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Abstract: Jensen and Toft [8] conjectured that every 2-edge-connected
graph without a Ks-minor has a nowhere zero 4-flow. Walton and Welsh
[19] proved that if a coloopless regular matroid M does not have a minor in
{M(K53), M*(Ks)}, then M admits a nowhere zero 4-flow. In this note, we
prove that if a coloopless regular matroid M does not have a minor in
{M(Ks), M*(Ks)}, then M admits a nowhere zero 4-flow. Our result implies
the Jensen and Toft conjecture. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 196-204,
2005

Keywords: nowhere zero flows; regular matroids cycle covers; excluded-minors

1. INTRODUCTION

We shall assume familiarity with graph theory and matroid theory. For terms that
are not defined in this note, see Bondy and Murty [4] for graphs, and Oxley [10]
or Welsh [20] for matroids.

© 2005 Wiley Periodicals, Inc.
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Throughout this paper, Z,Z", and Z,, denote the additive group of the integers,
the set of all positive integers, and the cyclic group of order n, respectively. To be
consistent with the matroid terminology, a nontrivial 2-regular connected graph
will be called a circuit, and a disjoint union of circuits a cycle. Note that as we
allow empty unions, the empty set is also a cycle (in both graphs and matroids).
For matroids Ny, N,,..., Ny, let EX(Ny,N,,...,N;) denote the collection of
matroids such that a matroid M € EX(Ny,N,, ..., N;) if and only if M does not
have a minor isomorphic to any one in {Ny, Ny, ..., N;}. The Fano matroid F; is
the vector matroid over GF(2) of the following matrix A:

1 001 1 01
A=1]10 1 0 1 0 1
001 01 11
Flow was initially defined for graphs. For a discussion on flow and flow
conjectures, see Jaeger [7] or Zhang [21]. The definition of flow has a natural
extension to regular matroids. Let M be a regular matroid and D), be its incidence
matrix of circuits against elements. An orientation (w(Dy),w(Dy-)) is an

assignment of +, — signs to the ‘1" entries of Dy, and D+, respectively, so that
the resulting matrices w(D)) and w(Dy) satisfy

W(DM)W(DM*)T =0.

Let A be an abelian group. For an element a € A, and for integers +1,—1,0,
we adopt the convention to write (+1)-a=a, (—1)-a= —a, and 0-a =0.
Let F*(M,A) = {f : E(M) — A\{0}} denote the set of all functions from E(M)
into A\{O}. A map f € F*(M,A) can be viewed as an |E(M)|-dimensional column
vector. For a regular matroid M with an orientation (w(Dy),w(Dy+)), a map
f € F*(M,A) satisfying

W(DM*) f =0
is a nowhere zero A-flow (A-NZF for short) of M. When A = Z, a Z-NZF f of M
is called a nowhere zero k-flow (k-NZF for short) of M if Ve € E(M),
0<|f(e)| <k.

For positive integers k and m, an m-cycle k-cover of a matroid M is a family of
cycles Cy,Cy,...,C, of M such that every element of E(M) lies in exactly k
members of these C;’s. It has been observed that a graph G admits a 4-NZF if and

only if G has a 3-cycle 2-cover (for example, see Zhang [21]). We shall show later
in this section that this is also true for regular matroids.

Proposition 1.1. Let M be a regular matroid. Then M admits a 4-NZF if and
only if M has a 3-cycle 2-cover.

Tutte proposed the famous 4-flow conjecture as follows:

Conjecture 1.2 (Tutte [16] and [17], Matthews [9]). Let G be a 2-edge-con-
nected graph. If G does not have a Peterson graph minor, then G admits a 4-NZF.
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Jensen and Toft presented a weaker form of Conjecture 1.2 in 1995.

Conjecture 1.3 (Jensen and Toft [8]). Every 2-edge-connected graph without a
Ks-minor has a 4-NZF.

The main objective of this paper is to prove Conjecture 1.3 by proving a
stronger result in the matroid context as follows:

Theorem 1.4. [f M is a coloopless regular matroid such that M € EX(M(Ks),
M*(Ks)), then M admits a 4-NZF.

Corollary 1.5. Conjecture 1.3 holds affirmatively.

Proof. Let G be a 2-edge-connected graph without a Ks-minor. Then M(G) is
graphic and thus is regular. Since M*(Ks) is not graphic, neither M(Ks) nor
M*(Ks) is a minor of M(G). By Theorem 1.4, M(G) has a 4-NZF. (]

The definition of flow has no natural extension to binary matroids, whereas
cycle cover is defined for general matroids. In view of Proposition 1.1 and the
excluded-minor characterization of regular matroids, Theorem 1.4 is equivalent
to saying that if M € EX(F7,F;,M(Ks), M*(Ks)) is a coloopless binary matroid,
then M has a 3-cycle 2-cover. In Section 3, we will show that this result can be
extended in the following form.

Corollary 1.6. Let M be a coloopless binary matroid. If M € EX(F;, M (Ks),
M*(Ks)), M has a 3-cycle 2-cover.

As the matroid F; does not have a 3-cycle 2-cover, Corollary 1.6 does not hold
if F7 is not excluded.

In the remainder of this section, we will introduce the relevant definitions and
briefly review the relevant results. In Section 2, we extract a decomposition
theorem for regular matroids without M(Ks) or M*(Ks) minors from the well-
known decomposition theorems of Seymour [13] and Wagner [18]. In Section 3,
this theorem will be employed to prove Theorem 1.4 and Corollary 1.6.

Theorem 1.7 (Tutte [15], Brylawski [6], Arrowsmith and Jaeger [3]). Let M be
a regular matroid and A be an abelian group of order k. Then M has an A-NZF if
and only if M has a k-NZF.

Proof of Proposition 1.1. Let M be a regular matroid. If M has a 3-cycle 2-
cover {Cy,Cs,C3}. Then E(M) = C, U Cy. Letf; : C; — {1} € Zy, fori € {1,2}.
Since C; is a cycle, f = (fi,f») € F*(M,Z, x Z,) is a (Z, x Z,)-NZF. By
Theorem 1.7, M has a 4-NZF. By reversing this argument, we can also construct a
3-cycle 2-cover from a (Z, x Z,)-NZF of M. ]

The Four-Color theorem can be stated in terms of nowhere zero flows as
follows:
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Theorem 1.8. (Appel and Haken [1], Appel, Haken, and Hoch [2], Robertson,
Sanders, Seymour, and Thomas [11]). Every 2-edge-connected planar graph
admits a 4-NZF.

Applying the Four-Color theorem, and the duality between colorings and
nowhere zero flows, a result by Walton and Welsh implies the following:

Theorem 1.9 (Walton and Welsh [19]). If M is a coloopless regular matroid
such that M € EX(M(K33),M*(Ks)), then M admits a 4-NZF.

Recently Robertson et al. proved Conjecture 1.2 for cubic graphs.

Theorem 1.10 (Robertson, Sanders, Seymour, and Thomas, [12]). Every 2-

edge-connected cubic graph without a minor isomorphic to the Petersen graph
admits a 4-NZF.

2. DECOMPOSITION OF REGULAR MATROIDS IN
EX(M(Ks), M*(Ks))

In this paper, we use A\ to denote both a set operator and a matroid operator.
Given two sets X and Y, the symmetric difference of X and Y is defined as

XAY=((XUY)—(XNY).

Now suppose that M, M, are binary matroids on E; and E,, respectively.
We follow Seymour [13] and define a new binary matroid M; /A M, to be the
matroid with ground set equal to E; A E, and with its set of cycles equal to

{C,AC, CE AE,: Ciisacycle of My, i =1,2}.

Three special cases of this operation are introduced by Seymour ([13] and
[14]) as follows.

1) HTE NE, = () and |E1’, |E2| < |E1 AE2|, M; A M, is a I-sum of M| and
M.
(ii) If |E; NEy| = 1 and E; N E, = {z}, say, if z is not a loop or coloop of M,
or M,, and if |Ey|, |E;| < |E1 A Ey|, My A M is a 2-sum of My and M,.
(iii) If |[Ey NEy| =3 and Ey NE, = Z, say, if Z is a circuit of M; and M,, and
Z includes no cocircuit of either My or M», and if |E|,|E;| < |E; A E;|,
My A M5 is a 3-sum of M, and M,.

For i =1,2,3, an i-sum of M;,M, is denoted as M; ®; M,. The 1-sum
M, & M, is also written as M & M,. Let R,y denote the vector matroid of the
following matrix over GF(2):

Rip =

=l elelNell S
SO O = O
oSO = O O
O = O OO
- o O O O
—_0 O = =
SO = ==
SO = = = O
—_—— = O O
_—_—0 O ==



200 JOURNAL OF GRAPH THEORY

It is known that Rj, is isomorphic to Rjo. Based on the notion of matroid sums,
Seymour proved the following decomposition theorem for regular matroids.

Theorem 2.1 (Seymour [13]). Let M be a regular matroid. One of the following
must hold:

(i) M is graphic.
(i) M is cographic.
(iii) M =2 Ryy.
(iv) For some i € {1,2,3}, M = M, ®; M, is the i-sum of two matroids M,
and M, each of which is isomorphic to a proper minor of M.

Theorem 2.2 (Seymour, Proposition (2.9) of [13]). Let M be a binary matroid.
Then each of the following holds.

(i) Let (X1,X;) be an exact 3-separation of a binary matroid M with
|X1|, |X2| > 4, and let Z be a 3-element set that is disjoint from E(M).
Then, there are binary matroids My and M, on X, UZ and X, UZ,
respectively, such that M = M, &3 M,.

(ii) If M is a 3-sum of My and M, then (E(M\)\E(M;), E(M,)\E(M,)) is an
exact 3-separation of M, and min{|E(M)\ E(M>)|, |[E(M)\E(M,)|} > 3.

Lemma 2.3. Let M be a 3-connected binary matroid such that M is a 3-sum of
two matroids My and M»>. Then M* is also a 3-sum.

Proof. Define X; = E(M))\E(M;),X, = E(M,)\E(M,). By Theorem 2.2(ii),
(X1,X>) is an exact 3-separation of M such that min{|X;|,|X>|} > 4. Note that
(X1, X>) is also an exact 3-separation of M*, and that M* is a 3-connected binary
matroid. By Theorem 2.2(i), M* must also be a 3-sum. [ ]

If a matroid M is isomorphic to the cycle matroid of a planar graph, then M is
called a planar matroid. Thus, a matroid M is planar if and only if M* is planar.
Let Hg denote the graph depicted in Figure 1 below.

Wagner’s original statement of his decomposition theorem is in pure graph
theory terms. A matroidal version is given as follows (see Seymour [13] and [14]).

Theorem 2.4 (Wagner [23]). Let M be a graphic matroid that does not contain
a minor isomorphic to M(Ks). One of the following must hold:

1 8

4 5)
FIGURE 1. The graph Hg.
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(i) M is a planar matroid.
(i) M = M(Hj).
(i) M == M(K373).
(iv) For some i € {1,2,3}, M = M, &; M, is the i-sum of two matroids M,
and M, such that both M\ and M, are proper minors of M.

Proposition 2.5 (Propositions 4.2.11, 8.3.1 and 12.4.16 of [10]). Each of the
following holds:

(1) The matroid M is not 2-connected, if and only if for some proper non-
empty subset T of EIM), M = (M|T) ® (M|(E\T)). Note that M|T and
M|(E\T) are both proper minors of M.

(i1) The matroid M is 2-connected but not 3-connected, if and only if
M = M, &, M, for some matroids M, and M,, each of which is
isomorphic to a proper minor of M.

(iii) If M is a 3-connected binary matroid and a 3-sum of M and M», then
M, and M, are isomorphic to proper minors of M.

Let G denote the family of matroids such that a matroid M € G, if and only if
M is a planar matroid or M is isomorphic to a member in the collection {M(Hs),
M*(Hg), M(K33), M*(K33), Rio}. By definition, a matroid M € G, if and only if
M €g.

Theorem 2.6. Let M be a regular matroid that does not have a minor
isomorphic to M(Ks) or M*(Ks). Then one of the following must hold:

(i) Meg.
(il) Forsomei € {1,2,3}, M = M, &; M, is the i-sum of two matroids M| and
M,, such that both M and M, are proper minors of M.

Proof. Let M be a regular matroid without a minor isomorphic to M(Ks) or
M*(Ks), and such that M ¢ G. Since G is closed under taking duals, M* ¢ G. We
shall show that M satisfies Theorem 2.6 (ii).

If M is not 2-connected, by Proposition 2.5 (i), M must be a 1-sum of two
proper minors of M. If M is 2-connected but not 3-connected, by Proposition 2.5
(ii), M must be a 2-sum of two proper minors of M. In either case, Theorem 2.6
(i1) must hold.

Therefore, we assume that M is 3-connected. Since M is regular, one of the
conclusions of Theorem 2.1 must hold. Since Rjy € G, M cannot be Ryy.

If M is graphic, then by Theorem 2.4 and since M is 3-connected, either M € G or
M is a 3-sum of two proper minors M; and M», and so Theorem 2.6 (ii) must hold.

Now suppose that M is a 3-connected cographic matroid. Since M* ¢ G, by
Theorem 2.4, M* must be a 3-sum of two proper minors. By Lemma 2.3, M must
also be a 3-sum of two matroids M, and M,. By Proposition 2.5 (iii), M, and M,
are isomorphic to proper minors of M, and hence Theorem 2.6 (ii) must hold.

Now if M is neither graphic nor cographic, Theorem 2.6 (ii) follows from
Theorem 2.1 (iv), and this completes the proof for Theorem 2.6. ]
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3. THE PROOFS OF THEOREM 1.4 AND COROLLARY 1.6

In view of Proposition 1.1, we will prove Theorem 1.4 by showing that M has a 3-
cycle 2-cover given the assumption of the theorem. We first establish some
lemmas.

Proposition 3.1. FEach of the following holds:

(i) Each of M(Hs), M*(Hs), M(K33), M*(K33), R0, F7 has a 3-cycle 2-cover.
(i1) F3 cannot have a 3-cycle 2-cover.

These results follow from the known facts about tangential 2-blocks. See, for
example, the discussion on Tutte’s tangential 2-block conjecture in [5]. The
results can also be verified directly in a straightforward way.

Proposition 3.2 (Seymour [13], also see Oxley [10], Exercise 6 in
Section 12.4).  Suppose that M, M, M, are binary matroids. If M = M, /\ M5,
then M* = M7 A M3,

Lemma 3.3. Suppose that M, M, M, are binary matroids and that each of M,
and M, has a 3-cycle 2-cover. Then each of the following holds:

G) If M =M, &M, is a 1-sum of M, and M», then M also has a 3-cycle 2-
cover.

(1) If M = M| &, My is a 2-sum of M| and M, then M also has a 3-cycle 2-
cover.

Proof. (i) Suppose that M = M| & M,. For k = 1,2, we assume that M} has a
3-cycle 2-cover, denoted as Cy 1, Cy 2, Cy 3. It follows that {Cy; U Cy,; : i=1,2,3}
is a 3-cycle 2-cover of M.

(i) Now assume that M = M, @&, M,. Denote E(M,) N E(M,) = {e}. For
each k € {1,2}, assume that M} has a 3-cycle 2-cover, denoted as Cy 1, Cy2, Ci 3.
Note that by the definition of a 2-cover, e appears exactly twice in each set
of 3 cycles. Without loss of generality, we may assume that e € Cy;, k,i = 1,2.
Now it is easy to verify that {C,; A Cp;:i=1,2,3} is a 3-cycle 2-cover
of M. ]

Let F4 denote the set of all matroids that have a 3-cycle 2-cover. Let F denote
the set of loopless and coloopless regular matroids, which have no minors
isomorphic to M(Ks) or M*(Ks). Note that F is closed under taking duals and
isomorphism, and that if M € F and if N is a loopless and coloopless minor of N,
then N € F also. Thus, for some i € {1,2,3}, if M € F is an i-sum of M; and
M,, each of which is a proper minor of M, then neither M nor M, has any loop or
coloop and therefore M; and M, are also in F.

Let M be a matroid satisfying the hypothesis of Theorem 1.4, and let C be the
union of all its loops. Then C is a cycle of M and M\C is a matroid in F, and M
has a 3-cycle 2-cover if and only if M\C has a 3-cycle 2-cover. Therefore, to
prove Theorem 1.4, it suffices to prove that 7 C Fjy.
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Proof of Theorem 1.4. Let M € F. It M € G, by Proposition 1.1, Theorem
1.8 and Proposition 3.1, M € F4. We argue by induction on |E(M)|, and assume
that M ¢ G and that for every N € F with |[N| < [M|, N € Fg.

Case 1. M is not 3-connected.

By Proposition 2.5 (i) and (ii), for i € {1,2}, M = M| @®; M, for some proper

minors My, M,. Hence by induction and by Lemma 3.3, M € F,.

Case 2. M is 3-connected.

Since G is closed under taking dual, M* ¢ G . By Theorem 2.6, M* must be a 1-,
2-, or 3-sum of two proper minors of M*. Since M, and so M* are 3-connected, it
follows that M* = M| &3 M, is a 3-sum of some proper minor M| and M, of M*.
Denote E(M,) NE(M;) = {e1,ez,e3} = Z. Then Z is a circuit of M; and M,.

By Proposition 3.2, M = M; A M;. Note that M| and M} are proper minors of
M, therefore M}, M; € F. For k = 1,2, by induction, M} has a 3-cycle 2-cover,
denoted as Cy 1, Crpo,Cr3. Since Z is a cocircuit in binary matroids M} and
M;, |Cr;NZ| must be even for any k€ {1,2}, i€ {1,2,3}. Therefore,
|Cr;NZ] € {0,2}. As for each k € {1,2}, {C1, Cy2,Ci3} is a 2-cover of My,
the following must hold:

{CiNZ,CoNZ,CizNZy = {{e1, e}, {ez, e3}, {er,e3}}.

Without loss of generality, we may assume that Cy; NZ =Z — {e¢;} for
ke {1,2} andi € {1,2,3}. Now it is easy to see that {C; A Cp; : i =1,2,3}is
a 3-cycle 2-cover of M, and so M € Fy.

This proves Case 3 and thus completes the proof of Theorem 1.4. ]

For binary matroids without F7 minor, Seymour has established the following
decomposition theorem.

Theorem 3.4 (Seymour [17]). Every binary matroid without F7 minor may be
obtained by means of proper 1-sums or 2-sums from regular matroids and copies

0fF7.

Proof of Corollary 1.6. This follows from Proposition 3.1, Lemma 3.3,
Theorem 3.4, and Theorem 1.4. [
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