Group Chromatic Number of Planar Graphs of Girth at Least 4

Hong-Jian Lai ${ }^{1}$ and Xiangwen Li^{2}
${ }^{1}$ DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WV 26505
E-mail: hjlai@math.wvu.edu
${ }^{2}$ DEPARTMENT OF MATHEMATICS
HUAZHONG NORMAL UNIVERSITY
WUHAN, 430079, CHINA
E-mail: xwli_email@yahoo.ca

Received March 7, 2003; Revised October 16, 2005

Published online 25 January 2006 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.2002/jgt. 20147

Abstract

Jeager et al. introduced a concept of group connectivity as a generalization of nowhere zero flows and its dual concept group coloring, and conjectured that every 5 -edge connected graph is Z_{3}-connected. For planar graphs, this is equivalent to that every planar graph with girth at least 5 must have group chromatic number at most 3 . In this article, we show that if G is a plane graph with girth at least 4 such that all 4 cycles are independent, every 4 -cycle is a facial cycle and the distance between every pair of a 4 -cycle and a 5 -cycle is at least 1 , then the group chromatic number of G is at most 3 . As a special case, we show that the conjecture above holds for planar graphs. We also prove that if G is a connected $K_{3,3}$-minor free graph with girth at least 5, then the group chromatic number is at most 3. © 2006 Wiley Periodicals, Inc. J. Graph Theory 52: 51-72, 2006

Keywords: group connectivity; group coloring; planar graphs; group chromatic number

1. INTRODUCTION

Our terminology is standard as in [1] except otherwise defined. Let G and H be two graphs. Denote $H \subseteq G$ if H is a subgraph of G. If H can be obtained from G by contracting some edges of G, then G is contractible to H. If G contains a subgraph which is contractible to Γ, then Γ is a minor of G. A set of subgraphs of G is said to be independent if no two of them have a common vertex.

A k-path (k-cycle) denotes a path (cycle) of length k. The distance of 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ and 5 -cycle $u_{1} u_{2} u_{3} u_{4} u_{5} u_{1}$ in a graph G is $\min \left\{d_{G}\left(v_{i}, u_{j}\right) \mid 1 \leq i \leq\right.$ $4,1 \leq j \leq 5\}$, where $d_{G}(u, v)$ denotes the length of a shortest (u, v)-path in G. The girth of a graph G is the length of a shortest cycle of G. For a plane graph, the unique unbounded face is called the outer face. If C is a cycle in a planar graph G, then $\operatorname{int}(C)$ is the set of vertices and edges inside C; if $\operatorname{int}(C)=\emptyset$, then C is facial. If the outer face is bounded by a cycle, we call it the outer cycle. A cycle C is separating cycle in G if G has at least one vertex outside C and at least one vertex inside C. Throughout this article, Z_{3} denotes the cyclic group of order 3.

Jeager et al. [6] introduced a concept of group connectivity as a generalization of nowhere zero flows and its dual concept group coloring. The results about nowhere zero flows can be found in [5,14]. Let A denote an (additive) Abelian group and $F(G, A)$ denote the set of all functions from $E(G)$ to A. For $f \in F(G, A)$, an (A, f)-coloring of G under an orientation D is a function $c: V(G) \mapsto A$ such that for every edge $e=u v$ from u to $v, c(u)-c(v) \neq f(u v)$. G is A-colorable under an orientation D if for every function $f \in F(G, A), G$ has an (A, f)-coloring. It is known ([6]) that whether G is A-colorable is independent of the choice of the orientation. The group chromatic number of a graph G is defined to be the smallest positive integer m for which G is A-colorable for every Abelian group A of order at least m under a given orientation D, and is denoted by $\chi_{g}(G)$.

Let H be a subgraph of a graph G. Given an $f \in F(G, A)$, if for an $\left(A,\left.f\right|_{E(H)}\right)$ coloring c_{0} of H, there is an (A, f)-coloring c of G such that c is an extension of c_{0}, then we say that c_{0} is extended to c. If every $\left(A,\left.f\right|_{E(H)}\right)$-coloring c_{0} of H can be extended to an (A, f)-coloring c, then we say that (G, H) is (A, f) extensible. If for every $f \in F(G, A),(G, H)$ is (A, f)-extensible, then (G, H) is A-extensible.

Jaeger et al. [6] proved that if G is a simple planar graph, then $\chi_{g}(G) \leq 6$. It is shown (see [8,10]) that if G is a simple graph without a K_{5}-minor or without a $K_{3,3}$-minor, then $\chi_{g}(G) \leq 5$. Jaeger et al. [6] also proved that if G is a simple planar graph with girth at least 4 , then $\chi_{g}(G) \leq 4$. In this article, we prove the following results.

Theorem 1.1. Suppose that G is a simple planar graph with girth at least 4 such that all 4-cycles are independent and every 4-cycle is facial. If the distance between every pair of a 4 -cycle and a 5 -cycle is at least 1 , then $\chi_{g}(G) \leq 3$.

Theorem 1.2. If G is a $K_{3,3}$-minor free graph with girth at least 5 , then $\chi_{g}(G) \leq 3$.
Král at al. [7] constructed a family of bipartite planar graphs with girth 4 and group chromatic number 4. Thus Theorem 1.1 is best possible in the sense that the condition on the girth in Theorem 1.1 cannot be relax. The proofs of Theorems 1.1 and 1.2 are in Section 2 and Section 3, respectively.

For a given orientation of a graph G and for a vertex $v \in V(G)$, let $E^{-}(v)=$ $\{(u, v) \in E(G): u \in V(G)\}, E^{+}(v)=\{(v, u) \in E(G): u \in V(G)\}$ and $E(v)=$ $E^{+}(v) \cup E^{-}(v)$.

Throughout this article, let A denote a nontrivial Abelian group and let $A^{*}=$ $A-\{0\}$. Define

$$
F^{*}(G, A)=\left\{f: E(G) \mapsto A^{*}\right\} .
$$

For each $f \in F(G, A)$, the boundary of f is a function $\partial f: V(G) \mapsto A$ defined by

$$
\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A. Denote

$$
Z(G, A)=\left\{b: V(G) \mapsto A \text { such that } \sum_{v \in V(G)} b(v)=0\right\} .
$$

A graph G is A-connected if G has an orientation D such that for every function $b \in Z(G, A)$ there is a function $f \in F^{*}(G, A)$ such that $b=\partial f$. The following conjecture is due to Jaeger et al. [6].

Conjecture 1.3. Every 5-edge connected graph is Z_{3}-connected.
Let G be a connected plane graph, G^{*} be the geometric dual of G, and A be an Abelian group. Jeager et al. [6] showed that G is A-connected if and only if G^{*} is A-colorable. An algorithmic proof of this fact can be found in [2]. By Theorem 1.1, Conjecture 1.3 thus holds for planar graphs.

Corollary 1.4. Every 5-edge connected planar graph is Z_{3}-connected.

2. $A Z_{3}$-COLORING THEOREM

Let \mathcal{F} denote the set of connected graphs such that a graph $G \in \mathcal{F}$ if and only if each of the following holds.
(F1) G is a plane graph with girth at least 4 and every 4 -cycle is facial;
(F2) all 4 cycles are independent; and
(F3) the distance between every pair of a 4 -cycle and a 5 -cycle is at least 1 .

In the discussions below, we assume that for each $G \in \mathcal{F}, G$ is embedded in the plane with an orientation.

Theorem 2.1. Suppose $G \in \mathcal{F}$ and $f \in F\left(G, Z_{3}\right)$. Let W be a subset of vertices on the outer face of G such that
(W1) either $G[W]$ is edgeless or
(W2) $G[W]$ has exactly one edge $e=x y$ and G has no 2-path from x to other vertex in W.
(W3) if $x y$ is an edge of $G[W]$, then $G\left[\left\{\lambda_{1}, \lambda_{2}, x, y\right\}\right]$ is not a 4-cycle for every pair of distinct vertices λ_{1}, λ_{2} of the out face of G.

Assume that each of the following holds:
(a) each vertex $w \in W$ is associated with an element $b_{w} \in Z_{3}$,
(b) $u, v \notin W$ are two adjacent vertices on the out face of G (assume that the edge $u v$ is oriented from u to v),
(c) $a_{u}, a_{v} \in Z_{3}$ with $a_{u}-a_{v} \neq f(u v)$.

Define $c_{1}:\{u, v\} \mapsto Z_{3}$ by $c_{1}(u)=a_{u}, c_{1}(v)=a_{v}$. Then c_{1} can be extended to $c: V(G) \mapsto Z_{3}$ such that $\left.c\right|_{\{u, v\}}=c_{1}$ and
(i) $c(w) \neq b_{w}$ for every vertex $w \in W$,
(ii) $c\left(x^{\prime}\right)-c\left(y^{\prime}\right) \neq f\left(x^{\prime} y^{\prime}\right)$ for any edge $x^{\prime} y^{\prime} \in E(G)$ oriented from x^{\prime} to y^{\prime}.

Remark. Condition (W3) cannot be relaxed. Let $C=x_{1} x_{2} x_{3} x_{4} x_{1}$ be a 4-cycle. Assume that $W=\left\{x_{3}, x_{4}\right\}, b_{x_{3}}=1$, and $b_{x_{4}}=1$, and that C is oriented from x_{i} to $x_{i+1}, 1 \leq i \leq 3$, and from x_{4} to x_{1}. Define $f \in F\left(C, Z_{3}\right)$ as follows: $f(e)=0$ if $e \in E(C)-\left\{x_{4} x_{1}\right\}$ and $f\left(x_{4} x_{1}\right)=-1$. Define $c_{1}:\left\{x_{1}, x_{2}\right\} \mapsto Z_{3}$ by $c_{1}\left(x_{1}\right)=$ $1, c_{1}\left(x_{2}\right)=0$. Then c_{1} cannot be extended to $c: V(C) \mapsto Z_{3}$ such that $\left.c\right|_{\left\{x_{1}, x_{2}\right\}}=c_{1}$.

We need some preparations before presenting the proof of Theorem 2.1.
Lemma 2.2. Let $G \in \mathcal{F}$ and let $C: x_{1} x_{2} \ldots x_{5} x_{1}$ be a 5-cycle. Assume that $f \in$ $F\left(G, Z_{3}\right)$ and $x_{i} x_{i+1}$ is oriented from x_{i} to $x_{i+1}, 1 \leq i \leq 5$ (indices taken mod 5). For every $\left(Z_{3}, f\right)$-coloring c_{1}, there is some $i \in\{1,2, \ldots 5\}$ (indices taken mod 5) such that

$$
c_{1}\left(x_{i}\right)-f\left(x_{i} x_{i+1}\right) \neq c_{1}\left(x_{i+2}\right)+f\left(x_{i+1} x_{i+2}\right) .
$$

Proof. By contradiction, suppose that

$$
\begin{equation*}
c_{1}\left(x_{i}\right)-f\left(x_{i} x_{i+1}\right)=c_{1}\left(x_{i+2}\right)+f\left(x_{i+1} x_{i+2}\right) \tag{1}
\end{equation*}
$$

for every $1 \leq i \leq 5$ (indices taken mod 5). Since Z_{3} is an Abelian group, by (1) we have $f\left(x_{1} x_{2}\right)+f\left(x_{2} x_{3}\right)+\cdots+f\left(x_{5} x_{1}\right)=0$. Thus we have

$$
\begin{aligned}
c_{1}\left(x_{1}\right) & =f\left(x_{1} x_{2}\right)+c_{1}\left(x_{3}\right)+f\left(x_{2} x_{3}\right) \\
& =f\left(x_{3} x_{4}\right)+c_{1}\left(x_{5}\right)+f\left(x_{4} x_{5}\right)+f\left(x_{2} x_{3}\right)+f\left(x_{1} x_{2}\right) \\
& =-f\left(x_{5} x_{1}\right)+c_{1}\left(x_{5}\right) .
\end{aligned}
$$

It follows that $c_{1}\left(x_{5}\right)-c_{1}\left(x_{1}\right)=f\left(x_{5} x_{1}\right)$, a contradiction.
Theorem 2.1 implies the following Corollary 2.3. We shall argue by induction on $|V(G)|$ to prove Theorem 2.1. Our induction hypotheses is the assumption that both Theorem 2.1 and Corollary 2.3 hold for smaller values of $|V(G)|$.

Corollary 2.3. Let $G \in \mathcal{F}$ with outer cycle $C: x_{1} x_{2} \ldots x_{5} x_{1}$ and let $f \in$ $F\left(Z_{3}, G\right)$. If $c_{1}: V(C) \mapsto Z_{3}$ is a $\left(Z_{3}, f\right)$-coloring, then c_{1} can be extended to $a\left(Z_{3}, f\right)$-coloring c of G such that $\left.c\right|_{V(C)}=c_{1}$.

Proof. Since $G \in \mathcal{F}$, the 5 -cycle C has no chord. Hence, $G[V(C)]=$ C. Assume that C is oriented from x_{i} to $x_{i+1}, 1 \leq i \leq 5$ (indices mod 5). By Lemma 2.2 , we assume that $c_{1}\left(x_{5}\right)+f\left(x_{4} x_{5}\right) \neq c_{1}\left(x_{3}\right)-f\left(x_{3} x_{4}\right)$. Set $W=\left\{x_{3}, x_{5}\right\}$. Since c_{1} is a ($\left.Z_{3}, f\right)$-coloring, $c_{1}\left(x_{2}\right)-c_{1}\left(x_{3}\right) \neq f\left(x_{2} x_{3}\right)$ and $c_{1}\left(x_{5}\right)-c_{1}\left(x_{1}\right) \neq f\left(x_{5} x_{1}\right)$. We pick $b_{x_{3}} \in Z_{3}-\left\{c_{1}\left(x_{2}\right)-f\left(x_{2} x_{3}\right), c_{1}\left(x_{3}\right)\right\}, b_{x_{5}} \in$ $Z_{3}-\left\{c_{1}\left(x_{1}\right)+f\left(x_{5} x_{1}\right), c_{1}\left(x_{5}\right)\right\}$. By Theorem 2.1, $c_{1}:\left\{x_{1}, x_{2}\right\} \mapsto Z_{3}$ can be extended to $c: V(G) \mapsto Z_{3}$ such that $\left.c\right|_{\left\{x_{1}, x_{2}\right\}}=c_{1}$ and $c(w) \neq b_{w}$ for every $w \in W$. By the choice of $b_{x_{3}}$ and $b_{x_{5}}, c\left(x_{3}\right) \in\left\{c_{1}\left(x_{2}\right)-f\left(x_{2} x_{3}\right), c_{1}\left(x_{3}\right)\right\}, c\left(x_{5}\right) \in\left\{c_{1}\left(x_{1}\right)+\right.$ $\left.f\left(x_{5} x_{1}\right), c_{1}\left(x_{5}\right)\right\}$. Hence $c\left(x_{3}\right)=c_{1}\left(x_{3}\right), c\left(x_{5}\right)=c_{1}\left(x_{5}\right)$.

Since $c\left(x_{4}\right)-c\left(x_{5}\right) \neq f\left(x_{4} x_{5}\right)$ and $c\left(x_{3}\right)-c\left(x_{4}\right) \neq f\left(x_{3} x_{4}\right), \quad c\left(x_{4}\right) \in Z_{3}-$ $\left\{c\left(x_{5}\right)+f\left(x_{4} x_{5}\right), c\left(x_{3}\right)-f\left(x_{3} x_{4}\right)\right\}=Z_{3}-\left\{c_{1}\left(x_{5}\right)+f\left(x_{4} x_{5}\right), c_{1}\left(x_{3}\right)-f\left(x_{3} x_{4}\right)\right\}$. Since $\quad c_{1}: V(C) \mapsto Z_{3} \quad$ is a $\left(Z_{3}, f\right) \quad$ coloring, $\quad c_{1}\left(x_{4}\right) \in Z_{3}-\left\{c_{1}\left(x_{5}\right)+\right.$ $\left.f\left(x_{4} x_{5}\right), c_{1}\left(x_{3}\right)-f\left(x_{3} x_{4}\right)\right\}$. Thus $c_{1}\left(x_{4}\right)=c\left(x_{4}\right)$.

In order to prove Theorem 2.1, we first prove some lemmas. The following lemmas have the same hypotheses of Theorem 2.1 with additional assumptions that

$$
\begin{equation*}
G \text { is a counterexample to Theorem 2.1, } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
|V(G)| \text { is minimized. } \tag{3}
\end{equation*}
$$

Since c_{1} can be easily extended to a (Z_{3}, f)-coloring for every forest and for a 4 -cycle which satisfy the conditions of Theorem 2.1, we may assume that G is connected with $|V(G)| \geq 5$ and that G contains a cycle.

Lemma 2.4. $\kappa(G) \geq 2$. Moreover, if $z \in V(G)-W$ and $z \notin\{u, v\}$, then $d_{G}(z) \geq 3$.

Proof. If G is not 2-connected, then G has a block B containing the edge $u v$. By (3), c_{1} can be extended to a (Z_{3}, f)-coloring of B. Let B_{1} be the block which has a common vertex w_{1} with B and pick its adjacent vertex w_{2} in the outer face of B_{1}. Assume that the edge $w_{1} w_{2}$ is oriented from w_{1} to w_{2} and put $c_{1}\left(w_{2}\right) \in Z_{3}$ such that $c_{1}\left(w_{1}\right)-c_{1}\left(w_{2}\right) \neq f\left(w_{1} w_{2}\right)$. By (3) again, $\left.c_{1}\right|_{\left\{w_{1}, w_{2}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring of B_{1}. We continue this procedure and finally c_{1} can be extended to a (Z_{3}, f)-coloring of G. This contradicts to (2). Therefore, G is 2-connected and $d(z) \geq 2$ for every vertex $z \in V(G)$.

Suppose, to the contrary, that there is $z_{0} \in V(G)-W$ such that $z_{0} \notin\{u, v\}$ and $d_{G}\left(z_{0}\right)=2$. Let $G_{1}=G-z_{0}$ and denote $N\left(z_{0}\right)=\left\{z_{1}, z_{2}\right\}$. Assume that the edge $z_{0} z_{1}$ is oriented from z_{0} to z_{1} and the edge $z_{0} z_{2}$ is oriented from z_{0} to z_{2}. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{2} of G_{1}. Define $c: V(G) \mapsto Z_{3}$ by

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\left\{z_{0}\right\} \\ a \in Z_{3}-\left\{c\left(z_{1}\right)+f\left(z_{0} z_{1}\right), c\left(z_{2}\right)+f\left(z_{0} z_{2}\right)\right\} & \text { if } z=z_{0}\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, violating (2).
In the following lemmas, by Lemma 2.4, we assume that G is 2 -connected and that C : $x_{1} x_{2} \ldots x_{m} x_{1}$ is the outer cycle of G oriented from x_{i} to $x_{i+1}, 1 \leq i \leq m$ (indices $\bmod m$) and for every $z \in N\left(x_{j}\right)-V(C)$, the edge $x_{j} z$ is oriented from x_{j} to z. Let $u=x_{1}$ and $v=x_{2}$. If $G[W]$ has an edge $x y$, we can assume that $y=x_{i}, x=x_{i+1}$, where $3 \leq i \leq m-1$.

Lemma 2.5. C has no chords.
Proof. Suppose, to the contrary, that such a chord $u^{\prime} v^{\prime}$ exists. Let C_{1} be the cycle in $C \cup\left\{u^{\prime} v^{\prime}\right\}$ containing $u^{\prime} v^{\prime}$ and $u v$ and C_{2} the cycle in $C \cup\left\{u^{\prime} v^{\prime}\right\}$ containing $u^{\prime} v^{\prime}$ but not $u v$. Then both $C_{1} \cup \operatorname{int}\left(C_{1}\right) \in \mathcal{F}$ and $C_{2} \cup \operatorname{int}\left(C_{2}\right) \in \mathcal{F}$. It follows that both $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ satisfy the hypotheses of Theorem 2.1. By (3), we can extend c_{1} to a $\left(Z_{3}, f\right)$-coloring of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and the coloring of u^{\prime} and v^{\prime} can be extended to a $\left(Z_{3}, f\right)$-coloring of $C_{2} \cup \operatorname{int}\left(C_{2}\right)$, violating (2).

Throughout the proof of Theorem 2.1, we need to redefine W^{\prime} to replace W in order to apply induction hypotheses. In each occasion a set W^{\prime} is introduced, we only indicate how to assign the new value b_{z} for some $z \in W^{\prime}$ including all $z \in W^{\prime}-W$, while leaving b_{z} unchanged for those $z \in W \cap W^{\prime}$ if b_{z} need not to be redefined.

Lemma 2.6. If G has a 2-path $u^{\prime} v^{\prime} w$ for $v^{\prime} \in V(G)-V(C), u^{\prime} \in V(C)$, and $w \in$ W, then all of the following properties hold.
(1) $u v$ and $x y$ lie in the different components of $G-\left\{u^{\prime}, v^{\prime}, w\right\}$, and
(2) $G\left[\left\{u^{\prime}, v^{\prime}, y, x\right\}\right]$ is a 4-cycle where $u^{\prime} \notin W$.

Proof. Suppose, to the contrary, that such a 2-path $u^{\prime} v^{\prime} w$ exists such that at least one of (1) and (2) does not satisfied. Assume first that $G\left[\left\{u^{\prime}, v^{\prime}, y, x\right\}\right]$ is not a 4-cycle. By (W2), $G\left[\left\{w, v^{\prime}, y, x\right\}\right]$ is not a 4-cycle. Define C_{1} and C_{2} as follows: Let C_{1} be the cycle in $C \cup\left\{u^{\prime} v^{\prime}, v^{\prime} w\right\}$ containing $u^{\prime} v^{\prime}, v^{\prime} w$, and, $u v$ and C_{2} the cycle in $C \cup\left\{u^{\prime} v^{\prime}, v^{\prime} w\right\}$ containing $u^{\prime} v^{\prime}, v^{\prime} w$ but not $u v$. It follows that both $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ satisfy the hypotheses of Theorem 2.1. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{2} of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$. We recall that the edge $u^{\prime} v^{\prime}$ is oriented from u^{\prime} to v^{\prime} and that the edge $v^{\prime} w$ is oriented from w to v^{\prime}.

Since c_{2} is a $\left(Z_{3}, f\right)$-coloring of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and $c_{2}(w) \neq b_{w}$, we redefine $b_{w} \in Z_{3}-\left\{c_{2}(w), c_{2}\left(v^{\prime}\right)+f\left(w v^{\prime}\right)\right\}$. By (3), $\left.c_{2}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$ coloring c_{3} of $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ such that $\left.c_{3}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}=c_{2}$. Since $c_{3}(w) \neq b_{w}$, it follows that $c_{3}(w)=c_{2}(w)$. Thus we obtain a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Assume then that $G\left[\left\{u^{\prime}, v^{\prime}, y, x\right\}\right]$ is a 4-cycle. By (W2), the edges $x y$ and $u v$ lie in the same component of $G-\left\{u^{\prime} v^{\prime} w\right\}$. Note that the 4-cycle $y x u^{\prime} v^{\prime} y$ is a facial cycle. That is, $\operatorname{int}\left(y x u^{\prime} v^{\prime} y\right)=\emptyset$. By Lemma 2.5, we further assume that $G\left[\left\{u^{\prime}, v^{\prime}, y, x\right\}\right]$ is a 4-cycle $y x u^{\prime} v^{\prime} y$ where $u^{\prime}=x_{i+2}$. Let C_{1} be the cycle in $C \cup\left\{y v^{\prime} w\right\}$ containing $u v$ and $w v^{\prime} y$. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{2} of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$. Let $c_{2}(x) \in Z_{3}-\left\{c_{2}(y)-f(y x), b_{x}\right\}, c_{2}\left(u^{\prime}\right) \in$ $Z_{3}-\left\{c_{2}(x)-f\left(x u^{\prime}\right), c_{2}\left(v^{\prime}\right)+f\left(u^{\prime} v^{\prime}\right)\right\}$. Let C_{2} be the cycle in $C \cup\left\{u^{\prime} v^{\prime} w\right\}$ not containing $u v$ nor $x y$. We define $b_{w} \in Z_{3}-\left\{c_{2}(w), c_{2}\left(v^{\prime}\right)+f\left(w v^{\prime}\right)\right\}$. By (3), $\left.c_{2}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ such that $c_{3}(w) \neq b_{w}$. It follows that $c_{3}(w)=c_{2}(w)$. By combining c_{2} and c_{3}, c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring of G, contrary to (2)

Lemma 2.7. G has no 3-path $w_{1} u^{\prime} v^{\prime} w_{2}$ with $w_{1}, w_{2} \in W$ and $u^{\prime}, v^{\prime} \in V(G)-$ $V(C)$.

Proof. Suppose, to the contrary, that such a 3-path exists. By Lemma 2.6, we may assume that $G\left[\left\{u^{\prime}, v^{\prime}, y, x\right\}\right]$ is not a 4-cycle. By (W2), none of $G\left[\left\{w_{1}, u^{\prime}, y, x\right\}\right]$ and $G\left[\left\{w_{2}, v^{\prime}, y, x\right\}\right]$ is a 4-cycle. Assume that $u^{\prime} v^{\prime}$ is oriented from u^{\prime} to v^{\prime}. Define C_{1} to be the cycle in $C \cup\left\{w_{1} u^{\prime}, u^{\prime} v^{\prime}, v^{\prime} w_{2}\right\}$ containing $w_{1} u^{\prime}, u^{\prime} v^{\prime}, v^{\prime} w_{2}$, and $u v$, and C_{2} to be the cycle in $C \cup\left\{w_{1} u^{\prime}, u^{\prime} v^{\prime}, v^{\prime} w_{2}\right\}$ containing $w_{1} u^{\prime}, u^{\prime} v^{\prime}$ and $v^{\prime} w_{2}$ but not $u v$. It follows that both $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ satisfy the hypotheses of Theorem 2.1. By (3), $c_{1}:\{u, v\} \mapsto Z_{3}$ can be extended to a (Z_{3}, f)-coloring c_{2} of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ such that $\left.c_{2}\right|_{\{u, v\}}=c_{1}$.

Since c_{2} is a $\left(Z_{3}, f\right)$-coloring of $C_{1} \cup \operatorname{int}\left(C_{1}\right)$ and since $c_{2}\left(w_{1}\right) \neq$ $b_{w_{1}}, c_{2}\left(w_{2}\right) \neq b_{w_{2}}$, we redefine $b_{w_{1}} \in Z_{3}-\left\{c_{2}\left(w_{1}\right), c_{2}\left(u^{\prime}\right)+f\left(w_{1} u^{\prime}\right)\right\}, b_{w_{2}} \in$ $Z_{3}-\left\{c_{2}\left(w_{2}\right), c_{2}\left(v^{\prime}\right)+f\left(w_{2} v^{\prime}\right)\right\}$. By (3) again, $\left.c_{2}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of $C_{2} \cup \operatorname{int}\left(C_{2}\right)$ such that $\left.c_{3}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}=c_{2}$ and $c_{3}\left(w_{1}\right) \neq$ $b_{w_{1}}, c_{3}\left(w_{2}\right) \neq b_{w_{2}}$. It follows that $c_{3}\left(w_{1}\right)=c_{2}\left(w_{1}\right)$ and $c_{3}\left(w_{2}\right)=c_{2}\left(w_{2}\right)$ and $c_{3}\left(x^{\prime}\right)-c_{3}\left(y^{\prime}\right) \neq f\left(x^{\prime} y^{\prime}\right)$ for every directed edge $x^{\prime} y^{\prime} \in E\left(G_{2}\right)$. A desired $\left(Z_{3}, f\right)$ -
coloring of G extending c_{1} can be obtained by combining c_{2} and c_{3}, contrary to (2).

Lemma 2.8. G has no separating 5-cycle.
Proof. If G has a separating 5-cycle C^{\prime}, then by (3), we can extend c_{1} to a group coloring of $G-\operatorname{int}\left(C^{\prime}\right)$. By Corollary 2.3, c_{1} can be extended to a group coloring of $C^{\prime} \cup \operatorname{int}\left(C^{\prime}\right)$. This contradiction proves Lemma 2.8.

Lemma 2.9.

(i) G has no a vertex $q \in V(G)-V(C)$ such that $G\left[\left\{x_{i}, x_{i+1}, x_{i+2}, q\right\}\right]$ is a 4-cycle.
(ii) G has no a vertex $q \in V(G)-V(C)$ such that $G\left[\left\{x_{i-1}, x_{i}, x_{i+1}, q\right\}\right]$ is a 4-cycle.

Proof. (i) Assume that G has such a 4-cycle. Define $G^{\prime}=G-\left\{x_{i}, x_{i+1}\right.$, $\left.x_{i+2}, q\right\}$ and $W^{\prime}=W \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right) \cup N\left(x_{i+2}\right) \cup N(q)-\left\{x_{i}, x_{i+1}, x_{i+2}, q\right\}$. Take $a_{x_{i}} \in Z_{3}-\left\{b_{x_{i}}\right\}, a_{x_{i+1}} \in Z_{3}-\left\{b_{x_{i+1}}, a_{x_{i}}-f\left(x_{i} x_{i+1}\right)\right\}, a_{x_{i+2}} \in Z_{3}-\left\{a_{x_{i+1}}-\right.$ $\left.f\left(x_{i+1} x_{i+2}\right)\right\}, a_{q} \in Z_{3}-\left\{a_{i+2}-f\left(x_{i+2} q\right), a_{x_{i}}-f\left(x_{i} q\right)\right\}$. Let $b_{z}=a_{x_{j}}-f\left(x_{j} z\right)$ for every $z \in N\left(x_{j}\right)-\left\{x_{i}, x_{i+1}, x_{i+2}, q\right\}, j \in\{i, i+1, i+2\}$ and $b_{z}=a_{q}-f(q z)$ for every $z \in N(q)-\left\{q, x_{i}, x_{i+2}\right\}$. By (F1) and (F2), b_{z} is well defined. If there is a 2-path $x_{i} q x_{j}$ where $x_{j} \in V(C)$, by Lemma $2.6, x_{j} \in\left\{x_{3}, x_{4}, \ldots, x_{i-3}\right\}$. By Lemma 2.7, G has no 3-path $x_{i} q q^{\prime} x_{j}$ where $q, q^{\prime} \in V(G)-V(C)$ and $x_{j} \in W$. Thus G^{\prime} may have some cut vertices. We will distinguish the following two cases.

Case 1. There is a 2-path $x_{i} q x_{j}$ where $x_{j} \in V(C), j \in\{3,4, \ldots, i-4\}$.
Then G^{\prime} can be decomposed into blocks $B_{1}, B_{2}, \ldots, B_{k}$ such that
(1) B_{1} contains the edge $u v$ and B_{k} contains $x_{i-1} x_{i-2}$, and
(2) $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)$ is a cut vertex.

Now we claim that c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring of B_{1}. Suppose that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{z\}$. Then $B_{1}\left[W^{\prime}\right]$ contains at most one edge $z w$ where $w \in$ $W \cap V\left(B_{1}\right)$. By Lemma 2.6, there is no 2-path from z to any vertex of $B_{1}\left[W^{\prime}\right]$. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring of B_{1}.

We claim again that if c_{1} can be extended to a (Z_{3}, f)-coloring of $B_{1} \cup B_{2} \cup$ $\ldots \cup B_{i}$, then c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{2} of $B_{1} \cup B_{2} \cup \ldots \cup B_{i+1}$. Observe the block $B_{i+1} . B_{i+1}\left[W^{\prime}\right]$ contains at most two edges one of those contains vertices of $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)$ and the other contains vertices of $V\left(B_{i+1}\right) \cap V\left(B_{i+2}\right)$. Suppose that $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)=\left\{z_{1}\right\}$. We define z_{2} as follows. If $B_{i+1}\left[W^{\prime}\right]$ does not contain an edge one end of which is z_{1}, let $z_{2} \in V\left(B_{i+1}\right) \cap V(C)$ such that $z_{1} z_{2} \in E(G)$. If $B_{i+1}\left[W^{\prime}\right]$ contains an edge one end of which is z_{1}, let z_{2} be the other end of such edge. Assume that $z_{1} z_{2}$ is oriented from z_{1} to z_{2}. Define
$c_{1}\left(z_{2}\right) \in Z_{3}-\left\{b_{z_{2}}, c_{1}\left(z_{1}\right)-f\left(z_{1} z_{2}\right)\right\}$ if $z_{2} \in W^{\prime} ; c_{1}\left(z_{3}\right) \in Z_{3}-\left\{c_{1}\left(z_{1}\right)-f\left(z_{1} z_{2}\right)\right\}$ if $z_{2} \notin W^{\prime}$.

Now we consider the vertex, say z_{1}^{\prime}, of $V\left(B_{i+1}\right) \cap V\left(B_{i+2}\right)$. Then $B_{i+1}\left[W^{\prime}\right]$ may contains an edge one end of which is z_{1}^{\prime}. If $B_{i+1}\left[W^{\prime}\right]$ indeed contains such edge, let z_{2}^{\prime} be the other end of that edge. By Lemma 2.6, there is no 2-path from z_{1}^{\prime} to any vertex of $V\left(B_{i+1}\right) \cap W^{\prime}$. Therefore $z_{1} z_{2}$ plays the role of $u v$ in G and $z_{1}^{\prime} z_{2}^{\prime}$ plays the role of $x y$ in G if such $z_{1}^{\prime} z_{2}^{\prime}$ exists. By (3), $\left.c_{2}\right|_{\left\{\left\{1, z_{2}\right\}\right.}$ can be extended to a $\left(Z_{3}, f\right)$-coloring of $B_{1} \cup B_{2} \cup \ldots \cup B_{i+1}$.

Thus we assume that c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c^{\prime} of G^{\prime}. Define

$$
c(z)= \begin{cases}c^{\prime}(z) & \text { if } z \in V\left(G^{\prime}\right), \\ a_{x_{j}} & \text { if } z=x_{j}, j \in\{i, i+1, i+2\} \\ a_{q} & \text { if } z=q .\end{cases}
$$

Then c is a required ($\left.Z_{3}, f\right)$-coloring of G, contrary to (2).
Case 2. There is no a 2-path $x_{i} q x_{j}$ where $x_{j} \in\left\{x_{3}, x_{4}, \ldots, x_{i-3}\right\}$.
By Lemmas 2.6 and 2.7, $G^{\prime}\left[W^{\prime}\right]$ contains at most one edge $x_{i-1} x_{i-2}$. If $G^{\prime}\left[W^{\prime}\right]$ indeed contains that edge, by Lemma 2.6 there is no 2-path from x_{i-1} to any vertex of $W^{\prime \prime}$ and hence x_{i-1} plays the role of x in G. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c^{\prime} of G^{\prime}. Define

$$
c(z)= \begin{cases}c^{\prime}(z) & \text { if } z \in V\left(G^{\prime}\right), \\ a_{x_{j}} & \text { if } z=x_{j}, j \in\{i, i+1, i+2\}, \\ a_{q} & \text { if } z=q .\end{cases}
$$

Then c is a $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).
The proof of (ii) is similar.
If u or v (say u) is in W, then we will replace W by $W-u$. Therefore we assume that

$$
\begin{equation*}
\{u, v\} \subset V(C)-W . \tag{4}
\end{equation*}
$$

Lemma 2.10. If $G[W]$ has the edge $x y$, then $i \geq 4$.
Proof. Suppose, to the contrary, that $i=3$. Let $G^{\prime}=G-\{y, x\}$ and $W^{\prime}=W \cup$ $N(x) \cup N(y)-\{x, y, v\}$. Take $a_{y} \in Z_{3}-\left\{b_{y}, c_{1}(v)-f(v y)\right\}, a_{x} \in Z_{3}-\left\{b_{x}, a_{y}-\right.$ $f(y x)\}$. Let $b_{z}=a_{x}-f(x z)$ for every $z \in N(x)-\{y\}$ and let $b_{z}=a_{y}-f(y z)$ for every $z \in N(y)-\{x, v\}$. By (F2), b_{z} is well defined.

By (W2), $x_{6} \notin W$. If $G[N(x) \cup N(y)]$ contains no 4 cycles, by Lemma 2.6, $G\left[W^{\prime}\right]$ is edgeless and hence both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1. Assume that $G[N(x) \cup N(y)]$ contains a 4-cycle $x q_{1} q_{2} y x$, where $q_{1} \in N(x)$ and
$q_{2} \in N(y)$. By Lemma 2.9, we assume that $q_{2} \neq v$ and $q_{1} \neq x_{i+2}$. By Lemma 2.6 and (F2), $G^{\prime}\left[W^{\prime}\right]$ contains at most one edge $q_{1} q_{2}$. If G^{\prime} has a 2 -path $q_{2} q_{3} q_{4}$ where $q_{4} \in W^{\prime}$, by Lemma 2.6, $q_{3} \neq q_{1}$. By (F2) and (F3), $q_{4} \notin N\left(x_{3}\right) \cup N\left(x_{4}\right)$. Thus $q_{4} \in W$, contrary to Lemma 2.7. By Lemma 2.6 and (F2), $G\left[\left\{\lambda_{1}, \lambda_{2}, q_{1}, q_{2}\right\}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Therefore both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1 with q_{2} playing the role of x in G in this case.

By (3), c_{1} can be extended to a (Z_{3}, f)-coloring c_{2} of G^{\prime} such that $\left.c_{2}\right|_{\{u, v\}}=c_{1}$ and $c_{2}\left(w^{\prime}\right) \neq b_{w^{\prime}}$ for each vertex $w^{\prime} \in W^{\prime}$. Define $c: V(G) \mapsto Z_{3}$ by

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\{x, y\} \\ a_{x} & \text { if } z=x \\ a_{y} & \text { if } z=y .\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G such that $c(w) \neq b_{w}$ for each vertex $w \in W$ and $\left.c\right|_{\{u, v\}}=c_{1}$, contrary to (2).

Lemma 2.11. If $G[W]$ has the edge $y x$, then $x_{i-2} \in W$ and hence $i \geq 5$.
Proof. Since $G[W]$ has only one edge, $x_{i-1} \notin W$. By contradiction, suppose that $x_{i-2} \notin W$, (if $z \in\{u, v\}$, then by (4), $z \notin W$).

Define $a_{y} \in Z_{3}-\left\{b_{y}\right\}, a_{x} \in Z_{3}-\left\{b_{x}, a_{y}-f(y x)\right\}, G^{\prime}=G-\{x, y\}$, and $W^{\prime}=$ $W \cup N(x) \cup N(y)-\{x, y\}$. By (W2) and by Lemma 2.4, $x_{i+3} \notin W^{\prime}$.
If $G[N(x) \cup N(y)]$ contains no 4 cycles, then by Lemma 2.6 and (W2), $G\left[W^{\prime}\right]$ is edgeless. So assume that $G[N(x) \cup N(y)]$ contains a 4-cycle $x q_{1} q_{2} y x$, where $q_{1} \in N(x)$ and $q_{2} \in N(y)$. By Lemma 2.9, $q_{2} \neq x_{i-1}$ and $q_{1} \neq x_{i+2}$. By Lemma 2.6 and (F2), $G^{\prime}\left[W^{\prime}\right]$ contains only one edge $q_{1} q_{2}$. Suppose that G^{\prime} has a 2 -path $q_{2} q_{3} q_{4}$, where $q_{4} \in W^{\prime}$. By Lemma 2.6, $q_{3} \neq q_{1}$. By (F2) and (F3), $q_{4} \in W-N(x) \cup N(y)$, contrary to Lemma 2.7. By Lemma 2.6 and (F2), $G^{\prime}\left[\left\{q_{1}, q_{2}, \lambda_{1}, \lambda_{2}\right\}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Therefore both G^{\prime} and W^{\prime} satisfy the hypotheses of Theorem 2.1 (with q_{2} playing the role of x in G if $q_{1} q_{2} \in E\left(G^{\prime}\left[W^{\prime}\right]\right)$.

Define $b_{z}=a_{x}-f(x z)$ if $z \in N(x)-W$ and $b_{z}=a_{y}-f(y z)$ if $z \in N(y)-$ ($W \cup\left\{x_{i-1}\right\}$). By (F 1) b_{z} is well defined. By (3), c_{1} can be extended to a (Z_{3}, f)coloring c_{2} of G^{\prime} such that $c_{2}(w) \neq b_{w}, w \in W$. Define $c: V(G) \mapsto Z_{3}$ by

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\{x, y\} \\ a_{x} & \text { if } z=x \\ a_{y} & \text { if } z=y .\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring satisfying $c(w) \neq b_{w}$ for each vertex $w \in W$ and extending c_{1}, contrary to (2).

Lemma 2.12.

(i) G has no 3-path $x_{i+2} u^{\prime} v^{\prime} x_{j}$ for $j \in\{i+4, \ldots, m\}$ nor 3-path $x_{i-1} u^{\prime} v^{\prime} x_{j}$ for $j \in\{3, \ldots i-3\}$ where $u^{\prime}, v^{\prime} \in V(G)-V(C)$ and $x_{j} \in W$.
(ii) G has no 2-path $x_{i+2} u^{\prime} x_{j}$ for $j \in\{i+4, \ldots, m\}$ nor 2-path $x_{i-1} u^{\prime} x_{j}$ for $j \in\{3, \ldots i-4\}$ where $u^{\prime} \in V(G)-V(C)$ and $x_{j} \notin W$.

Proof. We only prove that G has no 3-path $x_{i+2} u^{\prime} v^{\prime} x_{j}$ for $j \in\{i+4, \ldots, m\}$ where $u^{\prime}, v^{\prime} \in V(G)-V(C)$ and $x_{j} \in W$. The proofs for the other three cases are similar.

Assume that such $P=x_{i+2} u^{\prime} v^{\prime} x_{j}$ exists. Let C_{1} be the cycle in $C \cup P$ containing $u^{\prime} v^{\prime}$ and $x y$ and C_{2} the cycle in $C \cup P$ containing $u^{\prime} v^{\prime}$ but not $x y$. Let $G_{i}=C_{i} \cup$ $\operatorname{int}\left(C_{i}\right), i=1,2$. By (3), we can extend c_{1} to a $\left(Z_{3}, f\right)$-coloring c_{2} of G_{1}. Assume that $u^{\prime} v^{\prime}$ is oriented from u^{\prime} to v^{\prime}.

Let $W^{\prime \prime}=\left(W \cap V\left(G_{2}\right)\right) \cup\left\{x_{i+2}\right\}$. By (W2), $x_{i+3} \notin W$. By Lemma 2.4, $G_{2}\left[W^{\prime \prime}\right]$ is edgeless. Then G_{2} and $W^{\prime \prime}$ satisfy the conditions of Theorem 2.1. Define

$$
b_{z}^{\prime \prime}= \begin{cases}b_{z} & \text { if } z \in W^{\prime \prime}-\left\{x_{i+2}, x_{j}\right\} \\ b_{x_{i+2}} \in Z_{3}-\left\{c_{2}\left(x_{i+2}\right), c_{2}\left(u^{\prime}\right)+f\left(x_{i+2} u^{\prime}\right)\right\} & \text { if } z=x_{i+2} \\ b_{x_{j}} \in Z_{3}-\left\{c_{2}\left(x_{j}\right), c\left(v^{\prime}\right)+f\left(x_{j} v^{\prime}\right)\right\} & \text { if } z=x_{j}\end{cases}
$$

By (3), $\left.c_{2}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of G_{2} such that $c_{3}\left(w^{\prime \prime}\right) \neq$ $b_{w^{\prime \prime}}$ for every $w^{\prime \prime} \in W^{\prime \prime}$. It follows that $c_{3}\left(x_{i+2}\right)=c_{2}\left(x_{i+2}\right)$ and $c_{3}\left(x_{j}\right)=c_{2}\left(x_{j}\right)$. Combining c_{2} and c_{3}, we get a required (Z_{3}, f)-coloring of G extending c_{1} such that $c(z) \neq b_{z}$ for each vertex $z \in W$, contrary to (2).

Lemma 2.13. $G[W]$ has no edge.
Proof. Suppose that $G[W]$ has the edge $x y$ where $x=x_{i+1}, y=x_{i}$. By Lemma 2.11 and (W2), $x_{i-1} \notin W$ and $x_{i-2} \in W$. We consider the following two cases.

Case 1. $G[N(x) \cup N(y)]$ contains no 4 cycles.
Let $G^{\prime}=G-\left\{x_{i-1}, x_{i}, x_{i+1}\right\} \quad$ and $\quad W^{\prime}=W \cup N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)-$ $\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$. Let $a_{i-1}=b_{x_{i-2}}-f\left(x_{i-2} x_{i-1}\right), a_{i} \in Z_{3}-\left\{b_{x_{i}}, a_{i-1}-f\left(x_{i-1} x_{i}\right)\right\}$, and $a_{i+1} \in Z_{3}-\left\{b_{x_{i+1}}, a_{i}-f\left(x_{i} x_{i+1}\right)\right\}$. Let $b_{z}=a_{j}-f\left(x_{j} z\right)$ for every vertex $z \in$ $\left(W^{\prime}-W\right) \cap\left(N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)\right), j \in\{i-1, i, i+1\}$. Since $G[N(x) \cup$ $N(y)]$ contains no 4-cycle, b_{z} is well defined. Suppose that $G^{\prime}\left[W^{\prime}\right]$ has an edge $q_{1} q_{2}$. By Lemmas 2.6 and $2.5, q_{1}, q_{2} \in W^{\prime}-W \subset N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)$. We will distinguish the following two subcases.

Subcase 1.1. $q_{2} \in N\left(x_{i-1}\right), q_{1} \in N\left(x_{i+1}\right)$.
Then G has a 5-cycle $q_{1} q_{2} x_{i-1} x_{i} x_{i+1} q_{1}$. By (F3) and Lemmas 2.6 and 2.8, $q_{1} q_{2}$ is the only edge in $G^{\prime}\left[W^{\prime}\right]$. By Lemmas 2.4 and $2.8, q_{2} \neq x_{i-2}$. Assume that G^{\prime} has a path $q_{1} q_{3} q_{4}$ where $q_{4} \in W^{\prime}$. By Lemma 2.6, $q_{3} \neq q_{2}$.

We claim that $q_{4} \in W$. By contradiction, suppose $q_{4} \in W^{\prime}-W$. If $q_{4} \in$ $N\left(x_{i-1}\right)-\left\{q_{2}\right\}$, then G has two 5 cycles $x_{i-1} x_{i} x_{i+1} q_{1} q_{2} x_{i-1}$ and $x_{i-1} q_{4} q_{3} q_{1} q_{2} x_{i-1}$. By Lemma 2.8, $d_{G}\left(q_{2}\right)=2$, contrary to Lemma 2.4. By Lemma 2.8, $q_{4} \notin N\left(x_{i}\right)$. By (F3), $q_{4} \notin N\left(x_{i+1}\right)$. Thus $q_{4} \in W$.

By Lemmas 2.5, 2.6, and 2.7, $q_{1}=x_{i+2}, q_{3}=x_{i+3}$, and $q_{4}=x_{i+4}$. Note that $q_{2} \neq x_{i-2}$. We shall verify that both G^{\prime} and W^{\prime} satisfy the hypotheses of Theorem 2.1.

We now assume that G^{\prime} has a path $q_{2} q_{5} q_{6}$ where $q_{6} \in W^{\prime}$. By (F3), $q_{6} \notin N\left(x_{i-1}\right)$. By Lemma 2.8, $q_{6} \notin N\left(x_{i}\right)$ and $q_{6} \notin N\left(x_{i+1}\right)$. Hence $q_{6} \in W$. If $q_{5} \notin V(C)$, then there exist two 3-paths $x_{i+2} q_{2} q_{5} q_{6}$ and $x_{i-1} q_{2} q_{5} q_{6}$ where $q_{6} \in W$. By (F3), $q_{6} \neq$ x_{i-2}. Thus $q_{6} \in W \cap\left(\left\{x_{i+4}, \ldots, x_{m}\right\} \cup\left\{x_{3}, \ldots, x_{i-3}\right\}\right)$, contrary to Lemma 2.12. If $q_{5} \in V(C)$, then there exist two 2-paths $x_{i-1} q_{2} q_{5}$ and $x_{i+2} q_{2} q_{5}$, where $q_{2} \in$ $V(G)-V(C), q_{5} \in V(C)-W$ because $G[W]$ contains at most one edge. By (F1) and (F3), $q_{5} \notin\left\{x_{i-2}, x_{i-3}\right\}$. Thus $q_{5} \in\left\{x_{i+4}, \ldots, x_{m}\right\} \cup\left\{x_{3}, \ldots, x_{i-4}\right\}$, contrary to Lemma 2.12. Thus there is no 2-path from q_{2} to a vertex of W^{\prime} in G^{\prime}.

By Lemma 2.6 and (F3), $G^{\prime}\left[\left\{\lambda_{1}, \lambda_{2}, q_{1}, q_{2}\right\}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Therefore both G^{\prime} and W^{\prime} satisfies the hypotheses of Theorem 2.1 with q_{2} playing the role of x in G. Thus c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring $c_{2}: V\left(G^{\prime}\right) \mapsto Z_{3}$ such that $\left.c_{2}\right|_{\{u, v\}}=c_{1}$ and $c_{2}\left(w^{\prime}\right) \neq$ $b_{w^{\prime}}$ for every vertex $w^{\prime} \in W^{\prime}$. Define $c: V(G) \mapsto Z_{3}$ by

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\left\{x_{i-1}, x_{i}, x_{i+1}\right\}, \\ a_{j} & \text { if } z=x_{j}, j \in\{i-1, i, i+1\} .\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring satisfying $c(w) \neq b_{w}$ for every vertex $w \in W$ and extending c_{1}, contrary to (2).

Subcase 1.2. $q_{2} \in N\left(x_{i-1}\right), q_{1} \in N\left(x_{i}\right)$.
By Lemma 2.4 and (F1), $q_{2} \neq x_{i-2}$. Thus $q_{2} \in V(G)-V(C)$. Since $G[N(x) \cup$ $N(y)$] contains no 4 cycles, $q_{1} \neq x_{i+1}$. If G^{\prime} has a 2 -path $q_{1} q_{3} q_{4}$, where $q_{4} \in$ W^{\prime}, by (F3) and (F1) $q_{4} \notin N\left(x_{i+1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i-1}\right)$. Thus $q_{4} \in W$, contrary to Lemma 2.7.

By Lemma 2.6 and (F2), $G^{\prime}\left[\left\{\lambda_{1}, \lambda_{2}, q_{1}, q_{2}\right\}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Therefore both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1 with q_{1} playing the role of x of G. Thus c_{1} can be extended to a (Z_{3}, f)-coloring $c_{2}: V\left(G^{\prime}\right) \mapsto Z_{3}$ such that $\left.c_{2}\right|_{\{u, v\}}=c_{1}$ and $c_{2}\left(w^{\prime}\right) \neq b_{w^{\prime}}$ for every vertex $w^{\prime} \in W^{\prime}$. Define $c: V(G) \mapsto Z_{3}$ by

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\left\{x_{i-1}, x_{i}, x_{i+1}\right\}, \\ a_{j} & \text { if } z=x_{j}, j \in\{i-1, i, i+1\} .\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G such that $c(w) \neq b_{w}$ for every vertex $w \in W$, contrary to (2).

Case 2. $G[N(x) \cup N(y)]$ contains a 4-cycle.
Assume that $x q_{1} q_{2} y x$ is a 4-cycle in $G[N(x) \cup N(y)]$, where $q_{1} \in N\left(x_{i+1}\right), q_{2} \in$ $N\left(x_{i}\right)$. By lemma 2.9, $q_{1} \neq x_{i+2}, q_{2} \neq x_{i-1}$.

Let $G^{\prime}=G-\left\{x_{i-1}, x_{i}, x_{i+1}\right\} \quad$ and $\quad W^{\prime}=W \cup N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)-$ $\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$. Let $a_{i-1}=b_{x_{i-2}}-f\left(x_{i-2} x_{i-1}\right), a_{i} \in Z_{3}-\left\{b_{x_{i}}, a_{i-1}-f\left(x_{i-1} x_{i}\right)\right\}$ and $a_{i+1} \in Z_{3}-\left\{b_{x_{i+1}}, a_{i}-f\left(x_{i} x_{i+1}\right)\right\}$. Let $b_{z}=a_{j}-f\left(x_{j} z\right)$ for every vertex $z \in\left(W^{\prime}-W\right) \cap\left(N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)\right), j \in\{i-1, i, i+1\}$. By (F2), b_{z} is well defined. By (W2), $x_{i+3} \notin W$. It follows that $x_{i+2} x_{i+3} \notin E\left(G^{\prime}\left[W^{\prime}\right]\right)$. By Lemmas 2.5 and 2.6 and by (F2) and (F3), $G^{\prime}\left[W^{\prime}\right]$ has only one edge $q_{1} q_{2}$.

We claim that G^{\prime} has no 2-path from q_{2} to any vertex of W^{\prime}. Suppose, to the contrary, that G^{\prime} has a path $q_{2} q_{3} q_{4}$ where $q_{4} \in W^{\prime}$. By Lemma $2.6, q_{3} \neq q_{1}$. By (F2) and (F3), $q_{4} \notin N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right)$ and so $q_{4} \in W$, contrary to Lemma 2.7. By Lemma 2.6 and (F2), $G^{\prime}\left[\left\{\lambda_{1}, \lambda_{2}, q_{1}, q_{2}\right\}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Thus both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1 with q_{2} playing the role of x of G. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$ coloring c_{2} of G^{\prime}. Define

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\left\{x_{i-1}, x_{i}, x_{i+1}\right\} \\ a_{j} & \text { if } z=x_{j}, j \in\{i-1, i, i+1\}\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).
Lemma 2.14. $x_{3} \notin W$.
Proof. Suppose, to the contrary, that $x_{3} \in W$. By Lemma 2.13, $x_{4} \notin W$. To prove our lemma, we need to prove two claims at first.

Claim 1. $x_{5} \in W$ and G contains 4-cycle $x_{3} q_{3} q_{4} x_{4} x_{3}$, where $q_{3}, q_{4} \in V(G)-$ $V(C)$.

Proof. Suppose, to the contrary, that G has one of the following properties:
(1) $x_{5} \notin W$;
(2) $x_{5} \in W$ and $G\left[N\left(x_{3}\right) \cup N\left(x_{4}\right)\right]$ does not contain a 4-cycle; or
(3) $x_{5} \in W$ and G contains 4-cycle $x_{3} q_{3} q_{4} x_{4} x_{3}$, where $\mid\left\{q_{3}, q_{4}\right\} \cap(V(G)-$ $V(C)) \mid \leq 1$.

Let $\quad G^{\prime}=G-x_{3} \quad$ and $\quad W^{\prime}=W \cup N\left(x_{3}\right)-\left\{x_{2}, x_{3}\right\} . \quad$ Pick $\quad a_{x_{3}} \in Z_{3}-$ $\left\{b_{x_{3}}, c_{1}\left(x_{2}\right)-f\left(x_{2} x_{3}\right)\right\}$. Define $\quad b_{z}=a_{x_{3}}-f\left(x_{3} z\right) \quad$ if $\quad z \in N\left(x_{3}\right)-\left\{x_{2}, x_{3}\right\}$. Then b_{z} is well defined. If $x_{5} \notin W$, by Lemmas $2.5,2.6, G^{\prime}\left[W^{\prime}\right]$ is edgeless. If $x_{5} \in W$, then $x_{4} x_{5}$ is only edge in $G^{\prime}\left[W^{\prime}\right]$. If G contains 4-cycle $x_{3} q_{3} q_{4} x_{4} x_{3}$, by lemma 2.4, $q_{4} \neq x_{5}$. By Lemma $2.5, q_{4} \in V(G)-V(C)$. By the assumption that either $G\left[N\left(x_{3}\right) \cup N\left(x_{4}\right)\right]$ does not contain a 4-cycle or G contains 4-cycle $x_{3} q_{3} q_{4} x_{4} x_{3}$ and $q_{3}=x_{2}$ and by Lemma 2.6, there is no 2-path from x_{4} to any
vertex in W^{\prime} Since $x_{2} \notin W$. Applying the induction of hypotheses with x_{4} playing the role of x to G^{\prime} and W^{\prime}, we can extend c_{1} to a $\left(Z_{3}, f\right)$-coloring of G^{\prime}. Moreover, we can obtain a (Z_{3}, f)-coloring of G, contrary to (2).

Claim 2. For $j=1,2, \cdots,\left\lceil\frac{m-1}{2}\right\rceil-1, G$ contains 4 cycles $x_{2 j+1} q_{2 j+1} q_{2 j+2}-$ $x_{2 j+2} x_{2 j+1}$, where $x_{2 j+1} \in W$ and $q_{2 j+1}, q_{2 j+2} \in V(G)-V(C)$.

Proof. By Claim 1, we may assume that for $k=2,3, \cdots,\left\lceil\frac{m-1}{2}\right\rceil-1, G$ contains 4 cycles $x_{2 k-1} q_{2 k} q_{2 k} x_{2 k} x_{2 k-1}$, where $x_{2 k-1} \in W$ and $q_{2 k-1}, q_{2 k} \in V(G)-$ $V(C)$ and G does not contain the 4 -cycle $x_{2 k+1} q_{2 k+1} q_{2 k+2} x_{2 k+2} x_{2 k+1}$, where $x_{2 k+1} \in W$ and $q_{2 k+1}, q_{2 k+2} \in V(G)-V(C)$. Let $G^{\prime}=G-\left\{x_{2 k}, x_{2 k+1}\right\}$ and $W^{\prime}=$ $W \cup N\left(x_{2 k}\right) \cup N\left(x_{2 k+1}-\left\{x_{2 k}, x_{2 k+1}\right\}\right)$. Pick $a_{x_{2 k}}=b_{x_{2 k-1}}-f\left(x_{2 k-1} x_{2 k}\right), a_{x_{2 k+1}} \in$ $Z_{3}-\left\{b_{x_{2 k+1}}, a_{x_{2 k}}-f\left(x_{2 k} x_{2 k+1}\right)\right\}$. By Lemma 2.13, $x_{2 k+2} \notin W$. Thus, $G^{\prime}\left[W^{\prime}\right]$ contains at most one edge $x_{2 k+2} x_{2 k+3}$. If $G^{\prime}\left[W^{\prime}\right]$ indeed contains such edge, by the assumption that G does not contain a 4 -cycle containing edge $x_{2 k+2} x_{2 k+3}$. By Lemma 2.6, there is no 2-path from $x_{2 k+2}$ to any vertex of W^{\prime}. By Lemma 2.5, $G^{\prime}\left[\lambda_{1}, \lambda_{2}, x_{2 k+2}, x_{2 k+3}\right]$ is not a 4 -cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}. Thus, both G^{\prime} and W^{\prime} satisfy the hypotheses of Theorem 2.1, by the induction, c_{1} can be extended to a ($\left.Z_{3}, f\right)$-coloring of G^{\prime}. Moreover, we get a $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Thus, G contains 4 -cycle $x_{2 k+1} q_{2 k+1} q_{2 k+2} x_{2 k+2} x_{2 k+1}$. By Lemma 2.3, $q_{2 k+2} \neq$ $x_{2 k+3}$. By (F3), $q_{2 k+1} \neq x_{2 k+1}$. Therefore, $q_{2 k+1}, q_{2 k+2} \in V(G)-V(C)$.

We are ready to complete our proof of Lemma 2.14. By Claim 2, we may assume that for $j=1,2, \cdots, \frac{m}{2}-1, G$ contains 4 cycles $x_{2 j+1} q_{2 j+1} q_{2 j+2} x_{2 j+2} x_{2 j+1}$, where $x_{2 j+1} \in W$ and $q_{2 j+1}, q_{2 j+2} \in V(G)-V(C)$.

When m is odd, $x_{m} \in W$. By (F2), $G\left[N\left(x_{m}\right) \cup N\left(x_{m-1}\right)\right]$ does not contain a 4 -cycle. By symmetry and by Claim 1, we obtain a contradiction.

When m is even, $x_{m-1} \in W$ and $x_{m} \notin W$. Let $G^{\prime}=G-\left\{x_{m-1}, x_{m}\right\}$ and $W^{\prime}=$ $W \cup N\left(x_{m-1}\right) \cup N\left(x_{m-2}\right)-\left\{x_{m-2}, x_{m-1}\right\}$. Pick $a_{x_{m-2}}=b_{x_{m-3}}-f\left(x_{m-3} x_{m-2}\right)$ and $a_{x_{m-1}} \in Z_{3}-\left\{b_{x_{m-1}}, a_{x_{m-2}}+f\left(x_{m-2} x_{m-1}\right)\right\}$. Define $b_{z}=a_{x_{j}}-f\left(x_{j} z\right)$ if $z \in$ $N\left(x_{j}\right), j=m-1, m-2$. By $G \in \mathcal{F}, b_{z}$ is well defined. It is easy to check that $G^{\prime}\left[W^{\prime}\right]$ contains edgeless. By the induction of hypotheses of Theorem 2.1, c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{2} of G^{\prime}. Define

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\left\{x_{m-2}, x_{m-1}\right\}, \\ a_{x_{j}} & \text { if } z=x_{j}, j \in\{m-2, m-1\} .\end{cases}
$$

Then c is a $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).
Lemma 2.15. $x_{4} \in W$.
Proof. Suppose that $x_{4} \notin W$. By Lemma 2.14, $x_{3} \notin W$. Assume first that $x_{5} \notin$ W. Let $G^{\prime}=G-x_{3}$ and $W^{\prime}=W \cup N\left(x_{3}\right)-\left\{x_{2}, x_{3}\right\}$. Pick $a_{x_{3}} \in Z_{3}-\left\{c_{1}\left(x_{2}\right)-\right.$ $\left.f\left(x_{2} x_{3}\right)\right\}$. Let $b_{z}=a_{x_{3}}-f\left(x_{3} z\right)$ if $z \in N\left(x_{3}\right)-x_{2}$. Then b_{z} is well defined. By Lemmas 2.5, 2.6, and 2.13, $G^{\prime}\left[W^{\prime}\right]$ contains no edges.

Assume then that $x_{5} \in W$. Let $G^{\prime}=G-\left\{x_{3}, x_{4}\right\}$ and let $W^{\prime}=W \cup N\left(x_{3}\right) \cup$ $N\left(x_{4}\right)-\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Take $a_{x_{4}}=b_{x_{5}}+f\left(x_{4} x_{5}\right), a_{x_{3}}=Z_{3}-\left\{c\left(x_{2}\right)-f\left(x_{2} x_{3}\right)\right.$, $\left.a_{x_{4}}+f\left(x_{3} x_{4}\right)\right\}$. Let $b_{z}=a_{x_{j}}-f\left(x_{j} z\right)$ if $z \in N\left(x_{3}\right) \cup N\left(x_{4}\right)-\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Then b_{z} is well defined. By Lemma 2.6 and (F1), $G^{\prime}\left[W^{\prime}\right]$ contains at most one edge. If $G^{\prime}\left[W^{\prime}\right]$ indeed contains that edge $q_{1} q_{2}$, let $q_{1} \in N\left(x_{3}\right)$ and $q_{2} \in N\left(x_{4}\right)$. By (4), we may assume that $q_{1} \neq v$. Let $q_{1} q_{3} q_{4}$ be a 2-path. By (F2) and (F1), $q_{4} \notin W^{\prime}-W$.

Now we prove that $q_{4} \notin W$. Suppose, to the contrary, that $q_{4} \in W$. Then $q_{4} \in$ $\left\{x_{6}, x_{7}, \ldots, x_{m}\right\}$. Let C_{1} be a cycle containing the path $x_{3} q_{1} q_{3} q_{4}$ and the edge $u v$ and C_{2} the cycle containing the path $x_{3} q_{1} q_{3} q_{4}$ but not $u v$. Let $G_{i}=\operatorname{int}\left(C_{i}\right) \cup C_{i}, i=$ 1, 2. By (3), we can extend c_{1} to a $\left(Z_{3}, f\right)$-coloring of G. Assume that the edge $q_{1} q_{3}$ is oriented from q_{1} to q_{3}.

Let $W^{\prime}=\left(W \cap V\left(G_{2}\right)\right) \cup\left\{x_{3}\right\}$. By the assumption that $x_{4} \notin W$ and by Lemma 2.13, $G_{2}\left[W^{\prime}\right]$ has no edges. Therefore G_{2} and W^{\prime} satisfy the hypotheses of Theorem 2.1. Define

$$
b_{z}^{\prime}= \begin{cases}b_{z} & \text { if } z \in W^{\prime}-\left\{x_{3}, q_{4}\right\} \\ b_{x_{3}} \in Z_{3}-\left\{c_{2}\left(x_{3}\right), c_{2}\left(q_{1}\right)+f\left(x_{3} q_{1}\right)\right\} & \text { if } z=x_{3} \\ b_{q_{4}} \in Z_{3}-\left\{c_{2}\left(q_{4}\right), c_{2}\left(q_{3}\right)+f\left(q_{4} q_{3}\right)\right\} & \text { if } z=q_{4}\end{cases}
$$

$\operatorname{By}(3),\left.c_{2}\right|_{\left\{q_{1}, q_{3}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of G_{2} such that $c_{3}\left(w^{\prime}\right) \neq$ $b_{w^{\prime}}$ for any vertex $w^{\prime} \in W^{\prime}$. It follows that $c_{3}\left(x_{3}\right)=c_{2}\left(x_{2}\right), c_{3}\left(q_{4}\right)=c_{2}\left(q_{3}\right)$. By using c_{2} and c_{3} together, we get a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Hence both G^{\prime} and W^{\prime} satisfy the hypotheses of Theorem 2.1 (with q_{1} playing the role of x of G if $q_{1} q_{2} \in E\left(G^{\prime}\left[W^{\prime}\right]\right)$). By (3), G^{\prime} has a $\left(Z_{3}, f\right)$-coloring and hence c_{1} can be extended to a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Lemma 2.16. $|C| \geq 6$.
Proof. Suppose that $|C|=5$. Let $G^{\prime}=G-\left\{x_{3}, x_{4}\right\}$ and $W^{\prime}=W \cup N\left(x_{3}\right) \cup$ $N\left(x_{4}\right)-\left\{x_{2}, x_{3}, x_{4}\right\}$. By Lemma 2.15, $x_{4} \in W$. Let $a_{x_{3}} \in Z_{3}-\left\{c_{1}\left(x_{2}\right)-f\left(x_{2} x_{3}\right)\right\}$ and $a_{x_{4}} \in Z_{3}-\left\{b_{x_{4}}, a_{x_{3}}-f\left(x_{3} x_{4}\right)\right\}$. Put $b_{z}^{\prime}=a_{x_{i}}-f\left(x_{i} z\right)$ where $z \in N\left(x_{i}\right)-$ $\left\{x_{2}, x_{3}, x_{4}\right\}, i=3,4$. By (F1), b_{z} is well defined. By (F3), $G\left[N\left(x_{3}\right) \cup N\left(x_{4}\right)\right]$ contains no 4 cycles. Thus by Lemma 2.6, $G^{\prime}\left[W^{\prime}\right]$ is edgeless. Hence both G^{\prime} and W^{\prime} satisfy the hypotheses of Theorem 2.1. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$ coloring of G^{\prime}, say c_{2}. Define

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\{x, y\} \\ a_{x_{3}} & \text { if } z=x_{3} \\ a_{x_{4}} & \text { if } z=x_{4}\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Lemma 2.17. $x_{6} \in W$.
Proof. Suppose that $x_{6} \notin W$. By Lemmas 2.14 and 2.15, $x_{3}, x_{5} \notin W$ and $x_{4} \in$ W. Let $G^{\prime}=G-\left\{x_{4}\right\}$ and $W^{\prime}=W \cup N\left(x_{4}\right)-\left\{x_{4}\right\}$. Take $a_{x_{4}} \in Z_{3}-\left\{b_{x_{4}}\right\}$ and let $b_{z}=a_{x_{4}}-f\left(x_{4} z\right)$ if $z \in N\left(x_{4}\right)$. Then b_{z} is well defined. By Lemmas 2.5 and 2.6, $G^{\prime}\left[W^{\prime}\right]$ is edgeless. Therefore both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1. By (3), c_{1} can be extended to a ($\left.Z_{3}, f\right)$-coloring c_{2} of G^{\prime}. Define

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\{x, y\} \\ a_{x_{4}} & \text { if } z=x_{4}\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, violating (2).
Proof of Theorem 2.1. By Lemmas 2.13, 2.15, and 2.17, $x_{4}, x_{6} \in W$ and $x_{5} \notin W$. Define $G^{\prime}=G-\left\{x_{4}, x_{5}\right\}$ and $W^{\prime}=W \cup N\left(x_{4}\right) \cup N\left(x_{5}\right)-\left\{x_{4}, x_{5}\right\}$. Pick $a_{x_{5}}=b_{x_{6}}+f\left(x_{5} x_{6}\right), a_{x_{4}} \in Z_{3}-\left\{b_{x_{4}}, a_{x_{5}}+f\left(x_{4} x_{5}\right)\right\}$. Let $b_{z}=a_{x_{j}}-f\left(x_{j} z\right)$ if $z \in$ $N\left(x_{j}\right), 4 \leq j \leq 5$. By (F 1), b_{z} is well defined.

If $G\left[N\left(x_{4}\right) \cup N\left(x_{5}\right)\right]$ contains no 4 cycles, by Lemmas 2.5 and $2.6, G^{\prime}\left[W^{\prime}\right]$ is edgeless. Assume that $G\left[N\left(x_{4}\right) \cup N\left(x_{5}\right)\right]$ contains a 4-cycle $x_{4} q_{2} q_{1} x_{5} x_{4}$. By (F2) and Lemmas 2.5 and 2.6, $G^{\prime}\left[W^{\prime}\right]$ contains only edge $q_{1} q_{2}$, where $q_{2} \in N\left(x_{4}\right)$ and $q_{1} \in N\left(x_{5}\right)$. By Lemma 2.4 and (F1), $q_{1} \neq x_{6}$. Let $q_{2} q_{3} q_{4}$ be a 2-path where $q_{4} \in$ W^{\prime}. By (F2) and (F3), $q_{4} \in W$, contrary to Lemma 2.7 if $q_{2} \neq x_{3}$ or contrary to Lemma 2.6 if $q_{2}=x_{3}$. Thus, q_{2} plays the role of x of G if $q_{1} q_{2} \in E\left(G^{\prime}\left[W^{\prime}\right]\right)$. By (F2), $G^{\prime}\left[\left\{\lambda_{1}, \lambda_{2}, q_{1}, q_{2}\right\}\right]$ is not a 4-cycle for any pair of distinct vertices λ_{1}, λ_{2} of the out cycle of G^{\prime}

Therefore, both G^{\prime} and W^{\prime} satisfy the conditions of Theorem 2.1 (with q_{2} playing the role of x of G if $q_{1} q_{2} \in E\left(G^{\prime}\left[W^{\prime}\right]\right)$). By (3), c_{1} can be extended to a ($\left.Z_{3}, f\right)$ coloring c_{2} of G^{\prime}. Define

$$
c(z)= \begin{cases}c_{2}(z) & \text { if } z \in V(G)-\{x, y\} \\ a_{x_{3}} & \text { if } z=x_{3} \\ a_{x_{4}} & \text { if } z=x_{4}\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2). This completes the proof of the theorem.

Corollary 2.18. Let $G \in \mathcal{F}$ be a simple planar graph and let $H=K_{2}$. Then (G, H) is Z_{3}-extensible.

Proof. Let $f \in F\left(G, Z_{3}\right)$ and $V(H)=\left\{v_{1}, v_{2}\right\}$ and let $c_{0}: V(H) \mapsto Z_{3}$ is a $\left(Z_{3}, f\right)$-coloring of H. We may assume that in a plane embedding of G, the only edge in $E(H)$ is on the outer face of G. By Theorem 2.1, c_{0} can be extended to a $\left(Z_{3}, f\right)$-coloring of G.

3. Z_{3}-COLORING OF $\mathrm{K}_{3,3}-\mathrm{MINOR}$ FREE GRAPHS

Let G_{1} and G_{2} be two vertex disjoint bridgeless graphs and $u_{1}, v_{1} \in V\left(G_{1}\right), u_{2}, v_{2} \in$ $V\left(G_{2}\right)$. Obtain G by identifying u_{1} with u_{2} to get a new vertex u, and v_{1} with v_{2} to get a new vertex v. Then G is called a 2 -sum of G_{1} and $G_{2} .\{u, v\}$ is called a separating set of this 2-sum of G_{1} and G_{2}. If $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$, and if G is obtained from G_{1} and G_{2} by identifying u with v, then G is called a 1 -sum of G_{1} and G_{2}.

Hall [4] characterized the graphs excluding $K_{3,3}$ as a minor. There are several versions of this result (see [3,11],). The following theorem is due to Hall [4].
Theorem 3.1. (Hall [4]). Let G be a graph without $K_{3,3}$ minor. One of the followings must hold.
(1) G is a planar graph;
(2) $G \cong K_{5}$, or
(3) G can be constructed recursively by the i-sum of planar graphs and copies of K_{5} where $i \in\{1,2\}$.

Lemma 3.2. Let G be a graph with a vertex cut S such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=G[S]$. If $S=\{u\}$ and both G_{1} and G_{2} are $\left(Z_{3}, f\right)$-coloring, then G is $a\left(Z_{3}, f\right)$-coloring.

Proof. Let $f \in F\left(G, Z_{3}\right)$. Then there is $c_{1}: V\left(G_{1}\right) \mapsto Z_{3}$ such that for every directed edge $x y \in E\left(G_{1}\right), c_{1}(x)-c_{1}(y) \neq f(x y)$ and there is $c_{2}: V\left(G_{2}\right) \mapsto Z_{3}$ such that for every directed edge $z w \in E\left(G_{2}\right), c_{2}(z)-c_{2}(w) \neq f(z w)$. It follows that there is $a \in Z_{3}$ such that $c_{1}(u)=c_{2}(u)+a$. Define

$$
c(z)= \begin{cases}c_{1}(z) & \text { if } z \in V\left(G_{1}\right), \\ c_{2}(z)+a & \text { if } z \in V\left(G_{2}\right) .\end{cases}
$$

Then c is a $\left(Z_{3}, f\right)$-coloring of G.
Lemma 3.3. Suppose that H_{1} and H_{2} are both planar graphs in the construction procedure in Theorem 3.1, that $\{u, v\}$ is a separating set of a 2 -sum of H_{1} and H_{2} and that $u v \notin E\left(H_{1}\right) \cap E\left(H_{2}\right)$. Then $H_{i}+u v$ is planar or K_{5} for $i=1,2$.

Proof. By contradiction, we assume that $H_{1}+u v$ is not planar. If $H_{1}+u v$ has a $K_{3,3}$-minor N, then new edge $u v \in E(N)$ since H_{1} does not have a $K_{3,3}$-minor. Since G is 2 -connected and since $\{u, v\}$ is 2 -vertex cut of G, H_{2} must have a (u, v) path. It then follows that G has a $K_{3,3}$-minor, contrary to the assumption of G. Therefore $H_{1}+u v$ does not have a $K_{3,3}$-minor. By Theorem 3.1, $H_{1}+u v \cong K_{5}$. Thus $H_{1}+u v$ is planar or K_{5}. The proof for that case $H_{2}+u v$ is similar.

Theorem 3.4. Suppose that G is a connected $K_{3,3}$-minor free graph with girth at least 5. For each edge $e=u v \in E(G)$, let $H=G[\{u, v\}]$. Then (G, H) is $Z_{3}-$ extensible.

Proof. By contradiction, suppose that G is an counterexample with $|V(G)|$ minimized. By Theorem 2.1, we may assume that G is not planar. By Theorem 3.1 and Lemma 3.2, we may assume that G is 2-connected and G can be constructed recursively by 2 -sum of planar graphs since the girth of G is at least 5 .

We construct a new graph Γ as follows. The vertices of Γ are the planar graphs in the construction procedure in Theorem 3.1. Two vertices are adjacent if and only if the corresponding planar graphs have a common separating set of two vertices. It follows that Γ is a tree. Thus Γ has at least two vertices of degree 1 . Let G_{1} and G_{2} be two corresponding planar graphs to two vertices of degree 1 in Γ. Since G is of girth at least 5, we may assume that $\left|V\left(G_{i}\right)\right| \geq 5, i=1$, 2. Let $c_{0}:\{u, v\} \mapsto Z_{3}$ such that c_{0} is a $\left(Z_{3}, f\right)$-coloring of H.

By Theorem 2.1, Γ contains at least 2 vertices. When $|V(\Gamma)|=2, G$ is a 2-sum of G_{1} and G_{2}. If $\{u, v\}$ is a separating set of 2-sum of G_{1} and G_{2}, by Corollary 2.18, c_{0} can be extended to a (Z_{3}, f)-coloring of G_{1} and c_{0} can also be extended to a $\left(Z_{3}, f\right)$-coloring of G_{2}. Thus the theorem follows.

So we may assume that $|V(\Gamma)| \geq 3$ or $\{u, v\}$ is not a separating set of 2-sum of G_{1} and G_{2} if $|V(\Gamma)|=2$. Therefore $e=u v$ does not belong to at least one of G_{1} and G_{2}, say $e \notin E\left(G_{1}\right)$. Let $G=G_{1} \cup G_{1}^{\prime}$ such that $V\left(G_{1}\right) \cap V\left(G_{1}^{\prime}\right)=\left\{u^{\prime}, v^{\prime}\right\}$. Then $e \in E\left(G_{1}^{\prime}\right)$. If $u^{\prime} v^{\prime} \in E(G), e=u v \neq u^{\prime} v^{\prime}$ by assumption. By the minimality of G, c_{0} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{1} of G_{1}^{\prime}. By Corollary $2.18,\left.c_{1}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring of G_{1}. So c_{0} can be extended to a $\left(Z_{3}, f\right)$-coloring of G, a contradiction.

Thus we assume that $u^{\prime} v^{\prime} \notin E(G)$. Define G^{*} obtained from G by adding two new vertices v_{1}, v_{2} and three new edges $u^{\prime} v_{1}, v_{1} v_{2}, v_{2} v^{\prime}$ such that G_{i}^{*} is obtained from G_{1} and G_{1}^{\prime} by adding these two vertices and these three edges $(1 \leq i \leq 2)$, respectively. By Lemma 3.3, G_{1}^{*} is planar and each of G^{*}, G_{1}^{*}, and G_{2}^{*} has of girth at least 5. Assume that the path $u^{\prime} v_{1} v_{2} v^{\prime}$ is oriented from u^{\prime} to v_{1}, from v_{1} to v_{2}, from v_{2} to v^{\prime}. Define $f_{1}: E\left(G^{*}\right) \mapsto Z_{3}$ by

$$
f_{1}(e)= \begin{cases}f(e) & \text { if } e \in E(G), \\ 0 & \text { if } e \in\left\{u^{\prime} v_{1}, v_{1} v_{2}, v_{2} v^{\prime}\right\}\end{cases}
$$

Note that $u v \in E\left(G_{2}^{*}\right)-E\left(G_{1}^{*}\right)$ and $\left|V\left(G_{2}^{*}\right)\right|=|V(G)|-\left|V\left(G_{1}\right)\right|+2+2<$ $|V(G)|$. By the minimality of G, c_{0} can be extended to a $\left(Z_{3}, f\right)$-coloring c_{1} of G_{2}^{*}.

Let $G_{1}^{* *}=G_{1}^{*}-\left\{v_{1}, v_{2}\right\}+u^{\prime} v^{\prime}$. Since G_{1}^{*} is planar, $G_{1}^{* *}$ is also planar. We can imbed $G_{1}^{* *}$ in a plane such that the edge $u^{\prime} v^{\prime}$ is in the out face. Now we replace the edge $u^{\prime} v^{\prime}$ by the path $u^{\prime} v_{1} v_{2} v^{\prime}$. The resulting plane graph is the same one that G_{1}^{*} is embedded in a plane such that the edges $u^{\prime} v_{1}, v_{1} v_{2}, v_{2} v^{\prime}$ are in the outer face of G_{1}^{*}. Let $W=\left\{u^{\prime}, v^{\prime}\right\}$ and define $b_{u^{\prime}} \in Z_{3}-\left\{c_{1}\left(u^{\prime}\right), c_{1}\left(v_{1}\right)+f_{1}\left(u^{\prime} v_{1}\right)\right\}, b_{v^{\prime}} \in$ $Z_{3}-\left\{c_{1}\left(v^{\prime}\right), c_{1}\left(v_{2}\right)-f_{1}\left(v_{2} v^{\prime}\right)\right\}$. By Theorem 2.1, $\left.c_{1}\right|_{\left\{v_{1}, v_{2}\right\}} \mapsto Z_{3}$ can be extended to a $\left(Z_{3}, f_{1}\right)$-coloring c_{2} of G_{1}^{*} such that $\left.c_{2}\right|_{\left\{v_{1}, v_{2}\right\}}=\left.c_{1}\right|_{\left\{v_{1}, v_{2}\right\}}$ and $c_{2}\left(u^{\prime}\right) \neq b_{u^{\prime}}$,
$c_{2}\left(v^{\prime}\right) \neq b_{v^{\prime}}$. It follows that $c_{2}\left(u^{\prime}\right)=c_{1}\left(u^{\prime}\right)$ and $c_{2}\left(v^{\prime}\right)=c_{1}\left(v^{\prime}\right)$. Define

$$
c(z)= \begin{cases}c_{1}(z) & \text { if } z \in V\left(G_{1}\right) \\ c_{2}(z) & \text { if } z \in V\left(G_{1}^{\prime}\right)\end{cases}
$$

Then c is a $\left(Z_{3}, f\right)$-coloring of G, a contradiction.

4. REMARK

The proof of the main results in this article utilizes techniques in [12] developed for studying list-coloring. In [8], Lai and Zhang applied similar skills ([13]) for choosability to prove that every K_{5}-minor free graph G satisfies $\chi_{g}(G) \leq 5$. It is natural to conjecture that there might be a close relationship between the group chromatic number $\chi_{g}(G)$ and the choice number $\chi_{l}(G)$. In particular, examples ($[7,9]$) let us conjecture that $\chi_{l}(G) \leq \chi_{g}(G)$. Moreover, former studies of $\chi_{g}(G)$ (Theorem 3.1 and Corollary 4.2 of [9], Theorem 2 of [7], and Theorem 1.2 [8]) also let us to consider the following analogue of Hadwiger conjecture: if G does not have a K_{k}-minor, then $\chi_{g}(G) \leq k$.

APPENDIXES

Proof for the other three cases of Lemma 2.12. Suppose first that such 2-path $Q=x_{i+2} u^{\prime} x_{j}$ exists, where $j \in\{i+4, \ldots, m\}, u^{\prime} \in V(G)-V(C)$, and $x_{j} \in V(C)-W$. If $x_{j}=x_{i+4}$, by (F1) the cycle $x_{i+4} x_{i+3} x_{i+4} u^{\prime} x_{i+2}$ is facial. Thus $d_{G}\left(x_{i+3}\right)=2$, contrary to Lemma 2.4 .

Thus we assume that $j \in\{i+5, \ldots, m\}$. Let C_{3} be the cycle in $C \cup Q$ containing $u^{\prime} x_{i+2}$ and $x y$ and C_{4} the cycle in $C \cup Q$ containing $u^{\prime} x_{i+2}$ but not $x y$. Let $G_{i}=$ $C_{i} \cup \operatorname{int}\left(C_{i}\right), i=3,4$. By (3), we can extend c_{1} to a ($\left.Z_{3}, f\right)$-coloring c_{2} of G_{3}. Recall that Q is oriented from x_{i+2} to u^{\prime} and from x_{j} to u^{\prime}.

Let $W^{\prime \prime \prime}=\left(W \cap V\left(G_{4}\right)\right) \cup\left\{x_{i+2}\right\}$. By (W2), $x_{i+3} \notin W$. By Lemma 2.5, $G_{4}\left[W^{\prime \prime \prime}\right]$ is edgeless. Let $b_{x_{i+2}} \in Z_{3}-\left\{c_{2}\left(x_{i+2}\right), c_{2}\left(u^{\prime}\right)+f\left(x_{i+2} u^{\prime}\right)\right\}$. Therefore both G_{4} and $W^{\prime \prime \prime}$ satisfy the hypotheses of Theorem 2.1. By (3) again, $\left.c_{2}\right|_{\left\{u^{\prime}, x_{j}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of G_{4}. Using c_{2} and c_{3}, we can get a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Suppose then that such 3-path $P=x_{i-1} u^{\prime} v^{\prime} x_{j}$ exists, where $u^{\prime}, v^{\prime} \in V(G)-$ $V(C), x_{j} \in W$, and $j \in\{3, \ldots, i-4\}$. Let C_{5} be the cycle in $C \cup P$ containing $u^{\prime} v^{\prime}$ and $x y$ and Let C_{6} be the cycle in $C \cup P$ containing $u^{\prime} v^{\prime}$ but not $x y$. Let $G_{j}=$ $C_{j} \cup \operatorname{int}\left(C_{j}\right), j=5,6$. By (3), c_{1} can be extended to a (Z_{3}, f)-coloring c_{2} of G_{5}. Assume that $u^{\prime} v^{\prime}$ is oriented from u^{\prime} to v^{\prime}.

Let $W^{(4)}=\left(W \cap V\left(G_{6}\right) \cup\left\{x_{i-1}\right\}\right.$. By the assumption that $x y$ is only edge of $G[W]$ and Lemma 2.11, $x_{i-1} x_{i-2}$ is only edge of $G_{6}\left[W^{(4)}\right]$. By Lemma 2.6, there is no 2-path from x_{i-1} to any vertex of $W \cap V\left(G_{6}\right)$. Then G_{6} and $W^{(4)}$ satisfy the
hypotheses of Theorem 2.1 with x_{i-1} playing the role of x of G. Define

$$
b_{z}^{\prime \prime \prime}= \begin{cases}b_{z} & \text { if } z \in W^{(4)}-\left\{x_{i-1}, x_{j}\right\}, \\ b_{x_{i-1}} \in Z_{3}-\left\{c_{2}\left(x_{i-1}\right), c_{2}\left(u^{\prime}\right)+f\left(x_{i-1} u^{\prime}\right)\right\} & \text { if } z=x_{i-1} \\ b_{x_{j}} \in Z_{3}-\left\{c_{2}\left(x_{j}\right), c\left(v^{\prime}\right)+f\left(x_{j} v^{\prime}\right)\right\} & \text { if } z=x_{j} .\end{cases}
$$

By (3), $\left.c_{2}\right|_{\left\{u^{\prime}, v^{\prime}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring c_{3} of G_{6} such that $c_{3}\left(w^{(4)}\right) \neq$ $b_{w^{(4)}}$ for every $w^{(4)} \in W^{(4)}$. It follows that $c_{3}\left(x_{i-2}\right)=c_{2}\left(x_{i-2}\right)$ and $c_{3}\left(x_{j}\right)=c_{2}\left(x_{j}\right)$. Combining c_{2} and c_{3}, we get a required $\left(Z_{3}, f\right)$-coloring of G extending c_{1} such that $c(z) \neq b_{z}$ for each vertex $z \in W$, contrary to (2).

Finally, we suppose then that such 2-path $Q=x_{i-1} u^{\prime} x_{j}$ exists, where $u^{\prime} \in$ $V(G)-V(C), x_{j} \in V(C)-W$, and $j \in\{3, \ldots, i-4\}$. Let C_{7} be the cycle in $C \cup Q$ containing $u^{\prime} x_{i-1}$ and $x y$ and C_{8} the cycle in $C \cup Q$ containing $u^{\prime} x_{i-1}$ but not $x y$. Let $G_{i}=C_{i} \cup \operatorname{int}\left(C_{i}\right), i=7,8$. Let $G_{i}=C_{i} \cup \operatorname{int}\left(C_{i}\right), i=7$, 8. By (3), we can extend c_{1} to a $\left(Z_{3}, f\right)$-coloring c_{2} of G_{7}. Recall that Q is oriented from x_{i-1} to u^{\prime} and from x_{j} to u^{\prime}.

Let $W^{(5)}=\left(W \cap V\left(G_{8}\right)\right) \cup\left\{x_{i-1}\right\}$. By Lemma 2.11 and by the assumption that $x y$ is only edge of $G[W]$, it follows that $x_{i-1} x_{i-2}$ is only edge of $G_{8}\left[W^{(5)}\right]$. By Lemma 2.6, there is no 2-path from x_{i-1} to any vertex of $W \cap V\left(G_{8}\right)$. Let $b_{x_{i-1}} \in Z_{3}-$ $\left\{c_{2}\left(x_{i-1}\right), c_{2}\left(u^{\prime}\right)+f\left(x_{i-1} u^{\prime}\right)\right\}$. Therefore both G_{8} and $W^{(5)}$ satisfy the hypotheses of Theorem 2.1 with x_{i-1} playing the role of x of G. By (3) again, $\left.c_{2}\right|_{\left\{u^{\prime}, x_{j}\right\}}$ can be extended to a (Z_{3}, f)-coloring c_{3} of G_{8}. Using c_{2} and c_{3}, we can get a required (Z_{3}, f)-coloring of G, contrary to (2).

Proof of Lemma 2.9 (ii). Assume that such a 4-cycle exists. Define $G^{\prime}=G-\left\{x_{i-1}, x_{i}, x_{i+1}, q\right\}$ and $W^{\prime}=W \cup N\left(x_{i-1}\right) \cup N\left(x_{i}\right) \cup N\left(x_{i+1}\right) \cup N(q)-$ $\left\{x_{i-1}, x_{i}, x_{i+1}, q\right\}$. If $x_{i-2} \in W$, define $a_{x_{i-1}}=b_{x_{i-2}}-f\left(x_{i-2} x_{i-1}\right), a_{x_{i}} \in Z_{3}-\left\{b_{x_{i}}\right.$, $\left.a_{x_{i-1}}-f\left(x_{i-1} x_{i}\right)\right\}, a_{x_{i+1}} \in Z_{3}-\left\{b_{x_{i+1}}, a_{x_{i}}-f\left(x_{i} x_{i+1}\right\}, a_{q} \in Z_{3}-\left\{a_{i-1}-f\left(x_{i-1} q\right)\right.\right.$, $\left.a_{x_{i+1}}-f\left(x_{i+1} q\right)\right\}$. If $x_{i-2} \notin W$, define $a_{x_{i}} \in Z_{3}-\left\{b_{x_{i}}\right\}, a_{x_{i-1}} \in Z_{3}-\left\{a_{x_{i}}+\right.$ $\left.f\left(x_{i} x_{i+1}\right)\right\}, a_{x_{i+1}} \in Z_{3}-\left\{b_{x_{i+1}}, a_{x_{i}}-f\left(x_{i} x_{i+1}\right\}, a_{q} \in Z_{3}-\left\{a_{i-1}-f\left(x_{i-1} q\right), a_{x_{i+1}}-\right.\right.$ $\left.f\left(x_{i+1} q\right)\right\}$. Let $b_{z}=a_{x_{j}}-f\left(x_{j} z\right)$ for every $z \in N\left(x_{j}\right)-\left\{x_{i-1}, x_{i}, x_{i+1}, q\right\}, j \in$ $\{i-1, i, i+1\}$, and $b_{z}=a_{q}-f(q z)$ for every $z \in N(q)-\left\{q, x_{i}, x_{i+2}\right\}$. By (F2), b_{z} is well defined. If there is a 2-path $x_{i-1} q x_{j}$ where $x_{j} \in W$, by Lemma 2.6 $x_{j} \in\left\{x_{i+4}, x_{i+5}, \ldots, x_{m}\right\}$. By Lemma 2.7, there is no 3-path $x_{i_{1}} q q^{\prime} x_{j}$ where $x_{j} \in W$. Thus G^{\prime} may has some cut vertices. We will distinguish the following two cases.

Case 1. There is a 2-path $x_{i-1} q x_{j}$ where $x_{j} \in W, j \in\{i+3, i+4, \ldots, m\}$.
Then G^{\prime} can be decomposed into blocks $B_{1}, B_{2}, \ldots, B_{k}$ such that
(1) B_{1} contains the edge $u v$ and B_{k} contains x_{i+2}, and
(2) $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)$ is a cut vertex.

We claim that c_{1} can be extended to a ($\left.Z_{3}, f\right)$-coloring of B_{1}. Suppose that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{z\}$. Then $B_{1}\left[W^{\prime}\right]$ contains at most one edge $z w$ where $w \in W$.

By Lemma 2.6, there is no 2 -path from z to any vertex of $B_{1}\left[W^{\prime}\right]$. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring of B_{1}.

Now we claim that if c_{1} can be extended to a (Z_{3}, f)-coloring of $B_{1} \cup B_{2} \cup$ $\ldots \cup B_{i}$, then c_{1} can be extended to a (Z_{3}, f)-coloring c_{2} of $B_{1} \cup B_{2} \cup \ldots \cup B_{i+1}$. Observe the block $B_{i+1} . B_{i+1}\left[W^{\prime}\right]$ contains at most two edges one of those contains vertices of $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)$ and the other contains vertices of $V\left(B_{i+1}\right) \cap V\left(B_{i+2}\right)$. Suppose that $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)=\left\{z_{1}\right\}$. We define z_{2} as follows. If $B_{i+1}\left[W^{\prime}\right]$ does not contain an edge one end of which is z_{1}, let $z_{2} \in V\left(B_{i+1}\right) \cap V(C)$ such that $z_{1} z_{2} \in E(G)$. If $B_{i+1}\left[W^{\prime}\right]$ contains an edge one end of which is z_{1}, let z_{2} be the other end of such edge. Assume that $z_{1} z_{2}$ is oriented from z_{1} to z_{2}. Define $c_{1}\left(z_{2}\right) \in$ $Z_{3}-\left\{b_{z_{2}}, c_{1}\left(z_{1}\right)-f\left(z_{1} z_{2}\right)\right\}$.

Now we consider the vertex, say z_{1}^{\prime}, of $V\left(B_{i+1}\right) \cap V\left(B_{i+2}\right)$. Then $B_{i+1}\left[W^{\prime}\right]$ may contains an edge one end of which is z_{1}^{\prime}. If $B_{i+1}\left[W^{\prime}\right]$ indeed contains such edge, let z_{2}^{\prime} be the other end of that edge. By Lemma 2.6, there is no 2-path from z_{1}^{\prime} to any vertex of $V\left(B_{i+1}\right) \cap W^{\prime}$. Therefore $z_{1} z_{2}$ plays the role of $u v$ in G and $z_{1}^{\prime} z_{2}^{\prime}$ plays the role of $x y$ in G if such $z_{1}^{\prime} z_{2}^{\prime}$ exists. By (3), $\left.c_{2}\right|_{\left\{z_{1}, z_{2}\right\}}$ can be extended to a $\left(Z_{3}, f\right)$-coloring of $B_{1} \cup B_{2} \cup \ldots \cup B_{i+1}$.

Thus we assume that c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c^{\prime} of G^{\prime}. Define

$$
c(z)= \begin{cases}c^{\prime}(z) & \text { if } z \in V\left(G^{\prime}\right), \\ a_{x_{j}} & \text { if } z=x_{j}, j \in\{i-1, i, i+1\}, \\ a_{q} & \text { if } z=q .\end{cases}
$$

Then c is a required $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

Case 2. There is no a 2-path $x_{i-1} q x_{j}$ where $j \in\{i+3, i+4, \ldots, m\}$.
By Lemmas 2.6 and 2.7, $G^{\prime}\left[W^{\prime}\right]$ contains no edges. By (3), c_{1} can be extended to a $\left(Z_{3}, f\right)$-coloring c^{\prime} of G^{\prime}. Define

$$
c(z)= \begin{cases}c^{\prime}(z) & \text { if } z \in V\left(G^{\prime}\right), \\ a_{x_{j}} & \text { if } z=x_{j}, j \in\{i-1, i, i+1\}, \\ a_{q} & \text { if } z=q .\end{cases}
$$

Then c is a $\left(Z_{3}, f\right)$-coloring of G, contrary to (2).

ACKNOWLEDGMENTS

The authors are grateful to the referees for their helpful suggestions.

REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications, American Elsevier, New York, 1976.
[2] Z. H. Chen, H. -J. Lai, X. Lei, and X. Zhang, Group coloring and group connectivity of graphs, Congressus Numerantium 134 (1998), 123-130.
[3] R. Diestel, Graph Theory, Springer, New York, 2000.
[4] D. W. Hall, A note on primitive skew curves, Bull Amer Math Soc 49 (1943), 932-937.
[5] F. Jaeger, Nowhere-zero flow problems, In Selected Topics in Graph Theory, L. Beineke and R. Wilson (Eds), Vol. 3, Academic Press, London/New York, 1988, pp. 91-95.
[6] F. Jaeger, N. Linial, C. Payan, and M. Tarsi, Group connectivity of graphs-A nonhomogeneous analogue of nowhere-zero flow properties, J Combin Theory Ser B 56 (1992), 165-182.
[7] D. Král, O. Prangrác, and H. Voss, A note on group colorings of J Graph Theory 50 (2005), 123-129.
[8] H. -J. Lai and X. Zhang, Group colorability of graphs without K_{5}-minors, Graphs Combinatorics 18 (2002), 147-154.
[9] H. -J. Lai and X. Zhang, Group colorability of graphs, Ars Combinatoria 62 (2002), 299-317.
[10] H.-J. Lai and X. Li, On group chromatic number of graphs, Graphs Combinatorics, to appear.
[11] C. Thomassen, Embeddings and minors, In Handbook of Combinatorics, R. Graham, M. Grŏtschel, and L. Lovász (Eds), Elsevier Science, Amsterdam B.V., 1995.
[12] C. Thomassen, 3-list-coloring planar graps of girth 5, J Combinatorial Theory Ser B 62 (1995), 180-181.
[13] C. Thomassen, Every planar graph is 5-choosable, J Combinatorial Theory Ser B 64 (1995), 101-107.
[14] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

