertices in P10 is independent. Since α(P10) = 4, we have 0 � s � 4. If s = 0,
then each vi is a nontrivial vertex. Thus |E(Wi)| � δ(H) − 2 by Claim 7. Therefore

m(G) =
10∑∣∣E(Wi)

∣∣ + 15 � 10
(
δ(H) − 2

) + 15 = 10δ(H) − 5.
i=1
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By the hypothesis of Theorem 1.6, we have

δ(H) = ν(H) + 5

10
,

∣∣E(Wi)
∣∣ = δ(H) − 2,

α′(Wi) = 1 and Wi = K1,p , where p = δ(H) − 2 = (ν(H) − 15)/10.
If s � 1, without loss of generality, we assume that v1 is trivial. Since P10 − v1 has a spanning

cycle, there exists a Wi , say W10, such that α′(W10) � 5 by Claims 4 and 6. If s � 3, then

m(G) =
10∑
i=1

∣∣E(Wi)
∣∣ + 15 � (10 − s − 1)

(
δ(H) − 2

) + (
5δ(H) − 18

) + 15

� 6
(
δ(H) − 2

) + 5δ(H) − 3 = 11δ(H) − 15 � 10δ(H) − 4.

Thus δ(H) � (ν(H) + 4)/10, a contradiction. So s = 4. By Claims 3, 6 and δ(H) �
(ν(H) + 5)/10, α′(W10)) = 5. If there exists some Wj (j �= 10) such that α′(Wj ) � 2, then

m(G) =
10∑
i=1

∣∣E(Wi)
∣∣ + 15 �

∣∣E(W10)
∣∣ + ∣∣E(Wj)

∣∣ + 4
(
δ(H) − 2

) + 15

= (
5δ(H) − 18

) + (
2δ(H) − 3

) + 4δ(H) + 7 = 11δ(H) − 17 � 10δ(H) + 4,

a contradiction. So the number of Wi with α′(Wi) = 1 is 5. Without loss of generality, we
assume that α′(Wi) = 1 (i = 5,6,7,8,9) and α′(W10) = 5. Let {e1f1, e2f2, e3f3, e4f4, e5f5}
be a matching of W10 and B = {e1, . . . , e5, f1, . . . , f5} and Z = W10[B]. By (2), we assume
that ei ∈ SV (i = 1,2, . . . ,5). By Claim 5, SV ∩ V (W10) = {e1, e2, . . . , e5}, and E(W10 −
{e1, e2, . . . , e5}) = ∅.

If |E(Z)| � 16, then∣∣E(W10)
∣∣ =

∑
v∈B

dG(v) − ∣∣E(Z)
∣∣ − 3 � 5

(
δ(H) + 2

) − 16 − 3 = 5δ(H) − 9.

Thus

m(G) =
9∑

i=5

∣∣E(Wi)
∣∣ + ∣∣E(W10)

∣∣ + 15 � 5
(
δ(H) − 2

) + (
5δ(H) − 9

) + 15

= 10δ(H) − 4,

and so δ(H) � (ν(H) + 4)/10, a contradiction. So we have∣∣E(Z)
∣∣ � 17. (4)

If Z is collapsible, then W10 − D1(W10) is collapsible by Theorem 2.3. Thus for any pair
of vertices u,v ∈ W10 − D1(W10), W10 − D1(W10) has a spanning (u, v)-trail by Lemma 2.9.
Then for any pair of vertices u,v ∈ V (W10), W10 has a dominating (u, v)-trail, and so W10 is
dominatiable. Since each Wi (i = 1,2,3,4) is a trivial graph, since each Wi (i = 5,6, . . . ,9) is
dominatiable, and since P10 − v1 has a spanning cycle, G has a dominating Eulerian subgraph,
a contradiction. So Z is not collapsible. Moreover,

W10 − D1(W10) is not collapsible. (5)

Therefore Z is not 2-edge-connected by Lemma 2.8.
Let K ⊆ Z with |V (K)| = 8. Suppose that |E(K)| � 14. Then K is 2-edge-connected by

Lemma 2.7. If |D2(K)| � 2, then |E(K)| � 2 + 2 + 9 = 13 by Lemma 2.7(iv), a contradiction.
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So |D2(K)| � 1. By Lemma 2.5 and by the fact that G is triangle-free, K is collapsible. By
Claim 3 and Theorem 2.3, M10 − D1(M10) is collapsible, contrary to (5). So∣∣E(K)

∣∣ � 13. (6)

Suppose that Z is not connected and Z1 is a component of Z. Then |V (Z1)| ∈ {2,4,6,8}.
By Lemma 2.7(ii), (iv) and (4), |V (Z1)| is either 2 or 8. We may assume that |V (Z1)| = 2
and Z2 = Z − V (Z1). Then |E(Z1)| = 1, |V (Z2)| = 8 and |E(Z2)| � 16, contrary to (6). So
Z is connected. Let X be a cut-edge of Z and Z3,Z4 be components of Z − X with |V (Z3)| �
|V (Z4)|. By Lemma 2.7 and (4), |V (Z3)| is either 1 or 2. If |V (Z3)| = 2, then |E(Z4)| � 17−2 =
15, contrary to (6). So |V (Z3)| = 1, |V (Z4)| = 9, |[V (Z3),V (Z4)]Z| = 1 and |E(Z4)| � 16.

By (6) and Lemma 2.7, Z4 is 3-edge-connected. Let Z′
4 be the reduction of Z4. Then Z′

4 is
still 3-edge-connected and |V (Z′

4)| � 9. Thus Z′
4 = K1 by Theorem 2.4, that is, Z4 is collapsible.

By Claim 3 and Theorem 2.3, W10 − D1(W10) is collapsible, contrary to (5). �
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