

Available online at www.sciencedirect.com

Information Processing Letters 92 (2004) 31-37

Information Processing Letters

www.elsevier.com/locate/ipl

Generalized honeycomb torus is Hamiltonian $\stackrel{\text{\tiny{theteroptical}}}{\to}$

Xiaofan Yang^{a,*}, David J. Evans^b, Hongjian Lai^c, Graham M. Megson^d

^a College of Computer Science, Chongqing University, Chongqing, 400044, PR China

^b School of Computing and Mathematics, Nottingham Trent University, Room N421a, Newton Building, Burton Street,

Nottingham, NG1 4BU, UK

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

^d Department of Computer Science, School of Systems Engineering, University of Reading, PO Box 225, Whiteknights, Reading, Berkshire, RG6 6AY, UK

Received 18 September 2003; received in revised form 10 May 2004

Communicated by F.Y.L. Chin

Abstract

Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycomb torus, honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. Existence of Hamiltonian cycle is a basic requirement for interconnection networks since it helps map a "token ring" parallel algorithm onto the associated network in an efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185–190] speculated that every generalized honeycomb torus is Hamiltonian. In this paper, we have proved this conjecture.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Interconnection networks; Generalized honeycomb torus; Hamiltonian cycle

1. Introduction

The effectiveness of the interconnection network in a parallel computing system is a crucial factor of performance of the system [7]. Stojmenovic [9] proposed three classes of *honeycomb torus* architectures: *honeycomb hexagonal torus*, *honeycomb rectangular torus*,

Corresponding author.

E-mail addresses: xf_yang@163.com, xf_yang1964@yahoo.com (X. Yang).

and *honeycomb parallelogramic torus*. Due to lower node degree and lower implementation cost than those of a standard torus of the same size, these architectures have incurred great research interest [1,2,5,6,8– 11]. Cho and Hsu [3] found that all these honeycomb torus networks can be characterized in a unified way, and thereby proposed a class of interconnection networks known as the *generalized honeycomb torus*.

Existence of a Hamiltonian cycle is one of the basic requirements for interconnection networks since it helps map a "token ring" parallel algorithm onto the associated network in an efficient way [7]. The Hamiltonicity of honeycomb torus networks has been extensively studied. Megson et al. [5,6] proved that hon-

^{*} This research was partly supported by the Visiting Scholar's Funds of National Education Ministry's Key Laboratory of Electro-Optical Technique and System, Chongqing University.

^{0020-0190/\$ –} see front matter $\,$ © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2004.05.017 $\,$

eycomb hexagonal torus is Hamiltonian, even in the presence of node failures. Cho and Hsu [2] discovered a Hamiltonian cycle for faulty honeycomb rectangular torus. As for generalized honeycomb torus, Cho and Hsu [3], and Yang and Megson [12] proved the existence of Hamiltonian cycles for some special cases. Furthermore, Cho and Hsu [3] speculated that every generalized honeycomb torus is Hamiltonian.

This paper aims at proving this conjecture by constructing a Hamiltonian cycle for each generalized honeycomb torus.

2. Preliminaries

Henceforth we say *graph* instead of the interconnection network modeled by the graph. For fundamental graph-theoretical terminology the reader is referred to [4].

Definition 1 [3]. Let *n* be a positive even integer, *m* be a positive integer, and *d* be a nonnegative integer that is less than *n* and is of the same parity as *m*. An (m, n, d) generalized honeycomb torus, denoted by GHT(m, n, d), is a graph with vertex set

$$V(\text{GHT}(m, n, d)) = \{ \langle i, j \rangle : i \in \{0, 1, \dots, m-1\}, \\ j \in \{0, 1, \dots, n-1\} \}.$$

We call m, n, and d as the width, height, and slope of GHT(m, n, d), respectively. For a vertex $\langle i, j \rangle$ of GHT(m, n, d), i and j are called as its *first* and *second*

components, respectively. Here and in what follows, all arithmetic operations carried out on the first and second components are modulo *m* and *n*, respectively. Two vertices $\langle i, j \rangle$ and $\langle k, l \rangle$ with $i \leq k$ are adjacent if and only if one of the following three conditions is satisfied:

(a) $\langle k, l \rangle = \langle i, j+1 \rangle$ or $\langle k, l \rangle = \langle i, j-1 \rangle$; (b) $0 \leq i \leq m-2, i+j$ is odd, and $\langle k, l \rangle = \langle i+1, j \rangle$; (c) i = 0, j is even, and $\langle k, l \rangle = \langle m-1, j+d \rangle$.

Clearly, every generalized honeycomb torus is a 3regular bipartite graph. See Fig. 1 for two examples of generalized honeycomb torus. It is known [3] that generalized honeycomb torus includes honeycomb torus, honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. For convenience, let us introduce the following notations.

Definition 2. A path decomposition of graph G is a set of disjoint paths $P_1, P_2, ..., P_k$ in G satisfying $\bigcup_{i=1}^k V(P_i) = V(G)$, where $V(P_i)$ denotes the set of vertices on P_i .

Given two vertices (i, j) and (i, k) of GHT(m, n, d), the path

$$\langle i, j \rangle \rightarrow \langle i, j+1 \rangle \rightarrow \langle i, j+2 \rangle \rightarrow \cdots \rightarrow \langle i, k \rangle$$

is denoted as $\langle i, j \rangle \uparrow \langle i, k \rangle$ and the path

$$\langle i, j \rangle \rightarrow \langle i, j-1 \rangle \rightarrow \langle i, j-2 \rangle \rightarrow \cdots \rightarrow \langle i, k \rangle$$

is denoted as $\langle i, j \rangle \downarrow \langle i, k \rangle$.

Fig. 1. Two examples of generalized honeycomb torus. (a) GHT(4, 6, 2). (b) GHT(5, 6, 3).

Given two positive integers p and q, let gcd(p,q) denote the greatest common divisor of p and q, and let $p \mid q$ denotes that q is divisible by p.

Lemma 1. Let p and q be two positive integers. Let g(p,q) denote the smallest positive integer s satisfying $p \times s = 0 \pmod{q}$. Then $g(p,q) = \frac{q}{\gcd(p,q)}$.

Proof. Since

$$p \times \frac{q}{\gcd(p,q)} = \frac{p}{\gcd(p,q)} \times q \equiv 0 \pmod{q},$$

we derive $g(p,q) \leq \frac{q}{\gcd(p,q)}$. On the other hand, let s be an integer with $1 \leq s \leq \frac{q}{\gcd(p,q)} - 1$. If $p \times s = 0 \pmod{q}$, there would be a positive integer r such that $p \times s = r \times q$. Dividing both sides of this equality by $\gcd(p,q)$, we could obtain $\frac{p}{\gcd(p,q)} \times s = r \times \frac{q}{\gcd(p,q)}$. Since $\gcd(\frac{p}{\gcd(p,q)}, \frac{q}{\gcd(p,q)}) = 1$, we would derive $\frac{q}{\gcd(p,q)} \mid s$. This would contradict the assumption that $1 \leq s \leq \frac{q}{\gcd(p,q)} - 1$. Hence, $g(p,q) \geq \frac{q}{\gcd(p,q)}$. \Box

Given two positive integers *a* and *b*, we need to consider a graph G(a, b) that has $\{0, 1, ..., a - 1\}$ as the vertex set and $\{\langle i, i + b \rangle: 0 \le i \le a - 1\}$ as the edge set, where the arithmetic is modulo *a*.

Lemma 2. If gcd(a, b) = 1, then G(a, b) is a cycle (loop and multiple edges inclusive).

Proof. Consider the infinite sequence (0, b, 2b, 3b, ...) of neighboring vertices. It follows from Lemma 1 that (0, b, 2b, 3b, ..., (a - 1)b, 0) forms a cycle. \Box

3. Hamiltonicity of generalized honeycomb torus

When d = 0, GHT(m, n, d) is a honeycomb rectangular torus, which is clearly a Hamiltonian graph. Henceforth, we investigate the Hamiltonicity of generalized honeycomb torus for the case d > 0 by distinguishing two possibilities.

3.1. The width is even

We first investigate the Hamiltonicity of GHT(m, n, d) in case *m* is even. Let *k* be an even integer satisfying $0 \le k \le n - 1$. Let *h* be an even integer

satisfying $1 \le h \le n$. Then GHT(m, n, d) contains a path starting from vertex (0, k) and terminating at vertex (m - 1, k), which is shown below:

$$\begin{array}{l} \langle 0,k\rangle\uparrow\langle 0,k+h-1\rangle\rightarrow\langle 1,k+h-1\rangle\downarrow\langle 1,k\rangle\\ \rightarrow\langle 2,k\rangle\uparrow\langle 2,k+h-1\rangle\rightarrow\langle 3,k+h-1\rangle\downarrow\langle 3,k\rangle\\ \rightarrow\langle 4,k\rangle\uparrow\langle 4,k+h-1\rangle\rightarrow\langle 5,k+h-1\rangle\downarrow\langle 5,k\rangle\\ \rightarrow\cdots\\ \rightarrow\langle m-2,k\rangle\uparrow\langle m-2,k+h-1\rangle\\ \rightarrow\langle m-1,k+h-1\rangle\downarrow\langle m-1,k\rangle. \end{array}$$

We denote this path by P(k, h). Obviously, we have

Lemma 3. If *m* is even, then set { $P(k \times gcd(n, d), gcd(n, d))$: $0 \le k \le \frac{n}{gcd(n, d)} - 1$ } constitutes a path decomposition of GHT(*m*, *n*, *d*). (We call this path decomposition as standard path decomposition.)

Figs. 2(a) and 3(a) gives two instances of standard path decomposition of generalized honeycomb torus.

Theorem 4. If m is even. Then GHT(m, n, d) is Hamiltonian.

Proof. We construct a graph $G(\frac{n}{\gcd(n,d)}, \frac{d}{\gcd(n,d)})$ in the way given in Lemma 2. By Lemma 2, the sequence of neighboring vertices

$$\left(0, \frac{d}{\gcd(n, d)}, 2 \times \frac{d}{\gcd(n, d)}, \dots, \left(\frac{n}{\gcd(n, d)} - 1\right) \times \frac{d}{\gcd(n, d)}, 0\right)$$

forms a cycle. This cycle can be extended to a Hamiltonian cycle of GHT(m, n, d) according to the following steps:

Step 1: For each *i* with $0 \le i \le \frac{n}{\gcd(n,d)} - 1$, let

$$V(i) = \{ \langle p, q \rangle \colon 0 \leq p \leq m - 1, \\ i \times \gcd(n, d) \leq q \leq (i + 1) \\ \times \gcd(n, d) - 1 \}.$$

Step 2: Replace each vertex *i* of $G(\frac{n}{\gcd(n,d)}, \frac{d}{\gcd(n,d)})$ with V(i).

Step 3: Replace each edge (i, i + d) of $G(\frac{n}{\gcd(n,d)})$, $\frac{d}{\gcd(n,d)}$ with a path of GHT(m, n, d) obtained from

Fig. 2. Standard path decomposition and standard Hamiltonian cycle of GHT(4, 6, 2). (Notice that gcd(n, d) = gcd(6, 2) = 2.) (a) {P(0, 2), P(2, 2), P(4, 2)}. (b) Standard Hamiltonian cycle.

Fig. 3. Standard path decomposition and standard Hamiltonian cycle of GHT(4, 12, 4) (Notice that gcd(n, d) = gcd(12, 4) = 4.) (a) {P(0, 4), P(4, 4), P(8, 4)}. (b) Standard Hamiltonian cycle.

path $P(i \times \text{gcd}(n, d), \text{gcd}(n, d))$ by adding the following edge:

$$(\langle 0, i \times \gcd(n, d) \rangle, \langle m - 1, i \times \gcd(n, d) + d \rangle).$$
 \Box

We call a Hamiltonian cycle thus constructed as a *standard Hamiltonian cycle*. Figs. 2(b) and 3(b) give two instances of standard Hamiltonian cycle.

3.2. The width is odd

Next, we investigate the Hamiltonicity of GHT(m, n, d) in case *m* is odd. Let *k* be an even integer satisfying $0 \le k \le n - 1$. Let *h* be an even integer satisfying $1 \le h \le n - 1$. Then GHT(m, n, d) contains a path starting from vertex $\langle 0, k \rangle$ and terminating at vertex $\langle m - 1, k + h - 1 \rangle$:

$$\begin{array}{l} \langle 0,k\rangle\uparrow\langle 0,k+h-1\rangle\to\langle 1,k+h-1\rangle\downarrow\langle 1,k\rangle\\ \to\langle 2,k\rangle\uparrow\langle 2,k+h-1\rangle\to\langle 3,k+h-1\rangle\downarrow\langle 3,k\rangle\\ \to\langle 4,k\rangle\uparrow\langle 4,k+h-1\rangle\to\langle 5,k+h-1\rangle\downarrow\langle 5,k\rangle\\ \to\cdots\to\langle m-1,k\rangle\uparrow\langle m-1,k+h-1\rangle. \end{array}$$

We denote this path by P(k, h). Obviously, we have

Lemma 5. If m is odd, then the set

$$\cup \left\{ P\left(k \times \gcd(n, d+1) + 2, \gcd(n, d+1) - 2\right): \\ 0 \leqslant k \leqslant \frac{n}{\gcd(n, d+1)} - 1 \right\}$$

of paths constitutes a path decomposition of GHT(m, n, d). (We call this path decomposition as standard path decomposition.)

Figs. 4(a) and 5(a) gives two instances of standard path decomposition of generalized honeycomb torus.

Theorem 6. If m is odd, then GHT(m, n, d) is Hamiltonian.

Proof. We construct a graph $G(\frac{n}{\gcd(n,d+1)}, \frac{d+1}{\gcd(n,d+1)})$ in the way given in Lemma 2. By Lemma 2, the sequence

$$\left(0, \frac{d+1}{\gcd(n, d+1)}, 2 \times \frac{d+1}{\gcd(n, d+1)}, \dots, \left(\frac{n}{\gcd(n, d+1)} - 1\right) \times \frac{d+1}{\gcd(n, d+1)}, 0\right)$$

forms a cycle. This cycle can be extended to a Hamiltonian cycle of GHT(m, n, d) according to the following steps:

Step 1: For each *i* with $0 \le i \le \frac{n}{\gcd(n,d+1)} - 1$, let

$$V(i) = \{ \langle p, q \rangle \colon 0 \leq p \leq m-1, \\ i \times \gcd(n, d+1) \leq q \leq (i+1) \\ \times \gcd(n, d+1) - 1 \}.$$

Fig. 4. Standard path decomposition and standard Hamiltonian cycle in GHT(5, 6, 3). (Notice that gcd(n, d + 1) = gcd(6, 4) = 2.) (a) {P(0, 2), P(2, 2), P(4, 2)}. (b) Standard Hamiltonian cycle.

Fig. 5. Standard path decomposition and standard Hamiltonian cycle in GHT(5, 12, 5). (Notice that gcd(n, d + 1) = gcd(12, 6) = 6.) (a) {P(0, 2), P(2, 4), P(6, 2), P(8, 4)}. (b) Standard Hamiltonian cycle.

Step 2: Replace each vertex *i* of $G(\frac{n}{\gcd(n,d+1)}, \frac{d}{\gcd(n,d+1)})$ with V(i).

Step 3: Replace each edge (i, i+d) of $G(\frac{n}{\gcd(n,d+1)})$, $\frac{d}{\gcd(n,d+1)}$ with a path of GHT(m, n, d) obtained from the following two paths:

- $P(i \times \gcd(n, d+1), 2)$ and
- $P(i \times \operatorname{gcd}(n, d+1) + 2, \operatorname{gcd}(n, d+1) 2),$

by adding the following two edges

$$(\langle 0, i \times \gcd(n, d+1) \rangle, \langle m-1, i \times \gcd(n, d+1) + d \rangle) \text{ and } (\langle 0, i \times \gcd(n, d+1) + 2 \rangle, \langle m-1, i \times \gcd(n, d+1) + d + 2 \rangle). \square$$

We call a Hamiltonian cycle thus constructed as a *standard Hamiltonian cycle*. Figs. 4(b) and 5(b) gives two instances of standard Hamiltonian cycle.

Combining Theorems 4 and 6, we obtain

Corollary 7. Every generalized honeycomb torus is Hamiltonian.

Acknowledgements

The authors wish to express their gratitude to the two anonymous referees for their valuable suggestions that greatly improve the quality of the paper.

References

- J. Carle, J.-F. Myoupo, D. Seme, All-to-all broadcasting algorithms on honeycomb networks and applications, Parallel Process. Lett. 9 (4) (1999) 539–550.
- [2] H. Cho, L. Hsu, Ring embedding in faulty honeycomb rectangular torus, Inform. Process. Lett. 84 (5) (2002) 277–284.
- [3] H. Cho, L. Hsu, Generalized honeycomb torus, Inform. Process. Lett. 86 (4) (2003) 185–190.
- [4] F. Harary, Graph Theory, Addison–Wesley, Reading, MA, 1969.

- [5] G.M. Megson, X. Yang, X. Liu, Honeycomb tori are Hamiltonian, Inform. Process. Lett. 72 (3–4) (1999) 99–103.
- [6] G.M. Megson, X. Liu, X. Yang, Fault-tolerant ring embedding in a honeycomb torus with node failures, Parallel Process. Lett. 9 (4) (1999) 551–562.
- [7] B. Parhami, An Introduction to Parallel Processing: Algorithms and Architectures, Plenum Press, New York, 1999.
- [8] B. Parhami, D. Kwai, A unified formulation of honeycomb and diamond networks, IEEE Trans. Parallel Distributed Systems 12 (1) (2001) 74–80.
- [9] I. Stojmenovic, Honeycomb networks: topological properties and communication algorithms, IEEE Trans. Parallel Distributed Systems 8 (10) (1997) 1036–1042.
- [10] X. Yang, Diameter of honeycomb rhombic tori, Appl. Math. Lett. 17 (2) (2004) 167–172.
- [11] X. Yang, G.M. Megson, X. Huang, On the symmetry of honeycomb parallelogramic torus networks, Parallel Algorithms and Applications, in press.
- [12] X. Yang, G.M. Megson, On the Hamiltonicity of generalized honeycomb torus, in preparation.