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In evaluating an interconnection network, it is indispensable to estimate the size of the maximal connected components
of the underlying graph when the network begins to lose processors. Hypercube is one of the most popular intercon-
nection networks. This article addresses the maximal connected components of an n-dimensional cube with faulty
processors. We first prove that an n-cube with a set F of at most 2n — 3 failing processors has a component of size
> 2" — |F| — 1. We then prove that an n-cube with a set F of at most 3n — 6 missing processors has a component of
size > 2" — |F| -2,
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1 INTRODUCTION

The fault tolerance of a distributed memory-parallel computing system (i.e. multicomputer
system) means its capability of being functional in the presence of failures, which is com-
monly measured by the vertex connectivity of the underlying graph of the interconnection
network in the system. However, the connectivity measure of fault tolerance does not take into
consideration the sizes of the connected components of the damaged underlying graph. Usually,
if the surviving graph contains a large connected component, it may be used as the functional
subsystem, without incurring severe performance degradation [1]. Thus, in evaluating an inter-
connection network, it is indispensable to estimate the size of the maximal components of the
underlying graph when the network begins to lose processors. Indeed, a number of measures
of fault tolerance of networks, which are related to the size of the maximal components of the
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underlying graph with missing vertices, were proposed [2, 3]. In general, an interconnection
network that has larger maximal component in the presence of failures is desirable.

Hypercube is one of the most popular interconnection networks because it enjoys many
attractive properties (including symmetry, recursive construction, logarithmic diameter and
linear bisection width), which support many elegant and efficient parallel algorithms [4].

This article addresses the maximal component of cube structures with missing Processors.
We first prove that an n-cube with a set F of at most 2n — 3 failing processors has a component
of size > 2" — | F| — 1. We then prove that an n-cube with a set F of at most 3n — 6 missing
processors has a component of size > 2" — |F| — 2.

2 PRELIMINARIES

In this article, we use a graph G = (V(G), E(G)) to represent an interconnection network, in
which the vertices represent the processors and the edges represent the communication links
between the processors. Let k(G) and 8(G) denote the vertex connectivity and the minimum
degree of the graph G, respectively. It is well known that k(G) < 8(G). For aset F of vertices
in graph G, let G[ F] denote the subgraph of G induced by F, and let G — F denote the graph
obtained from G by deleting F. For fundamental graph-theoretical terminology the reader is
referred to Ref. [5].
For a set F of vertices in graph G, let

N(F)y={ve V(G) - F: thereexists u € F such that (u, v) € E(G)).

Let N[F]=N(F)UF. For brevity, N({u}) and N[{u}] are written as N(u) and Nlu],
respectively.

Let {0, 1}" denote the set of all 0-1 binary strings of length n. An n-cube, denoted by Q,,
1s a graph with V(Q,) = {0, 1}". Two vertices are adjacent if and only if their labels differ in
exactly one bit position. Two examples of hypercube are shown in Figure 1. It is well known
that Q, is n-regular and bipartite (hence, Q, has no cycle of odd length). Moreover, let So
(respectively, S;) denote the set of vertices in 0, each of which takes value 0 (respectively,
1) on the most significant bit position. Let 0Q,_| = OulSo]land 10, = 0,(5,]. Then both
0Q,-1and 1Q,_, are isomorphic to Q,_,, and every vertex of 0Q,,_; is adjacent to exactly
one vertex of 1Q,_;, and vice versa.

THEOREM 2.1 [1] Let F be a set of at most 2n — 3 vertices in Q,(n > 3). If N(w) ¢ F for
each vertex u in Q,, then Q, — F is connected.

11

@0 (b) Q4

FIGURE 1 Two examples of hypercube.
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THEOREM 2.2 [6] Let u be a vertex in Qn(n=>5). Thenk(Q, — Nul)=n-2.

THEOREM 2.3 [6] Let F be a set of at most 3n — 6 vertices in Q,(n > 3.IfNwu) ¢ F for
any vertex u in Q, and N({u, v}) ¢ F for any two adjacent vertices u and v in Q,, then
Q. — F is connected.

3 MAIN RESULTS

It is well known [7] that k(Q,) = n. Thereby, we immediately obtain the following theorem.

THEOREM 3.1 Let F be a set of at most n — | vertices in Q,(n > 3). Then

m(Qn = F) = V(Q,) — |FI.

In what follows, we focus our attention on the estimation of m(Q,, — F) for larger F. First,
we present the following interesting result.

LEMMA 3.2 Let {u, v} be a pair of adjacent vertices in Q,(n > 3). Then
K(Qn — (N[UJUN[v])) =n -2,
Proof Clearly,
K(Qn = (N[u]UN[]D) < 8(Qu — (N[u] U N[v])) = n — 2.

So it suffices to prove « (Q,, — (N[u]JUN[v]) > n — 2. This inequality is clearly true for the
case n = 3. Now, assume n > 4 and let {u, v} be an arbitrary pair of adjacent vertices in Q,,.
In view of the symmetry of hypercube, we may assume u € V(0Q,_;) and v € V(1Q,_).
For brevity, we set

N*u) = N@) — (v}, N*[u] = N[u] - {v},
N*(v) = N(@) — {u}, N*[v] = N[v] — {u}.

It remains to show that for any set £ of n — 3 vertices in the graph Q, — (N[u] U N[v]), the
graph @, — (N[u] U N[v]) — F is connected. To this end, we set

Fo=FNV(©Q,.), F=Fn V(Qn-1).
Next, we need to examine three possibilities.

Casel |Fyl=n -3 (Fig. 2(a)). Then | F| = 0. By Theorem2.2,10,_, — N*[v]is (n — 3)-
connected, which implies that it is connected. Furthermore, each vertex in 0Q,-1 — N*[u] —
Fy has a neighbour in 10,1 — N*[v]. As a result, On — (N[u]U N[v]) — F is connected.
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0Q.,-NIlui-F,

)

1Q.-N[v)

(@) ®)
FIGURE 2 Schematic illustrations of the proof of Lemma 3.2.
Case 2 |Fy| = 0. Then |F\| = n — 3. Similar to Case 1, we can prove that Q, — (N{ulu
N[v]) — F is connected.
Case 3 |Fol<n—4and |[F||<n—4 (Fig. 2(b)). By applying Theorem 2.2 to 00, —
N*[u]and 1Q,_| — N*[v], respectively, we derive that they are both (n — 3)-connected. So
00,1 — N*[u] — F; and 19,1 — N*[v] — F, are both connected. Observe that there are
(2! — n) edges in Q. each of which has one endpoint in 0Q,-; — N*[u] and the other
endpointin 10,,_; — N*[v]. Since 2" ' —pn > n—-3 = | F|, there must exist an edge (x, x")
with one endpoint in 00Q,_1 — N*[u] — Fy and the other endpoint in 10, | — N*[v] — Fi.
Hence, 0, — (N[u] U N[v]) — F is connected.
Combining the above discussions, we conclude thatk (@, — (N[u] U NvD))>n—-2 n
Now, we establish the first main result of this article, which is stated as follows.
THEOREM 3.3 Let F be g set of at most 2n — 3 vertices in Q,(n > 3). Then

Moreover, this inequality is optimal in the sense that there is aset F of 2n — 2 vertices in Q,
such that

m(Qn = F) =V(Q,) — |F| - 2.

Proof Let F be a set of at most 2n — 3 vertices in Q.. By Theorem 2.1, there are two
possibilities.

Casel Q, — F is connected. Then m(Q, —F)=V(Q,) — |F)|.
Case 2 There is a vertex u in QO such that N(u) C F. Then
|F =Nl < |F = N@|=|F|— INW|<Q2n-3)—n=n-3.
By Theorem 2.2, the graph Q, — Nu]is (n — 2)-connected. So the graph
Qn = Nlu] = (F = N[u)) = Q, — F — {u)
is connected, which is the maximal component of the graph Q,, — F. As a result,

m(Q, — F) = V(Q,) — |F| - 1.
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This completes the proof of the first assertion. Now, we consider a pair {u, v} of adjacent
vertices in Q,,. Let F = N({u, v}). Clearly, [F| = 2n — 2. By Lemma 3.2, the graph

On — F —{u, v} = 0, — (N[u] U N[v])

is (n — 2)-connected and hence is connected, which is the maximal component of Q, — F.
Thus,

m(Qn — F) =V(Q,) — [F| = 2.

Next, we deal with m(Q, — F) for the case |F| < 3n — 6. To this end, we first prove three
lemmas.

LEMMA 3.4 Let F be a set of ar most 3n — 6 vertices in Q. (n > 3) such that there exists a
vertex u in Q, satisfying N(u) € F. Then one of the following two results holds.

(i) Qn — F ~ {u) is connected.
(ii) There exists avertex v # u in Q, such that N) € Fand Q, — F — {u, v} is connected.

Proof We argue by induction on n. Clearly, (i) holds for the case n = 3. Suppose the assertion
istrue forn = k — 1(k > 4). Now assume F is a set of at most 3k — 6 vertices in Qy such that
there exists a vertex u in Qy satisfying N(u) € F. Without loss of generality, we may assume
u € V(0Qi_;) and let u’ denote the neighbour of i in 1Q,_,. For brevity, let

N () =N@) —{u'}, N*[u]l = Nu] - {u'}.

Furthermore, let
Fo=FNVOQi1), Fi=FNVAQi_).

Then Fy 2 N*(u) and F; 2 {u’}. Thus, |Fy| > k — 1 and | Fi| > 1. Next, we deal with four
possible cases sequentially.

Case]l k—1<|Fy| <2k —5.Then
[Fo = N*[u]l < |Fo —~ N*)| = |Fol = IN*(u)| < 2k —5) — (k — 1) <k — 4.
By Theorem 2.2, 00,_, — N*[u]is (k — 3)-connected. So the graph
0Qk-1 = N*[u] — (Fo — N*[u]) = 00, — Fy — {u)
is connected. On the other hand,
[Fi| =|F| - |Fo| < 3k —6) — (k — 1) =2k -5=2(k~1)-3.

By applying Theorem 2.1 to 1Q;_,; and F1, we derive that one of the following two subcases
must occur.

Subcase 1.1 The graph 1Q,_, — F, is connected. Observe that there are 24! — k edges in
O each of which has one endpointin 0Q;_; — N*[u] and the other endpointin 1Q;_; — {u'},

and that there are at most

IF= NG| =|F|~INw| < Gk-6)—k=2k—6
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vertices in the set of such endpoints that belong to F. Since 2~! — k > 2k — 6, there exists
an edge whose two endpoints belong to 00y, — Fy — {u}and 1Qy_ — Fy, respectively. So
the two connected graphs 0Q,_, — Fy — {u}and 1Q,_| — F; are connected to each other via
this edge. That is, the graph Q; — F — {u} is connected, or, equivalently, assertion (i) holds.

Subcase 1.2 There exists a vertex v in 1Q;_; such that N(v) — {v'} C Fy, where v’ is the
neighbour of v in 0Q,_,. Let

N*() =N@) = {v'}, N*[v]=N[v] - {v'}.
Then
£y = N"]l < |FL = N*(0)| = [Fi| = IN*"(0)| S @k = 5) = (k — 1) = k — 4.
By Theorem 2.2, 1Q;_; — N*[v] is (k — 3)-connected. Thus, the graph
10kt = N*[v] ~ (Fi = N*[v]) = 104, — F, — {v}
is connected. We proceed by investigating three subcases.

Subcase 1.2.1 d(u,v) =1 (Fig. 3(a)). Then each vertex in N*[u] is connected to a vertex in
N*[v]. So there are 2*~! — k edges in Qy each of which has one endpoint in 0Q;_; — N*[u]
and the other endpoint in 1Q;_; — N*[v], and there are at most
[F = (N)UN@)| = [F|~|N@)UN®)|
=IFI = IN@| = INOI+INuWNN@w)| <Gk —6) -2k =k — 6
vertices in the set of such endpoints that belong to F. Since 2~ — k > k — 6, there exists an

edge (x, x") whose two endpoints belongto0Q;_; — Fyand 1Q;_; — Fy, respectively. Hence,
Qi — F —{u} = Q4 — F is connected. That 1s, assertion (i) holds.

Subcase 1.2.2  d(u, v) = 2 (Fig. 3(b)). Then N@@)NN@) ={u',v'}and N(v) C F.Sothere
are at least 2*~! — (2k — 2) edges in Q, each of which has one endpointin 0Q;_, — N[u] and
the other endpoint in 10,_, — N[v], and there are at most
|[F = (N)UN®W)| = |F|—|N@u)UN @)
=|F|~INw)| - |N@W)| + IN(w)NN@w)| < Bk -6)—2k+2=k—4
vertices in the set of such endpoints that belong to F. Since 2¢! — (2k —2) > k — 4, there

exists an edge (x, x') whose twoendpoints belongto0Q;_, — Fy — {u}and 1Qy_y — F| — (v},
respectively. Hence, Oy — F — {u, v} is connected. That is, assertion (ii) holds.

Subcase 1.2.3  d(u,v) > 3. Then |N(u) N N(v)| = 0. Observe that there are at least 28~ —
2k edges in Q, each of which has one endpoint in 0Q,_; — N[u] and the other endpoint in
101 — N[v], and there are at most
IF = (Nu) UN@)| = |F| — [N(u)UN(v)|
=|FI=IN@W[ -~ INW)| <Gk —6) -2k =k — 6
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Q. F
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FIGURE 3  Schematic illustrations of the proof of Lemma 3.4,
vertices in the set of such endpoints that belong to F. Since 2*~! — 2k > k — 6, there exists

an edge (x, x’) whose two endpoints belong to 0Q,_| — Fy — {u} and 1Qk_y — Fy — {v)},
respectively. Hence, Oy — F — {u, v} is connected. If v’ & F,then Qy — F — {u} is connected.
That is, assertion (i) holds (Fig. 3(¢)). If v/ € F, then N(v) € F. That is, assertion (ii) holds
(Fig. 3(d)).

Case2 2k —4 <|Fy| <3k ~9=23(k—1) — 6. Then
I[P\l = 1F| = |Fo] < Bk —6) — 2k —4) =k — 2.

Since 10 is (k — 1)-connected, the graph 1Q,_; — F is connected. By applying the induc-
tive hypothesis to 0Q; _; and Fy, we derive that one of the following two subcases must occur.
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Subcase 2.1 The graph 0Q,_, — F is connected. Similarly to Subcase 1.1, we can prove
that the graph Q, — F — {u} is connected, i.e. the assertion (i) holds.

Subcase 2.2 There exists a vertex v in 0Q,_; such that N@) — {v'} € Fy, where v’ is the
neighbour of vin 1Q,_;, and 0Q,_, — Fy — {u, v} is connected. Let

N'() =N - {v'}, Nv]=N[p]-{v}.

Clearly, |N(u) N N*(v)| < 2. Observe that there are at least 2¢~! — 2k edges in Q; each of
which has one endpointin 0Q;_, — (N*[u] U N*[v]) and the other endpointin 1Q,_| — {u'},
and that there are at most

[F = (N)UN*()] = |F| — [N@u) UN"(v)|
=IFI=IN@| = IN"WI+IN@NN @) <Gk —6) —k—(h—1)+2 =k —3
vertices in the set of such endpoints that belong to F. Since 28! — 2k > k — 3, there exists
an edge whose two endpoints belong to 00| — Fy — {u, viand 10;_, - F, respectively.

Hence, QO — F — {u, v} is connected. If v’ ¢ F, then Q; — F — {u} is connected. That is,
assertion (i) holds (Fig. 3(e)). If v’ € F, then N(v) € F.Thatis, assertion (ii) holds (Fig. 3(f)).

Case3 |Fy| =3k —7.Then |F||=1.S0 F| = {u’}. Clearly, 1Qx_ — F| is connected, and
each vertex in 0Q,_| — Fy — {u} is connected to a vertex in 1Qi_1 — F; via an edge. Thus,
the graph Q; — F — {u} is connected. That is, assertion (i) holds.

Case 4 |Fo| =3k —8. Then |F|| <2. If [Fi] = 1, similar to Case 3, we can prove that
assertion (i) holds. Now assume F, = {i’, v’} and let v denote the neighbour of v’ in 0Q_1.
Clearly, 1Q4_, — F; is connected, and each vertex in 001 — Fo — {u, v} is connected to a

vertex in 1Q,_; — F| — {v'} via an edge. Thus, the graph Q, — F — {u, v} is connected. We
now consider three subcases.

Subcase 4.1 v e F.Then Q; — F — {u} is connected. That is, assertion (i) holds (Fig. 3(g)).

Subcase 4.2 v & F and N(v) — {v') ¢ F.Then Qy — F — {u} is connected. That is, asser-
tion (i) holds (Fig. 3(h)).

Subcase 4.3 v & Fand N(v) — {v'} € F. Then assertion (ii) holds (Fig. 3(f)).
This completes our inductive proof.

LEMMA 3.5 Let F bea set of at most3n — 6 vertices in Qn(n > 3) such that there exists apair
{u, v} of adjacent vertices in Q, satisfying N({u, v}) C F. Then the graph Q, — F — {u, v}
is connected.
Proof Observe that

[FEN(N[u]UN[D| = IN{u, v})| =2n -2,

we have

IF = (Nu]UND| = |F| = [F NV (N[u]UNDD| < Gn — 6) — 2n —2) = n — 4.
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By Lemma 3.2, Q,, — (N[u] U N[v]) is (n — 2)-connected. So the graph
Qn —~ (N[u]UN[v]) = (F = (N[uJUN[v]) = Q, — F — {u, v}
is connected. ]

LEMMA 3.6 Let F be a set of three distinct vertices of Q,(n > 5) that induces a connected
subgraph. Then |N(F)| = 3n — 5 and Q. — N[F] is connected.

Proof Let F = {u, v, w}. Without loss of generality, we may assume that (u, v, w) forms a
path of Q. Clearly, 4 and v share no common neighbours (otherwise @, would contain cycles
of odd length), v and w have no common neighbours, and w and u share exactly two common
neighbours. Let x be the common neighbor of w and u other than v, then

INCE) = [(N ) = {vh U(N () = {1, w}) U(N(w) — {u, x})|
= ING) = (v} + IN(v) = {u, w}| + [N (w) — {u, x}|
=n-DH+"n-2)+(n—-2)=3n-5.
Now, we prove the second assertion by induction on 7. The assertion is clearly true for n = 3.
Suppose the assertion is true forn = k — 1(k > 4). Now assume F = {u, v, w}is a set of three
vertices in Qy such that (u, v, w) forms a path. In view of the symmetry of hypercube, we may

assume that F C V(0Q,~;). Let F' = {i’, v’, w') denotes the set of the neighbours of u, v,
and win 1Q;_,. Let

N*(F)y=N(F)—F', N*[F)=N[F]-F'

By applying the inductive hypothesis to 0Qr_, and N*(F), we derive that the graph

0Qk-1 — N*[F] is connected. Next, we prove that 1Q,_; — F’ is connected. This can be
easily verified for the case k = 4. When k > 5, k(10 1) =k—1>4.S010,_, — F'is
connected. Now consider a vertex x in 0Q,_, — N*[F]. Let x’ denote the neighbour of x

in 1Q;_,. Clearly, x’ belongs to 1 Q;_; — F'. So the two connected graphs 0Q,_;, — N*[F]

and 1Qx_; — F’ are connected to each other via the edge (x, x") (Fig. 4). Hence, the graph

O« — N[F]is connected. The inductive proof is completed. |
Now, we are ready to establish the second main result of this article.

THEOREM 3.7 Let F be a set of at most 3n — 6 vertices in Q.(n > 4). Then

m(Qn = F) 2 V(Q,) — |F| - 2.

O

FIGURE 4 The graph Qy — N[F] is connected.
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Moreover, this inequality is optimal in the sense that there is a set F of 3n — S vertices in Q,
such that

m(Qn — F) =V(Q,) — [F| - 3.

Proof 1f N(u) ¢ F,for any vertex u in 0, and N({u, v}) ¢ F, for any two adjacent vertices
u and v in Q,, then Theorem 2.3 implies that Q, — F is connected and, hence,

m(Q, — F) = V(Q,) — |F|.
Let Fp =FNVOQ,_)), Fi=Fn V(1Q,_,). Two possibilities have yet to be investigated.

Case I There is a node u in Q, such that N(u) € F.By Lemma 3.4, we have two possible
subcases.

Subcase 1.1 Q, — F — {u) is connected (Fig. 5(a)). Then Q, — F — {u} is the maximal
component of Q,, — F. Thus,

Subcase 1.2 Q, — F — {u} contains a node v such that N(v) € F and the graph Q, —
F —A{u, v} is connected (Fig. 5(b)). Then Q, — F — {u, v} is the maximal component of
0, — F.Thus,

Case 2 There is a pair {1, v} of adjacent nodes in Q, such that N({u, v}) € F (Fig. 5(c)).
By Lemma 3.5, the graph Q,, — F — {u, v} is connected, which is the maximal component of
Q. — F. Thus,

m(Qn — F) =V(Q,) - |F| —2.

Combining the above discussions, we conclude the first desired result. Now, consider a
set F = {u, v, w} of three distinct vertices in Q. that induce a connected component. By
Lemma 3.6, the graph Q,, — F consists of two connected components, one being induced by F
and the other being induced by V(Q,) — N[F]. Thus, m(Qn —F)=V(Q,)~|F|-3. =&

Q-F{u}

|
F

(a) Case 1 (b) Case 2 (c) Case 3

FIGURE S Schematic illustrations of the proof of Theorem 3.7.
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