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Abstract: Jensen and Toft [8] conjectured that every 2-edge-connected
graph without a K5-minor has a nowhere zero 4-flow. Walton and Welsh
[19] proved that if a coloopless regular matroid M does not have a minor in
fM(K3;3);M

�(K5)g, then M admits a nowhere zero 4-flow. In this note, we
prove that if a coloopless regular matroid M does not have a minor in
fM(K5);M

�(K5)g, then M admits a nowhere zero 4-flow. Our result implies
the Jensen and Toft conjecture. � 2005 Wiley Periodicals, Inc. J Graph Theory 49: 196–204,

2005
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1. INTRODUCTION

We shall assume familiarity with graph theory and matroid theory. For terms that

are not defined in this note, see Bondy and Murty [4] for graphs, and Oxley [10]

or Welsh [20] for matroids.
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Throughout this paper, Z;Zþ, and Zn denote the additive group of the integers,

the set of all positive integers, and the cyclic group of order n, respectively. To be

consistent with the matroid terminology, a nontrivial 2-regular connected graph

will be called a circuit, and a disjoint union of circuits a cycle. Note that as we

allow empty unions, the empty set is also a cycle (in both graphs and matroids).

For matroids N1;N2; . . . ;Nk, let EXðN1;N2; . . . ;NkÞ denote the collection of

matroids such that a matroid M 2 EXðN1;N2; . . . ;NkÞ if and only if M does not

have a minor isomorphic to any one in fN1;N2; . . . ;Nkg. The Fano matroid F7 is

the vector matroid over GF(2) of the following matrix A:

A ¼
1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

2
4

3
5:

Flow was initially defined for graphs. For a discussion on flow and flow

conjectures, see Jaeger [7] or Zhang [21]. The definition of flow has a natural

extension to regular matroids. Let M be a regular matroid and DM be its incidence

matrix of circuits against elements. An orientation ðwðDMÞ;wðDM�ÞÞ is an

assignment of þ;� signs to the ‘‘1’’ entries of DM and DM� , respectively, so that

the resulting matrices wðDMÞ and wðDM�Þ satisfy

wðDMÞwðDM�ÞT ¼ 0:

Let A be an abelian group. For an element a 2 A, and for integers þ1;�1; 0,

we adopt the convention to write ðþ1Þ � a ¼ a, ð�1Þ � a ¼ �a, and 0 � a ¼ 0.

Let F�ðM;AÞ ¼ f f : EðMÞ 7! Anf0gg denote the set of all functions from EðMÞ
into Anf0g. A map f 2 F�ðM;AÞ can be viewed as an jEðMÞj-dimensional column

vector. For a regular matroid M with an orientation ðwðDMÞ;wðDM�ÞÞ, a map

f 2 F�ðM;AÞ satisfying

wðDM�Þ � f ¼ 0

is a nowhere zero A-flow (A-NZF for short) of M. When A ¼ Z, a Z-NZF f of M

is called a nowhere zero k-flow (k-NZF for short) of M if 8e 2 EðMÞ,
0 < j f ðeÞj < k.

For positive integers k and m, an m-cycle k-cover of a matroid M is a family of

cycles C1;C2; . . . ;Cm of M such that every element of EðMÞ lies in exactly k

members of these Ci’s. It has been observed that a graph G admits a 4-NZF if and

only if G has a 3-cycle 2-cover (for example, see Zhang [21]). We shall show later

in this section that this is also true for regular matroids.

Proposition 1.1. Let M be a regular matroid. Then M admits a 4-NZF if and

only if M has a 3-cycle 2-cover.

Tutte proposed the famous 4-flow conjecture as follows:

Conjecture 1.2 (Tutte [16] and [17], Matthews [9]). Let G be a 2-edge-con-

nected graph. If G does not have a Peterson graph minor, then G admits a 4-NZF.
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Jensen and Toft presented a weaker form of Conjecture 1.2 in 1995.

Conjecture 1.3 (Jensen and Toft [8]). Every 2-edge-connected graph without a

K5-minor has a 4-NZF.

The main objective of this paper is to prove Conjecture 1.3 by proving a

stronger result in the matroid context as follows:

Theorem 1.4. If M is a coloopless regular matroid such that M 2 EXðMðK5Þ;
M�ðK5ÞÞ, then M admits a 4-NZF.

Corollary 1.5. Conjecture 1.3 holds affirmatively.

Proof. Let G be a 2-edge-connected graph without a K5-minor. Then MðGÞ is

graphic and thus is regular. Since M�ðK5Þ is not graphic, neither MðK5Þ nor

M�ðK5Þ is a minor of MðGÞ. By Theorem 1.4, MðGÞ has a 4-NZF. &

The definition of flow has no natural extension to binary matroids, whereas

cycle cover is defined for general matroids. In view of Proposition 1.1 and the

excluded-minor characterization of regular matroids, Theorem 1.4 is equivalent

to saying that if M 2 EXðF7;F
�
7 ;MðK5Þ;M�ðK5ÞÞ is a coloopless binary matroid,

then M has a 3-cycle 2-cover. In Section 3, we will show that this result can be

extended in the following form.

Corollary 1.6. Let M be a coloopless binary matroid. If M 2 EXðF�
7 ;MðK5Þ;

M�ðK5ÞÞ, M has a 3-cycle 2-cover.

As the matroid F�
7 does not have a 3-cycle 2-cover, Corollary 1.6 does not hold

if F�
7 is not excluded.

In the remainder of this section, we will introduce the relevant definitions and

briefly review the relevant results. In Section 2, we extract a decomposition

theorem for regular matroids without MðK5Þ or M�ðK5Þ minors from the well-

known decomposition theorems of Seymour [13] and Wagner [18]. In Section 3,

this theorem will be employed to prove Theorem 1.4 and Corollary 1.6.

Theorem 1.7 (Tutte [15], Brylawski [6], Arrowsmith and Jaeger [3]). Let M be

a regular matroid and A be an abelian group of order k. Then M has an A-NZF if

and only if M has a k-NZF.

Proof of Proposition 1.1. Let M be a regular matroid. If M has a 3-cycle 2-

cover fC1;C2;C3g. Then EðMÞ ¼ C1 [ C2. Let fi : Ci 7! f1g 2 Z2, for i 2 f1; 2g.

Since Ci is a cycle, f ¼ ðf1; f2Þ 2 F�ðM;Z2 � Z2Þ is a ðZ2 � Z2Þ-NZF. By

Theorem 1.7, M has a 4-NZF. By reversing this argument, we can also construct a

3-cycle 2-cover from a ðZ2 � Z2Þ-NZF of M. &

The Four-Color theorem can be stated in terms of nowhere zero flows as

follows:
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Theorem 1.8. (Appel and Haken [1], Appel, Haken, and Hoch [2], Robertson,

Sanders, Seymour, and Thomas [11]). Every 2-edge-connected planar graph

admits a 4-NZF.

Applying the Four-Color theorem, and the duality between colorings and

nowhere zero flows, a result by Walton and Welsh implies the following:

Theorem 1.9 (Walton and Welsh [19]). If M is a coloopless regular matroid

such that M 2 EXðMðK3;3Þ;M�ðK5ÞÞ, then M admits a 4-NZF.

Recently Robertson et al. proved Conjecture 1.2 for cubic graphs.

Theorem 1.10 (Robertson, Sanders, Seymour, and Thomas, [12]). Every 2-

edge-connected cubic graph without a minor isomorphic to the Petersen graph

admits a 4-NZF.

2. DECOMPOSITION OF REGULAR MATROIDS IN
EX(M(K5), M*(K5))

In this paper, we use 4 to denote both a set operator and a matroid operator.

Given two sets X and Y , the symmetric difference of X and Y is defined as

X 4 Y ¼ ðX [ YÞ � ðX \ YÞ:
Now suppose that M1;M2 are binary matroids on E1 and E2, respectively.

We follow Seymour [13] and define a new binary matroid M1 4M2 to be the

matroid with ground set equal to E1 4 E2 and with its set of cycles equal to

fC1 4 C2 � E1 4 E2 : Ci is a cycle of Mi; i ¼ 1; 2g:
Three special cases of this operation are introduced by Seymour ([13] and

[14]) as follows.

(i) If E1 \ E2 ¼ ; and jE1j; jE2j < jE1 4 E2j, M1 4M2 is a 1-sum of M1 and

M2.

(ii) If jE1 \ E2j ¼ 1 and E1 \ E2 ¼ fzg, say, if z is not a loop or coloop of M1

or M2, and if jE1j; jE2j < jE1 4 E2j, M1 4M2 is a 2-sum of M1 and M2.

(iii) If jE1 \ E2j ¼ 3 and E1 \ E2 ¼ Z, say, if Z is a circuit of M1 and M2, and

Z includes no cocircuit of either M1 or M2, and if jE1j; jE2j < jE1 4 E2j,
M1 4M2 is a 3-sum of M1 and M2.

For i ¼ 1; 2; 3, an i-sum of M1;M2 is denoted as M1 �i M2. The 1-sum

M1 �1 M2 is also written as M1 �M2. Let R10 denote the vector matroid of the

following matrix over GFð2Þ:

R10 ¼

1 0 0 0 0 1 1 0 0 1

0 1 0 0 0 1 1 1 0 0

0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 0 1 1 1

0 0 0 0 1 1 0 0 1 1

2
66664

3
77775
:
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It is known that R�
10 is isomorphic to R10. Based on the notion of matroid sums,

Seymour proved the following decomposition theorem for regular matroids.

Theorem 2.1 (Seymour [13]). Let M be a regular matroid. One of the following

must hold:

(i) M is graphic.

(ii) M is cographic.

(iii) M ffi R10.

(iv) For some i 2 f1; 2; 3g, M ¼ M1 �i M2 is the i-sum of two matroids M1

and M2, each of which is isomorphic to a proper minor of M.

Theorem 2.2 (Seymour, Proposition (2.9) of [13]). Let M be a binary matroid.

Then each of the following holds.

(i) Let ðX1;X2Þ be an exact 3-separation of a binary matroid M with

jX1j; jX2j � 4, and let Z be a 3-element set that is disjoint from EðMÞ.
Then, there are binary matroids M1 and M2 on X1 [ Z and X2 [ Z,

respectively, such that M ¼ M1 �3 M2.

(ii) If M is a 3-sum of M1 and M2, then ðEðM1ÞnEðM2Þ;EðM2ÞnEðM1ÞÞ is an
exact 3-separation of M, and minfjEðM1ÞnEðM2Þj; jEðM2ÞnEðM1Þjg> 3.

Lemma 2.3. Let M be a 3-connected binary matroid such that M is a 3-sum of

two matroids M1 and M2. Then M� is also a 3-sum.

Proof. Define X1 ¼ EðM1ÞnEðM2Þ;X2 ¼ EðM2ÞnEðM1Þ. By Theorem 2.2(ii),

ðX1;X2Þ is an exact 3-separation of M such that minfjX1j; jX2jg � 4. Note that

ðX1;X2Þ is also an exact 3-separation of M�, and that M� is a 3-connected binary

matroid. By Theorem 2.2(i), M� must also be a 3-sum. &

If a matroid M is isomorphic to the cycle matroid of a planar graph, then M is

called a planar matroid. Thus, a matroid M is planar if and only if M� is planar.

Let H8 denote the graph depicted in Figure 1 below.

Wagner’s original statement of his decomposition theorem is in pure graph

theory terms. A matroidal version is given as follows (see Seymour [13] and [14]).

Theorem 2.4 (Wagner [23]). Let M be a graphic matroid that does not contain

a minor isomorphic to MðK5Þ. One of the following must hold:

FIGURE 1. The graph H8.
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(i) M is a planar matroid.

(ii) M ffi MðH8Þ.
(iii) M ffi MðK3;3Þ.
(iv) For some i 2 f1; 2; 3g, M ¼ M1 �i M2 is the i-sum of two matroids M1

and M2, such that both M1 and M2 are proper minors of M.

Proposition 2.5 (Propositions 4.2.11, 8.3.1 and 12.4.16 of [10]). Each of the

following holds:

(i) The matroid M is not 2-connected, if and only if for some proper non-

empty subset T of EðMÞ, M ¼ ðMjTÞ � ðMjðEnTÞÞ. Note that MjT and

MjðEnTÞ are both proper minors of M.

(ii) The matroid M is 2-connected but not 3-connected, if and only if

M ¼ M1 �2 M2 for some matroids M1 and M2, each of which is

isomorphic to a proper minor of M.

(iii) If M is a 3-connected binary matroid and a 3-sum of M1 and M2, then

M1 and M2 are isomorphic to proper minors of M.

Let G denote the family of matroids such that a matroid M 2 G, if and only if

M is a planar matroid or M is isomorphic to a member in the collection fMðH8Þ,
M�ðH8Þ, MðK3;3Þ, M�ðK3;3Þ, R10g. By definition, a matroid M 2 G, if and only if

M� 2 G.

Theorem 2.6. Let M be a regular matroid that does not have a minor

isomorphic to MðK5Þ or M�ðK5Þ. Then one of the following must hold:

(i) M 2 G.

(ii) For some i 2 f1; 2; 3g, M ¼ M1 �i M2 is the i-sum of two matroids M1 and

M2, such that both M1 and M2 are proper minors of M.

Proof. Let M be a regular matroid without a minor isomorphic to MðK5Þ or

M�ðK5Þ, and such that M 62 G. Since G is closed under taking duals, M� 62 G. We

shall show that M satisfies Theorem 2.6 (ii).

If M is not 2-connected, by Proposition 2.5 (i), M must be a 1-sum of two

proper minors of M. If M is 2-connected but not 3-connected, by Proposition 2.5

(ii), M must be a 2-sum of two proper minors of M. In either case, Theorem 2.6

(ii) must hold.

Therefore, we assume that M is 3-connected. Since M is regular, one of the

conclusions of Theorem 2.1 must hold. Since R10 2 G, M cannot be R10.

If M is graphic, then by Theorem 2.4 and since M is 3-connected, either M 2 G or

M is a 3-sum of two proper minors M1 and M2, and so Theorem 2.6 (ii) must hold.

Now suppose that M is a 3-connected cographic matroid. Since M� 62 G, by

Theorem 2.4, M� must be a 3-sum of two proper minors. By Lemma 2.3, M must

also be a 3-sum of two matroids M1 and M2. By Proposition 2.5 (iii), M1 and M2

are isomorphic to proper minors of M, and hence Theorem 2.6 (ii) must hold.

Now if M is neither graphic nor cographic, Theorem 2.6 (ii) follows from

Theorem 2.1 (iv), and this completes the proof for Theorem 2.6. &
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3. THE PROOFS OF THEOREM 1.4 AND COROLLARY 1.6

In view of Proposition 1.1, we will prove Theorem 1.4 by showing that M has a 3-

cycle 2-cover given the assumption of the theorem. We first establish some

lemmas.

Proposition 3.1. Each of the following holds:

(i) Each of MðH8Þ, M�ðH8Þ, MðK3;3Þ, M�ðK3;3Þ, R10, F7 has a 3-cycle 2-cover.

(ii) F�
7 cannot have a 3-cycle 2-cover.

These results follow from the known facts about tangential 2-blocks. See, for

example, the discussion on Tutte’s tangential 2-block conjecture in [5]. The

results can also be verified directly in a straightforward way.

Proposition 3.2 (Seymour [13], also see Oxley [10], Exercise 6 in

Section 12.4). Suppose that M;M1;M2 are binary matroids. If M ¼ M1 4M2,

then M� ¼ M�
1 4M�

2 .

Lemma 3.3. Suppose that M;M1;M2 are binary matroids and that each of M1

and M2 has a 3-cycle 2-cover. Then each of the following holds:

(i) If M ¼ M1 �M2 is a 1-sum of M1 and M2, then M also has a 3-cycle 2-

cover.

(ii) If M ¼ M1 �2 M2 is a 2-sum of M1 and M2, then M also has a 3-cycle 2-

cover.

Proof. (i) Suppose that M ¼ M1 �M2. For k ¼ 1; 2, we assume that Mk has a

3-cycle 2-cover, denoted as Ck;1;Ck;2;Ck;3. It follows that fC1;i [ C2;i : i¼ 1; 2; 3g
is a 3-cycle 2-cover of M.

(ii) Now assume that M ¼ M1 �2 M2. Denote EðM1Þ \ EðM2Þ ¼ feg. For

each k 2 f1; 2g, assume that Mk has a 3-cycle 2-cover, denoted as Ck;1;Ck;2;Ck;3.

Note that by the definition of a 2-cover, e appears exactly twice in each set

of 3 cycles. Without loss of generality, we may assume that e 2 Ck;i, k; i ¼ 1; 2.

Now it is easy to verify that fC1;i 4 C2;i : i ¼ 1; 2; 3g is a 3-cycle 2-cover

of M. &

Let F 4 denote the set of all matroids that have a 3-cycle 2-cover. Let F denote

the set of loopless and coloopless regular matroids, which have no minors

isomorphic to MðK5Þ or M�ðK5Þ. Note that F is closed under taking duals and

isomorphism, and that if M 2 F and if N is a loopless and coloopless minor of N,

then N 2 F also. Thus, for some i 2 f1; 2; 3g, if M 2 F is an i-sum of M1 and

M2, each of which is a proper minor of M, then neither M1 nor M2 has any loop or

coloop and therefore M1 and M2 are also in F .

Let M be a matroid satisfying the hypothesis of Theorem 1.4, and let C be the

union of all its loops. Then C is a cycle of M and MnC is a matroid in F , and M

has a 3-cycle 2-cover if and only if MnC has a 3-cycle 2-cover. Therefore, to

prove Theorem 1.4, it suffices to prove that F � F 4.
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Proof of Theorem 1.4. Let M 2 F . If M 2 G, by Proposition 1.1, Theorem

1.8 and Proposition 3.1, M 2 F 4. We argue by induction on jEðMÞj, and assume

that M =2 G and that for every N 2 F with jNj < jMj, N 2 F 4.

Case 1. M is not 3-connected.

By Proposition 2.5 (i) and (ii), for i 2 f1; 2g, M ¼ M1 �i M2 for some proper

minors M1;M2. Hence by induction and by Lemma 3.3, M 2 F 4.

Case 2. M is 3-connected.

Since G is closed under taking dual, M� =2 G . By Theorem 2.6, M� must be a 1-,

2-, or 3-sum of two proper minors of M�. Since M, and so M� are 3-connected, it

follows that M� ¼ M1 �3 M2 is a 3-sum of some proper minor M1 and M2 of M�.
Denote EðM1Þ \ EðM2Þ ¼ fe1; e2; e3g ¼ Z. Then Z is a circuit of M1 and M2.

By Proposition 3.2, M ¼ M�
1 4M�

2. Note that M�
1 and M�

2 are proper minors of

M, therefore M�
1 ;M

�
2 2 F . For k ¼ 1; 2, by induction, M�

k has a 3-cycle 2-cover,

denoted as Ck;1;Ck;2;Ck;3. Since Z is a cocircuit in binary matroids M�
1 and

M�
2, jCk;i \ Zj must be even for any k 2 f1; 2g, i 2 f1; 2; 3g. Therefore,

jCk;i \ Zj 2 f0; 2g. As for each k 2 f1; 2g, fCk;1;Ck;2;Ck;3g is a 2-cover of Mk,

the following must hold:

fCk;1 \ Z;Ck;2 \ Z;Ck;3 \ Zg ¼ ffe1; e2g; fe2; e3g; fe1; e3gg:
Without loss of generality, we may assume that Ck;i \ Z ¼ Z � feig for

k 2 f1; 2g and i 2 f1; 2; 3g. Now it is easy to see that fC1;i 4 C2;i : i ¼ 1; 2; 3g is

a 3-cycle 2-cover of M, and so M 2 F 4.

This proves Case 3 and thus completes the proof of Theorem 1.4. &

For binary matroids without F�
7 minor, Seymour has established the following

decomposition theorem.

Theorem 3.4 (Seymour [17]). Every binary matroid without F�
7 minor may be

obtained by means of proper 1-sums or 2-sums from regular matroids and copies

of F7.

Proof of Corollary 1.6. This follows from Proposition 3.1, Lemma 3.3,

Theorem 3.4, and Theorem 1.4. &
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