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Abstract

Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycomb torus,
honeycomb rectangular torus, and honeycomtalelogramic torus as special casesisience of Hamiltoran cycle is a basic
requirement for interconnection networks since it helps map a “token ring” parallel algorithm onto the associated network in an
efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185-190] speculated that every generalized honeycomb torus
is Hamiltonian. In this paper, we have proved this conjecture.
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1. Introduction

The effectiveness of the interconnection network in
a parallel computing system is a crucial factor of per-
formance of the system [7]. Stojmenovic [9] proposed
three classes dfoneycomb toruarchitectureshoney-
comb hexagonal torysioneycomb rectangular torus
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and honeycomb parallelogramic toru®ue to lower
node degree and lower implementation cost than those
of a standard torus of the same size, these architec-
tures have incurred great research interest [1,2,5,6,8—
11]. Cho and Hsu [3] found that all these honeycomb
torus networks can be characterized in a unified way,
and thereby proposed a class of interconnection net-
works known as thgeneralized honeycomb torus
Existence of a Hamiltonian cycle is one of the ba-
sic requirements for interconnection networks since it
helps map a “token ring” parallel algorithm onto the
associated network in an efficient way [7]. The Hamil-
tonicity of honeycomb torus networks has been exten-
sively studied. Megson et al. [5,6] proved that hon-
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eycomb hexagonal torus is Hamiltonian, even in the componentsrespectively. Here and in what follows,
presence of node failures. Cho and Hsu [2] discovered all arithmetic operations carried out on the first and
a Hamiltonian cycle for faulty honeycomb rectangular second components are modul@andn, respectively.
torus. As for generalized honeycomb torus, Cho and Two vertices(i, j) and (k, ) with i < k are adjacent
Hsu [3], and Yang and Megson [12] proved the ex- if and only if one of the following three conditions is
istence of Hamiltonian cycles for some special cases. satisfied:

Furthermore, Cho and Hsu [3] speculated that every

generalized honeycomb torus is Hamiltonian. @) k,l)={,j+Lyorkl)={(,j—1);

This paper aims at proving this conjecture by (b) 0<i<m—2,i+jisodd,andk,!)= (i +1,j);
constructing a Hamiltonian cycle for each generalized (c) i =0, j iseven,andk,!) = (m — 1, j +d).
honeycomb torus.

Clearly, every generalized honeycomb torus is a 3-

regular bipartite graph. See Fig. 1 for two examples of

2. Preliminaries generalized honeycomb torus. Itis known [3] that gen-
eralized honeycomb torus includes honeycomb torus,

Henceforth we sagraph instead of the intercon- honeycomb rectangular torus, and honeycomb paral-
nection network modeled by the graph. For fundamen- lelogramic torus as speciaases. For convenience, let
tal graph-theoretical terminology the reader is referred us introduce the following notations.
to [4].

Definition 2. A path decomposition of graply is
Definition 1 [3]. Let n be a positive even integer, a set of disjoint pathsy, Po, ..., Py in G satisfying
be a positive integer, and be a nonnegative integer Ule V(P;)) = V(G), whereV (P;) denotes the set of

that is less tham and is of the same parity as. vertices onp;.

An (m,n,d) generalized honeycomb torudenoted Giventwo verticesi, j) and(i, k) of GHT(m, n, d),

by GHT(m, n, d), is a graph with vertex set the path

V(GHT(m,n,d)) ={(i, j): i €{0,1,...,m — 1}, (i, j)y =, j+1D =, j+2)— — (i, k)
je(0L .. .n—-1}. is denoted ag, j) 1 (i, k) and the path

We call m,n, andd as thewidth, height andslope
of GHT(m, n, d), respectively. For a verte¥, j) of
GHT(@m,n,d),i andj are called as itérst andsecond is denoted a¢, j) | (i, k).

(0.,5)

Fig. 1. Two examples of generalized honeycomb torus. (a) @Hl 2). (b) GHT(5, 6, 3).
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Given two positive integerg andg, let gcd p, g)
denote the greatest common divisopodindg, and let
p | g denotes thag is divisible by p.

Lemma 1. Let p and ¢ be two positive integers.
Let g(p,q) denote the smallest positive integer

satisfyingp x s = 0 (modg). Theng(p, q) = m.
Proof. Since
p 1 P q=0(modg),

% gcdp.q)  gedp, q)

i q
we derl\{eg(p,q) g T R
s be an integer with K s < m -1 lfpxs=
0 (modgq), there would be a positive integesuch that
p X s =r x g. Dividing both sides of this equality by
gcd(p, ¢), we could obtai% X§=rX m.

. » q o )

Since gcd—gcd(p’q), —gcd(p,q)) = 1, we would derive
m | s. This would contradict the assumption that

q
1<5< geabgy — 1- Henceg(p.q) > O

On the other hand, let

q
gedp.q)

Given two positive integera and b, we need to
consider a grapldi (a, b) that has{0,1,...,a — 1} as
the vertex set and(i,i + b): 0 <i <a — 1} as the
edge set, where the arithmetic is modalo

Lemma 2. If gcda, b) =1, thenG(a, b) is a cycle
(loop and multiple edges inclusive

Proof. Consider the infinite sequen@® b, 2b, 3b, .. .)
of neighboring vertices. It follows from Lemma 1 that
(0,b,2b,3b,...,(a—1)b,0) formsacycle. O

3. Hamiltonicity of generalized honeycomb torus

Whend = 0, GHT(m, n, d) is a honeycomb rec-

tangular torus, which is clearly a Hamiltonian graph.

Henceforth, we investigate the Hamiltonicity of gen-
eralized honeycomb torus for the case 0 by distin-
guishing two possibilities.

3.1. The width is even
We first investigate the Hamiltonicity of GHik,

n,d) in casem is even. Letk be an even integer
satisfying 0< k < n — 1. Let h be an even integer

satisfying 1< & < n. Then GHTm, n,d) contains
a path starting from vertef0, k) and terminating at
vertex(m — 1, k), which is shown below:
O,k (0,k+h—-1)—> (L k+h—1)| (1,k)
- 2,k 2, k+h—1)— B k+h—1)
- 4k 4 k+h—-1)— S5k+h-1)
...
- m—=-2kyt(m—2,k+h—1)
> m-1Lk+h—-1) | (m—1k).

1 (3,k)
1 5,k

(5, k)

We denote this path b® (k, #). Obviously, we have

Lemma 3. If m is even, then setP(k x gcdn, d),
gedn, d)): 0<k < m — 1} constitutes a path
decomposition ofGHT(m, n,d). (We call this path
decomposition astandard path decompositipn

Figs. 2(a) and 3(a) gives two instances of standard
path decomposition of generalized honeycomb torus.

Theorem 4. If m is even. ThenGHT(m,n,d) is
Hamiltonian.

d .
Proof. We; cor_15truct a grapm(gcd?n,d), gedoray) I
the way given in Lemma 2. By Lemma 2, the sequence
of neighboring vertices

d d
0 2
( gedn,d)’ x gedn,d)’

n d
(gcd(n,d) B 1) 8 gcd(n,d)’o)

forms a cycle. This cycle can be extended to a
Hamiltonian cycle of GHTm, n, d) according to the
following steps:

Stepl: For each with 0 <i < —1,let

gedndy
Vi)={(p.q): 0< p<m—1,
ixgedn,d)<g<(@+21
x gcdn, d) — 1}.
Step?: Replace each vertéxf G(

with V(7).
Step3: Replace each edde i + d) of G(m,

seaa ;) With a path of GHTim, n,d) obtained from

n d )
gcdin,d)’ gcdin,d)
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Fig. 2. Standard path decomposition and standard Hamiltonian cycle of (456l2). (Notice that gcd:,d) = gcd6,2) = 2.)
(@) {P(0,2), P(2,2), P(4,2)}. (b) Standard Hamiltonian cycle.
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Fig. 3. Standard path decomposition and standard Hamiltonian cycle of(45HX4) (Notice that gcdr,d) = gcd(124) = 4.)
(@) {P(0,4), P(4,4), P(8,4)}. (b) Standard Hamiltonian cycle.
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pathP (i x gcdn, d), gcdn, d)) by adding the follow-
ing edge:

((0,1' X gC(Xn,d)), (m —1,i x gcdn, d) —i—d)). O

U{P(k x gcdn,d + 1)+ 2,gcdn, d + 1) — 2):

0O<k<—"1 1
gedn,d + 1)

We call a Hamiltonian cycle thus constructed as a of paths constitutes a path decomposition of

standard Hamiltonian cycleFigs. 2(b) and 3(b) give
two instances of standard Hamiltonian cycle.

3.2. The width is odd

Next, we investigate the Hamiltonicity of GHilz,
n,d) in casem is odd. Letk be an even integer
satisfying 0< k <n — 1. Let h be an even integer
satisfying 1< 2 < n—1. Then GHTm, n, d) contains
a path starting from verte0, k) and terminating at
vertex(m — 1, k+h —1):

(0,k) (0, k+h—1)— (Lk+h—1)} (1, k)

- (2,k)t (2, k+h—1)—> (3, k+h—1)

- 4, kyt {4 k+h—1)— (5k+h—1)

—> > m=-1 k1t {m-Lk+h—-1).

We denote this path b (k, #). Obviously, we have

(3.k)

1 3.k
4 (5, k)

Lemmab. If m is odd, then the set

{P(k x gcdn,d + 1), 2):

o<k<— " 1
gedn,d + 1)

0.5)

GHT(@m, n,d). (We call this path decomposition as
standard path decomposition.)

Figs. 4(a) and 5(a) gives two instances of standard
path decomposition of generalized honeycomb torus.

Theorem 6. If m is odd, therGHT(m, n, d) is Hamil-
tonian.

Proof. We constructa grapli (geg; 7y gcoﬁlﬂ))

in the way given in Lemma 2. By Lemma 2, the
sequence

d+1 » d+1
“gedin,d +1)° gedn,d +1)" "7

n 1) x d+1
gedn,d +1) gcdn,d +1)°
forms a cycle. This cycle can be extended to a
Hamiltonian cycle of GHTm, n, d) according to the
following steps:

Stepl: For each with 0 <i < -1, let

n
gcdn,d+1)

Vi)={(p.q): 0< p<m—1,
ixgedn,d+1)<g<(@+1)
ngd(n,d—f-l)—l}.

Fig. 4. Standard path decomposition and standard Hamiltonian cycle in(8%56B). (Notice that gcé:,d + 1) = gcd(6,4) = 2.) (a)

{P(0,2), P(2,2), P(4,2)}. (b) Standard Hamiltonian cycle.
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Fig. 5. Standard path decomposition and standard Hamiltonian cycle in8HX 5). (Notice that gcdr,d + 1) = gcd(12,6) = 6.) (a)
{P(0,2), P(2,4), P(6,2), P(8,4)}. (b) Standard Hamiltonian cycle.

Step 2: Replace each vertek of G(
edeaTD) With V().

m, Combining Theorems 4 and 6, we obtain

Corollary 7. Every generalized honeycomb torus is

Step3: Replace each edgg i +d) of G(m, Hamiltonian.
cd(+d+l)) with a path of GHTm, n, d) obtained from
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