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Cycle Cover Ratio of Regular Matroids

HONG-JIAN LAI† AND HOIFUNG POON

A cycle in a matroid is a disjoint union of circuits. This paper proves that every regular matroid M
without coloops has a set S of cycles whose union is E(M) such that every element is in at most three
of the cycles in S. It follows immediately from this that, on average, each element of M is in at most
three members of the cycle cover S. This improves on a 1989 result of Jamshy and Tarsi who proved
that there is a cycle cover for which this average is at most 4, and conjectured that a cycle cover exists
for which the average is at most 2.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Graphs and matroids considered in this paper are finite, with loops and parallel elements
permitted. Terms and notations not defined here can be found in [4] for graphs and in [7] for
matroids. All groups considered in this paper are abelian (additive) groups. Throughout this
paper, Z denotes the additive group of the integers and Z2 denotes the field of two elements.

Let A be an abelian group. For any a ∈ A, define (+1)a = a, (−1)a = a, the additive
inverse of a in A, and 0 · a = 0, where the right-hand side zero denotes the additive identity
of the group A. For a given integer n ≥ 1, let V (n, A) denote the set of all n-dimensional
vectors over A. When A = Z2, we simply write V (n, 2) for V (n, Z2) = Zn

2. If n = |E |, for
some set E �= ∅, and if the components of vectors in V (n, A) are labeled with elements in E
(in which case we also write V (E, A) for V (n, A)), then for each α ∈ V (n, A) and for each
x ∈ E , α(x) denotes the x-coordinate of α. If f : E �→ A is a function and if D ⊆ E is a
subset, denote f (D) = ∑

e∈D f (e).
Let M be a matroid, and let C(M) denote the set of all circuits of M . A cycle of M is a

disjoint union of circuits in M . Note that the union may be an empty one, and so the empty
set (as a subset of E(M)) will be both a cycle and an independent set in M . A cocycle of M
is a cycle of M∗.

In order to state the problem raised by Jamshy and Tarsi in [6] on the cycle cover ratio of
regular matroids we need to introduce the concept of matroid orientations and nowhere zero
flows on orientable matroids.

We basically follow [9] for the definitions of orientation of matroids, nowhere zero A-flows
(A-NZFs) and nowhere zero k-flows (k-NZFs) on an oriented matroid, except that we use A
to denote an abelian group, and S( f ) to denote the support of a nowhere zero A-flow f on
an oriented matroid M . For notational convenience, we view a function f : E(M) �→ A as a
row vector f ∈ V (E(M), A). Thus if D and D∗ are the incidence matrix of circuits against
elements in M and in M∗, respectively, and if w(D) and w(D∗) are signing of D and D∗,
respectively, such that w(D)(w(D∗))T = 0, then an A-flow in the oriented matroid M is a
row vector f ∈ V (E(M), A) such that the matrix product

f · (w(D∗)T ) = 0. (1)

The following result on nowhere zero flows of a regular matroid is well known.
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(1.1) (Arrowsmith–Jaeger [1], Brylawski [3] and Tutte [10]). For a regular matroid M , M
has an A-NZF if and only if M has an |A|-NZF.

Note that if A denotes the additive group of a ring with characteristic 2, then (1) can be
replaced by f (D) = ∑

e∈D f (e) = 0 for every cocycle D of M , and so the orientability of
M is not needed.

In this paper, we will basically consider nowhere zero A-flows on binary matroids, where
A is the additive group of a ring with characteristic 2. Thus (1) can be replaced by f (D) =∑

e∈D f (e) = 0 for every cocycle D of M , and so the orientability of M is not needed. Such
an approach allows us to discuss the problem in terms of cycles without worrying about ori-
entations. Note that not all binary matroids are orientable. In fact, Bland and Las Vergnas [2]
showed that a binary matroid is orientable if and only if it is regular.

Let M be a binary matroid. A cycle cover of M is a multiset S of cycles of M such that
every element of M lies in at least one member of S. A cycle 2-cover of M is a cycle cover S
such that every element of M lies in exactly two members in S. Clearly M has a cycle cover if
and only if M has no coloops. If S = {C1, C2, . . . , Cm} is a cycle cover of M , then the length
of S is

l(S) =
m∑

i=1

|Ci |.

For a coloopless regular matroid M , define

l(M) = min{l(S) : S is a cycle cover of M}.
The ratio r(M) = l(M)/|E(M)| will be called cycle cover ratio. The parameter

s(k) = sup

{
l(M)

|E(M)| : M is a regular matroid admitting a k-NZF

}

is defined and studied in [6] and [9]. One of the open problems posed in [9] asks if there exists
a constant integer c such that for any k ≥ 2, s(k) ≤ c. This problem has been solved by
Jamshy and Tarsi, who proved the following theorem.

(1.2) (Jamshy and Tarsi [6]). For any k ≥ 2, s(k) ≤ 4.
In [6], it is proved that the cycle 2-cover conjecture for graphs is equivalent to the cycle

2-cover conjecture for regular matroids. Tarsi [9] observed that if every regular matroid M
has a cycle 2-cover, then s(k) ≤ 2, and so it was conjectured in [6] that s(k) ≤ 2, for any
k ≥ 2. Utilizing the famous decomposition theorem of Seymour on regular matroids, we shall
show in this paper that Theorem (1.2) can be improved to s(k) ≤ 3 for any k ≥ 2.

2. NOWHERE ZERO FLOWS AND CYCLE COVERS

Groups in this section are the additive group of the vector space V (n, 2), and the matroids
in this section are binary matroids. For a vector α ∈ V (n, 2), ‖α‖ denotes the number of
nonzero coordinates of α; and πi (α) denote the i th coordinate of α, where 1 ≤ i ≤ n. Thus
πi is the projection map onto the i th coordinate.

Let M be a binary matroid and let S = {C1, C2, . . . , Cs} be a cycle cover of M . For each
e ∈ E(M), let dS(e) denote the number of cycles in S which contain e. For a positive integer l,
a cycle cover S of M is a cycle (≤l)-cover if 1 ≤ dS(e) ≤ l, for any e ∈ E(M). Thus M
has a (≤1)-cycle cover if and only if M is a cycle. Note that by the definition of s(k), if every
regular matroid admitting a k-NZF has a (≤3)-cycle cover, then s(k) ≤ 3. Therefore, our aim
is to show that every coloopless regular matroid has a cycle (≤3)-cover. The following is well
known.
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(2.1) ([7], Theorem 9.1.2). Let M be a binary matroid and let X ∈ E(M). Then

(i) X is a cycle if and only if |X ∩ D| is even for any cocycle D of M .
(ii) X is a cocycle if and only if |X ∩ C| is even for any cycle C of M .

(2.2) Let M be a binary matroid and let f : E(M) �→ V (n, 2) be a V (n, 2)-flow. Each of
the following holds.

(i) For each i with 1 ≤ i ≤ n, Si ( f ) = {e ∈ E(M) : πi (
∫
(e)) = 1} is a cycle of M .

(ii) If f is a V (n, 2)-NZF, then S = {Si ( f ) : 1 ≤ i ≤ n} is a cycle cover of M such that
dS(e) = ‖ f (e)‖, ∀e ∈ E(M).

PROOF. For any D ∈ C(M∗), since f is a V (n, 2)-flow and by (1), f (D) = 0 ∈ V (n, 2).
It follows that for each i , πi ◦ f (D) = πi (0) in Z2. Therefore by the definition of Si ( f ), one
has |Si ( f ) ∩ D| = (πi ◦ f )(D) = 0 in Z2, and so by (2.1), Si ( f ) ∈ C(M).

When f is a V (n, 2)-NZF, every e ∈ E(M) lies in a Si ( f ), for some 1 ≤ i ≤ n, and so
S = {Si ( f ) : 1 ≤ i ≤ n} is a cycle cover of M . By the definition of Si ( f ), e lies in exactly
those cycles Si ( f ) where πi ( f (e)) = 1, and so dS(e) = ‖ f (e)‖. �

(2.3) Let D = {e1, e2, e3} ∈ C(M∗), and let S = {C1, C2, . . . , Cs } be a cycle (≤3)-cover
of M . If dS(e1) ≤ dS(e2) ≤ dS(e3), then

(dS(e1), dS(e2), dS(e3)) ∈ {(1, 1, 2), (1, 2, 3), (2, 2, 2), (2, 3, 3)}.
PROOF. This follows from (2.1) and from the assumption that 1 ≤ dS(e) ≤ 3. �

The following fact is straightforward from linear algebra.

(2.4) For an integer m with 1 ≤ m ≤ n, if α1, α2, . . . , αm are linearly independent in
V (n, 2) and if β1, β2, . . . , βm are linearly independent in V (n, 2), then there exists a nonsin-
gular linear transformation L : V (n, 2) �→ V (n, 2) such that L(αi ) = βi , 1 ≤ i ≤ m.

Jaeger’s 8-NZF theorem [5] indicates that every coloopless graph has an 8-NZF, which
implies that every coloopless graphic matroid has a cycle (≤3)-cover. To prove our result in
this paper, we need a slightly stronger version of the 8-NZF theorem for both graphic matroids
and cographic matroids.

(2.5) Let G be a coloopless graph and let M = M(G). Each of the following holds.

(i) For any e0 ∈ E(M), and for any integer x0 with 1 ≤ x0 ≤ 3, M has a cycle (≤3)-cover
S such that dS(e) = x0.

(ii) Let D = {e1, e2, e3} ∈ C(M∗), and let 1 ≤ x1 ≤ x2 ≤ x3 ≤ 3 be integers such that

(x1, x2, x3) ∈ {(1, 1, 2), (1, 2, 3), (2, 2, 2), (2, 3, 3)}. (2)

Then M has a cycle (≤3)-cover S such that dS(ei ) = xi , (1 ≤ i ≤ 3).

PROOF. By Jaeger’s 8-NZF theorem, there is a V (3, 2)-NZF f : E(M) �→ V (3, 2) such
that S( f ) = E(M).

In particular, f (e0) �= 0 and so f (e0) is linearly independent. Pick a vector β ∈ V (3, 2)

such that ‖β‖ = x0. By (2.4), there is a nonsingular linear transformation L such that
L( f (e0)) = β. Since f is a V (3, 2)-NZF, by (1), for each D ∈ C(M∗), f (D) = 0. Since L
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is a linear transformation, one has L( f )(D) = L( f (D)) = L(0) = 0. It follows by (1) that
L( f ) = L ◦ f is also a V (3, 2)-NZF of M . Thus (2.5)(i) follows from (2.2)(ii).

Next we assume that (x1, x2, x3) ∈ {(1, 1, 2), (1, 2, 3), (2, 2, 2)}. Note that since D ∈
C(M∗), f (e1)+ f (e2) = f (e3) �= 0, and so f (e1), f (e2) are linearly independent in V (3, 2).
Define

β1 = (1, 0, 0), β2 = (0, 1, 0) if (x1, x2, x3) = (1, 1, 2),

β1 = (1, 0, 0), β2 = (0, 1, 1) if (x1, x2, x3) = (1, 2, 3),

β1 = (1, 1, 0), β2 = (0, 1, 1) if (x1, x2, x3) = (2, 2, 2).

Then β1, β2 are linearly independent in V (3, 2). By (2.4), there is a nonsingular linear trans-
formation L : V (3, 2) �→ V (3, 2) such that L( f (ei )) = βi , for each i = 1, 2. Note that
‖β1‖ = x1 and ‖β2‖ = x2. Moreover, since f (e1) + f (e2) = f (e3) and since L is lin-
ear, L( f (e3)) = L( f (e1)) + L( f (e2)) = β1 + β2, and so ‖L( f (e3))‖ = ‖β1 + β2‖ =
x3. Note that L( f ) = L ◦ f is also a V (3, 2)-NZF of M , and so when (x1, x2, x3) ∈
{(1, 1, 2), (1, 2, 3), (2, 2, 2)}, (2.5)(ii) follows from (2.2)(ii).

Finally we assume that (x1, x2, x3) = (2, 3, 3). Note that f (e2) + f (e3) = f (e1) �= 0,
and so f (e2), f (e3) are linearly independent in V (3, 2). By what we have just proved in the
previous paragraph, we may assume that f (e2) = (1, 0, 0) and f (e3) = (0, 1, 0). Define a
linear transformation L : V (3, 2) �→ V (4, 2) as follows:

L(z1, z2, z3) = (z1, z2, z3)

[ 1 0 1 1
0 1 1 1
1 1 0 1

]

= (z1 + z3, z2 + z3, z1 + z2, z1 + z2 + z3).

Note that ‖L( f (ei ))‖ = 3, when i = 2, 3. Note also that the matrix defining L above has
rank 3, and so for any α ∈ V (3, 2) − {0}, L(α) �= 0 ∈ V (4, 2). Moreover, for any α =
(z1, z2, z3) ∈ V (3, 2) − {0}, one has 0 < ‖L(α)‖ ≤ 3. Furthermore, since L is linear and
since f (e1) = f (e2) + f (e3), ‖L( f (e1))‖ = ‖L( f (e2)) + L( f (e3))‖ = 2. Again, since L
is a linear transformation and by observations mentioned above, L( f ) is a V (4, 2)-NZF. It
follows by (2.2) that the corresponding cycle cover is a cycle (≤3)-cover of M . �

(2.6) Let G be a connected loopless graph on n ≥ 5 vertices and let M = M(G). Each of
the following holds.

(i) For any e0 ∈ E(M), and for any integer x0 with 1 ≤ x0 ≤ 3, M has a cocycle (≤3)-
cover S such that dS(e) = x0.

(ii) Let D = {e1, e2, e3} ∈ C(M), and let 1 ≤ x1 ≤ x2 ≤ x3 ≤ 3 be integers such that

(x1, x2, x3) ∈ {(1, 1, 2), (1, 2, 3), (2, 2, 2), (2, 3, 3)}.
Then M has a cocycle (≤3)-cover S such that dS(ei ) = xi , (1 ≤ i ≤ 3).

PROOF. This follows from the fact that the set of edges incident with a vertex in a graph
G is a circuit in M∗(G), and all such sets constitute a cycle 2-cover of M∗(G). Details of the
proof will then be left to the reader. �

(2.7) Let R10 = M[A] be a vector matroid over the real numbers, where

A =








1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1








.
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Then R10 is a cycle. Consequently, for any element e ∈ E(M) and for any integer x0 with
1 ≤ x0 ≤ 3, M has a cycle (≤3)-cover S with dS(e) = x0.

PROOF. Let ei denote the i th column of A, 1 ≤ i ≤ 10. Then one can directly verify that
{e1, e3, e5, e7, e8, e9} and {e2, e4, e6, e10} are circuits. �

3. CYCLE (≤3)-COVER OF REGULAR MATROIDS

We shall apply Seymour’s decomposition theorem for regular matroids to prove our main
results in this section. Therefore we need the notion of 1-sum, 2-sum and 3-sum. Given two
sets X and Y , the symmetric difference of X and Y , is

X�Y = (X ∪ Y ) − (X ∩ Y ).

Let M1 and M2 be two binary matroids where E(M1) and E(M2) may intersect. Define
M1�M2 to be the binary matroid on E = E(M1)�E(M2) whose cycles are all subsets of
E of the form C1�C2, where C1 is a cycle of M1 and C2 is a cycle of M2. In particular,

(i) when E(M1) ∩ E(M2) = ∅, then M1�M2 is the 1-sum (also called the direct sum) of
M1 and M2;

(ii) when E(M1) ∩ E(M2) = {e0}, where, for each i ∈ {1, 2}, the element e0 is neither a
loop nor a coloop of Mi , then M1�M2 is the 2-sum of M1 and M2 (about the element
e0);

(iii) when E(M1) ∩ E(M2) = C , where C is a 3-circuit of both M1 and M2, where C
includes no cocircuit of either M1 and M2, and where for i ∈ {1, 2}, |E(Mi )| ≥ 7, then
M1�M2 is the 3-sum of M1 and M2 (about the 3-circuit C).

When M is a k-sum of M1 and M2, for k = 1, 2, 3, we say that M is a proper k-sum of M1
and M2 if M1 and M2 are both isomorphic to proper minors of M .

(3.1) (Seymour, [8]). Every regular matroid M can be constructed by means of direct sums,
2-sums and 3-sums starting with matroids each of which is isomorphic to a minor of M , and
each of which is either graphic, cographic, or isomorphic to R10.

(3.2) (Seymour [8], Proposition 13.2.1 of [7]). Every regular matroid can be obtained from
copies of R10 and from 3-connected regular matroids without R10-minors by a sequence of
direct sums and 2-sums.

For application purpose, we need to state Seymour’s decomposition theorem slightly differ-
ently as in (3.3) below.

(3.3) (Seymour, [8]). Let M be a coloopless regular matroid. Then one of the following
holds.

(i) M is coloopless and graphic.
(ii) M is coloopless and cographic.

(iii) M is isomorphic to R10.
(iv) M = M1�M2 is the proper 1-sum or 2-sum of two coloopless regular matroids M1 and

M2, where one of them is either graphic, or cographic, or isomorphic to R10.
(v) M = M1�M2 is the proper 3-sum of two coloopless regular matroids M1 and M2,

where one of them is either graphic or cographic.
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PROOF. We may assume that M is connected. For otherwise we can argue by induction on
a component.

Assume that (3.3)(i), (ii) and (iii) do not hold. If M does not have an R10-minor, then,
by (3.1), we may assume that M2 is the matroid last added in the construction of M , as
described in (3.1). Therefore, M = M1�M2 is a proper i -sum (2 ≤ i ≤ 3), and M2 must be
either graphic, or cographic, or isomorphic to R10. Since M does not have a minor isomorphic
to R10, M2 must be either graphic or cographic, or so (3.3)(iv) or (v) must hold.

Therefore we assume that M has a minor isomorphic to R10. By (3.2), and since (3.3)(i),
(ii) and (iii) do not hold, M can be expressed as a 2-sum N1�N2, where N2 is the matroid last
added in the construction of M , as described in (3.2). If N2 is isomorphic to R10, or if N2 is
graphic or cographic, then (3.3)(iv) must hold. Therefore, we assume that N2 is a 3-connected
regular matroid without a minor isomorphic to R10, and is neither graphic nor cographic.
By (3.1), N2 = N3�M2 is a 3-sum such that M2 must be either graphic or cographic. It
follows that M = M1�M2 is a 3-sum satisfying (3.3)(v). �

(3.4) Seymour [8] indicated that when M is a proper 3-sum of M1 and M2, M∗ cannot be
the 3-sum of M∗

1 and M∗
2 . However, one has (remark on p. 319 of [8])

(M1�M2)
∗ = M∗

1 �M∗
2 .

(3.5) Note that M is regular if and only if M∗ is regular. Applying (3.3) to M∗ and noting
that R∗

10
∼= R10, Theorem (3.3)(v) can be restated as follows:

M∗ = M∗
1 �M∗

2 is the proper 3-sum of two coloopless regular matroids M∗
1 and M∗

2 , where
one of them is either graphic or cographic.

(3.6) Let M1 and M2 be two binary matroids, and let M = M1�M2 be a 2-sum of M1 and
M2 about the element e0. Let S1 and S2 be cycle (≤3)-covers of M1 and M2, respectively. If
dS1(e0) = dS2(e0), then M has a cycle (≤3)-cover.

PROOF. Let x = dS1(e0) = dS2(e0). Then, for i = 1, 2, there are cycles C(i)
1 , . . . , C(i)

x in
Si which contain e0. Define C j = C(1)

j �C(2)
j , (1 ≤ j ≤ x). By the definition of a 2-sum,

each C j is a cycle of M . It follows that

S = (S1 − {C(1)
1 , . . . , C(1)

x }) ∪ (S2 − {C(2)
1 , . . . , C(2)

x }) ∪ {C j : 1 ≤ j ≤ x}
is a cycle (≤3)-cover of M . �

(3.7) Let M be a binary matroid and D = {e1, e2, e3} ∈ C(M∗). Let S be a cycle (≤3)-cover
of M such that dS(ei ) = xi , 1 ≤ i ≤ 3, where x1 ≤ x2 ≤ x3 (relabeling if necessary). Then
exactly one of the following holds.

(i) (x1, x2, x3) = (1, 1, 2) and there exist distinct C1, C2 ∈ S such that e1, e3 ∈ C1 and e2,
e3 ∈ C2.

(ii) (x1, x2, x3) = (1, 2, 3) and there exist distinct C1, C2, C3 ∈ S such that e1, e3 ∈ C1,
and e2, e3 ∈ C2 ∩ C3.

(iii) (x1, x2, x3) = (2, 2, 2) and there exist distinct C1, C2, C3 ∈ S, such that e1, e3 ∈ C1,
e1, e3 ∈ C2 and e2, e3 ∈ C3.

(iv) (x1, x2, x3) = (2, 3, 3) and there exist distinct C1, C2, C3, C4 ∈ S such that e1, e2 ∈ C1,
e1, e3 ∈ C2 and e2, e3 ∈ C3 ∩ C4.
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PROOF. Since D = {e1, e2, e3} ∈ C(M∗), and by (2.1), for any C ∈ C(M), one has
|C ∩ D| ∈ {0, 2}. Let SD = {C1, C2, . . . , Cm} ∈ S be the collection of all members in S such
that |Ci ∩ D| = 2.

By (2.3), (2) must hold, and so one needs only to consider the possible values of (x1, x2, x3),
as indicated in (2).

If (x1, x2, x3) = (1, 1, 2), then since |Ci ∩ D| = 2 for each Ci ∈ SD , one must have
m = |SD| = 2 and so (i) follows. The proofs for the other cases are similar, and will be
omitted. �

(3.8) Let M1 and M2 be two binary matroids, and let M∗ = M∗
1 �M∗

2 be a 3-sum of M∗
1

and M∗
2 about the 3-cocircuit D = {e1, e2, e3} ∈ C(M∗

1 ) ∩ C(M∗
2 ). Let S1 and S2 be cycle

(≤3)-covers of M1 and M2, respectively. If dS1(e j ) = dS2(e j ), for each j = 1, 2, 3, then M
has a cycle (≤3)-cover.

PROOF. Let xi = dS1(e j ) = dS2(e j ), for each j = 1, 2, 3. Relabeling the elements in D if
needed, we may assume that 1 ≤ x1 ≤ x2 ≤ x3 ≤ 3. By (2.3), one needs only to consider the
possible values of (x1, x2, x3), as indicated in (2).

Assume that (x1, x2, x3) = (1, 1, 2). Then by (3.7)(i), for each i = 1, 2, there exists C(i)
1 ,

C(i)
2 ∈ Si such that e1, e3 ∈ C(i)

1 and e2, e3 ∈ C(i)
2 . By (3.4), M = M1�M2, and so for j = 1,

2, C j = C(1)
j �C(2)

j is a cycle of M . It follows by (3.4) that

S = (S1 − {C(1)
1 , C(1)

2 }) ∪ (S2 − {C(2)
1 , C(2)

2 }) ∪ {C1, C2}
is a cycle (≤3)-cover of M in this case.

The proof for other cases are similar and so will be omitted. �

(3.9) Every coloopless regular matroid has a cycle (≤3)-cover.

PROOF. Note that R10 is a cycle. Therefore, if M is graphic or cographic, or is R10, then
M has a cycle (≤3)-cover.

We proceed by induction on |E(M)|. By applying (3.3) to M∗, we may assume that either
M = M1�M2 is a proper 2-sum such that M2 is either graphic, cographic, or M2 = R10, or
M∗ = M∗

1 �M∗
2 is a proper 3-sum such that M2 is either graphic or cographic.

Assume first that M = M1�M2 is a proper 2-sum about the element e0 and M2 is either
graphic, cographic, or M2 = R10. By the induction hypothesis, M1 has a cycle (≤3)-cover S1.
Let x0 = dS1(e0). Then by (2.5) (if M2 is graphic), or by (2.6) (if M2 is cographic) or by (2.7)
(if M2 = R10), M2 has a cycle (≤3)-cover S2 such that dS2(e0) = x0. It follows by (3.6) that
M has a cycle (≤3)-cover.

Assume next that M∗ = M∗
1 �M∗

2 is a proper 3-sum about the cocircuit D = {e1, e2, e3} ∈
C(M∗

1 ) ∩ C(M∗
2 ), such that M2 is either graphic or cographic. Note that if M2 is a connected

cographic matroid with r(M2) ≤ 3, then it cannot contain a minor isomorphic to M∗(K5) or
M∗(K3,3), as each of M∗(K5) and M∗(K3,3) has rank at least 4. Therefore, by a theorem of
Tutte [11] that a regular matroid is graphic if and only if it does not have a minor isomorphic to
M∗(K5) or M∗(K3,3), M2 must also be graphic. Therefore, we assume that if M2 is cographic,
then M2 is connected and r(M2) ≥ 4.

By the induction hypothesis, M1 has a cycle (≤3)-cover S1. Let dS1(e j ) = x j , for j = 1,
2, 3, where 1 ≤ x1 ≤ x2 ≤ x3 ≤ 3 (relabeling the e1’s if needed). By (2.3), (2) must hold.
By (2.5)(ii) (if M2 is graphic) or by (2.6)(ii) (if M2 is cographic), M2 has a cycle (≤3)-cover
S2 such that for each j = 1, 2, 3, dS2(e j ) = x j . Thus by (3.8), M has a cycle (≤3)-cover, and
so (3.9) follows by induction. �

As a corollary, one immediately has the following improvement of (1.2).
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(3.10) For any integer k ≥ 2, s(k) ≤ 3.
It is natural to consider the existence of cycle (≤2)-covers for coloopless regular matroids.

Clearly any cycle 2-cover of M is a cycle (≤2)-cover of M . On the other hand, if S =
{C2, C2, . . . , Ct } is a cycle (≤2)-cover of M , then S ∪ {�t

i=1Ci } is a cycle 2-cover of M .
Therefore, one has the following observation.

(3.11) The existence of a cycle (≤2)-cover is equivalent to the existence of a cycle 2-cover,
and either of them can imply that s(k) ≤ 2 for any k ≥ 2.
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