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Abstract

In previous papers, Catlin introduced four functions, denoted SO, SR, SC , and SH , between
sets of �nite graphs. These functions proved to be very useful in establishing properties of several
classes of graphs, including supereulerian graphs and graphs with nowhere zero k-ows for a
�xed integer k¿ 3. Unfortunately, a subtle error caused several theorems previously published
in Catlin (Discrete Math. 160 (1996) 67–80) to be incorrect. In this paper we correct those
errors and further explore the relations between these functions, showing that there is a sort of
duality between them and that they act as inverses of one another on certain sets of graphs.
c© 2001 Published by Elsevier Science B.V.
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1. Introduction

When our dear friend and mentor, Paul Catlin, died, he left behind a manuscript
which has evolved into this paper. Unfortunately, there was a subtle error both in his
manuscript and in Paul’s previously published paper [5]. It was su�ciently subtle that
we, his coauthors, also failed to notice it as we initially revised the manuscript. The
error resided principally in failing to notice that knowing the set of edges of a subgraph
H of graph G is preserved under a contraction of G to G0, even after erasing loops,
does not assure that H ⊆G0. Stated clearly, as here, it seems trivial, but in the midst
of a long and di�cult proof it is easy to miss. Fortunately, one of our referees noticed
a problem with connectedness, and that observation led us to recognize the key prob-
lem. We are pleased to have the opportunity here both to thank the referee and to repair
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the results in [5], one of Paul’s most important papers. We also extend these results
along the lines Paul had mapped out.
Throughout this paper, we con�ne ourselves to the universe U of all �nite graphs

whose vertex sets are subsets of N, the set of all nonnegative integers, and whose
edges are integers mapped into unordered pairs of those vertices. We generally follow
the terminology of Bondy and Murty [1], except that a graph has no loops, all graphs
in this paper are �nite, and nG stands for a vertex-disjoint union of n copies of graph
G. We use n ∗K2 for any graph with two vertices joined by n parallel edges. A graph
G is edgeless if |E(G)|=0, but we briey describe any graph with at least one edge
as being nontrivial. A group A is trivial if |A|=1. We use Z+ for the set of pos-
itive integers. If H1 and H2 are two subgraphs of a graph G, then H1 ∪ H2 denotes
the subgraph of G with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). If
nothing is said about the relationship between V (H1) and V (H2) (e.g., they are not
described as subgraphs of a given graph), then H1∪H2 denotes the disjoint union of H1
and H2.
A contraction of G is a graph G′ obtained from G by contracting a set (possibly

empty) of edges and deleting any loops generated in the process. If G′ is a contraction
of G, then we say that G is contractible to G′. A contraction of a subgraph of G is
called a minor of G. When H is a subgraph of G, then the contraction of G obtained
by contracting the edges in H and deleting resulting loops is denoted G=H . Note that
each component of H becomes a vertex of G=H . For graphs G and H , by H6G we
mean that H is a minor of G; by H ⊆G we mean that H is a subgraph of G, and
by H ∼=G we mean that H is isomorphic to G. We use the term family of graphs or
graph family to refer to any subset of U which is closed under isomorphism. A graph
family S is closed under contraction if G ∈S and H a contraction of G together
imply that H ∈S. A graph family S is closed under taking subgraphs if G ∈S and
H ⊆G together imply that H ∈S.
A family S of graphs is a lower ideal if S is closed under minors (i.e. G ∈S and

H6G together imply H ∈S). A family S of graphs is a contraction lower ideal if
S is closed under contraction (i.e., G ∈S and H ⊆G together imply G=H ∈S), and
S is a subgraph lower ideal if S is closed under taking subgraphs (i.e., G ∈S and
H ⊆G together imply H ∈S). Robertson and Seymour have found that lower ideals
have nicely describable internal and external structures, which led to many wonderful
discoveries. Here we examine separately and then together the two concepts of subgraph
lower ideals and contraction lower ideals.
Examples of graph families that are contraction lower ideals but not lower ideals

are the family of supereulerian graphs and the family of graphs with nowhere zero
k-ows, both of which will be introduced below. For literature on these two topics,
see [4,8].
Let G be a graph and let O(G) denote the set of vertices of odd degree in G. Then

G is even if O(G)= ∅, and G is eulerian if G is both even and connected. A graph
G is supereulerian if G has a spanning eulerian subgraph. Following Catlin [4], the
family of supereulerian graphs is denoted by SL.



P.A. Catlin et al. / Discrete Mathematics 230 (2001) 71–97 73

Let G be a digraph. For a vertex v∈V (G), let

E−
G (v)= {(u; v)∈E(G) : u∈V (G)} and E+G (v)= {(v; u)∈E(G) : u∈V (G)}:

The subscript G may be omitted when G is understood from the context. Let
E(v)=E+(v) ∪ E−(v).
Let A be a nontrivial additive abelian group and let A∗ denote the set of nonzero

elements in A. For a digraph G, de�ne F(G; A) to be the set of all functions from
E(G) into A, and F∗(G; A) to be the set of all functions from E(G) into A∗. For each
f∈F(G; A), the boundary of f is a function @f :V (G)→A de�ned by

@f(v)=
∑

e∈ E+(v)
f(e)−

∑
e∈ E−(v)

f(e);

where ‘
∑
’ refers to the addition in A and an empty sum has value zero.

Let S be a nonempty set and let A be a group. Throughout this paper, we shall adopt
the following convention: if X ⊆ S and if f :X →A is a function, then we regard f
as a function f : S→A such that f(e)= 0 for all e∈ S − X .
Let G be an undirected graph and A be an abelian group. De�ne Z(G; A) to be the set

of all functions b :V (G)→A such that
∑

v∈ V (G) b(v)= 0. A graph G is A-connected
if G has an orientation G′ such that for every function b∈Z(G; A), there is a function
f∈F∗(G′; A) such that b= @f. In particular, K1 is A-connected for any abelian group
A. It is observed in [9] that whether G is A-connected is independent of the orientation
of G. Let [A] denote the family of all A-connected graphs.
An A-nowhere-zero-ow (abbreviated as A-NZF) in G is a function f∈F∗(G; A)

such that @f∼=0. The nowhere-zero-ow problems were introduced by Tutte [16], and
were surveyed by Jaeger [8]. Tutte [16] showed that if A1 and A2 are two abelian groups
with |A1|= |A2|, then a graph G has an A1-NZF if and only if it has an A2-NZF. Thus,
an A-NZF is also called a k-NZF, where k = |A|. Following Jaeger [8], let Fk denote
the family of graphs that have k-NZFs.
Jaeger et al. [9], generalized the concept of A-NZF to A-connectivity, or group

connectivity. A concept similar to group connectivity was independently introduced in
[10], with a di�erent motivation from [9].
It is immediate that a nontrivial graph G is in SL or in Fk (k¿ 2) only if G

is 2-edge-connected. Therefore both SL and Fk are not lower ideals. On the other
hand, it also follows from the de�nitions that both SL and Fk are contraction lower
ideals.
Contraction lower ideals are interesting due to a reduction method �rst introduced

by Catlin [2]. Some prior work on certain special contraction lower ideals (called
‘complete families’ by Catlin) can be found in [5,13]. In this paper, we continue the
work, including correcting errors found in [5]. When we give new statements or new
proofs to theorems of [5], we use the style ‘Theorem w.x ([5] y.z’), where ‘w.x’
is the number of the theorem in this paper and ‘y.z’ is the number of the theorem
in [5].
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2. Preliminaries

An elementary contract-homomorphism (or an elementary CH-morphism for short)
of a graph G is a transformation from G to a graph G′ obtained from G by identifying
two vertices lying in the same component in G and by deleting any loops that might
result. A CH-morphism of G is a transformation from G to a graph G′ obtained from
G by a sequence of elementary CH-morphisms. We call G′ a CH-morph of G. As the
sequence of elementary CH-morphisms may be an empty sequence, any graph G is a
CH-morph of itself. A graph family S is closed under CH-morphisms if G ∈S and
H a CH-morph of G together imply that H ∈S.
The �rst three operations below were de�ned in [5], and the fourth one in [3]. Let

U′ be the set of all families of �nite graphs in U. De�ne four functions from U′ to
U′ as follows:

SO = {H : for every graph G with H ⊆G;G ∈S⇔G=H ∈S};
SR = {G :G has no nontrivial subgraph in S};
SC = {G :G has no nontrivial contraction in S};
SH = {G :G has no nontrivial CH-morph in S}:

The graph family SO is called the kernel of S in [5].

Example 2.1. Let S= {K3}. Then SO = {K1; 2K1; 3K1} ∪ {G :!(G)¿ 4}, SR is the
set of all K3-free graphs, SC = the set of all graphs G such that G is not connected
or G is connected and does not have a set C of 3 edges such that G − C is the
vertex-disjoint union of three connected graphs H1; H2, and H3 such that the edges
of C can be labeled e1; e2; e3 so that ei joins a vertex of Hi with a vertex of Hi+1
for each i, taking 3 + 1=1, and SH = the set of all graphs G such that G is not
connected or G is connected and does not have a set C of 3 edges such that G − C
is the vertex-disjoint union of three graphs H1; H2, and H3 such that the edges of
C can be labeled e1; e2; e3 so that ei joins a vertex of Hi with a vertex of Hi+1 for
each i, taking 3 + 1=1.

Proof: Suppose H = nK1 for some n∈{1; 2; 3} and suppose H ⊆G for graph G. If
G ∈S, then G=H =G ∈S. Moreover, if G=H ∈S, then G=G=H ∈S. Thus nK1 ∈SO

for n∈{1; 2; 3}. On the other hand, suppose H has the property that, for every graph
G with H ⊆G, G ∈S⇔G=H ∈S. Then, for such H and G, 3= |E(G)|¿ |E(G=H)|+
|E(H)|¿ |E(G=H)|=3, so H = nK1 for some n∈{1; 2; 3}. But if !(H)¿ 4, then both
G and G=H must have at least four vertices and so cannot be in S. Thus the condition
is satis�ed vacuously in this case.
The description of SR is immediate from the de�nitions. For SC and SH , if G is

not connected, then every CH-morph (including contractions) of G is not connected,
and so G ∈SC ∩SH . Suppose G is connected and does not have a set C of 3 edges
such that G − C is the vertex-disjoint union of three graphs H1; H2, and H3 such that
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the edges of C can be labeled e1; e2; e3 so that ei joins a vertex of Hi with a vertex of
Hi+1 for each i, taking 3+1=1. (Note: The graphs Hi are not necessarily connected.)
Suppose further that � is a CH-morphism from G to K3. Let the vertices of �(G)
be v1; v2, and v3, and let �−1(vi)=Hi for each i. Then V (Hi) ∩ V (Hj)= ∅ for each
distinct pair i and j. Since any edge from Hi to Hj becomes an edge from vi to vj
under �, and since there is only one such edge in �(G) for each distinct pair i and
j, the three edges of G which become the three edges of �(G) constitute a set C of
edges such that G−C has the three subgraphs Hi as described, contrary to assumption.
Thus SH contains the claimed graphs. But if G is connected and does have a set
C of 3 edges such that G − C has the described decomposition into three subgraphs,
then (recalling G is connected, so the graphs Hi can each be contracted to a single
vertex) contracting those three subgraphs to three distinct vertices yields a K3, and so
G =∈SH .
The proof of the description of SC is similar, except that each of the subgraphs Hi

is connected.

Example 2.2. Let S be the family of all forests, then SO =SR= {nK1 : n∈Z+}, and
SC and SH are both the family of all graphs such that every nontrivial component is
2-edge-connected.

Proof: Trivially, if H = nK1 for some integer n, then G=H =G for every graph G
having H as a subgraph, so {nK1 : n∈Z+}⊆SO. Suppose H has the property that
G ∈S⇔G=H ∈S for every graph G containing H , and suppose H has an edge e.
Form graph G from H by adding a second edge parallel to e in H . Then G=H is nK1
for some integer n, and so it is in S. But G has a digon and so cannot be in S. This
contradiction shows our claim for SO.
Note that {nK1 : n∈Z+}⊆SR by de�nition. Suppose H has an edge e. Then H has

K2 as a subgraph, and so H is not in SR. This establishes the claim for SR.
Since a contraction or CH-morph of a 2-edge-connected graph is 2-edge-connected

or edgeless, the family of all graphs such that every nontrivial component is 2-edge-
connected is contained in SC ∩ SH . But suppose G is a graph having a nontrivial
component H which is not 2-edge-connected. Then there is at least one cut-edge in H .
Contract H to that cut-edge, and contract all other components of G to vertices. The
result is a nontrivial forest, and so G =∈SC ∪SH .

Example 2.3. Let S= {K1} ∪ {2-edge-connected graphs}. Then SO is the the family
of all graphs such that every nontrivial component is 2-edge-connected, SR is the fam-
ily of forests, SC = {G :G is a tree} ∪ {G :G is disconnected}, and SH = {K1; K2} ∪
{G :G is disconnected}.

Proof: Suppose H is a graph each of whose components is either K1 or 2-edge-
connected. Let G be a graph containing H as a subgraph. If G ∈S, then contract-
ing the 2-edge-connected components of H leaves a 2-edge-connected graph or K1,
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so G=H ∈S. If G=H ∈S, then certainly G is connected. If G has an edge e whose
removal disconnects G, we notice that the edge is not in G=H , since G=H is either K1
or is 2-edge-connected. But every nontrivial component of H is 2-edge-connected also,
so e cannot be in a component of H either. Thus G is 2-edge-connected. Conversely,
suppose H has the property that G ∈S⇔G=H ∈S for every graph G containing H ,
and suppose some component H0 of H has a cut edge e. Let e have ends v0 and w,
and let the other components of H be H1; H2; : : : ; Hc, c¿ 0. Let Hi include a vertex vi
for each i∈{1; 2; : : : ; c}. If c¿0, form G by adding to H an edge from vi to vi+1 for
each i∈{0; 1; : : : ; c− 1} and an edge from vc to v0. If c=0, form G by identifying v0
with one vertex of K3. Then G=H is a cycle and so is in S, but e is a cut edge of
G, contrary to our assumption. Hence no component of H has a cut-edge and the �rst
claim is proved.
Let G ∈SR. Then G has no nontrivial subgraph in S. If G has a cycle C, then

C ∈S, a contradiction. Thus G has no cycle and so is a forest. But if G is a forest,
it has no nontrivial subgraph in S. Thus SR is the family of all forests.
If G is disconnected, then every contraction and every CH-morph of G has at least

two components and so is not in S. Thus G ∈SH ∩ SC in this case. Continuing
with SC alone, if G is a tree, then every contraction of G is a tree and so is not in
S. Thus the graphs claimed for SC are in that graph family. Going on to SH , if G
is K1 or K2, then G is not 2-edge-connected. Moreover, neither one has any proper
nontrivial CH-morph. Thus both are in SH . It follows that SH includes all of the
claimed graphs. But if G is connected and is neither K1 nor K2, then it is either n ∗K2
with n¿ 2, and so is in S, or it has a path of length at least two and so has a
CH-morph to n ∗ K2 ∈S. Thus SH includes exactly the claimed graphs. Moreover, if
connected graph G has a cycle, then contracting the remaining vertices of G to vertices
of that cycle produces a two-edge-connected graph, and so G =∈SC . Thus SC includes
exactly the claimed graphs.

It is interesting to note that S0 of Example 2.3 is the same as SC =SH of
Example 2.2. Next, we look at some elementary properties of these graph operations.

Lemma 2.4. Let S1 and S2 be arbitrary graph families. If S1⊆S2 then

(a) SR
2 ⊆SR

1 ;
(b) SC

2 ⊆SC
1 ; and

(c) SH
2 ⊆SH

1 .

Proof: Suppose S1⊆S2.
(a) Let G ∈ (S2)R. Then G has no nontrivial subgraph in S2, and by S1⊆S2 no

nontrivial subgraph in S1. Therefore, G ∈SR
1 .

(b) Pick G ∈ (S2)C . Then no nontrivial contraction of G lies in S2, and by S1⊆S2

no nontrivial contraction of G lies in S1. Therefore, G ∈SC
1 .

(c) Imitate the proof of (b).
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Catlin [5] showed that, in certain circumstances, the converses of Lemma 2.4(a)
and (b) are also true. In Section 7 we will state his result precisely and extend it to
conditions for which the converse of Lemma 2.4(c) is true.

Lemma 2.5 (Catlin [5, 4:3]). For any graph family S; SR is closed under taking
subgraphs.

Proof: To see that SR is closed under taking subgraphs, let G ∈SR and let H ⊆G.
If H =∈SR, then H has a nontrivial subgraph in S. But any subgraph of H is a
subgraph of G, so G has a nontrivial subgraph in S. Hence G =∈SR. This contradiction
establishes the lemma.

Lemma 2.6 (Catlin [5, 4:8]). For any graph family S; SC is closed under contrac-
tions.

Lemma 2.7. For any graph family S; SH is closed under CH-morphisms.

The proofs of Lemmas 2.6 and 2.7 parallel the proof of Lemma 2.5, using the
transitivity of the contraction and CH-morphism operations.

Lemma 2.8. Let S be a graph family. Then each of the following holds:

(a) {nK1 : n∈Z+}⊆SR and S ∩SR⊆{nK1 : n∈Z+};
(b) {nK1 : n∈Z+}⊆SC and S ∩SC ⊆{nK1 : n∈Z+}; and
(c) {nK1 : n∈Z+}⊆SH and S ∩SH ⊆{nK1 : n∈Z+}.

Proof: The �rst part of each of these is immediate from the de�nitions. Let
G ∈S ∩ SR. If G has a subgraph H with E(H) 6= ∅, then G has a nontrivial sub-
graph in S, contrary to the assumption that G ∈SR, Hence E(G)= ∅, and so
(a) obtains.
Let G ∈S∩SC . If E(G) 6= ∅, then since G=G=K1 is a contraction of G, and since

G ∈S, G has a nontrivial contraction in S, and so G =∈SC , a contradiction. Therefore,
E(G)= ∅, and so (b) obtains.
Part (c) can be proved with an argument similar to that for Part (b), as any graph

G is a CH-morph of G itself.

Note that Lemmas 2:8(a) and 2:8(b), respectively, are Lemmas 4:4 and 4:5 of [5].

Lemma 2.9. For any graph family S;

SH ⊆SC:

Proof: Suppose G ∈SH . Then there is no nontrivial CH-morph of G in S,
and so there is no nontrivial contraction of G in S. Therefore, G ∈SC and hence
SH ⊆SC .
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3. Complete graph families

In our studies of these four graph family operations, two special kinds of graph
families, the ‘complete’ and the ‘free’ graph families, have been particularly signi�cant.
We discuss ‘complete’ graph families in this section and ‘free’ graph families in the
next section.
De�ne a family C of graphs to be complete if C satis�es these three axioms:

(C1) C contains all edgeless graphs;
(C2) C is closed under contraction;
(C3) H ⊆G;H ∈C, G=H ∈C then G ∈C.

Notice that complete graph families are contraction lower ideals by (C2).
In [5], Catlin proved this characterization of kernels:

Theorem 3.1 (Catlin [5, 3:4]). For any graph family S; closed under contraction;
these are equivalent:

(a) S is a complete graph family;
(b) S=SO;
(c) S is the kernel of some contraction lower ideal.

Example 3.2. For an integer k ∈N, let C!¿k be the graph family
C!¿k = {nK1 : n∈Z+} ∪ {G :!(G)¿k};

where !(G) is the number of components of graph G. Because contractions do not
change the number of components of the graphs being contracted, it is easy to show
that C!¿k is a complete graph family for each integer k. Since C!¿k is complete, by
Theorem 3.1, C!¿k =(C!¿k)O. We restrict our attention to the case k =1.

Theorem 3.3. (a) (C!¿1)R= {nK1 : n∈Z+} ∪ {n ∗ K2 : n∈Z+}.
(b) (C!¿1)C = {nK1 : n∈Z+} ∪ {G :!(G)= 1}.
(c) (C!¿1)H = {nK1 : n∈Z+} ∪ {G :!(G)= 1}.

Proof: For (a), suppose G has three or more vertices and at least one edge. Then, by
erasing edges if necessary, we can �nd a nontrivial subgraph H of G with at least two
components; necessarily, H ∈C!¿1. Thus G =∈ (C!¿1)R. But if G has only one or two
vertices, then it is in one of the two sets claimed in (a).
For (b) and (c), the results are immediate from the fact that contractions and

CH-morphisms do not change the number of components of a graph.

In [5], the author stated the theorem that, if C is a complete graph family, and
if H is a graph containing subgraph H1 and H2 such that H =H1 ∪ H2, then H ∈C

if H1; H2 ∈C. But this is false if C=C!¿1, for consider the 4-cycle H having the
vertices a; b; c, and d in order around the cycle. Then H1 having vertex set V (H)
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and edges ab and cd and H2 having vertex set V (H) and edges bc and da are both
disconnected and so are in C!¿1. But H =H1 ∪H2, and, having only one component,
is not in C!¿1.
A careful reading of the proof in [5] shows that the author assumed that every

component of a graph in a complete graph family was also in the complete graph
family. But even with this assumption, the published proof is faulty. We remedy these
problems with the following de�nition and two theorems. The �rst of these theorems
is a strengthening of Theorem 3:5 of [5].

Theorem 3.4 ([5] 3:5). Any complete graph family is closed under edge-addition
between vertices of the same component.

Proof: Let C be a complete graph family, let G ∈C, and let e be an edge not in G
joining distinct vertices of the same component of G. Since G ∈C, by (a) ⇒ (b) of
Theorem 3.1, G ∈CO, and so G+ e∈C(G+ e)=G ∈C. But (G+ e)=G= nK1 for some
integer n because e joins vertices of a single component of G and so is reduced to a
loop and erased in (G + e)=G. Thus, G + e∈C.

Corollary 3.5. Every complete graph family is closed under CH-morphisms.

Proof: Consider the elementary CH-morphism � which identi�es two vertices x and y
of the same component of a graph G. If the graph is in a complete graph family C,
by Theorem 3.4 we may add an edge e joining x and y to form G′, and G′ ∈C. But
then contracting edge e in G′ has the same e�ect as applying � to G and leaves the
graph in C by (C2).

De�nition: A graph family S is stippled if the implication G ∈S→G ∪ nK1 ∈S is
always true. (‘To stipple’ is ‘to draw with dots’.)

In [5], Catlin proved

Lemma 3.6 (Catlin [5, 3:6]). If C is complete and G ∈C; then G ∪ K1 ∈C.
In other words, every complete family is stippled.

In the following theorem, the requirement that each component of H2 shares ver-
tices with at most one component of H1 does not preclude one component of H1
sharing vertices with more than one component of H2, nor does it preclude there be-
ing a di�erent component of H1 for each di�erent component of H2 that has such an
intersection.

Theorem 3.7 ([5] 3:7). Let C be a complete family of graphs. Let H1 and H2 be in
C and suppose each component of H2 shares vertices with at most one component of
H1. Then H1 ∪ H2 ∈C.
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Proof: Consider all the pairs (Ci; Dj) of components of H1 and H2, respectively, such
that Vij =V (Ci)∩V (Dj) 6= ∅. For all such pairs, add edges to H1[Vij] to form complete
graphs on those vertex sets, and let H ′

1 be H1 together with these added edges. Since
each component Dj of H2 meets at most one component Ci of H1, the resulting graph
H ′
1 ∈C by Theorem 3.4. Now, for every such Vij, contract H ′

1[Vij] to a vertex, and
call the resulting graph H ′′

1 . Note that H
′′
1 ∈C. Since each component of H2 meets at

most one component of H1, H ′′
1 ⊆(H1 ∪H2)=H2, and if H ′′

1 6=(H1 ∪H2)=H2, then there
are some number k of isolated vertices K1 such that H ′′

1 ∪ kK1 = (H1 ∪ H2)=H2. But
by Lemma 3.6, H ′′

1 ∪ kK1 ∈C. Hence (H1 ∪ H2)=H2 ∈C. Since also H2 ∈C, we have
H1 ∪ H2 ∈C by (C3).

De�nition: A connected graph family is a graph family S such that, for each graph
G ∈S, every component of G is in S.

Note that SR is connected for any graph family S. The graph family C!¿1 shows
that completeness does not assure connectedness of a graph family. However,

Theorem 3.8. Let S be a stippled graph family. Then SC and SH are connected.

Proof: For SH , let G ∈SH and let H1 be a component of G. By de�nition, G has
no nontrivial CH-morphs in S. Suppose H1 does have a nontrivial CH-morph H0 ∈S.
Let � be the CH-morphism mapping H1 onto H0, and let �′ be the extension of � to
G de�ned by letting the restriction of �′ to H1 be � and the restriction of �′ to every
other component of G be a mapping of the component to one of its vertices. Then �′

is a CH-morphism and it maps G onto a nontrivial CH-morph of G in S, contrary to
the choice of G. This shows that H1 ∈SH , so SH is connected.
A parallel proof shows that SC is also connected.

This theorem can fail if S is not stippled. For example, if S= {G :!(G)= 1}, then
SC and SH are both {K1} ∪ {G :!(G)¿1}, and this family is not connected.

Theorem 3.9. Let S be a stippled family of graphs. If S is closed under taking
subgraphs; then SH is connected and complete.

Proof: Let S be a stippled graph family which is closed under taking subgraphs. By
Theorem 3.8, SH is connected, and by Lemmas 2:8(c) and 2:7, SH satis�es (C1) and
(C2). For (C3), let H ⊆G and suppose

H ∈SH and G=H ∈SH : (1)

Let H be the union of components H1; H2; : : : ; Hr . Since SH is connected, Hi ∈SH

for each i. Let k ∈{1; 2; : : : ; r}. Since H ⊆G, H1 ∪ · · · ∪ Hk ⊆G. De�ne Gk to be the
graph G=(H1 ∪ · · · ∪ Hk) for each value of k; we take G=(H1 ∪ · · · ∪ Hk−1) to be G
if k =1. Then we will show that Gk−1 ∈SH if Gk ∈SH . So suppose Gk ∈SH but
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Gk−1 =∈SH . Then there is a CH-morphism �k−1 such that the graph G′
k−1 = �k−1(Gk−1)

is nontrivial and in S. Since Hk is connected, the restriction �k−1 of �k−1 to Hk is a
CH-morphism. Let H ′

k = �k−1(Hk). Since the three conditions S closed under taking
subgraphs, H ′

k ⊆G′
k−1, and G

′
k−1 ∈S are satis�ed, we have H ′

k ∈S. But H ′
k ∈SH , so

H ′
k =K1 by Lemma 2.8(c). Now extend �k−1 to a CH-morphism �′k−1 of G which
�rst contracts every edge of H1 ∪ · · · ∪ Hk−1 and then performs �k−1. (Note �′0 = �0.)
Since �′k−1 can be seen as a sequence of elementary CH-morphisms, rearrange these
elementary CH-morphisms to �rst contract all of the edges of H1 ∪ · · · ∪ Hk−1, then
the edges of Hk , and �nally the remaining elementary CH-morphisms of �k−1; call
this last subsequence k−1. Then k−1(Gk)= �′k−1(G)= �k−1(Gk−1)=Gk−1, a nontriv-
ial member of S. But Gk ∈SH , so k−1(Gk) cannot be a nontrivial member of S.
Thus Gk−1 ∈SH .
Starting with k = r, repeat this argument r times. It follows that G0 =G ∈SH . Thus

(C3) holds for SH and SH is complete.

Theorem 3.10 ([5] 3:8). Let C be a connected complete graph family and let G be a
graph. Let E′ be the set of edges of G that lie in no subgraph of G in C. If E′′ is an
arbitrary minimal edge set such that G − E′′ is in C; then E′′=E′ and the maximal
subgraph of G in C is unique.

Proof: If e∈E(G) − E′′ then e =∈E′, and so E′ ⊆E′′. Since C is connected, for each
edge e =∈E′ we may let He be a connected subgraph of G in C containing e. Letting
E(G) − E′= {e1; e2; : : : ; en}, the graph (: : : (He1 ∪ He2 ) ∪ · · · ∪ Hen−1 ) ∪ Hen is in C by
Theorem 3.7. Thus E′′ ⊆E′. Combining our two results, E′′=E′ and E′′ is uniquely
determined. Since the maximal connected subgraphs of G in C are the components of
G − E′′, they are uniquely determined.

Example 3.11. If the complete graph family C in Theorem 3.10 is not connected, the
result can fail. For example, let C=C!¿1 of Example 3.2, and let G be the graph
with four vertices a; b; c; d and six edges distributed as follows: Two edges join a and
b, two edges join c and d, one edge joins a and d, and one edge joins b and c. Let G1
be the subgraph of G with exactly the edges ad and bc, and let G2 be the subgraph
of G having exactly the other four edges of G. Then each of G1 and G2 is in C and
G=G1 ∪ G2. Hence E′= ∅ in Theorem 3.10. But G =∈C and the minimum edge set
E′′ such that G − E′′ ∈C is E′′= {ad; bc} 6=E′.

The next theorem appears as Lemma 3:9 in [5] without requiring connectedness of
the complete graph family C. Although the �rst two paragraphs of the published proof
are sound, they are reproduced here for completeness.

Theorem 3.12 ([5] 3:9). Let C be a connected complete graph family; let G be a
graph; and let H ∈C be a connected subgraph of G. Let E′ and E′′ be as in Theorem
3:10. Let E∗ be the set of edges of G=H that lie in no subgraph of G=H in C. If E∗∗
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is an arbitrary minimal edge set such that G=H − E∗∗ is in C; then

E′′=E′=E∗=E∗∗: (2)

Proof: The �rst and last equalities of (2) are instances of Theorem 3.10. It remains to
prove E′=E∗.
Let H be a connected subgraph of G with H ∈C, let e∈E′, and suppose e =∈E∗.

Then e is in a subgraph H ′′ of G=H with H ′′ ∈C. Denote by G′′ the subgraph of G
induced by E(H) ∪ E(H ′′). Thus,

H ⊆G′′; H ∈C; G′′=H =H ′′ ∈C;

and so by (C3), G′′ ∈C. But then e∈E(H ′′)⊆E(G′′), contrary to e∈E′. Therefore
E′ ⊆E∗.
Let e∈E∗−E′. Then e =∈E′, so, by Theorem 3.10, G has a unique maximal subgraph

H0 ∈C such that e∈E(H0). Since C is connected, the component H ′
0 of H0 containing e

is in C. Since H ′
0 is connected, by Theorem 3.7, H∪H ′

0 ∈C. By (C2), (H∪H ′
0)=H ∈C.

Thus e∈E((H ∪H ′
0)=H) and (H ∪H ′

0)=H ⊆G=H , so e =∈E∗. This contradiction shows
E∗ ⊆E′, so E∗=E′.

Again, if the complete graph family C in Theorem 3.12 is not connected, the re-
sult can fail. Continuing with Example 3.2 and the graphs G, G1, and G2 de�ned in
Example 3.11, the only candidate for H in Theorem 3.12 is K1. But then E∗∗=E(G),
while E∗= ∅ since G=H =G. Thus E∗ 6=E∗∗.

4. Free graph families

A graph family S is free if S satis�es the following three axioms:

(F1) S contains all edgeless graphs;
(F2) S is closed under taking subgraphs;
(F3) For any induced subgraph H of G, if H ∈S and G=H ∈S, then G ∈S.

Notice that every free family is a subgraph lower ideal by (F2). Later in this section
(Example 4.6), we will show that the family of all forests is free.
According to Lemma 3:2 of [5],

nK1 ∈S for all n∈Z+⇔SO ⊆S;

so every free and every complete graph family contains its kernel. Further, it is im-
mediate from (F2) that any free graph family is also connected. The following lemma
is a restatement of Lemmas 2.5 and 2.8.

Lemma 4.1. For any graph family S; each of SR; SC; and SH satisfy (F1) and
SR also satis�es (F2).
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Lemma 4.2 ([5] 4:9). Let F be a free graph family and suppose that G ∈F. Then
G ∪ K1 ∈F.

Proof: Since G ∈F, we note that (G ∪ K1)=G=(!(G) + 1)K1 ∈F by (F1). Thus,
since G is an induced subgraph of G ∪ K1, it follows by (F3) that G ∪ K1 ∈F.

Thus all free families are stippled. Strengthening the SC result of Theorem 3.8, we
have

Lemma 4.3. Let F be a free graph family. If H ∈FC and if the components of H
are H1; H2; : : : ; Hc; then for any I ⊆{1; 2; : : : ; c}, we have⋃

i∈ I
Hi ∈FC:

Proof: For a contradiction, suppose that⋃
i∈ I

Hi =∈FC:

Then there exists an edge subset X ⊂E(⋃i∈ I Hi) such that H ′=(
⋃
i∈ I Hi)=X ∈F,

and E(H ′) 6= ∅. By Lemma 4.2, H ′ ∪ (c − |I |)K1 ∈F. Therefore, the nontrivial graph

H=

(
X ∪

⋃
i =∈ I

Hi

)
=H ′ ∪ (c − |I |)K1 ∈F;

contrary to the assumption that H ∈FC .

In [5, Theorem 4:6], it was claimed that, for any graph family S that is closed
under contraction, SR is a free graph family. This statement is false, as is shown by
the following example:

Example 4.4. Let S=C!¿1 and notice that K2 ∈ (C!¿1)R. Let G be the path on three
vertices and let H be either subgraph of G induced by an edge. Then both H and G=H
are isomorphic to K2 ∈ (C!¿1)R. But G is not in (C!¿1)R by Theorem 3.3(a). Thus
(F3) fails for SR even though S is closed under contraction, and is even closed under
CH-morphisms.

However, Theorem 4:6 of [5] can be proved for connected graph families that are
closed under CH-morphisms:

Theorem 4.5 ([5] 4:6). If S is a connected graph family which is closed under
CH-morphisms; then SR is a free graph family.

Proof: By Lemma 4.1, (F1) and (F2) are satis�ed. For a contradiction, suppose G is
a graph and H an induced subgraph of G such that H and G=H are both in SR but G
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is not in SR. Then G contains a nontrivial subgraph G′′ ∈S. Since S is connected,
every component of G′′ is in S, so let G′ be a nontrivial connected subgraph of G
in S.
Suppose V (G′)⊆V (H). Since H is induced, it follows that G′ ⊆H . Since H ∈SR,

by Lemma 2.5, G′ ∈SR. But then G′ is a nontrivial graph in S ∩ SR, contrary to
Lemma 2.8(a).
Hence V (G′) * V (H). Since G′ is connected, it follows that G′=(H ∩ G′) is non-

trivial (where G′=(H ∩ G′)=G′ if H ∩ G′ is edgeless). Since S is closed under
CH-morphisms, and therefore under contractions, and since G′ ∈S, we have G′=(H ∩
G′)∈S. Moreover, G′=(H ∩G′) can be transformed by a CH-morphism to a loopless
graph G∗ with E(G∗)=E(G′=(H ∩ G′)) such that G∗ ⊆G=H . Since G′=(H ∩ G′)∈S

and S is closed under CH-morphisms, G∗ ∈S. But then G=H =∈SR, contrary to
assumption. This contradiction establishes (F3) for SR, so SR is free.

Example 4.6. The family of all forests is a free graph family.

Proof: Let S= {K1} ∪ {2-edge-connected graphs}. S is connected by de�nition.
Since CH-morphisms do not eliminate paths between vertices not identi�ed under the
CH-morphism, if G′ is a nontrivial CH-morph of a 2-edge-connected graph G, then
G′ is 2-edge-connected graph. Thus S is closed under CH-morphisms. Thus SR is
free by Theorem 4.5. But SR is the family of all forests by Example 2.3; hence the
claim.

Lemma 4.7. Let S be a graph family. Any nontrivial graph in (SR)C has a nontrivial
subgraph in S.

Proof: Let G be a nontrivial graph in (SR)C . Then by de�nition, G has no nontriv-
ial contraction in SR, and so G =∈SR. By the de�nition of SR; G has a nontrivial
subgraph in S.

Lemma 4.7 suggests the question ‘When are S and (SR)C the same?’ While we do
not have a complete answer to that question, the following lemma supplies a su�cient
condition. The essence of the second paragraph of the proof appears in [5] and is
included here for completeness.

Lemma 4.8 ([5] 4:11). Let C be a complete graph family. Then C=(CR)C .

Proof: Let G ∈ (CR)C . Then G has no nontrivial contraction in CR, so any nontrivial
contraction of G, including G itself, has a nontrivial subgraph in C. Let H be a maximal
nontrivial subgraph of G in C. Suppose H 6=G. Then G=H has a nontrivial subgraph M
in C. Let HM be the subgraph of G induced by E(M). Then (HM ∪H)=H =M∪nK1 for
some integer n. Since C is stippled by Lemma 3.6 and M ∈C, we have M ∪ nK1 ∈C.
Thus H ∈C; H ⊆HM ∪ H , and (HM ∪ H)=H ∈C, so HM ∪ H ∈C by (C3). But M is
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nontrivial in G=H , so |E(HM ∪H)|¿|E(H)|, contradicting the maximality of H . Thus
G=H and G ∈C, whence (CR)C ⊆C.
Now suppose that G ∈C. By (C2), every contraction of G is in C. Applying

Lemma 2.8(a), G has no nontrivial contraction in CR. Thus, by de�nition, G ∈ (CR)C .
We have C⊆(CR)C , and equality follows.

5. Examples

If S is a connected complete graph family, then by Corollary 3.5 and Theorem 4.5,
SR is free. We call SR the associated free graph family.

Example 5.1. Let k ∈Z+. The graph family
C= {nK1 : n∈Z+} ∪ {G : each component H of G satis�es �′(H)¿k}

is a connected complete graph family, and the associated free graph family is
CR= {G : ��′(G)6 k}; where

��′(G)= max
H ⊆G

�′(H):

Example 5.2. De�ne

�(G)= min
F ⊆ E(G)

|F |
!(G − F)− 1 ;

where the minimum is taken over all subsets F ⊆E(G) for which !(G − F), the
number of components of G − F , is at least 2. Tutte [17] and Nash-Williams [14]
proved that b�(G)c is the maximum number of edge-disjoint spanning trees of G, and
Cunningham [7] showed that for s; t ∈Z+; �(G)¿ s=t if and only if G has a collection
of s spanning trees such that at most t of them contain any given edge of G. De�ne

(G)= max
H ⊆G

|E(H)|
|V (H)| − 1 :

Nash-Williams [15] proved that d(G)e is the edge-arboricity of G, and Catlin et al.
[6] proved that for any s; t ∈Z+, (G)6 s=t if and only if G has s spanning forests
such that any given edge of G is contained in t of the s forests. For any rational r¿ 1,
Catlin [5] proved that

C= {nK1 : n∈Z+} ∪ {G : �(G)¿ r}
is a complete graph family, that CR= {nK1 : n∈Z+} ∪ {G : (G)¡r} is the associated
free graph family, and that

(G)= max
H ⊆G

�(H):

Note that C is also connected.
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Example 5.3. It follows from the de�nition of SR that whenever a graph family S

is de�ned by

S= {nK1 : n∈Z+} ∪ {G : each component H of G satis�es �(H)¿ r}
for some graph invariant � (e.g., �= �′ or �= �), then the associated graph family
SR is {nK1 : n∈Z+} ∪ {G : ��(G)¡r}, where ��(G)=maxH ⊆G �(H):

However, some important graph families are de�ned in the absence of such a function
�, e.g., the family SL of supereulerian graphs. By Theorem 3.1, the kernel SLO of
SL is a complete graph family.
A graph G is collapsible if for every even subset Vi⊆V (G); G has a subgraph Hi

with V (Hi=Vi such that every vertex in Hi has odd degree in Hi and G − E(Hi) is
connected. De�ne CL to be the family of graphs whose components are collapsible.
In [5] Catlin proved that CL is a complete graph family and that CL⊆SLO. Also,
he showed that any graph G in CLR (and hence any graph in (SLO)R) is nK1 or has
(G)¡2 and girth at least 4. The actual value of SLO is unknown, but we conjecture
that it is CL. Both are connected complete graph families.
For any graph family S and any k ∈N, we say that a graph G is at most k edges

short of being in S if S contains a graph G′ having a set E′ of at most k edges,
such that G=G′ − E′.

Example 5.4 (Lai and Lai [13]). Let k ∈N. If C is a complete graph family and if
C(k) is the family of graphs that are at most k edges short of being in C, then
C=(C(k))O.

In [5], Catlin proved the two special cases of this result where C is the complete
graph family of Example 5.1 or Example 5.2.

Example 5.5. Let A be a �nite abelian group with |A|¿ 3. It is routine to verify that
the family [A] of all A-connected graphs is a connected complete graph family, and
that if |A|= k¿ 3, then [A]⊆(Fk)O. Catlin has shown [3] that CL⊂(F4)O. Recently
[11] this was improved to CL⊆ [A]⊂(F4)O, for any group A with |A|=4. The last
containment is proper: Catlin indicated in [3] that the 4-cycle is in (F4)O, but it is
easy to see that the 4-cycle is not in [A] for any abelian group A with |A|=4.

6. Connections between graph operations

The next theorem is Theorem 4:10 of [5]. Unfortunately, the proof provided in that
paper is faulty. Speci�cally, in that proof, when isolated vertices are added to graph H0
to form graph J , there is an assumption made that if the edges of a subgraph survive a
contraction, so does the subgraph. But this is not so (distinct vertices of the subgraph
may have been coalesced into a single vertex), and so the graph H0 of that proof
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cannot necessarily be converted into graph J as claimed by adding isolated vertices.
Nevertheless, the theorem is correct, as the following lemmas and proof of Theorem
6.3 show.

Lemma 6.1. Let F be a free graph family. If F contains a nontrivial graph; then
K2 ∈F. Moreover; if F consists of all edgeless �nite graphs; then FC is complete;
FC consists of all �nite graphs; and F=(FC)R.

Proof: The �rst part of the lemma is a consequence of (F2). Suppose F consists
of all edgeless �nite graphs. Since no graph can have a nontrivial contraction in F,
every �nite graph is in FC by de�nition. That FC satis�es (C1) and (C2) is now
immediate. Also, let G be any �nite graph. Then, given H ⊆G with H ∈FC and
G=H ∈FC , G ∈FC since G is �nite. Thus (C3) follows, and FC is complete.
Since FC is the set of all �nite graphs, by de�nition (FC)R can have no nontrivial

members. Thus F=(FC)R by Lemma 2.8(a).

The next lemma supplies a key step in the proof of Theorem 6.3 In this lemma, we
stretch the meaning of H + e by allowing an edge e not in H to be added even if its
ends are not in H . In such a case the end or ends not in H are also added.

Lemma 6.2 ([5] 4:7). Let F be a free graph family. Let H be a connected graph.
Suppose that H ∈FC and suppose that e is a nonloop edge not in H . If (H +
e)=H ∈FC; then H + e∈FC .

Proof: This is immediate from Lemma 6.1 if F has no nontrivial graphs, so we
may suppose F includes a nontrivial graph. Also note that FC satis�es (C2) by
Lemma 2.6. Let M denote the subgraph of H + e induced by edge e. Then M is
isomorphic to K2 and is in F by (F2). For a contradiction, suppose H and e are
chosen so that |E(H + e)| is as small as possible with H + e =∈FC . By the de�nition
of FC , we may select a maximal set X ⊂E(H + e) such that (H + e)=X ∈F and is
nontrivial.
Case 1: Suppose |V (M)∩V (H)|6 1. Then (H+e)=H =M ∪ tK1 for some t ∈{0; 1}.

If e∈X , then H=(X − {e})= (H + e)=X ∈F, contrary to H ∈FC since (H + e)=X is
nontrivial.
Suppose e =∈X . If E((H + e)=X )− {e} 6= ∅, then H=X =(H + e)=X − e is nontrivial,

and it is in F by (F2), since (H + e)=X ∈F. This is a contradiction of H ∈FC .
Thus we may suppose E((H + e)=X )= {e}. Since X is maximal, it follows that

X =E(H) and M ∪ tK1 = (H+e)=X =(H+e)=H ∈FC by hypothesis, where t ∈{0; 1}.
But M ∈F as observed above, so M ∪ tK1 ∈F by Lemma 4.2. Thus F∩FC includes
the nontrivial graph M , contrary to Lemma 2.8(b).
Case 2: Thus we may suppose that e= uv and both u; v∈V (H). For a contradiction,

suppose that e =∈X . Since X is maximal, we have that e∈E((H + e)=X . Since (H +
e)=X ∈F, by (F2) we have (H + e)=X − e∈F. Thus H=X =((H + e)− e)=X =(H +
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e)=X−e∈F. But we know H ∈FC , so by (C2) (Lemma 2.6), H=X ∈FC . By Lemma
2.8(b), then, E(H=X )= ∅, so E((H + e)=X )= {e}. Moreover, X =E(H) since X is
maximal. But H is connected, so E((H+e)=X )=E((H+e)=E(H))= ∅, a contradiction.
Thus we may suppose e∈X . Suppose there is an edge e′ ∈X − {e}, so e′ ∈E(H).

Let G′=(H + e)=e′ and let H ′=H=e′. Either the ends of e are left di�erent by the
contraction of e′, so that G′=H ′ + e, or e and e′ are parallel in H + e, in which
case e is a loop in G′ and so is erased, leaving G′=H ′. Since H ∈FC , by (C2)
we have H ′ ∈FC . Also, G′=H ′=((H +e)=e′)=(H=e′)=K1 ∈FC . By the minimality of
|E(H + e)|, it follows that G′ ∈FC . Thus G′=(X −{e′})∈FC by (C2). But G′=(X −
{e′})= ((H + e)=e′)=(X −{e′})= (H + e)=X , so (H + e)=X ∈FC . Since X was chosen
so that (H + e)=X ∈F and nontrivial, this is impossible. Hence X = {e}.
Suppose H has an edge e′′ parallel to e. Then H=e′′ ∈FC by (C2) since H ∈FC .

But in this case, (H+e)=e=H=e′′, so (H+e)=e=(H+e)=X ∈FC∩F. Since (H+e)=X
is nontrivial, this is a contradiction of Lemma 2.8(b).
Thus we may suppose X = {e} and M is an induced subgraph of H + e.
Since F includes a nontrivial graph, by (F2) we have K2 ∈F. Since M ∼=K2, this

shows that M ∈F. But we assumed that (H + e)=M =(H + e)=X ∈F. By (F3)
it follows that H + e∈F. From this, (F2) gives us H ∈F. But H is nontrivial
and is now in FC ∩ F, contrary to Lemma 2.8(b). This �nal contradiction proves
Lemma 6.2.

Theorem 6.3 ([5] 4:10). If F is a free graph family; then FC is a complete graph
family and F=(FC)R.

Proof: This theorem is given by Lemma 6.1 if F has no nontrivial graphs. If F has a
nontrivial graph, then FC satis�es (C1) by the de�nition of FC and (C2) by Lemma
2.6. Thus we want to show

(A) if H ⊆G; H ∈FC and G=H ∈FC , then G ∈FC .
For a contradiction, we assume that
(B) H and G form a counterexample to (A) with |E(G)| smallest;
thus H ⊆G; H ∈FC and G=H ∈FC , and yet G =∈FC .

We note that |E(G)|¿0, for otherwise G ∈FC by (C1). Since G =∈FC , there is a
maximal edge set X ⊂E(G) such that G0 =G=X ∈F and G0 is nontrivial. Since X is
maximal, E(G0)=E(G)− X .
If E(H)= ∅, then G=H =G, while G=H ∈FC , so that G ∈FC , contrary to assump-

tion. Thus E(H) 6= ∅.
If X = ∅, then G=G=X , so G ∈F. By (F2) it follows that H ∈F. But this contra-

dicts Lemma 2.8(b) since H ∈FC and E(H) 6= ∅. Thus X 6= ∅.
Suppose E(H)∩X 6= ∅, and let e∈E(H)∩X . Let G1 =G=e. Since H ∈FC , by (C2)

we have H=e∈FC . Moreover, G1=(H=e)= (G=e)=(H=e)=G=H . By (B), G=H ∈FC , so
G1=(H=e)∈FC . Since H ⊆G by (B), we also have H=e⊆G=e=G1. By these obser-
vations and the minimality of G as a counterexample, we conclude that G1 ∈FC . By
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(C2) it follows that G1=(X −{e})∈FC . But G1=(X −{e})= (G=e)=(X −{e})=G=X =
G0 ∈F, and G0 is nontrivial as observed before. Thus the nontrivial graph G1=
(X − {e})=G=X ∈FC ∩F, contrary to Lemma 2.8(b). Hence E(H) ∩ X = ∅.
Suppose H is connected. By our previous observations, we may choose e∈X , and

we know e =∈E(H). Let G2 =G=e and let M =G[e].
Suppose |V (M) ∩ V (H)|6 1. Then H ⊆G2. By (B), H ∈FC . Moreover, G2=H =

(G=e)=H =(G=H)=e. Since G=H ∈FC by (B), by (C2) (G=H)=e∈FC . Thus G2=H ∈
FC . Since G is a smallest counterexample to the theorem, we conclude G2 ∈FC . But
then G2=(X −{e})∈FC by (C2). Thus G2=(X −{e})= (G=e)=(X −{e})=G=X ∈FC:
Since G=X ∈F as well and is nontrivial, this is impossible by Lemma 2.8(b).
Thus |V (M) ∩ V (H)|=2. If there is an edge e′ ∈E(H) parallel to e, then we may

replace X with X ′=(X − {e}) ∪ {e′}. Now X ′ ∩ E(H) 6= ∅, and we get the same
contradiction we got before. Thus no such edge e′ exists.
We now have that (H + e)=H =K1 ∈FC . By Lemma 6.2, we get H + e∈FC ,

and (C2) gives us (H + e)=e∈FC . But (H + e)=e⊆G2. By (C2) and G=H ∈FC ,
we have G2=((H + e)=e)= (G=e)=((H + e)=e)= (G=e)=H =(G=H)=e. But G=H ∈FC by
assumption, so (C2) gives (G=H)=e∈FC . Since G is a smallest counterexample and
|E(G2)|¡|E(G)|, it follows that G2 ∈FC . But G0 =G=X =(G=e)=(X −{e})=G2=(X −
{e})∈FC by (C2). Thus G0 ∈FC ∩F, contrary to Lemma 2.8(b). Thus the �rst part
of our theorem is true if H has only one component.
Now suppose H is the union of disjoint components H1; H2; : : : ; Hc for some integer

c¿ 1. Let Gi=G=(
⋃
16 ‘6 i H‘) for each i∈{1; 2; : : : ; c}.

Next, we prove Gi ∈FC for each i¿ 1. Note that Gc=G=(
⋃
16 ‘6 c H‘)=G=H ∈

FC by assumption. Suppose that we have Gc−i ∈FC for some i¿ 0. Since the com-
ponents of H are vertex disjoint, Hc−i⊆Gc−i−1. Moreover, Gc−i−1=Hc−i=Gc−i ∈FC ,
Hc−i ∈FC by Lemma 4:3, and Hc−i⊆Gc−i−1. But |E(Gc−i−1)|¡|E(G)|, so Gc−i−1 ∈
FC since G is a smallest counterexample.
We conclude that G1 ∈FC . But then we have G=H1 ∈FC , H1⊆G, and H1 ∈FC .

Since H1 is connected, the earlier part of this proof shows that G ∈FC . Thus (B) fails
and FC is complete.
Finally we prove that F=(FC)R. By the observation made at the beginning of this

proof, we may suppose F includes a nontrivial graph.
Suppose G ∈F and suppose G =∈ (FC)R. Then by the de�nition of the operator

R, G has a nontrivial subgraph H ∈FC . Since G ∈F, by (F2) we have H ∈F, so
H ∈FC ∩F. By Lemma 2.8(b), H has no edges, a contradiction. Thus

F⊆(FC)R: (3)

Next, suppose G is a graph which minimizes |V (G)| + |E(G)| over the graphs in
(FC)R −F. Since F includes all edgeless graphs, G is nontrivial. By the de�nition
of operation R, G =∈FC .
Case A: Suppose G is disconnected. Let H be a component of G and let H ′=G−H .

By Lemma 2.5, we have H;H ′ ∈ (FC)R. Hence by the minimality of G, both H and
H ′ are in F. Let e be an edge joining a vertex of H to a vertex of H ′, let G′=H +e,
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and let G′′=(H ∪ H ′) + e=G + e. Then G′[e] and H are vertex-induced subgraphs
of G′. Further, G′[e]∈F because F includes a nontrivial graph as noted before, and
H =G′=e∈F by assumption. Hence G′ ∈F by (F3). But H ′ ∈F, H ′ is an induced
subgraph of G′′, and G′′=H ′=G′ ∪ nK1 for some integer n, and G′ ∪ nK1 ∈F by
Lemma 4.2. Thus G′′ ∈F by (F3). By (F2), we conclude that G=G′′ − e∈F, a
contradiction.
Case B: Thus we may suppose G is connected. Since G =∈FC , there is a nontrivial

contraction G0 of G in F. Since G =∈F, G 6=G0; moreover, the connectedness of
G ensures the connectedness of G0. Since G0 is nontrivial, c := |V (G0)|¿ 2. Let the
vertices of G0 be v1; : : : ; vc and, for each i∈{1; 2; : : : ; c}, let Hi be the maximal subgraph
of G which contracts to vi in forming G0 from G. Form graphs G1; : : : ; Gc in order
by forming Gi from Gi−1 by replacing vi with Hi and connecting the vi-ends of the
edges of G0 which meet vi to their ends in G. For each i, Hi is an induced subgraph
of Gi. Since Hi ∈ (FC)R by Lemma 2.5, the minimality of G in (FC)R − F gives
us Hi ∈F. To begin an inductive argument, we note that G0 ∈F. At each stage,
since Gi−1 ∈F, we have Gi ∈F by (F3). Thus Gc ∈F. But Gc=G, contradicting
the choice of G, so (FC)R⊆F. Combining this with (3) completes the proof of
Theorem 6.3.

The next lemma extends Lemma 2.9.

Lemma 6.4. For any free graph family F; FH =FC .

Proof: Suppose that F is free, let G ∈FC , and suppose by way of contradiction that
G =∈FH . Then G has a CH-morphism to a nontrivial graph G0 ∈F. By Theorem 6.3,
FC is complete and thus by Corollary 3.5, FC is closed under CH-morphisms, and so
G0 ∈FC . But then the nontrivial graph G0 is in F ∩FC , contrary to Lemma 2.8(b).
Hence, FC ⊆FH when F is free. Applying Lemma 2.9, FC =FH .

De�nition: A graph family S is antistippled if, for any G ∈S with an isolated vertex
x, the graph G − x is also in S.

Lemma 6.5. Let S be a graph family.

(a) If S is connected and complete; then S is antistippled.
(b) If S is antistippled; then SR is stippled.

Proof: Let G ∈S and let x be an isolated vertex of G. Let H =G−x, and suppose the
components of H are C1; C2; : : : ; Cr . Since S is connected, and since each component
of H is a component of G, C1; C2; : : : ; Cr ∈S. Applying Theorem 3.7 r − 1 times,
H =

⋃
16 i6 r Ci ∈S. Thus part (a) of the lemma is proved.

Now let G ∈SR. Then G has no nontrivial subgraph in S. Suppose G ∪ K1 =∈SR.
Then G ∪ K1 has a nontrivial subgraph H ∈S. If {x}=V (G ∪ K1) − V (G), and if
x =∈V (H), then H is a nontrivial subgraph of G in S, a contradiction. So x∈V (H).
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But x is isolated in H ∈S, so H − x∈S by the antistippled property. This is a
contradiction, and part (b) of the lemma follows.

Note that by Lemma 4.2 and (F2), every free family is both stippled and antistippled.

Theorem 6.6. For any graph family S;

(a) if S is antistippled; then (SR)H is connected and complete; and (SR)H is con-
tained in every complete graph family containing S; and

(b) if S is stippled; then (SH )R is free; and (SH )R is contained in every free graph
family containing S.

Proof: Let S be a graph family.
(a) By Lemma 2.5, SR is closed under taking subgraphs. By Lemma 6.5(b), SR is

stippled, so by Theorem 3.9, (SR)H is connected and complete. There is a complete
graph family containing S: the family of all graphs. Now let C be a complete graph
family with S⊆C. Apply (a) and (c) of Lemma 2.4 successively to get

CR⊆SR; and (SR)H ⊆(CR)H :
Since C is complete, C=(CR)C by Lemma 4.8. Hence, (CR)H ⊆C by Lemma 2.9,
and so (SR)H ⊆C, and (a) is proved.
(b) By Lemma 2.7, SH is closed under CH-morphisms, and by Theorem 3.8, SH

is connected. Thus, by Theorem 4.5, (SH )R is free. Now let F be a free graph family
with

S⊆F:

Since the family of all graphs is a free graph family, such a graph family F ex-
ists. By Lemma 2.4(c), FH ⊆SH , and so by Lemma 2.4(a), (SH )R⊆(FH )R. But
FH =FC by Lemma 6.4. Thus (FH )R=(FC)R=F by Theorem 6.3. Hence we
have (SH )R⊆F.

A consequence of Theorem 6.6(a) is that if S is antistippled and S⊆C!¿1, then
(SR)H = {nK1 : n∈Z}.

Corollary 6.7. For any graph family S; the following are equivalent:

(a) S is antistippled and S=(SR)H ;
(b) S is a connected complete graph family.

Proof: By Theorem 6.6(a), (a)⇒ (b). Suppose (b). Then by Lemma 6.5(a), S is antis-
tippled. By Lemma 4.8, S=(SR)C . But SR is free by Corollary 3.5 and
Theorem 4.5, so S=(SR)C =(SR)H by Lemma 6.4. Thus (b)⇒ (a).

Corollary 6.8. For any graph family S; the following are equivalent:

(a) S is stippled and S=(SH )R;
(b) S is a free graph family.
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Proof: By Theorem 6.6(b), (a) ⇒ (b). By Lemma 4.2, Theorem 6.3 and Lemma 6.4,
(b) ⇒(a).

The next theorem could have been included in Section 2, but its corollaries depend
on Corollaries 6.7 and 6.8, so it is here instead.

Theorem 6.9. Let S be a family of graphs:

(a) If S is closed under CH-morphisms; then S⊆(SR)H ;
(b) If S is closed under taking subgraphs; then S⊆(SH )R.

Proof: Let S be a graph family:
(a) Suppose S is closed under CH-morphisms, and let G ∈S. By way of contra-

diction, suppose G =∈ (SR)H . Then some nontrivial CH-morph G0 of G is in SR. Since
G ∈S and S is closed under CH-morphisms, G0 ∈S. Hence, G0 is a nontrivial graph
in SR ∩S, a contradiction of Lemma 2.8(a).
(b) Suppose S is closed under taking subgraphs, and let G ∈S. By way of con-

tradiction, suppose G =∈ (SH )R. Hence, G has a nontrivial subgraph G0 ∈SH . Since
G ∈S and S is closed under taking subgraphs, G0 ∈S. Hence, G0 is a nontrivial
graph in SH ∩S, contrary to Lemma 2.8(c).

Theorem 6.9 cannot be readily strengthened since S⊆(SR)H and S⊆(SH )R of
Theorem 6.9 are not true if S= {K3}. To see this, we have

SR= {K3-free graphs}:
Therefore, a nontrivial graph G ∈ (SR)H if and only if no nontrivial CH-morph of
G is K3-free. But the 2-cycle is a CH-morph of G=K3. Hence, K3 =∈ (SR)H , and
S* (SR)H . Next, note that

SH = {G :K3 is not a CH-morph of G}
Hence, K2 ∈SH . Now

(SH )R= {G′ : no nontrivial subgraph of G′is in SH}:
Since K2 ∈SH , this implies

(SH )R= {edgeless graphs}:
Therefore, K3 =∈ (SH )R, and S* (SH )R.

Corollary 6.10. Let S1 and S2 be graph families. If S1 is closed under taking
subgraphs and if S2 is free; then

S1⊆S2⇔SH
2 ⊆SH

1 :

Proof: ‘⇒’ is Lemma 2.4(c). To prove ‘⇐’, suppose SH
2 ⊆SH

1 . Then by Theorem
6.9(b), Lemma 2.4(a), and Corollary 6.8,

S1⊆(SH
1 )
R⊆(SH

2 )
R=S2:
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Corollary 6.11 ([5] 4:14). Let S1 and S2 be graph families. If S1 is closed under
CH-morphisms and if S2 is connected and complete; then

S1⊆S2⇔SR
2 ⊆SR

1 :

Proof: ‘⇒’ is Lemma 2.4(a). To prove ‘⇐’, suppose SR
2 ⊆SR

1 . Then by Theorem
6.9(a), Lemma 2.4(c), and Corollary 6.7,

S1⊆(SR
1 )
H ⊆(SR

2 )
H =S2:

In [5], Paul Catlin proved a similar result for operation C:

Theorem 6.12 (Catlin [5, 4:13]). Let S1 and S2 be graph families. If S1 and S2

are each free; then

S1⊆S2⇔ (S2)C ⊆(S1)C:

Theorems 6.6 and 6.9 lead to an interesting view of free and connected complete
graph families as members of lattices, as follows:
For any two connected complete families C1 and C2, de�ne the meet

C1 ∧ C2 =C1 ∩ C2:

It follows routinely from the de�nition that C1 ∧ C2 is a connected complete graph
family. De�ne the join C1 ∨C2 to be the intersection of all connected complete graph
families containing C1 ∪ C2. By Corollary 3.5 and Theorem 6.9(a),

C1 ∪ C2⊆((C1 ∪ C2)R)H :

But all connected complete families are antistippled by Lemma 6.5(a), and consequently
C1 ∪ C2 is easily shown to be antistippled. Thus, by Theorem 6.6(a), ((C1 ∪ C2)R)H

is connected and complete. Moreover, it is in the intersection of all complete graph
families containing C1 ∪ C2. Since it is one of these complete graph families,

C1 ∨ C2 = ((C1 ∪ C2)R)H

and C1 ∨ C2 is connected and complete. Thus the connected complete graph families
form a lattice.
Dually, for free graph families F1 and F2, de�ne the meet

F1 ∧F2 =F1 ∩F2:

It is routine to show that F1∧F2 is free. De�ne the join F1∨F2 to be the intersection
of all free graph families containing F1 ∪F2. By Lemma 4.2, F1 ∪F2 is stippled.
Thus, by Theorems 6:9(b) and 6:6(b),

F1 ∨F2 = ((F1 ∪F2)H )R:

Thus the free graph families also form a lattice.
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7. A special case

De�ne

��(G)= max
H ⊆G

�(H); and ��′(G)= max
H ⊆G

�′(H);

so, for example, if K3 ∪ K4 is the disjoint union of K3 and K4, then ��′(K3 ∪ K4)= 3,
and ��(K3 ∪ K4)= 3. A graph G such that ��(G)6 k is called k-degenerate.

Theorem 7.1. Let k ∈Z. If Sk denotes {G′ : ��(G′)6 k}, then
(SH

k )
R= {G : ��′(G)6 k}:

Proof: Let Tk := {G : ��′(G)6 k}. Suppose G ∈ (SH
k )
R. Then for any subgraph H of

G, H =∈SH
k . If �

′(H)¿k, then every nontrivial CH-morph H ′ of H satis�es �′(H ′)¿k,
and so H has no CH-morph H ′ with ��(H ′)6 k. Hence H ∈SH

k , a contradiction. Thus
�′(H)6 k for all H ⊆G, G ∈Tk , and so (SH

k )
R⊆Tk .

For the other containment, let G ∈Tk , and let H be a nontrivial subgraph of G.
For a contradiction, suppose H ∈SH

k . Then H has no CH-morph in Sk . We describe
such a CH-morph, arriving at a contradiction: Since H is nontrivial, it has a nontrivial
component C0. Let the other components of H be C1; C2; : : : ; Cr . Since G ∈Tk , we
have �′(C0)6 k. By Menger’s Theorem, there is a set E of at most k edges of C0
such that C0 − E has exactly two components C′

0 and C
′′
0 joined in C0 by E. Form

H ′=((H=(
⋃
16 i6 r Ci)=C

′
0)=C

′
1. Then H

′ has one component of two vertices joined
by at most k edges, and its other components are edgeless. Thus H has a nontrivial
CH-morph H ′ with ��(H ′)6 k, so H =∈SH

k . This contradiction establishes that no non-
trivial subgraph of G is in SH

k , so G ∈ (SH
k )
R. Thus Tk ⊆(SH

k )
R, and the equality

claimed by the theorem is established.

Corollary 7.2. The smallest free graph family containing the k-degenerate graphs is
the family of graphs G with ��′(G)6 k.

Proof: Noting that Sk is stippled, use Theorems 6.6(b) and 7:1.

8. Reduction

Let S be a family of graphs and let G be a graph. We say that G is S-reduced
if no nontrivial subgraph of G is in S, i.e., if G ∈SR. We say that a graph G0 is a
S-reduction of G if G0 is S-reduced and if G0 can be obtained from G by a sequence
of contractions of subgraphs in S. When the S-reduction is unique, we denote the
S-reduction of G by G=S. The subgraphs found in S that are being contracted may
not all be subgraphs of G itself, for some may be created by a prior contraction in the
sequence.
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The next theorem is given in [5] without the condition of connectedness on C. But, in
fact, completeness alone is not su�cient. For example, in Example 3.11 G=G1 = 4 ∗K2
while G=G2 = 2 ∗ K2. Since neither 4 ∗ K2 nor 2 ∗ K2 has a nontrivial subgraph in C,
uniqueness fails. However, the proofs of Theorem 4:1 and Corollary 4:2 given in [5]
are valid for connected complete graph families.

Theorem 8.1 ([5] 4:1). If C is a connected complete graph family and G is a graph;
then the C-reduction of G is unique.

Theorem 8.2. Let C be a connected complete graph family and let G be a graph.
Then E(G=C) is the set of edges of G that lie in no subgraph of G that is in C.

Proof: By Theorem 3.12, G=C can be obtained from G by contracting each maximal
connected subgraph of G in C to a vertex. (This was the de�nition of a C-reduction
used in [5].) Thus Theorem 8.2 follows by Theorem 3.7.

Theorem 8.3. Let S be a connected family of graphs which is closed under
CH-morphisms. Then

(SR)C =(SR)H

and for any graph G; the unique S-reduction of G is G=S=G=((SR)C).

Proof: Since S is connected and closed under CH-morphisms, by Theorem 4.5, SR

is a free graph family. Hence, by Lemma 6.4,

(SR)C =(SR)H :

We must now show the S-reduction is unique. To simplify notation, denote C=
(SR)C =(SR)H : By Theorem 6.3, C=(SR)C is a complete graph family. Since SR

is free, it is stippled, so by Theorem 3.8, C is connected. By Theorem 8.1, there is a
unique C-reduction of G, denoted G=C.
Let G0 be a S-reduction of G and let G1 =G=C. Since G0 and G1 are both formed

by contracting edges of G, to prove G0 =G1 it su�ces to show

E(G0)=E(G1):

Let e∈E(G)− E(G1): By Theorem 8.2, since C is connected and complete, e is in
a subgraph H (e) of G lying in C=(SR)C . By Lemma 4.7, H (e) contains a nontrivial
subgraph in S. By C satisfying (C2) and by Lemma 4.7, every nontrivial contraction
of H (e) also contains a nontrivial subgraph in S. Therefore, as G is changed to the
reduced graph G0 by a sequence of contractions of members of S, H (e) must be
contracted to an edgeless subgraph, since G0 is reduced. Hence, e =∈E(G0), and so
E(G0)⊆E(G1).
Let e∈E(G1)−E(G0). Then some contraction of G contains a subgraph H (e) in S

such that e∈E(H (e)). We may assume that there exist graphs H (e)=H1; H2; : : : ; Hc,
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and edge subsets Xi⊆E(Hi+1) (16 i6 c− 1) such that Hc is a subgraph of G, such
that Hi=Hi+1=Xi, for each i=1; 2; : : : ; c− 1, and such that Hi+1[Xi]∈S. By Theorem
6.9(a),

S⊆(SR)H =(SR)C =C: (4)

By (4), H1 =H2=X1 =H (e)∈S⊆C and H2[X1]∈S⊆C. Since C is complete, H2 ∈C

follows from (C3). Inductively, H3; : : : ; Hc ∈C. However, Theorem 8.2 asserts that
E(G1) is the set of edges of G lying in no subgraph found in C. Since e∈E(H (e))⊆Hc
and Hc ∈C, we conclude that e =∈E(G1), contrary to our supposition. Theorem 8.3
follows.

In Theorem 8.3, hypothesizing connectedness and closure under contractions alone
is not su�cient to get the uniqueness result, as is shown by the following example.
Begin with the disjoint union

G1 = 2K3;3 ∪ K1;
where {a; b; c; w; x; y; z} is an independent set in G1 such that {a; b; c}; {w}; and {x; y; z}
lie in distinct components of G1. Let G2 be the graph obtained from G1+aw by setting
b=y and c= z. Thus, G2 − w consists of two edge-disjoint copies of K3;3, which we
denote by H1 and H2, where {a; b; c}⊆V (H1) and

{b; c}= {y; z}=V (H1) ∩ V (H2):
Let S be the graph family of all contractions of K3;3, including K3;3 itself. Thus,
S is connected and closed under contraction, but not under CH-morphisms, because
the graph H0 obtained from a K3;3 by identifying two nonadjacent vertices is not
in S. Note that G2=H1 and G2=H2 are not isomorphic. Also, G2=H1 and G2=H2 are
S-reduced (because every nontrivial member of S is 3-edge-connected, and the only
3-edge-connected subgraph of G2=H1 or G2=H2 is isomorphic to H0, which is not in
S). Thus, G2 has two nonisomorphic S-reductions, and S is a connected graph family
closed under contraction.
Also, note that S * (SR)H when S is the graph family of contractions of K3;3.

The reason is that H0 ∈SR (because every nontrivial graph in S is 3-edge-connected,
but H0 =∈S and no proper subgraph of H0 is 3-edge-connected), and hence K3;3 ∈S−
(SR)H . Therefore, the hypothesis in Theorem 6.9(a) of closure under CH-morphisms
cannot be relaxed to closure under contraction.
We close this section by mentioning two previously published theorems whose proofs

used in an essential way the concept expressed more generally in Theorem 8.3. In [3]
and in [12], Catlin and Lai proved, respectively:

Theorem 8.4 (Catlin [3]). If a graph G is at most 5 edges short of being 4-edge-
connected; then either G ∈F4 or G has a cut edge or G is contractible to the Petersen
graph.
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Theorem 8.5 (Lai [12]). Let Z3 denote the cyclic group of order 3 and let G be a
3-edge-connected chordal graph. Then G is A-connected for every abelian group A
with |A|¿ 3 if and only if neither of the following holds:

(a) G has a block which is isomorphic to K4;
(b) G is the union of two induced subgraphs G1 and G2 such that G1 is not Z3-

connected; such that G2∼=K4; and such that the intersection of G1 and G2 is an
edge.
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