Nowhere Zero 4-Flow in Regular Matroids

Hong-Jian Lai, ${ }^{1}$ Xiangwen Li, ${ }^{2}$ and Hoifung Poon ${ }^{1}$
${ }^{1}$ DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA 26506-6310
E-mail: hjlai@math.wvu.edu
${ }^{2}$ DEPARTMENT OF MATHEMATICS SOUTH CHINA UNIVERSITY OF TECHNOLOGY GUANGZHOU, P. R. CHINA

Received August 6, 2001; Revised August 30, 2004

Published online 29 March 2005 in Wiley InterScience(www.interscience.wiley.com).
DOI 10.1002/jgt. 20075

Abstract

Jensen and Toft [8] conjectured that every 2-edge-connected graph without a K_{5}-minor has a nowhere zero 4-flow. Walton and Welsh [19] proved that if a coloopless regular matroid M does not have a minor in $\left\{M\left(K_{3,3}\right), M^{*}\left(K_{5}\right)\right\}$, then M admits a nowhere zero 4-flow. In this note, we prove that if a coloopless regular matroid M does not have a minor in $\left\{M\left(K_{5}\right), M^{*}\left(K_{5}\right)\right\}$, then M admits a nowhere zero 4-flow. Our result implies the Jensen and Toft conjecture. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 196-204, 2005

Keywords: nowhere zero flows; regular matroids cycle covers; excluded-minors

1. INTRODUCTION

We shall assume familiarity with graph theory and matroid theory. For terms that are not defined in this note, see Bondy and Murty [4] for graphs, and Oxley [10] or Welsh [20] for matroids.
© 2005 Wiley Periodicals, Inc.

Throughout this paper, $\mathbf{Z}, \mathbf{Z}^{+}$, and \mathbf{Z}_{n} denote the additive group of the integers, the set of all positive integers, and the cyclic group of order n, respectively. To be consistent with the matroid terminology, a nontrivial 2-regular connected graph will be called a circuit, and a disjoint union of circuits a cycle. Note that as we allow empty unions, the empty set is also a cycle (in both graphs and matroids). For matroids $N_{1}, N_{2}, \ldots, N_{k}$, let $E X\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ denote the collection of matroids such that a matroid $M \in E X\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ if and only if M does not have a minor isomorphic to any one in $\left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$. The Fano matroid F_{7} is the vector matroid over $\mathrm{GF}(2)$ of the following matrix A :

$$
A=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Flow was initially defined for graphs. For a discussion on flow and flow conjectures, see Jaeger [7] or Zhang [21]. The definition of flow has a natural extension to regular matroids. Let M be a regular matroid and D_{M} be its incidence matrix of circuits against elements. An orientation $\left(w\left(D_{M}\right), w\left(D_{M^{*}}\right)\right)$ is an assignment of,+- signs to the " 1 " entries of D_{M} and $D_{M^{*}}$, respectively, so that the resulting matrices $w\left(D_{M}\right)$ and $w\left(D_{M^{*}}\right)$ satisfy

$$
w\left(D_{M}\right) w\left(D_{M^{*}}\right)^{T}=0
$$

Let A be an abelian group. For an element $a \in A$, and for integers $+1,-1,0$, we adopt the convention to write $(+1) \cdot a=a,(-1) \cdot a=-a$, and $0 \cdot a=0$. Let $F^{*}(M, A)=\{f: E(M) \mapsto A \backslash\{0\}\}$ denote the set of all functions from $E(M)$ into $A \backslash\{0\}$. A map $f \in F^{*}(M, A)$ can be viewed as an $|E(M)|$-dimensional column vector. For a regular matroid M with an orientation $\left(w\left(D_{M}\right), w\left(D_{M^{*}}\right)\right)$, a map $f \in F^{*}(M, A)$ satisfying

$$
w\left(D_{M^{*}}\right) \cdot f=0
$$

is a nowhere zero A-flow (A-NZF for short) of M. When $A=\mathbf{Z}$, a Z-NZF f of M is called a nowhere zero k-flow (k-NZF for short) of M if $\forall e \in E(M)$, $0<|f(e)|<k$.

For positive integers k and m, an m-cycle k-cover of a matroid M is a family of cycles $C_{1}, C_{2}, \ldots, C_{m}$ of M such that every element of $E(M)$ lies in exactly k members of these C_{i} 's. It has been observed that a graph G admits a 4-NZF if and only if G has a 3 -cycle 2 -cover (for example, see Zhang [21]). We shall show later in this section that this is also true for regular matroids.

Proposition 1.1. Let M be a regular matroid. Then M admits $a 4-N Z F$ if and only if M has a 3-cycle 2-cover.

Tutte proposed the famous 4 -flow conjecture as follows:
Conjecture 1.2 (Tutte [16] and [17], Matthews [9]). Let G be a 2-edge-connected graph. If G does not have a Peterson graph minor, then G admits a 4-NZF.

Jensen and Toft presented a weaker form of Conjecture 1.2 in 1995.
Conjecture 1.3 (Jensen and Toft [8]). Every 2-edge-connected graph without a K_{5}-minor has a 4-NZF.

The main objective of this paper is to prove Conjecture 1.3 by proving a stronger result in the matroid context as follows:

Theorem 1.4. If M is a coloopless regular matroid such that $M \in E X\left(M\left(K_{5}\right)\right.$, $\left.M^{*}\left(K_{5}\right)\right)$, then M admits a 4-NZF.

Corollary 1.5. Conjecture 1.3 holds affirmatively.

Proof. Let G be a 2-edge-connected graph without a K_{5}-minor. Then $M(G)$ is graphic and thus is regular. Since $M^{*}\left(K_{5}\right)$ is not graphic, neither $M\left(K_{5}\right)$ nor $M^{*}\left(K_{5}\right)$ is a minor of $M(G)$. By Theorem 1.4, $M(G)$ has a 4-NZF.

The definition of flow has no natural extension to binary matroids, whereas cycle cover is defined for general matroids. In view of Proposition 1.1 and the excluded-minor characterization of regular matroids, Theorem 1.4 is equivalent to saying that if $M \in E X\left(F_{7}, F_{7}^{*}, M\left(K_{5}\right), M^{*}\left(K_{5}\right)\right)$ is a coloopless binary matroid, then M has a 3-cycle 2-cover. In Section 3, we will show that this result can be extended in the following form.

Corollary 1.6. Let M be a coloopless binary matroid. If $M \in \operatorname{EX}\left(F_{7}^{*}, M\left(K_{5}\right)\right.$, $\left.M^{*}\left(K_{5}\right)\right), M$ has a 3-cycle 2-cover.

As the matroid F_{7}^{*} does not have a 3-cycle 2-cover, Corollary 1.6 does not hold if F_{7}^{*} is not excluded.

In the remainder of this section, we will introduce the relevant definitions and briefly review the relevant results. In Section 2, we extract a decomposition theorem for regular matroids without $M\left(K_{5}\right)$ or $M^{*}\left(K_{5}\right)$ minors from the wellknown decomposition theorems of Seymour [13] and Wagner [18]. In Section 3, this theorem will be employed to prove Theorem 1.4 and Corollary 1.6.

Theorem 1.7 (Tutte [15], Brylawski [6], Arrowsmith and Jaeger [3]). Let M be a regular matroid and A be an abelian group of order k. Then M has an A-NZF if and only if M has a $k-N Z F$.

Proof of Proposition 1.1. Let M be a regular matroid. If M has a 3-cycle 2cover $\left\{C_{1}, C_{2}, C_{3}\right\}$. Then $E(M)=C_{1} \cup C_{2}$. Let $f_{i}: C_{i} \mapsto\{1\} \in \mathbf{Z}_{2}$, for $i \in\{1,2\}$. Since C_{i} is a cycle, $f=\left(f_{1}, f_{2}\right) \in F^{*}\left(M, \mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$ is a $\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$-NZF. By Theorem 1.7, M has a 4-NZF. By reversing this argument, we can also construct a 3-cycle 2-cover from a $\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$-NZF of M.

The Four-Color theorem can be stated in terms of nowhere zero flows as follows:

Theorem 1.8. (Appel and Haken [1], Appel, Haken, and Hoch [2], Robertson, Sanders, Seymour, and Thomas [11]). Every 2-edge-connected planar graph admits a 4-NZF.

Applying the Four-Color theorem, and the duality between colorings and nowhere zero flows, a result by Walton and Welsh implies the following:

Theorem 1.9 (Walton and Welsh [19]). If M is a coloopless regular matroid such that $M \in E X\left(M\left(K_{3,3}\right), M^{*}\left(K_{5}\right)\right)$, then M admits a $4-N Z F$.

Recently Robertson et al. proved Conjecture 1.2 for cubic graphs.
Theorem 1.10 (Robertson, Sanders, Seymour, and Thomas, [12]). Every 2-edge-connected cubic graph without a minor isomorphic to the Petersen graph admits a 4-NZF.

2. DECOMPOSITION OF REGULAR MATROIDS IN $E X\left(M\left(K_{5}\right), M^{*}\left(K_{5}\right)\right)$

In this paper, we use \triangle to denote both a set operator and a matroid operator. Given two sets X and Y, the symmetric difference of X and Y is defined as

$$
X \triangle Y=(X \cup Y)-(X \cap Y)
$$

Now suppose that M_{1}, M_{2} are binary matroids on E_{1} and E_{2}, respectively. We follow Seymour [13] and define a new binary matroid $M_{1} \triangle M_{2}$ to be the matroid with ground set equal to $E_{1} \triangle E_{2}$ and with its set of cycles equal to

$$
\left\{C_{1} \triangle C_{2} \subseteq E_{1} \triangle E_{2}: C_{i} \text { is a cycle of } M_{i}, i=1,2\right\} .
$$

Three special cases of this operation are introduced by Seymour ([13] and [14]) as follows.
(i) If $E_{1} \cap E_{2}=\emptyset$ and $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|, M_{1} \triangle M_{2}$ is a 1-sum of M_{1} and M_{2}.
(ii) If $\left|E_{1} \cap E_{2}\right|=1$ and $E_{1} \cap E_{2}=\{z\}$, say, if z is not a loop or coloop of M_{1} or M_{2}, and if $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|, M_{1} \triangle M_{2}$ is a 2-sum of M_{1} and M_{2}.
(iii) If $\left|E_{1} \cap E_{2}\right|=3$ and $E_{1} \cap E_{2}=Z$, say, if Z is a circuit of M_{1} and M_{2}, and Z includes no cocircuit of either M_{1} or M_{2}, and if $\left|E_{1}\right|,\left|E_{2}\right|<\left|E_{1} \triangle E_{2}\right|$, $M_{1} \triangle M_{2}$ is a 3-sum of M_{1} and M_{2}.

For $i=1,2,3$, an i-sum of M_{1}, M_{2} is denoted as $M_{1} \oplus_{i} M_{2}$. The 1 -sum $M_{1} \oplus_{1} M_{2}$ is also written as $M_{1} \oplus M_{2}$. Let R_{10} denote the vector matroid of the following matrix over $G F(2)$:

$$
R_{10}=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

It is known that R_{10}^{*} is isomorphic to R_{10}. Based on the notion of matroid sums, Seymour proved the following decomposition theorem for regular matroids.

Theorem 2.1 (Seymour [13]). Let M be a regular matroid. One of the following must hold:
(i) M is graphic.
(ii) M is cographic.
(iii) $M \cong R_{10}$.
(iv) For some $i \in\{1,2,3\}, M=M_{1} \oplus_{i} M_{2}$ is the i-sum of two matroids M_{1} and M_{2}, each of which is isomorphic to a proper minor of M.

Theorem 2.2 (Seymour, Proposition (2.9) of [13]). Let M be a binary matroid. Then each of the following holds.
(i) Let $\left(X_{1}, X_{2}\right)$ be an exact 3-separation of a binary matroid M with $\left|X_{1}\right|,\left|X_{2}\right| \geq 4$, and let Z be a 3-element set that is disjoint from $E(M)$. Then, there are binary matroids M_{1} and M_{2} on $X_{1} \cup Z$ and $X_{2} \cup Z$, respectively, such that $M=M_{1} \oplus_{3} M_{2}$.
(ii) If M is a 3-sum of M_{1} and M_{2}, then $\left(E\left(M_{1}\right) \backslash E\left(M_{2}\right), E\left(M_{2}\right) \backslash E\left(M_{1}\right)\right)$ is an exact 3-separation of M, and $\min \left\{\left|E\left(M_{1}\right) \backslash E\left(M_{2}\right)\right|,\left|E\left(M_{2}\right) \backslash E\left(M_{1}\right)\right|\right\}>3$.

Lemma 2.3. Let M be a 3-connected binary matroid such that M is a 3-sum of two matroids M_{1} and M_{2}. Then M^{*} is also a 3-sum.

Proof. Define $X_{1}=E\left(M_{1}\right) \backslash E\left(M_{2}\right), X_{2}=E\left(M_{2}\right) \backslash E\left(M_{1}\right)$. By Theorem 2.2(ii), $\left(X_{1}, X_{2}\right)$ is an exact 3 -separation of M such that $\min \left\{\left|X_{1}\right|,\left|X_{2}\right|\right\} \geq 4$. Note that (X_{1}, X_{2}) is also an exact 3-separation of M^{*}, and that M^{*} is a 3-connected binary matroid. By Theorem 2.2(i), M^{*} must also be a 3 -sum.

If a matroid M is isomorphic to the cycle matroid of a planar graph, then M is called a planar matroid. Thus, a matroid M is planar if and only if M^{*} is planar. Let H_{8} denote the graph depicted in Figure 1 below.

Wagner's original statement of his decomposition theorem is in pure graph theory terms. A matroidal version is given as follows (see Seymour [13] and [14]).

Theorem 2.4 (Wagner [23]). Let M be a graphic matroid that does not contain a minor isomorphic to $M\left(K_{5}\right)$. One of the following must hold:

FIGURE 1. The graph H_{8}.
(i) M is a planar matroid.
(ii) $M \cong M\left(H_{8}\right)$.
(iii) $M \cong M\left(K_{3,3}\right)$.
(iv) For some $i \in\{1,2,3\}, M=M_{1} \oplus_{i} M_{2}$ is the i-sum of two matroids M_{1} and M_{2}, such that both M_{1} and M_{2} are proper minors of M.

Proposition 2.5 (Propositions 4.2.11, 8.3.1 and 12.4.16 of [10]). Each of the following holds:
(i) The matroid M is not 2-connected, if and only if for some proper nonempty subset T of $E(M), M=(M \mid T) \oplus(M \mid(E \backslash T))$. Note that $M \mid T$ and $M \mid(E \backslash T)$ are both proper minors of M.
(ii) The matroid M is 2-connected but not 3-connected, if and only if $M=M_{1} \oplus_{2} M_{2}$ for some matroids M_{1} and M_{2}, each of which is isomorphic to a proper minor of M.
(iii) If M is a 3-connected binary matroid and a 3-sum of M_{1} and M_{2}, then M_{1} and M_{2} are isomorphic to proper minors of M.

Let \mathcal{G} denote the family of matroids such that a matroid $M \in \mathcal{G}$, if and only if M is a planar matroid or M is isomorphic to a member in the collection $\left\{M\left(H_{8}\right)\right.$, $\left.M^{*}\left(H_{8}\right), M\left(K_{3,3}\right), M^{*}\left(K_{3,3}\right), R_{10}\right\}$. By definition, a matroid $M \in \mathcal{G}$, if and only if $M^{*} \in \mathcal{G}$.

Theorem 2.6. Let M be a regular matroid that does not have a minor isomorphic to $M\left(K_{5}\right)$ or $M^{*}\left(K_{5}\right)$. Then one of the following must hold:
(i) $M \in \mathcal{G}$.
(ii) For some $i \in\{1,2,3\}, M=M_{1} \oplus_{i} M_{2}$ is the i-sum of two matroids M_{1} and M_{2}, such that both M_{1} and M_{2} are proper minors of M.

Proof. Let M be a regular matroid without a minor isomorphic to $M\left(K_{5}\right)$ or $M^{*}\left(K_{5}\right)$, and such that $M \notin \mathcal{G}$. Since \mathcal{G} is closed under taking duals, $M^{*} \notin \mathcal{G}$. We shall show that M satisfies Theorem 2.6 (ii).

If M is not 2 -connected, by Proposition 2.5 (i), M must be a 1 -sum of two proper minors of M. If M is 2-connected but not 3-connected, by Proposition 2.5 (ii), M must be a 2-sum of two proper minors of M. In either case, Theorem 2.6
(ii) must hold.

Therefore, we assume that M is 3-connected. Since M is regular, one of the conclusions of Theorem 2.1 must hold. Since $R_{10} \in \mathcal{G}, M$ cannot be R_{10}.

If M is graphic, then by Theorem 2.4 and since M is 3-connected, either $M \in \mathcal{G}$ or M is a 3-sum of two proper minors M_{1} and M_{2}, and so Theorem 2.6 (ii) must hold.

Now suppose that M is a 3-connected cographic matroid. Since $M^{*} \notin \mathcal{G}$, by Theorem 2.4, M^{*} must be a 3 -sum of two proper minors. By Lemma 2.3, M must also be a 3-sum of two matroids M_{1} and M_{2}. By Proposition 2.5 (iii), M_{1} and M_{2} are isomorphic to proper minors of M, and hence Theorem 2.6 (ii) must hold.

Now if M is neither graphic nor cographic, Theorem 2.6 (ii) follows from Theorem 2.1 (iv), and this completes the proof for Theorem 2.6.

3. THE PROOFS OF THEOREM 1.4 AND COROLLARY 1.6

In view of Proposition 1.1, we will prove Theorem 1.4 by showing that M has a 3cycle 2 -cover given the assumption of the theorem. We first establish some lemmas.

Proposition 3.1. Each of the following holds:
(i) Each of $M\left(H_{8}\right), M^{*}\left(H_{8}\right), M\left(K_{3,3}\right), M^{*}\left(K_{3,3}\right), R_{10}, F_{7}$ has a 3-cycle 2-cover.
(ii) F_{7}^{*} cannot have a 3-cycle 2-cover.

These results follow from the known facts about tangential 2-blocks. See, for example, the discussion on Tutte's tangential 2-block conjecture in [5]. The results can also be verified directly in a straightforward way.

Proposition 3.2 (Seymour [13], also see Oxley [10], Exercise 6 in Section 12.4). Suppose that M, M_{1}, M_{2} are binary matroids. If $M=M_{1} \triangle M_{2}$, then $M^{*}=M_{1}^{*} \triangle M_{2}^{*}$.

Lemma 3.3. Suppose that M, M_{1}, M_{2} are binary matroids and that each of M_{1} and M_{2} has a 3-cycle 2-cover. Then each of the following holds:
(i) If $M=M_{1} \oplus M_{2}$ is a 1-sum of M_{1} and M_{2}, then M also has a 3-cycle 2cover.
(ii) If $M=M_{1} \oplus_{2} M_{2}$ is a 2-sum of M_{1} and M_{2}, then M also has a 3-cycle 2cover.

Proof. (i) Suppose that $M=M_{1} \oplus M_{2}$. For $k=1,2$, we assume that M_{k} has a 3-cycle 2-cover, denoted as $C_{k, 1}, C_{k, 2}, C_{k, 3}$. It follows that $\left\{C_{1, i} \cup C_{2, i}: i=1,2,3\right\}$ is a 3-cycle 2-cover of M.
(ii) Now assume that $M=M_{1} \oplus_{2} M_{2}$. Denote $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\{e\}$. For each $k \in\{1,2\}$, assume that M_{k} has a 3-cycle 2-cover, denoted as $C_{k, 1}, C_{k, 2}, C_{k, 3}$. Note that by the definition of a 2-cover, e appears exactly twice in each set of 3 cycles. Without loss of generality, we may assume that $e \in C_{k, i}, k, i=1,2$. Now it is easy to verify that $\left\{C_{1, i} \triangle C_{2, i}: i=1,2,3\right\}$ is a 3-cycle 2-cover of M.

Let \mathcal{F}_{4} denote the set of all matroids that have a 3-cycle 2 -cover. Let \mathcal{F} denote the set of loopless and coloopless regular matroids, which have no minors isomorphic to $M\left(K_{5}\right)$ or $M^{*}\left(K_{5}\right)$. Note that \mathcal{F} is closed under taking duals and isomorphism, and that if $M \in \mathcal{F}$ and if N is a loopless and coloopless minor of N, then $N \in \mathcal{F}$ also. Thus, for some $i \in\{1,2,3\}$, if $M \in \mathcal{F}$ is an i-sum of M_{1} and M_{2}, each of which is a proper minor of M, then neither M_{1} nor M_{2} has any loop or coloop and therefore M_{1} and M_{2} are also in \mathcal{F}.

Let M be a matroid satisfying the hypothesis of Theorem 1.4, and let C be the union of all its loops. Then C is a cycle of M and $M \backslash C$ is a matroid in \mathcal{F}, and M has a 3-cycle 2 -cover if and only if $M \backslash C$ has a 3-cycle 2-cover. Therefore, to prove Theorem 1.4, it suffices to prove that $\mathcal{F} \subseteq \mathcal{F}_{4}$.

Proof of Theorem 1.4. Let $M \in \mathcal{F}$. If $M \in \mathcal{G}$, by Proposition 1.1, Theorem 1.8 and Proposition 3.1, $M \in \mathcal{F}_{4}$. We argue by induction on $|E(M)|$, and assume that $M \notin \mathcal{G}$ and that for every $N \in \mathcal{F}$ with $|N|<|M|, N \in \mathcal{F}_{4}$.
Case 1. M is not 3-connected.
By Proposition 2.5 (i) and (ii), for $i \in\{1,2\}, M=M_{1} \oplus_{i} M_{2}$ for some proper minors M_{1}, M_{2}. Hence by induction and by Lemma 3.3, $M \in \mathcal{F}_{4}$.
Case 2. M is 3-connected.
Since \mathcal{G} is closed under taking dual, $M^{*} \notin \mathcal{G}$. By Theorem 2.6, M^{*} must be a 1-, 2-, or 3-sum of two proper minors of M^{*}. Since M, and so M^{*} are 3-connected, it follows that $M^{*}=M_{1} \oplus_{3} M_{2}$ is a 3-sum of some proper minor M_{1} and M_{2} of M^{*}. Denote $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}=Z$. Then Z is a circuit of M_{1} and M_{2}.

By Proposition 3.2, $M=M_{1}^{*} \triangle M_{2}^{*}$. Note that M_{1}^{*} and M_{2}^{*} are proper minors of M, therefore $M_{1}^{*}, M_{2}^{*} \in \mathcal{F}$. For $k=1,2$, by induction, M_{k}^{*} has a 3-cycle 2 -cover, denoted as $C_{k, 1}, C_{k, 2}, C_{k, 3}$. Since Z is a cocircuit in binary matroids M_{1}^{*} and $M_{2}^{*},\left|C_{k, i} \cap Z\right|$ must be even for any $k \in\{1,2\}, i \in\{1,2,3\}$. Therefore, $\left|C_{k, i} \cap Z\right| \in\{0,2\}$. As for each $k \in\{1,2\},\left\{C_{k, 1}, C_{k, 2}, C_{k, 3}\right\}$ is a 2-cover of M_{k}, the following must hold:

$$
\left\{C_{k, 1} \cap Z, C_{k, 2} \cap Z, C_{k, 3} \cap Z\right\}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}, e_{3}\right\}\right\}
$$

Without loss of generality, we may assume that $C_{k, i} \cap Z=Z-\left\{e_{i}\right\}$ for $k \in\{1,2\}$ and $i \in\{1,2,3\}$. Now it is easy to see that $\left\{C_{1, i} \triangle C_{2, i}: i=1,2,3\right\}$ is a 3 -cycle 2 -cover of M, and so $M \in \mathcal{F}_{4}$.

This proves Case 3 and thus completes the proof of Theorem 1.4.
For binary matroids without F_{7}^{*} minor, Seymour has established the following decomposition theorem.

Theorem 3.4 (Seymour [17]). Every binary matroid without F_{7}^{*} minor may be obtained by means of proper 1 -sums or 2-sums from regular matroids and copies of F_{7}.

Proof of Corollary 1.6. This follows from Proposition 3.1, Lemma 3.3, Theorem 3.4, and Theorem 1.4.

REFERENCES

[1] K. Appel and W. Haken, Every planar map is four colorable, Part I: Discharging, Illinois J Math 21 (1977), 429-490.
[2] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable, Part II: Reducibility, Illinois J Math 21 (1977), 491-567.
[3] D. K. Arrowsmith and F. Jaeger, On the enumeration of chains in regular chain groups, J Combin Theory Ser B 32 (1982), 75-89.
[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[5] T. H. Brylawski and J. G. Oxley, The Tutte polynomial and its applications, Matroid Applications, N. White, (Editors), Cambridge University Press, Cambridge/New York, 1992.
[6] T. H. Brylawski, A decomposition for combinatorial geometries, Tran Am Math Soc 171 (1972), 235-282.
[7] F. Jaeger, Nowhere-zero flow problems, Selected Topics in Graph Theory, Vol. 3, L. Beineke and R. Wilson, (Editors), Academic Press, London/New York, 1988, pp. 91-95.
[8] Jensen and Toft, Graph Coloring Problems, Wiley and Sons, New York, 1995, pp. 210-211.
[9] K. R. Matthews, On the eulericity of a graph, J Graph Theory 2 (1978), 143148.
[10] J. G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[11] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The four-color theorem, J Combin Theory Ser B 70 (1997), 2-44.
[12] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, to appear.
[13] P. D. Seymour, Decomposition of regular matroids, J Combin Theory Ser B 28 (1980), 305-359.
[14] P. D. Seymour, Matroids and multicommodity flows, Eur J Combin Theory Ser B 2 (1981), 257-290.
[15] W. T. Tutte, Lectures on matroids, J Res Nat Bur Standards Sect 69B, 1-47.
[16] W. T. Tutte, On the algebraic theory of graph colorings, J Combin Theory 1 (1966), 15-50.
[17] W. T. Tutte, A geometrical version of the four color problem, Proc. Chapel Hill Conf. University of N. Carolina Press, Chapel Hill, 1969, pp. 553-560.
[18] K. Wagner, Über eine eigneschaft der ebenen komplexe, Math Ann 144 (1937), 570-590.
[19] P. N. Walton and D. J. A. Welsh, On the chromatic number of binary matroids, Mathematika 27 (1980), 1-9.
[20] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
[21] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, Inc., New York, 1997.

