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Abstract: For an integer l > 1, the l -edge-connectivity of a connected
graph with at least l vertices is the smallest number of edges whose
removal results in a graph with l components. A connected graphG is (k ; l )-
edge-connected if the l-edge-connectivity of G is at least k . In this paper,
we present a structural characterization of minimally (k; k)-edge-connected
graphs. As a result, former characterizations of minimally (2; 2)-edge-
connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended.
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1. INTRODUCTION

We use Bondy and Murty [2] for basic notations except that we use �ðGÞ to

denote the edge-connectivity of a graph G, and our notion of contraction. For an
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edge subset X � EðGÞ, then the contraction G=X is the graph obtained from G by

identifying the two ends of each edge in X, and then deleting the edges in X. Note

that new loops or multiple edges may be resulted in the contraction. Graphs in

this paper are finite and may have loops and multiple edges. As in [2], a minimal

edge cut of G is a bond. If an edge cut of G consisting of a single edge e, then e is

a bridge (or a cut edge) of G. Throughout this paper, k denotes an integer at

least 2.

For an integer l � 2, Boesch and Chen [1] defined the l-edge-connectivity

�lðGÞ of a connected graph G to be the smallest number of edges whose removal

leaves a graph with at least l components, if jVðGÞj � l, and �lðGÞ ¼ jEðGÞj if

jVðGÞj < l. Note that �2ðGÞ ¼ �ðGÞ. (Goldsmith in [7] and [8] defined the same

concept and called it higher order of edge connectivity). This generalized edge

connectivity has been studied by many. See [3,7–12], among others. For an

overview on this parameter, see Oellermann’s recent survey [10].

Following [10], call a graph G ðk; lÞ-edge-connected if �lðGÞ � k. Therefore a

(2,2)-edge-connected graph is just a 2-edge-connected graph. A graph G is

minimally ðk; lÞ-edge-connected if �lðGÞ � k but for any edge e 2 EðGÞ,
�lðG� eÞ < k.

In [4], Chaty and Chein presented a structural characterization of minimally

(2,2)-edge-connected graphs (Theorem 4.2 and Theorem 4.4 in Section 4). In this

paper, we consider the same problem for characterizing minimally (k; k)-edge-

connected graphs, for all integral values k � 2. As we shall see, when k > 2, a

minimally (k; k)-edge-connected graph may have bridges, and so some of these

graphs will fall out of the pattern given in [4].

In Section 2, we present some lemmas and observations that will be used in the

proofs of the main results. Section 3 and Section 4 will be devoted to the graphs

that have bridges and that do not have bridges, respectively.

2. PRELIMINARIES

For a graph G, define a relation on EðGÞ as follows: 8e; e0 2 EðGÞ, e � e0, if and

only if, either e ¼ e0, or fe; e0g is a bond of G. The relation � is clearly reflexive

and symmetric. For distinct edges e; e0; e00 2 EðGÞ, if fe; e0g and fe; e00g are bonds

of G, then G has a component H containing e; e0, and e00; and H � fe; e0; e00g has

three components. It follows that fe0; e00g is also an bond of G, and so � is an

equivalence relation on EðGÞ.
Let ½e� denote the equivalence class that contains e 2 EðGÞ. For an e 2 EðGÞ,

define G½e� ¼ G=ðEðGÞ � ½e�Þ. Note that EðG½e�Þ ¼ ½e� and that G½e� is obtained

from G by contracting each component of G� ½e� into a single vertex.

Define, for a connected graph G,

BðGÞ ¼ fe : e is a bridge of Gg:
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Let G0 ¼ G=ðEðGÞ � BðGÞÞ, called the B-reduction of G. Note that EðG0Þ ¼ BðGÞ
and that G0 is the graph obtained from G by contracting the edges in EðGÞ� BðGÞ.
We put some observations into a proposition below.

Proposition 2.1. Each of the following holds for a connected graph G:

(i) If G has a bridge, then G0 is a tree with edge set BðGÞ.
(ii) If G has no bridges, then G½e� is a cycle with edge set ½e�.

(iii) If G has no bridges, then for any e0 2 ½e�, ðG� e0Þ0 is a path with edge set

½e� � fe0g.
(iv) If jVðGÞj � k, then G is minimally ðk; kÞ-edge-connected, if and only if,

jEðGÞj ¼ k.

(v) Let l � 2 and k > 0 be integers. If jVðGÞj � l, and if for some integer

k > 0 such that �lðGÞ ¼ k, then for any an edge subset T � EðGÞ with

jTj ¼ k and with !ðG� TÞ � l, the graph G� T has exactly l components.

Proof. Suppose that G has a bridge. Since BðGÞ is the set of all bridges of G,

each component of G�BðGÞ is either a K1 or a maximal 2-edge-connected

subgraph of G. By the definition of contraction, EðG0Þ ¼ BðGÞ. For each e 2 BðGÞ,
let G1 and G2 be the two components of G� e. Then BðGÞ ¼ feg [ BðG1Þ [
BðG2Þ, by the definition of BðGÞ. It follows by induction on jBðGÞj that the

number of components of G� BðGÞ is jBðGÞj þ 1. Since G is connected, G0 is

also connected, and jVðG0Þj is the number of components of G� BðGÞ. If follows

that G0 is a connected graph with jVðG0Þj ¼ jEðG0Þj þ 1, and so G0 must be a tree.

This proves (i).

Now assume that G has no bridges. Let e 2 EðGÞ be an edge. If ½e� ¼ feg, then

G½e� is a loop, and so is a cycle with edge set feg. Assume that j½e�j � 2. Since

for any edge e0 2 ½e� � feg, fe; e0g is a bond of G, we have BðG� eÞ ¼ ½e� � feg,

and so by Proposition 2.1(i), ðG� eÞ0 must be a tree. Since G has no bridge and

since e0 can joint only two components of ðG� e0Þ � ð½e� � fe0gÞ ¼ G� ½e�,
ðG� e0Þ0 must be a path whose two ends being the two components in G� ½e�
that are joined by e0 in G. Therefore, G½e� is a cycle with edge set ½e�. This proves

(ii) and (iii).

Proposition 2.1(iv) follows from the definition of minimally ðk; kÞ-edge-

connectedness.

Now, we assume that jVðGÞj � l, and �lðGÞ ¼ k. Let T � EðGÞ be an edge

subset with jT j ¼ k and with !ðG� TÞ ¼ c � l. If c � lþ 1, then since G is

connected, there must be an edge e 2 T such that e joins two components of

G� T in G. It follows that !ðG� ðT � fegÞÞ � l, and so �lðGÞ � jTj � 1 ¼
k � 1, contrary to the assumption that �lðGÞ ¼ k. Thus G� T must have exactly

l components. &

Lemma 2.1. Let G be a connected graph with jVðGÞj � k � 2. Then

�kðGÞ � k � 1. Moreover, the following are equivalent.

(i) �kðGÞ ¼ k � 1.
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(ii) If T � EðGÞ is an edge subset with jT j ¼ k � 1 such that G� T has k

components, then T � BðGÞ; and there exists at least one of such edge

subset T.

(iii) G0 is a tree of at least k � 1 edges.

Proof. It is well known that any connected graph of order k has at least k � 1

edges, and so if G is a connected graph with at least k vertices, then �kðGÞ � k � 1.

Assume first Lemma 2.1(i) and let T � EðGÞ be an edge subset such that

jTj ¼ k � 1 and such that G� T has exactly k components (Proposition 2.1(v)).

Contract each of these components of G� T into a single vertex to get the

graph G=ðEðGÞ � TÞ. Since G is connected, G=ðEðGÞ � TÞ is a connected

graph with k vertices and with jTj ¼ k � 1 edges. Therefore, G=ðEðGÞ � TÞ must

be a tree, and so every edge of T must be a bridge of G. This proves Lemma

2.1(ii).

Assume Lemma 2.1(ii). Since there exists at least one of such subset T

satisfying Lemma 2.1(ii), T � BðGÞ, and so G0 is a tree with jBðGÞj � jT j ¼
k � 1 edges. This proves Lemma 2.1(iii).

Assume Lemma 2.1(iii). Let T � BðGÞ be a subset with jT j ¼ k � 1. Then

G� T has exactly k components, since G0 is a tree. It follows that �kðGÞ � k � 1.

This implies Lemma 2.1(i). &

Lemma 2.2. Let G be a minimally ðk; kÞ-edge-connected graph and let

e 2 EðGÞ. Then �kðG� eÞ ¼ k � 1. Moreover, if T 0 is a minimal edge subset of

G� e such that ðG� eÞ � T 0 has k components, then T 0 [ feg is a minimum edge

subset of G such that G� ðT 0 [ fegÞ has k components.

Proof. Since G is minimally ðk; kÞ-edge-connected, �kðG� eÞ � k � 1. Let

T 0 � EðG� eÞ such that jT 0j ¼ �kðG� eÞ � k � 1 and such that ðG� eÞ � T 0

has k components. If jT 0j < k � 1, then G� ðT 0 [ fegÞ has k components,

contrary to the assumption that �kðGÞ ¼ k. Thus �kðG� eÞ ¼ k � 1.

If both ends of e are in one of the k components of ðG� eÞ � T 0, then T 0 is an

edge subset of G such that G� T 0 has k components, contrary to �kðGÞ ¼ k.

Hence, the two ends of e must be in two distinct components of ðG� eÞ � T 0, and

so T 0 [ feg is a minimum edge subset such that G� ðT 0 [ fegÞ has k

components. &

Theorem 2.1. Let k � 2 be an integer, and let G be a connected graph. The

following are equivalent.

(i) For any edge e 2 EðGÞ, �kðG� eÞ ¼ k � 1.

(ii) G is minimally ðk; kÞ-edge-connected.

Proof. By Lemma 2.2, Theorem 2.1(ii) implies Theorem 2.1(i). To show that

Theorem 2.1(i) implies Theorem 2.1(ii), we assume Theorem 2.1(i) to show that

�kðGÞ ¼ k.
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If jVðGÞj < k, then by Proposition 2.1(iv), Theorem 2.1(i) implies that

jEðGÞj ¼ k, and so by Proposition 2.1(iv) again, Theorem 2.1(ii) holds. Therefore,

we assume that jVðGÞj � k.

By Theorem 2.1(i), �kðGÞ � k. By Lemma 2.1 and by the assumption that

jVðGÞj � k, �kðGÞ � k � 1. If �kðGÞ ¼ k � 1, then by Lemma 2.1, G has

k � 1 > 0 bridges. It follows that for each e 2 BðGÞ, �kðG� eÞ � k � 2, contrary

to Theorem 2.1(i). This completes the proof. &

For a connected graph G with a bridge, by Proposition 2.1, G0 is a tree with

EðG0Þ ¼ BðGÞ. Let e 2 BðGÞ be a bridge of G. Let G1 and G2 be the two

components of G� e. Then we have

jBðG1Þj þ jBðG2Þj ¼ jBðGÞj � 1: ð1Þ

If EðGiÞ ¼ BðGiÞ, then Gi is called a tree component of G� e. In Lemma 2.3

below, we let s0 be the number of components of G� BðGÞ, and s the number of

components of G� BðGÞ that are not isomorphic to K1. When s � 1, we let

H1;H2; . . . ;Hs be the components of G� BðGÞ that are not isomorphic to K1.

Note that if BðGÞ 6¼ ;, s0 ¼ jBðGÞj þ 1.

Lemma 2.3. Let G be a connected graph with a bridge, and let k � 2 be an

integer. Each of the following holds.

(i) If G is ðk; kÞ-edge-connected, then k � 2 � jBðGÞj and s � 1.

(ii) If G is minimally ðk; kÞ-edge-connected, then for any e 2 EðGÞ, G has an

edge subset T � EðGÞ with jT j ¼ k and with e 2 T, such that BðGÞ � T

and such that G� T has k components.

(iii) If G is ðk; kÞ-edge-connected, then for any T � EðGÞ with BðGÞ � T and

with jTj ¼ k such that G� T has k components, there exists exactly one i

with 1 � i � s such that T � BðGÞ � EðHiÞ.
(iv) Suppose that v 2 VðGÞ is a vertex of degree 1 in G. Then G is minimally

ðk; kÞ-edge-connected, if and only if, G� v is minimally ðk � 1; k � 1Þ-
edge-connected.

Proof. If jBðGÞj � k � 1, then by Proposition 2.1(i), G0, the B-reduction of

G, is a tree with at least k � 1 edges. It follows that jVðGÞj � k and so by Lemma

2.1, �kðGÞ ¼ k � 1, contrary to the assumption that G is ðk; kÞ-edge-connected.

Note that s ¼ 0, if and only if, G is a tree, and so by Lemma 2.1, if G is ðk; kÞ-
edge-connected, we must have s � 1. This proves (i).

Since G is minimally ðk; kÞ-edge-connected, by Theorem 2.1, G has an edge

subset T such that e 2 T and jTj ¼ k, and such that G� T has k components.

Choose such T so that jT \ BðGÞj is maximized. Suppose by contradiction that

there exists an edge e0 2 BðGÞ � T . By Lemma 2.3(i), there exist two of these k

components which are joined to each other by edges T1 � T � BðGÞ with e 62 T1;

and so G� ðT � T1Þ has k � 1 components. Since e0 62 T , e0 must be in one of
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these k � 1 components, and so G� ððT � T1Þ [ fe0gÞ has k components. Let

T 0 ¼ ðT � T1Þ [ fe0g. Note that jT 0j ¼ jT j � jT1j þ 1. If jT1j > 1, then jT 0j �
k � 1, contrary to the assumption that G is minimally ðk; kÞ-edge-connected.

Hence, jT1j ¼ 1 and jT 0j ¼ k. But then, T 0 \ BðGÞ � T \ BðGÞ ¼ fe0g, contrary

to the choice of T . Hence, we must have BðGÞ � T . This proves (ii).

Suppose that G is ðk; kÞ-edge-connected and that T � EðGÞ is an edge subset

with BðGÞ � T and with jT j ¼ k such that G� T has k components. Since

BðGÞ � T , we may assume, without loss of generality, that for some integer

m � 1, EðHiÞ \ T ¼ ;, for all i � mþ 1. Therefore, G� T has components

G1
1; . . . ;G

1
i1
;G2

1; . . . ;G
2
i2
; . . . ;Gm

1 ; . . . ;G
m
im
; . . . ;Hmþ1; . . . ;Hs0 , where G

j
1; . . . ;G

j
ij

are components of Hj � ðT \ EðHjÞÞ, 1 � j � m � s. Then counting the number

of components of G� T , k ¼ i1 þ i2 þ � � � þ im þ ðs0 � mÞ. Since each Hj,

1 � j � m � s, is a component of G� BðGÞ, Hj is 2-edge-connected. Moreover,

as jVðHjÞj � !ðHj � ðT \ EðHjÞÞÞ ¼ ij, it follows by Lemma 2.1 that �ijðHjÞ � ij,

1 � j � m � s. Thus by counting the number of edges in T , we have

jTj � i1 þ i2 þ � � � þ im þ jBðGÞj. However, by s0 ¼ jBðGÞj þ 1, and by jT j ¼ k,

we have s0 � 1 ¼ jBðGÞj � s0 � m, and so we must have m ¼ 1, as desired. This

proves (iii).

Suppose first that jVðGÞj � k. Then by Proposition 2.1(iv), G is minimally

ðk; kÞ-edge-connected, if and only if, jEðGÞj ¼ k. But as jVðG� vÞj ¼
jVðGÞj � 1 � k � 1 and jEðG� vÞj ¼ jEðGÞj � 1 ¼ k � 1, jEðGÞj ¼ k, if and

only if, G� v is minimally ðk � 1; k � 1Þ-edge-connected.

Hence we assume that jVðGÞj � k þ 1. Let e 2 EðGÞ denote the edge incident

with v. Suppose first that G� v is minimally ðk � 1; k � 1Þ-edge-connected.

Then by Theorem 2.1, G is minimally ðk; kÞ-edge-connected.

Conversely, assume that G is minimally ðk; kÞ-edge-connected. We want to

apply Theorem 2.1 to show that G� v is minimally ðk � 1; k � 1Þ-edge-

connected. Note that by definition, every (2,2)-edge-connected graph has no

bridges, we assume k � 3 here.

First, we show that �k�1ðG� vÞ � k � 1. By the definition of minimally ðk; kÞ-
edge-connectedness, �kðGÞ ¼ k. If �k�1ðG� vÞ < k � 1, then by jVðGÞj � k þ 1

and by Proposition 2.1(v), G� v has an edge subset T 0 � EðG� vÞ such that

jT 0j ¼ �k�1ðG� vÞ < k � 1, and !ððG� vÞ � T 0Þ ¼ k � 1. It follows that G has

a edge subset T 0 [ feg such that G� ðT 0 [ fegÞ has k components, and so

�kðGÞ � jT 0 [ fegj � k � 1, contrary to the assumption that �kðGÞ ¼ k. Hence,

we must have �k�1ðG� vÞ � k � 1.

Let e0 2 EðG� vÞ such that e0 62 BðGÞ. Since G is minimally ðk; kÞ-edge-

connected and by Theorem 2.1, �kðG� e0Þ ¼ k � 1. By the assumption that

jVðG� vÞj ¼ jVðGÞj � k þ 1 and by Lemma 2.1, ðG� e0Þ0 is a tree with at least

k � 1 edges. As BðGÞ � BðG� e0Þ, e 2 EðG� e0Þ. Let T � EððG� e0Þ0Þ be an

edge subset such that e 2 T and jT j ¼ k � 1. Then !ððG� e0Þ � TÞ ¼ k.

Since e 2 T and since e is the only edge incident with v in G, we have

!ððG� v � e0Þ� ðT � eÞÞ ¼ k � 1, and jT � ej ¼ k � 2. It follows that

�k�1ðG� v � e0Þ ¼ k � 2.
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Now assume that e0 2 EðG� vÞ \ BðGÞ. Since G is minimally ðk; kÞ-edge-

connected and by Theorem 2.1, G is not a tree, and so G has an edge

e00 2 EðGÞ � BðGÞ. Similar to the arguments above, we conclude that ðG� e00Þ0 is

a tree with at least k � 1 edges and e; e0 2 BðGÞ � EððG� e00Þ0Þ. Since k � 3,

we can find an edge subset T � EððG� e00Þ0Þ such that e; e0 2 T and jT j ¼ k � 1.

Then !ððG� e00Þ � TÞ ¼ k. Since e; e0 2 T \ BðGÞ and since e is the only edge

incident with v in G, we have !ððG� v � e0Þ � ðT � fe; e0gÞ [ fe00gÞ ¼ k � 1,

and jðT � fe; e0gÞ [ fe00gj ¼ k � 2. It follows that �k�1ðG� v � e0Þ ¼ k � 2.

Thus, by Theorem 2.1, we conclude that G� v is minimally ðk � 1; k � 1Þ-
edge-connected. This proves (iv). &

Lemma 2.4. Let G be a minimally ðk; kÞ-edge-connected graph and e 2 BðGÞ
be a bridge of G. Let G1 and G2 be the two components of G� e. Then one of the

following holds.

(i) For some integer i with 1 � i � 2, jVðGiÞj ¼ 1 and G3�i is a minimally

ðk � 1; k � 1Þ-edge-connected graph.

(ii) Neither G1 nor G2 is a single vertex graph, and for some integer i with

1 � i � 2, Gi is a tree components of G� e, and G3�i is minimally ðt; tÞ-
edge-connected, where t ¼ k � jEðGiÞj � 1.

(iii) jVðGÞj � k and neither G1 nor G2 is a single vertex graph nor a tree

component of G� e, and for each i with 1 � i � 2, Gi is minimally ðti; tiÞ-
edge-connected, where ti ¼ k � jBðG3�iÞj � 1.

(iv) jVðGÞj < k and neither G1 nor G2 is a single vertex graph nor a tree

component of G� e, and for each i with 1 � i � 2, Gi is minimally ðti; tiÞ-
edge-connected, where ti ¼ k � jEðG3�iÞj � 1.

Proof. Since a ð2; 2Þ-edge-connected graph does not have a bridge,

Lemma 2.4 holds vacuously for k ¼ 2, and so we assume that k � 3.

Note that Lemma 2.4(i) and (ii) follow from Lemma 2.3(iv) or

repeated application of Lemma 2.3(iv). It suffices to show Lemma 2.4(iii) and

(iv).

Since G is a minimally ðk; kÞ-edge-connected graph, when jVðGÞj � k, choose

an edge subset T � EðGÞ with jTj ¼ k such that G� T has k components

L1; L2; . . . ; Lk; and when jVðGÞj � k, let T ¼ EðGÞ.
To prove Lemma 2.4(iii), we assume that jVðGÞj � k and neither G1 nor G2 is

a single vertex graph nor a tree component of G� e.

By symmetry, it suffices to show that G1 is minimally ðt1; t1Þ-edge-connected.

If �t1ðG1Þ � t1 � 1, then G1 has an edge subset T1 with jT1j � t1 � 1 such that

G1 � T1 has t1 components. Thus, T1 [ BðG2Þ is an edge subset with

jT1j þ jBðG2Þj < k edges such that G� ðT1 [ BðG2ÞÞ has k components, contrary

to the assumption that �kðGÞ ¼ k. Therefore, we must have �t1ðG1Þ � t1. It

remains to show, by Theorem 2.1, that for any e0 2 EðG1Þ, G1 has an edge subset

T1 with e0 2 T1 and with jT1j ¼ t1 such that G1 � T1 has t1 components. Let

e0 2 EðG1Þ.
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Suppose first that e0 2 EðG1Þ�BðG1Þ. ThenG� e0 is connected. By Theorem 2.1,

�kðG� e0Þ ¼ k � 1. By jVðGÞj � k and by Lemma 2.1, jBðG� e0Þj � k � 1.

Note that e 2 BðGÞ � BðG� e0Þ. Thus ðG1 � e0Þ0 is a subtree of the tree

ðG� e0Þ0, and so jEðG1 � e0Þ0j � k � 1 � jBðG2Þ [ fegj ¼ t1 � 1. It follows that

jVðG1Þj � jBðG1 � e0Þj þ 1 ¼ jEðG1 � e0Þ0j þ 1 � t1. By Lemma 2.1,�t1ðG1� e0Þ
¼ t1�1, and there exists a T 0

1 � BðG1 � e0Þ with jT 0
1j ¼ t1 � 1 such that

G1 � ðT 0
1 [ fe0gÞ has t1 components.

Now we assume that e0 2 BðG1Þ. Since G1 is not a tree component nor a single

vertex graph, and since e 2 BðGÞ, we may assume that G1 contains a non-trivial

component H1 of G� BðGÞ. Pick another edge e00 2 EðH1Þ. Since G is minimally

ðk; kÞ-edge-connected and by Lemma 2.3(ii), G has an edge subset T � EðGÞ
with BðGÞ � T , e00 2 T and jT j ¼ k such that G� T has k components. By

Lemma 2.3(iii), (we may assume that i ¼ 1 in Lemma 2.3(iii), and so)

T � BðGÞ � EðH1Þ. Let T1 ¼ T \ EðG1Þ and note that e0 2 BðG1Þ � T1. Then

as T � T1 ¼ BðG2Þ [ feg, jT1j ¼ jTj � jBðG2Þ [ fegj ¼ t1. Moreover, G� T

has jT � T1j ¼ jBðG2Þj þ 1 components not in G1, and so G1 � T1 must

have k � jBðG2Þj � 1 ¼ t1 components. This completes the proof for Lemma

2.4(iii).

Finally, we assume that jVðGÞj < k and neither G1 nor G2 is a single vertex

graph nor a tree component of G� e.

Since jVðGÞj < k, by Proposition 2.1(iv), jEðGÞj ¼ k. For each i with

1 � i � 2, since G3�i is connected and not a tree, jVðGiÞj ¼ jVðGÞj�
jVðG3�iÞj � k � 1 � jEðG3�iÞj ¼ ti and jEðGiÞj ¼ jEðGÞj � jEðG3�iÞj ¼ ti. It

follows by Proposition 2.1(iv) that Gi is minimally ðti; tiÞ-edge-connected. This

proves Lemma 2.4(iv).

Lemma 2.5. Let G be a 2-edge-connected graph with jVðGÞj � k. The following

are equivalent.

(i) G is minimally ðk; kÞ-edge-connected.
(ii) for each edge e of EðGÞ, G� e has at least k � 1 bridges e1; e2; . . . ; ek�1

that separates the two ends of e.

Proof. Let G be a 2-edge-connected graph.

Assume Lemma 2.5(i) and let e ¼ xy 2 EðGÞ. Since �kðGÞ ¼ k, and by

Theorem 2.1, �kðG� eÞ ¼ k � 1 for any edge e 2 EðGÞ. By Lemma 2.1, ðG� eÞ0
is a tree with at least k � 1 edges. Let e1; e2; . . . ; ek�1 2 BðG� eÞ be any k � 1

edges. Since BðGÞ ¼ ;, none of these ei’s is a bridge of G, and so ðG� eÞ0 must

be a path, and the two ends of this path, as subgraphs of G, must contain x and y,

respectively.

Conversely, assume Lemma 2.5(ii). Then for any e 2 EðGÞ, jBðG� eÞj �
k � 1, and so ðG� eÞ0 is a tree with at least k � 1 edges. It follows that

�kðG� eÞ � k � 1. Since G is 2-edge-connected, G� e is connected, and so by

Lemma 2.1, �kðG� eÞ � k � 1. Therefore, for any edge e 2 EðGÞ, we must have

�kðG� eÞ ¼ k � 1. By Theorem 2.1, G is minimally ðk; kÞ-edge-connected. &
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Lemma 2.6. Let G be a 2-edge-connected graph with jVðGÞj � k. The following

are equivalent.

(i) G is minimally ðk; kÞ-edge-connected.
(ii) 8e 2 EðGÞ, G½e� is a cycle of length at least k.

(iii) 8e 2 EðGÞ, ðG� eÞ0 is a path of length at least k � 1.

Proof. By Lemma 2.5, Lemma 2.6(i) implies Lemma 2.6(ii); and it is straight

forward to see that Lemma 2.6(ii) implies Lemma 2.6(iii). It remains to show that

Lemma 2.6(iii) implies Lemma 2.6(i).

Assume Lemma 2.6(iii). By Lemma 2.1, 8e 2 EðGÞ, �kðG� eÞ ¼ k � 1; and

so by Theorem 2.1, Lemma 2.6(i) holds. &

Let G1 and G2 be two vertex disjoint graphs with distinguished vertices

v1 2 VðG1Þ and v2 2 VðG2Þ. Let G1 	 G2 denote the graph obtained from the

union of G1 and G2 by identifying v1 with v2. Note that the identified vertex is a

new cut vertex of G1 	 G2.

Corollary 2.1. Let G1 and G2 be 2-edge-connected graphs, where i 2 f1; 2g,
and let G ¼ G1 	 G2. The following are equivalent.

(i) G is minimally ðk; kÞ-edge-connected with jVðGÞj � k.

(ii) Both G1 and G2 are minimally ðk; kÞ-edge-connected, and both jVðG1Þj �
k and jVðG2Þj � k.

Proof. Assume Corollary 2.1(i). Pick e 2 EðG1Þ. By Lemma 2.6(iii),

ðG� eÞ0 is a path of length at least k � 1. Since �2ðG2Þ � 2, we must have

BðG� eÞ � EðG1Þ, which implies that ðG1 � eÞ0 is a path of length at least k � 1,

and so jVðG1Þj � k. By Lemma 2.6, G1 is minimally ðk; kÞ-edge-connected.

Similarly, G2 is minimally ðk; kÞ-edge-connected with jVðG2Þj � k.

The proof for the other direction is similar, again applying Lemma 2.6. This

completes the proof. &

3. MINIMALLY (K, K )-EDGE-CONNECTED GRAPH
WITH BRIDGES

The main result of this section is Theorem 3.1 below, which gives a structural

characterization of a minimally ðk; kÞ-edge-connected graph with bridges, and

which indicates that every minimally ðk; kÞ-edge-connected graph with bridges

contains some minimally ðk0; k0Þ-edge-connected graph without bridges, for some

values k0 > 1. We start with one more lemma.

Lemma 3.1. Let G be a connected graph with a bridge and with jVðGÞj � k.

If for some integer k > 1, G is minimally ðk; kÞ-edge-connected, then every

non-trivial component of G� BðGÞ is minimally ðt; tÞ-edge-connected, where
t ¼ k � jBðGÞj.
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Proof. Let G be a minimally ðk; kÞ-connected graph with a bridge.

We shall prove Lemma 3.1 by induction on k. Let H1;H2; . . . ;Hs be the

components of G� BðGÞ that are not isomorphic to K1, where 1 � s � jBðGÞj þ 1

(Lemma 2.3(i)). It suffices to prove that H1 is a minimally ðt; tÞ-edge-connected

graph with t ¼ k � jBðGÞj.
Since G is connected and has a bridge, G0 is a tree by Lemma 2.1. Let e be an

edge of BðGÞ such that e is incident with a vertex of degree one in the tree G0. Let

G1 and G2 be the two subgraphs of G� e. Assume, without loss of generality,

that H1 is a subgraph of G2.

By Lemma 2.4, one of the following must hold.

(A) Lemma 2.4(i) holds with jVðG1Þj ¼ 1, whence G2 is a minimally

ðk � 1; k � 1Þ-edge-connected graph. By induction, for t ¼ ðk � 1Þ� jBðG2Þj ¼
k � jBðGÞj, H1 is minimally ðt; tÞ-edge-connected graph.

(B) Lemma 2.4(ii) holds with G1 being a tree component, whence G2 is a

minimally ðk � jEðG1Þj � 1; k � jEðG1Þj � 1Þ-edge-connected graph. By (1) and

by EðG1Þ ¼ BðG1Þ, t ¼ ðk� jEðG1Þj � 1Þ� jBðG2Þj ¼ k � jBðGÞj. By induction,

H1 is a minimally ðt; tÞ-edge-connected graph.

(C) Lemma 2.4(iii) holds, whence Gi is a minimally ðk � jBðG3�iÞj � 1;
k � jBðG3�iÞj � 1Þ-edge-connected graph. By (1), t ¼ ðk � jBðG1Þj� 1Þ�
jBðG2Þj ¼ k � jBðGÞj. By induction, H1 is a minimally ðt; tÞ-edge-connected

graph. This proves Lemma 3.1. &

We are to give a characterization for minimally ðk; kÞ-edge-connected graphs

with BðGÞ 6¼ ;. By Lemma 2.3(i), we should only consider the cases when k � 3.

Let G be a graph with at least one bridge. Let H1;H2; . . . ;Hs be the components

of G� BðGÞ that are not isomorphic to K1, where 0 � s � jBðGÞj þ 1. If s � 1

and if there is an integer k � 3 such that k � jBðGÞj ¼ t � 2 (Lemma 2.3(i)) and

such that for 1 � i � s, each Hi is minimally (t; tÞ-edge-connected, then G is

called a k-arbor.

Theorem 3.1. Let k � 3 be an integer and let G be a connected graph with a

bridge and with jVðGÞj � k. The following are equivalent.

(i) G is minimally ðk; kÞ-edge-connected.
(ii) G is a k-arbor.

Proof. Let H1;H2; . . . ;Hs be the components of G� BðGÞ that are not

isomorphic to K1, and let t ¼ k � jBðGÞj.
Assume first that G is minimally ðk; kÞ-edge-connected with a bridge. By

Lemma 2.3, s � 1, and t ¼ k � jBðGÞj � 2. By Lemma 3.1, each of these Hi’s is

minimally ðt; tÞ-edge-connected. Thus G is a k-arbor. This shows that

Theorem 3.1(i) implies Theorem 3.1(ii).

Now assume Theorem 3.1(ii). Then G is a k-arbor and each Hi, where

1 � i � s, is a minimally ðt; tÞ-edge-connected graph without bridges. We shall

apply Theorem 2.1 to show Theorem 3.1(i).
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Let e 2 EðGÞ. Assume first that e 2 BðGÞ. Note that H1 is a minimally

ðt; tÞ-edge-connected graph. There is an edge subset T1 � EðH1Þ with jT1j ¼ t

such that H1 � T1 has t components. Thus ðG� eÞ � ðT1 [ BðG� eÞÞ has

t þ jBðGÞj ¼ k components and jT1 [ BðG� eÞj ¼ k � 1. Therefore, �kðG� eÞ �
k � 1.

Assume then e 2 EðGÞ � BðGÞ. Then we may assume that e 2 EðH1Þ,
without loss of generality. Note that H1 is a 2-edge-connected graph. By

Lemma 2.6(iii), jBðH1 � eÞj � t � 1. Let T 0 � BðH1 � eÞ be such that jT 0j ¼
t � 1, and T ¼ T 0 [ BðGÞ. Then jTj ¼ jT 0j þ jBðGÞj ¼ k � 1 and ðG� eÞ � T

has k components. Once again we have �kðG� eÞ � k � 1.

Thus by Theorem 2.1, G is minimally ðk; kÞ-edge-connected, and so

Theorem 3.1(i) follows. &

4. MINIMALLY (K, K )-EDGE-CONNECTED GRAPH
WITHOUT BRIDGES

In this section, we only consider graph that are ð2; 2Þ-edge-connected.

What Corollary 2.1 indicates is that to study the structure of minimally ðk; kÞ-
edge-connected graph without bridges, it suffices to study the structure of

2-connected minimally ðk; kÞ-edge-connected graph. Motivated from this

view point and from the similar concepts in [4], we present the following

definitions.

A k-necklace is a 2-connected minimally ðk; kÞ-edge connected simple

graph with at least k vertices. A graph G is k-extensible between x and y if,

for two distinct vertices x and y in G, the graph G�1;�2;...;�k�1
xy obtained from G

by adding k � 1 distinct new vertices �1; �2; . . . ; �k�1 and the k new edges

x�1; �1�2; . . . ; �k�1y, is minimally ðk; kÞ-edge-connected. Since a cycle of length

at least k is minimally ðk; kÞ-edge-connected, an edge xy is k-extensible between

x and y. A graph G is called an Ek-chain if it can be represented by

G1a1G2a2 � � � al�1Gl where all of the following properties are satisfied:

(E1) l � k � 1.

(E2) For each i with 1 � i � l, Gi is either an edge or a k-necklace.

(E3) There exist at least k � 1 of the Gj’s that are edges, where 1 � j � l.

(E4) For each i with 1 � i � l� 1, VðGiÞ \ VðGiþ1Þ ¼ faig.

(E5) For each i with 1 � i � l� 2 and for each j with iþ 2 � j � l,

VðGiÞ \ VðGjÞ ¼ ;.

Each Gi is called a pearl of the Ek-chain. If a pearl Gi consists of only one edge,

then it is called an edge pearl.

Lemma 4.1. Let G be a 2-connected graph with jVðGÞj � k. The following are

equivalent.
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(i) G is a k-necklace.

(ii) 8e 2 EðGÞ, G½e� is a cycle of length at least k.

(iii) 8e 2 EðGÞ, ðG� eÞ0 is a path of length at least k � 1.

(iv) 8e ¼ ab 2 EðGÞ, G� e is an Ek-chain G1a1G2a2 � � � al�1Gl such that

l � k, a 2 VðG1Þ, b 2 VðGlÞ, a 6¼ a1, b 6¼ al�1.

Proof. By Lemma 2.6 and by the assumption that G is 2-connected,

Lemma 4.1(i) implies Lemma 4.1(ii) and Lemma 4.1(ii) implies Lemma 4.1(iii).

It is straight forward to check that Lemma 4.1(iii) implies Lemma 4.1(iv). It

remains to show that Lemma 4.1(iv) implies Lemma 4.1(i).

Assume Lemma 4.1(iv) holds. For any e 2 EðGÞ, by Lemma 4.1(iv) and by

(E3), G� e has at least k � 1 edge pearls. By (E4) and by (E5), these edges are

all in BðG� eÞ, and so jBðG� eÞj � k � 1. Thus by Lemma 2.1, �kðG� eÞ ¼
k � 1, 8e 2 EðGÞ. It follows by Theorem 2.1 that G is minimally ðk; kÞ-edge-

connected. &

Lemma 4.2. Let G be a k-necklace and let x; y 2 VðGÞ be two distinct vertices.

The following are equivalent.

(i) G is k-extensible between x and y.

(ii) 8e 2 EðGÞ, the Ek-chain G� e can be described by G1a1G2a2 � � � al�1Gl,

such that for some i and j, 1 � i � j � l, x 2 VðGiÞ, y 2 VðGjÞ, and such

that

there are at least k � 1 edge pearls Gh; where h =2 fi; iþ 1; . . . ; jg: ð2Þ

Proof. Assume Lemma 4.2(i). By Lemma 4.1 and since G is a k-necklace,

G� e is an Ek-chain G1a1G2a2 � � � al�1Gl satisfying Lemma 4.1(iv). As

x; y 2 VðGÞ ¼ VðG� eÞ, we may assume that for some i and j, 1 � i � j � l,

x 2 VðGiÞ, y 2 VðGjÞ. By contradiction, assume further that (2) fails. Then there

are at most k � 2 edges in BðG� eÞ that are not between Gi and Gj in the

Ek-chain. It follows that jBððG�1;�2;...;�k�1
xy Þ½e�Þj � k � 1, and so by Lemma 4.1,

G�1;�2;...;�k�1
xy is not minimally ðk; kÞ-edge-connected, contrary to the assumption

that G is k-extensible between x and y.

Conversely, assume Lemma 4.2(ii). We shall show that 8e 2 EðG�1;�2;...;�k�1
xy Þ,

the graph ðG�1;�2;...;�k�1
xy Þ½e� is a cycle of length at least k. By Lemma 4.1, it suffices

to show that 8e 2 EðG�1;�2;...;�k�1
xy Þ,

jEððG�1;�2;...;�k�1

xy Þ½e�Þj � k: ð3Þ

Pick e 2 EðG�1;�2;...;�k�1
xy Þ. If e 2 EðGÞ, then (3) follows from (2). If e 62 EðGÞ,

then by the definition of G�1;�2;...;�k�1
xy , e must be one of the new edges in

fx�1; �1�2; . . . ; �k�1yg, and so (3) holds as well. Therefore, Lemma 4.2(i)

follows from Lemma 4.1. &
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Lemma 4.3. Let G ¼ G1a1G2a2 � � � al�1Gl denote an Ek-chain. The following

are equivalent.

(i) G is k-extensible between a0 and al, where a0 2 VðG1 � a1Þ and

al 2 VðGl � al�1Þ.
(ii) for each i ¼ 1; 2; . . . ; l, Gi is k-extensible between ai�1 and ai.

Proof. Assume Lemma 4.3(i) and by contradiction, assume also that Gi is not

k-extensible between ai�1 and ai, for some i with 1 � i � l. Thus, Gi is not an

edge pearl and hence it is a k-necklace. By Lemma 4.2, for some edge e 2 EðGiÞ,
there are at most k � 2 edges in BðGi � eÞ which not between ai�1 and ai. It

follows that ðG�1;�2;...;�k�1
a0al

Þ½e� is a cycle of length at most k � 1, and so by

Lemma 4.1, G�1;�2;...;�k�1
a0al

is not minimally ðk; kÞ-edge-connected, contrary to

Lemma 4.3(i).

Conversely assume Lemma 4.3(ii). Note that since each pearl in the Ek-chain

G is either a k-necklace or an edge, G�1;�2;...;�k�1
a0al

is 2-connected. If G is not

k-extensible between a0 and al, then G�1;�2;...;�k�1
a0al

is not minimally ðk; kÞ-edge-

connected. By Lemma 4.1, there is an edge e 2 EðG�1;�2;...;�k�1
a0al

Þ such that

ðG�1;�2;...;�k�1
a0al

Þ½e� is a cycle of length at most k � 1. Since a0�1�2 � � ��k�1al is a

path of length k, this edge e must be an edge of G and must not be an edge of any

edge pearl Gi in this Ek-chain G. Therefore, there is some non edge pearl Gi such

that e 2 EðGiÞ.
By Lemma 4.3(ii), and by Lemma 4.2, there are at least k � 1 edges in

BðGi � eÞ that are not lying between ai�1 and ai in the Ek-chain Gi � e. It follows

that these k � 1 edges in BðGi � eÞ together with e will be the k edges in

ðG�1;�2;...;�k�1
a0al

Þ½e�, a contradiction. This proves Lemma 4.3(i). &

Lemma 4.4. Let k � 2 and let G be a k-necklace and e ¼ xy 2 EðGÞ. Then
G� e is k-extensible between x and y.

Proof. By Lemma 4.1, G� e is an Ek-chain G1a1G2a2 � � � al�1Gl with

x 2 VðG1Þ and y 2 VðGlÞ. By (E3)–(E5), jBðG� eÞj � k � 1.

Let H ¼ ðG� eÞ�1;�2;...;�k�1

xy . We shall apply Lemma 4.1 to show that H is

minimally ðk; kÞ-edge-connected.

Let e0 2 EðHÞ. If e0 2 BðG� eÞ [ fx�1; �1�2; . . . ; �k�1yg, then EððG� eÞ½e0�Þ
� ðBðG� eÞ [ fx�1; �1�2; . . . ; �k�1ygÞ � fe0g and so by k � 2, jEðH½e0�Þj � k.

Now assume that e0 2 EðGiÞ for some non edge pearl Gi. Since Gi is a

k-necklace, by Lemma 4.1, Gi½e0� is a cycle of length at least k. Since G is also a

k-necklace, G½e0� is also a cycle of length at least k. If there is an edge

e00 2 EðG½e0�Þ� EðGi½e0�Þ, then fe0; e00g is an edge cut of G and Gi, a subgraph of G,

has a cycle contains e0 and avoids e00, which is impossible. Therefore,

EðG½e0�Þ � EðGi½e0�Þ, and so jEðGi½e0�Þj � jEðG½e0�Þj � k.

Moreover, any e000 2 EðH½e0�Þ� EðGi½e0�Þ � EðH½e0�Þ � EðG½e0�Þ must be an edge

in fx�1; �1�2; . . . ; �k�1yg. If such an e000 exists, then e0 and x�1 would form an
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edge cut of H, which would force e0 2 BðG� eÞ, contrary to the assumption that

e0 2 EðGiÞ for some non edge pearl Gi.

It follows that EðH½e0�Þ ¼ EðGi½e0�Þ and so jEðH½e0�Þj ¼ jEðGi½e0�Þj � k. By

Lemma 4.1, H is minimally ðk; kÞ-edge-connected and so G� e is k-extensible

between x and y. &

Let F o
k denote the family of graphs obtained by the following.

(FO1) Every cycle of length � k belongs to F o
k .

(FO2) A graph G that is not a cycle and that is in F o
k , if and only if, for some

integer l � k, there are l vertex-disjoint graphs G1;G2; . . . ;Gl such that

(a) 8i with 1 � i � l, Gi 2 F o
k or Gi ffi K2, and at least k of the Gi’s are

isomorphic to a K2;

(b) there exist two distinct vertices fxi; yig � VðGiÞ such that Gi is k-

extensible between xi and yi, for each i with 1 � i � l; and such that G can

be obtained from these Gi’s by identifying yl and x1, and for 1 � i � l� 1,

identifying yi and xiþ1.

Theorem 4.1. The family of the k-necklaces is F o
k.

Proof. First, we show that every k-necklace belongs to F o
k . Let G be a

k-necklace. If G is a cycle, then by Lemma 4.1, G must be a cycle of length at least

k, and so by (FO1), G 2 F o
k . Assume that G is not a cycle. Pick e ¼ xy 2 EðGÞ.

By Lemma 4.1(iv) and Lemma 4.4, G� e ¼ G1a1G2a2 � � � al�1Gl is an Ek-chain

such that l � k, x 2 VðG1� a1Þ and y 2 VðGl � al�1Þ, and such that G� e is k-

extensible between x and y. By Lemma 4.3, this Ek-chain satisfies (FO2) and so

G 2 F o
k .

Conversely, let G 2 F o
k . We shall argue by induction on jVðGÞj to show that G

is a k-necklace. If G is a cycle, then by (FO1), G has length at least k. and so by

Lemma 4.1(ii), G is a k-necklace. Hence, we assume that G is obtained via (FO2).

Note that since xi 6¼ yi, for each i in (FO2), G is 2-connected. Also, by

induction, each Gi in (FO2) is either isomorphic to a K2 or is a k-necklace.

For any e 2 EðGÞ, if e is one of the Gi’s which is isomorphic to a K2, then by

(a) of (FO2), there are at least k such Gi’s and so G½e� is a cycle of length at least k;

if e 2 EðGiÞ for some Gi 6ffi K2, then since Gi is a k-necklace and is k-extensible

between xi and yi, by Lemma 4.2, there are at least k � 1 edges in BðGi � eÞ that

are not lying between xi and yi in the Ek-chain Gi � e. It follows that these k � 1

edges are also in ½e�, and so G½e� is a cycle of length at least k. By Lemma 4.1, G is

a k-necklace. &

Let F k denote the family of graphs obtained by the following.

(F1) F o
k � F k.

(F2) A graph G 2 F k, if and only if, either G 2 F o
k, or there are two edge

disjoint proper subgraphs G1 and G2 of G with jVðG1Þ \ VðG2Þj ¼ 1 and

G ¼ G1 [ G2 such that G1;G2 2 F k.
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Theorem 4.2. The family of 2-edge-connected, minimally ðk; kÞ-edge-connected
graphs with at least k vertices is F k.

Proof. Let G be a 2-edge-connected, minimally ðk; kÞ-edge-connected graph.

If G is also 2-connected, then G 2 F o
k � F k by Theorem 4.1. If G has a cut

vertex, then by Corollary 1, G 2 F k by (F2). Hence every 2-edge-connected,

minimally ðk; kÞ-edge-connected graph is in F k.

Conversely, let G 2 F k. If G 2 F o
k , then by Theorem 4.1, G is a 2-edge-

connected, minimally ðk; kÞ-edge-connected graph. If G is obtained via (F2), then

by Corollary 1, G is also a 2-edge-connected, minimally ðk; kÞ-edge-connected

graph. This proves Theorem 4.2. &

When k ¼ 2, one obtains the following former characterizations by Chaty and

Chein in [4].

Theorem 4.3. (Chaty and Chein, Theorem 3(a) of [4]). The family of the

2-necklaces is F o
2.

Theorem 4.4. (Chaty and Chein, Theorem 3(b) of [4]). The family of 2-edge-

connected, minimally ð2; 2Þ-edge-connected graphs is F 2.
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