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Generalized honeycomb torus is Hamiltonian✩
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Abstract

Generalized honeycomb torus is a candidate for interconnection network architectures, which includes honeycom
honeycomb rectangular torus, and honeycomb parallelogramic torus as special cases. Existence of Hamiltonian cycle is a basic
requirement for interconnection networks since it helps map a “token ring” parallel algorithm onto the associated netw
efficient way. Cho and Hsu [Inform. Process. Lett. 86 (4) (2003) 185–190] speculated that every generalized honeyco
is Hamiltonian. In this paper, we have proved this conjecture.
 2004 Elsevier B.V. All rights reserved.
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The effectiveness of the interconnection network
a parallel computing system is a crucial factor of p
formance of the system [7]. Stojmenovic [9] propos
three classes ofhoneycomb torusarchitectures:honey-
comb hexagonal torus, honeycomb rectangular torus,
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of a standard torus of the same size, these arch
tures have incurred great research interest [1,2,5,
11]. Cho and Hsu [3] found that all these honeyco
torus networks can be characterized in a unified w
and thereby proposed a class of interconnection
works known as thegeneralized honeycomb torus.

Existence of a Hamiltonian cycle is one of the b
sic requirements for interconnection networks sinc
helps map a “token ring” parallel algorithm onto t
associated network in an efficient way [7]. The Ham
tonicity of honeycomb torus networks has been ext
sively studied. Megson et al. [5,6] proved that ho

.
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eycomb hexagonal torus is Hamiltonian, even in the
presence of node failures. Cho and Hsu [2] discovered
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components, respectively. Here and in what follows,
all arithmetic operations carried out on the first and
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a Hamiltonian cycle for faulty honeycomb rectangu
torus. As for generalized honeycomb torus, Cho
Hsu [3], and Yang and Megson [12] proved the e
istence of Hamiltonian cycles for some special cas
Furthermore, Cho and Hsu [3] speculated that ev
generalized honeycomb torus is Hamiltonian.

This paper aims at proving this conjecture
constructing a Hamiltonian cycle for each generaliz
honeycomb torus.

2. Preliminaries

Henceforth we saygraph instead of the intercon
nection network modeled by the graph. For fundam
tal graph-theoretical terminology the reader is refer
to [4].

Definition 1 [3]. Let n be a positive even integer,m

be a positive integer, andd be a nonnegative intege
that is less thann and is of the same parity asm.
An (m,n, d) generalized honeycomb torus, denoted
by GHT(m,n, d), is a graph with vertex set

V
(
GHT(m,n, d)

) = {〈i, j 〉: i ∈ {0,1, . . . ,m − 1},
j ∈ {0,1, . . . , n − 1}}.

We call m,n, andd as thewidth, height, andslope
of GHT(m,n, d), respectively. For a vertex〈i, j 〉 of
GHT(m,n, d), i andj are called as itsfirst andsecond
second components are modulom andn, respectively.
Two vertices〈i, j 〉 and 〈k, l〉 with i � k are adjacen
if and only if one of the following three conditions
satisfied:

(a) 〈k, l〉 = 〈i, j + 1〉 or 〈k, l〉 = 〈i, j − 1〉;
(b) 0� i � m−2, i +j is odd, and〈k, l〉 = 〈i +1, j 〉;
(c) i = 0, j is even, and〈k, l〉 = 〈m − 1, j + d〉.

Clearly, every generalized honeycomb torus is a
regular bipartite graph. See Fig. 1 for two examples
generalized honeycomb torus. It is known [3] that g
eralized honeycomb torus includes honeycomb to
honeycomb rectangular torus, and honeycomb pa
lelogramic torus as specialcases. For convenience, l
us introduce the following notations.

Definition 2. A path decomposition of graphG is
a set of disjoint pathsP1,P2, . . . ,Pk in G satisfying⋃k

i=1 V (Pi) = V (G), whereV (Pi) denotes the set o
vertices onPi .

Given two vertices(i, j) and(i, k) of GHT(m,n, d),
the path

〈i, j 〉 → 〈i, j + 1〉 → 〈i, j + 2〉 → · · · → 〈i, k〉
is denoted as〈i, j 〉 ↑ 〈i, k〉 and the path

〈i, j 〉 → 〈i, j − 1〉 → 〈i, j − 2〉 → · · · → 〈i, k〉
is denoted as〈i, j 〉 ↓ 〈i, k〉.
(a) (b)

Fig. 1. Two examples of generalized honeycomb torus. (a) GHT(4,6,2). (b) GHT(5,6,3).
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Given two positive integersp andq , let gcd(p, q)

denote the greatest common divisor ofp andq , and let
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satisfying 1� h � n. Then GHT(m,n, d) contains
a path starting from vertex〈0, k〉 and terminating at
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p | q denotes thatq is divisible byp.

Lemma 1. Let p and q be two positive integers
Let g(p,q) denote the smallest positive integers

satisfyingp× s = 0 (modq). Theng(p,q) = q
gcd(p,q)

.

Proof. Since

p × q

gcd(p, q)
= p

gcd(p, q)
× q ≡ 0 (modq),

we deriveg(p,q) � q
gcd(p,q)

. On the other hand, le

s be an integer with 1� s � q
gcd(p,q)

− 1. If p × s =
0 (modq), there would be a positive integerr such that
p × s = r × q . Dividing both sides of this equality b
gcd(p, q), we could obtain p

gcd(p,q)
× s = r × q

gcd(p,q)
.

Since gcd( p
gcd(p,q)

,
q

gcd(p,q)
) = 1, we would derive

q
gcd(p,q)

| s. This would contradict the assumption th

1 � s � q
gcd(p,q)

− 1. Hence,g(p,q) � q
gcd(p,q)

. �
Given two positive integersa and b, we need to

consider a graphG(a,b) that has{0,1, . . . , a − 1} as
the vertex set and{〈i, i + b〉: 0 � i � a − 1} as the
edge set, where the arithmetic is moduloa.

Lemma 2. If gcd(a, b) = 1, thenG(a,b) is a cycle
(loop and multiple edges inclusive).

Proof. Consider the infinite sequence(0, b,2b,3b, . . .)

of neighboring vertices. It follows from Lemma 1 th
(0, b,2b,3b, . . ., (a − 1)b,0) forms a cycle. �

3. Hamiltonicity of generalized honeycomb torus

When d = 0, GHT(m,n, d) is a honeycomb rec
tangular torus, which is clearly a Hamiltonian grap
Henceforth, we investigate the Hamiltonicity of ge
eralized honeycomb torus for the cased > 0 by distin-
guishing two possibilities.

3.1. The width is even

We first investigate the Hamiltonicity of GHT(m,

n, d) in casem is even. Letk be an even intege
satisfying 0� k � n − 1. Let h be an even intege
vertex〈m − 1, k〉, which is shown below:

〈0, k〉 ↑ 〈0, k + h − 1〉 → 〈1, k + h − 1〉 ↓ 〈1, k〉
→ 〈2, k〉 ↑ 〈2, k + h − 1〉 → 〈3, k + h − 1〉 ↓ 〈3, k〉
→ 〈4, k〉 ↑ 〈4, k + h − 1〉 → 〈5, k + h − 1〉 ↓ 〈5, k〉
→ · · ·
→ 〈m − 2, k〉 ↑ 〈m − 2, k + h − 1〉
→ 〈m − 1, k + h − 1〉 ↓ 〈m − 1, k〉.

We denote this path byP(k,h). Obviously, we have

Lemma 3. If m is even, then set{P(k × gcd(n, d),

gcd(n, d)): 0 � k � n
gcd(n,d)

− 1} constitutes a path
decomposition ofGHT(m,n, d). (We call this path
decomposition asstandard path decomposition.)

Figs. 2(a) and 3(a) gives two instances of stand
path decomposition of generalized honeycomb tor

Theorem 4. If m is even. ThenGHT(m,n, d) is
Hamiltonian.

Proof. We construct a graphG( n
gcd(n,d)

, d
gcd(n,d)

) in
the way given in Lemma 2. By Lemma 2, the seque
of neighboring vertices
(

0,
d

gcd(n, d)
,2× d

gcd(n, d)
, . . . ,

(
n

gcd(n, d)
− 1

)
× d

gcd(n, d)
,0

)

forms a cycle. This cycle can be extended to
Hamiltonian cycle of GHT(m,n, d) according to the
following steps:

Step1: For eachi with 0 � i � n
gcd(n,d)

− 1, let

V (i) = {〈p,q〉: 0 � p � m − 1,

i × gcd(n, d) � q � (i + 1)

× gcd(n, d) − 1
}
.

Step2: Replace each vertexi of G( n
gcd(n,d)

, d
gcd(n,d)

)

with V (i).
Step3: Replace each edge(i, i + d) of G( n

gcd(n,d)
,

d
gcd(n,d)

) with a path of GHT(m,n, d) obtained from
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(a) (b)

Fig. 2. Standard path decomposition and standard Hamiltonian cycle of GHT(4,6,2). (Notice that gcd(n, d) = gcd(6,2) = 2.)
(a) {P (0,2),P (2,2),P (4,2)}. (b) Standard Hamiltonian cycle.

(a) (b)

Fig. 3. Standard path decomposition and standard Hamiltonian cycle of GHT(4,12,4) (Notice that gcd(n, d) = gcd(12,4) = 4.)
(a) {P (0,4),P (4,4),P (8,4)}. (b) Standard Hamiltonian cycle.
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pathP(i ×gcd(n, d),gcd(n, d)) by adding the follow-
ing edge:

s a

r
r

t

∪
{
P

(
k × gcd(n, d + 1) + 2,gcd(n, d + 1) − 2

)
:

of
s

ard
us.

e

a

(〈
0, i × gcd(n, d)

〉
,
〈
m − 1, i × gcd(n, d) + d

〉)
. �

We call a Hamiltonian cycle thus constructed a
standard Hamiltonian cycle. Figs. 2(b) and 3(b) give
two instances of standard Hamiltonian cycle.

3.2. The width is odd

Next, we investigate the Hamiltonicity of GHT(m,

n, d) in casem is odd. Let k be an even intege
satisfying 0� k � n − 1. Let h be an even intege
satisfying 1� h � n−1. Then GHT(m,n, d) contains
a path starting from vertex〈0, k〉 and terminating a
vertex〈m − 1, k + h − 1〉:
〈0, k〉 ↑ 〈0, k + h − 1〉 → 〈1, k + h − 1〉 ↓ 〈1, k〉

→ 〈2, k〉 ↑ 〈2, k + h − 1〉 → 〈3, k + h − 1〉 ↓ 〈3, k〉
→ 〈4, k〉 ↑ 〈4, k + h − 1〉 → 〈5, k + h − 1〉 ↓ 〈5, k〉
→ · · · → 〈m − 1, k〉 ↑ 〈m − 1, k + h − 1〉.

We denote this path byP(k,h). Obviously, we have

Lemma 5. If m is odd, then the set{
P

(
k × gcd(n, d + 1),2

)
:

0 � k � n

gcd(n, d + 1)
− 1

}

0 � k � n

gcd(n, d + 1)
− 1

}

of paths constitutes a path decomposition
GHT(m,n, d). (We call this path decomposition a
standard path decomposition.)

Figs. 4(a) and 5(a) gives two instances of stand
path decomposition of generalized honeycomb tor

Theorem 6. If m is odd, thenGHT(m,n, d) is Hamil-
tonian.

Proof. We construct a graphG( n
gcd(n,d+1)

, d+1
gcd(n,d+1)

)

in the way given in Lemma 2. By Lemma 2, th
sequence(

0,
d + 1

gcd(n, d + 1)
,2× d + 1

gcd(n, d + 1)
, . . . ,

(
n

gcd(n, d + 1)
− 1

)
× d + 1

gcd(n, d + 1)
,0

)

forms a cycle. This cycle can be extended to
Hamiltonian cycle of GHT(m,n, d) according to the
following steps:

Step1: For eachi with 0 � i � n
gcd(n,d+1)

− 1, let

V (i) = {〈p,q〉: 0 � p � m − 1,

i × gcd(n, d + 1) � q � (i + 1)

× gcd(n, d + 1) − 1
}
.

(a) (b)

Fig. 4. Standard path decomposition and standard Hamiltonian cycle in GHT(5,6,3). (Notice that gcd(n, d + 1) = gcd(6,4) = 2.) (a)
{P (0,2),P (2,2),P (4,2)}. (b) Standard Hamiltonian cycle.
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(a) (b)

Fig. 5. Standard path decomposition and standard Hamiltonian cycle in GHT(5,12,5). (Notice that gcd(n, d + 1) = gcd(12,6) = 6.) (a)
{P (0,2),P (2,4),P (6,2),P (8,4)}. (b) Standard Hamiltonian cycle.

Step 2: Replace each vertexi of G( n
gcd(n,d+1)

, Combining Theorems 4 and 6, we obtain

d

s a
s

is

the
ions

ng
l

n-

m.

A,
gcd(n,d+1)
) with V (i).

Step3: Replace each edge(i, i+d) of G( n
gcd(n,d+1)

,

d
gcd(n,d+1)

) with a path of GHT(m,n, d) obtained from
the following two paths:

P
(
i × gcd(n, d + 1),2

)
and

P
(
i × gcd(n, d + 1) + 2,gcd(n, d + 1) − 2

)
,

by adding the following two edges(〈0, i × gcd(n, d + 1)〉,
〈m − 1, i × gcd(n, d + 1) + d〉) and(〈0, i × gcd(n, d + 1) + 2〉,
〈m − 1, i × gcd(n, d + 1) + d + 2〉). �

We call a Hamiltonian cycle thus constructed a
standard Hamiltonian cycle. Figs. 4(b) and 5(b) give
two instances of standard Hamiltonian cycle.
Corollary 7. Every generalized honeycomb torus
Hamiltonian.
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